1
|
Yuan HJ, Han QC, Yu H, Yu YD, Liu XJ, Xue YT, Li Y. Calycosin treats acute myocardial infarction via NLRP3 inflammasome: Bioinformatics, network pharmacology and experimental validation. Eur J Pharmacol 2025; 997:177621. [PMID: 40220980 DOI: 10.1016/j.ejphar.2025.177621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Calycosin (CA) is a flavonoid natural product that may effectively treats acute myocardial infarction (AMI), but its mechanism is unclear. METHODS Targets related to AMI and CA were identified using the GEO database, SwissTargetPrediction, PharmMapper and literature searches. Protein-protein interactions analysis and Cytoscape were used to screen the core targets of CA for AMI treatment. Enrichment analysis identified biological pathways linked to AMI and potential mechanisms of CA. Immune infiltration analysis was used to explore the role of immune cells in AMI and the correlation between core targets and immune cells. And further validated in AMI rats with ligated left anterior descending. RESULTS Bioinformatics identified relevant targets and biological mechanisms of AMI, and network pharmacology revealed 31 potential targets affected by CA, with NLRP3, IL-18, IL-1β, MMP9, and TLR4 as core targets. Enrichment analysis demonstrated the biological roles of these potential targets and NLRP3, IL1β and IL18 were selected for further analysis. Immune infiltration analysis showed that both NLRP3 and IL-1β were closely associated with monocytes, mast cells activated and neutrophils, and IL-18 was closely associated with monocytes. CA exerted cardioprotective effects in AMI rats by inhibiting NLRP3 inflammasome activation and reducing IL-18 and IL-1β levels, improving cardiac function and attenuating myocardial injury and fibrosis. CONCLUSION CA effectively protects cardiac function and mitigates myocardial injury in post-AMI rats, probably through NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Hua-Jing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Quan-Cheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hui Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yi-Ding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiu-Juan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yi-Tao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
2
|
Zhao XP, Duan L, Zhao QR, Lv X, Tian NY, Yang SL, Dong K. NLRP3 inflammasome as a therapeutic target in doxorubicin-induced cardiotoxicity: role of phytochemicals. Front Pharmacol 2025; 16:1567312. [PMID: 40313623 PMCID: PMC12043718 DOI: 10.3389/fphar.2025.1567312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Doxorubicin (DOX) has received widespread attention as a broad-spectrum antitumor drug. However, it has been a recognized challenge that long-term DOX injections can lead to severe cardiotoxicity. There are numerous interventions to DOX-induced cardiotoxicity, and the most cost-effective is phytochemicals. It has been reported that phytochemicals have complex and diverse biological properties, facilitating the mitigation of DOX-induced cardiotoxicity. DOX-induced cardiotoxicity has numerous pathological mechanisms, and the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis is one of them. This review initially presents an overview of the pathological mechanisms that underlie cardiotoxicity induced by DOX. Subsequently, we present a comprehensive elucidation of the structure and activation of the NLRP3 inflammasome. Finally, we provide a detailed summary of phytochemicals that can mitigate DOX-induced cardiotoxicity by influencing the expression of the NLRP3 inflammasome in cardiomyocytes.
Collapse
Affiliation(s)
- Xiao-Peng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Lian Duan
- China Volleyball College, Beijing Sport University, Beijing, China
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Qian-Ru Zhao
- Shenyang Sports Research and Medical Center, Shenyang Sports Development Center, Shenyang, China
| | - Xing Lv
- Department of Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Nai-Yuan Tian
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Sheng-Lei Yang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Kun Dong
- College of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
3
|
Lu Q, Shen Q, Su J, Li X, Xia B, Tang A. Inhibition of mir-155-5p alleviates cardiomyocyte pyroptosis induced by hypoxia/reoxygenation via targeting SIRT1-mediated activation of the NLRP3 inflammasome. J Cardiothorac Surg 2025; 20:135. [PMID: 39972472 PMCID: PMC11837669 DOI: 10.1186/s13019-025-03366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVE The hypoxia/reoxygenation (H/R)-induced pyroptosis of cardiomyocytes plays a crucial role in the pathogenesis of myocardial infarction (MI). miR-155-5p represents a promising target for MI therapy. However, its involvement in H/R-induced pyroptosis remains unclear. METHODS The H/R exposed rat cardiomyocyte H9c2 was utilized as in vitro model, and the expression levels of miR-155-5p and SIRT1 in cells were modulated through cell transfection experiments. Cell proliferative activity was assessed using the Cell counting kit-8 assay. Supernatant lactate dehydrogenase (LDH) activity was determined through colorimetry. The levels of living and dead cell were observed via Calcin-AM/PI staining. Levels of supernatant interleukin (IL)-1β and IL-18 were measured using ELISA assay. The expression levels of miR-155-5p and silent information regulator 1 (SIRT1) mRNA were detected by qRT-PCR. The protein expression levels of SIRT1, NLRP3, N-terminal gasdermin D (GSDMD-N), and Cleaved caspase-1 were evaluated using Western blot analysis. The targeted regulatory relationship between miR-155-5p and SIRT1 was verified using dual luciferase reporter gene assay. RESULTS The proliferation activity of H9c2 cells induced by H/R was attenuated, accompanied by severe injury, increased cell death, and the release of a substantial amount of pro-inflammatory cytokines IL-1β and IL-18. In addition, H/R stimulation resulted in the upregulation of miR-155-5p expression and downregulation of SIRT1 expression in H9c2 cells. Suppression of miR-155-5p or overexpression of SIRT1 exhibited ameliorative effects on H/R-induced cellular injury in H9c2 cells and inhibited NLRP3 inflammasome-mediated pyroptosis. The dual-luciferase assay confirmed the direct targeting of SIRT1 by miR-155-5p in H9c2 cells. Furthermore, partial reversal of the inhibitory effect of miR-155-5p inhibitor on H/R-induced NLRP3 inflammasome-mediated pyroptosis in H9c2 cells was observed upon interference with SIRT1 expression. CONCLUSION Inhibition of miR-155-5p alleviates cardiomyocyte pyroptosis induced by H/R via targeting SIRT1-mediated activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Qiuyu Lu
- Department of Pharmacy, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qingrong Shen
- Department of Pharmacy, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jinmei Su
- Department of Pharmacy, Mingxiu Branch of Guangxi International Zhuang Medicine Hospital, Nanning, 530001, China
| | - Xin Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Bingyu Xia
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Aicun Tang
- Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Qingxiu District, Nanning, 530200, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Gullo CE, Dos Santos DD, Corrêa MP, Gil CD, Bestetti RB. Expression patterns of Galectin-3 and NLRP3 in Chagas reactivation and graft damage in heart transplants. Transpl Immunol 2025; 88:102159. [PMID: 39645001 DOI: 10.1016/j.trim.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE This study aimed to assess the expression patterns of galectin-3 (Gal-3) and NLRP3 in heart transplant recipients according to the presence of reactivated Trypanosoma cruzi infection or allograft rejection in Chagas and non-Chagas heart transplant recipients. METHODS Gal-3 and NLRP3 expression levels were analyzed in endomyocardial biopsies from 31 heart transplant recipients, including 16 patients with chronic Chagas disease (ChD) and 15 without ChD. Samples were evaluated during periods of graft rejection or ChD reactivation, characterized by intense myocardial cellular infiltrate, and after remission of the infiltrate, classified by histopathological severity. The transcriptional levels of genes encoding Gal-3, NLRP3, Asc, caspase-1, and IL-1β were identified using the GEO2T tool across different experimental conditions. RESULTS Gal-3 expression was lower in the myocardial infiltrate of ChD patients compared to non-ChD patients (p < 0.0001), whereas NLRP3 positivity was higher in ChD patients (p < 0.05). In a murine model of T. cruzi infection, elevated Gal-3 mRNA and NLRP3 inflammasome levels were observed in myocardial interstitial cells (p < 0.05). Peripheral blood mononuclear cells and cells from rodent cardiac allografts showed increased Gal-3 mRNA and NLRP3 levels compared to non-transplanted and rodent cardiac isografts (p < 0.001). CONCLUSIONS Our findings suggest that Gal-3 and NLRP3 may be important biomarkers for differentiating heart transplant recipients with and without ChD regarding the myocardial immunological processes.
Collapse
Affiliation(s)
- Caio E Gullo
- Graduate Program in Health Sciences, Faculdade de Medicina de São José de Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Diego D Dos Santos
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Mab P Corrêa
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Cristiane D Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil.
| | - Reinaldo B Bestetti
- Graduate Program in Health Sciences, Faculdade de Medicina de São José de Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil; Universidade de Ribeirão Preto (UNAERP), Ribeirão Preto, SP 14096-900, Brazil
| |
Collapse
|
5
|
Wang Y, Hassan HM, Nisar A, Zahara SS, Akbar A, Al-Emam A. Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway. J Trace Elem Med Biol 2025; 87:127588. [PMID: 39787653 DOI: 10.1016/j.jtemb.2025.127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties. AIM The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile. RESEARCH PLAN Thirty-six male Sprague Dawley rats were apportioned into four groups including the control, VAN (1.5 mg/kg) treated, VAN (1.5 mg/kg) + TEC (2.5 mg/kg) administrated as well as TEC (2.5 mg/kg) alone supplemented group. The doses were administrated for 28 days through oral gavage. The biochemical and histological parameters were evaluated by using qRT-PCR, ELISA, biochemical assays, histological as well as molecular simulation techniques. FINDINGS VAN intoxication reduced the activities of catalase (CAT) (84.25 %), glutathione peroxidase (GPx) (65.28 %), glutathione reductase (GSR) (78.52 %), heme oxygenase-1 (HO-1) (81.81 %), superoxide dismutase (SOD) (83.71 %) and glutathione (GSH) (76.86 %) contents while upregulating the levels of reactive oxygen species (ROS) (87.26 %) and malondialdehyde (MDA) (91.32 %). Moreover, VAN administration increased the gene expressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) (91.47 %), monocyte chemoattractant protein-1 (MCP-1) (92.51 %), interleukin-6 (IL-6) (83.63 %), tumor necrosis factor-alpha (TNF-α) (89.43 %), janus kinase 1 (JAK1) (95.55 %), signal transducer and activator of transcription 3 (STAT3) (91.25 %), nuclear factor-kappa B (NF-κB) (81.31 %), interleukin-18 (IL-18) (93.27 %), interleukin-1 beta (IL-1β) (85.79 %) and cyclooxygenase-2 (COX-2) (82.12 %). The levels of CK-MB (89.43 %), BNP (91.73 %), NT-proBNP (93.64 %), CPK (87.56 %), LDH (92.62 %), troponin I (94.25 %), troponin T (97.53 %) and CRP (88.45 %) were increased following the VAN intoxication. Besides, VAN exposure upregulated the levels of Caspase-9 (89.52 %), Bax (95.52 %) and Caspase-3 (92.52 %) while reducing the levels of Bcl-2 (75.66 %). The structural integrity of cardiac tissues was extensively disrupted following VAN-induced intoxication. However, TEC treatment remarkably ameliorated cardiotoxicity via regulating abovementioned dysregulations induced by VAN exposure. At the end, molecular docking (MD) analysis was accomplished to confirm the potential protective effect of TEC against VAN prompted cardiac dysfunction. It was detected that TEC can strongly bind with the active site of JAK1, NF-kB and STAT3 which also confirm its cardioprotective effect against VAN provoked cardiac dysfunction. CONCLUSION VAN intoxication instigated cardiac impairments which is evident by dysregulations in biochemical as well as histological profile of cardiac tissues. Nonetheless, TEC treatment remarkably protected the cardiac tissues via regulating oxidative stress, inflammation and apoptosis. TEC could be employed as cardioprotective agent against VAN induced cardiotoxicity.
Collapse
Affiliation(s)
- Yahui Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Nisar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Syeda Sania Zahara
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ali Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| |
Collapse
|
6
|
Abdelmonaem AA, Abdel-Aziz AM, Ibrahim YF, Abdelzaher WY, Amgad Mohammed N, Marey H, S Taghian A, Setouhi A, Radi A, Ahmed SM. Cardioprotective effect of tofisopam against isoprenaline-induced myocardial infarction in rats via modulation of NLRP3\IL-1β\caspase-1 pathway. Immunopharmacol Immunotoxicol 2024; 46:902-911. [PMID: 39448368 DOI: 10.1080/08923973.2024.2421528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Ischemic heart diseases, particularly acute myocardial infarction (MI), represent the most common cause of death. MI is influenced by multiple factors, including the release of inflammatory mediators. A significant percentage of individuals with CVD experience psychological effects, such as anxiety and depression, which are linked to an increased risk of coronary heart disease. Certain anti-anxiety medications have demonstrated immunomodulatory and anti-inflammatory effects. Tofisopam, a 2,3-benzodiazepine with anxiolytic properties, has been shown to exert in vitro anti-inflammatory and immunomodulatory effects. The present study investigates the potential of tofisopam as a protective adjuvant against isoprenaline-induced MI in rats and explores the possible underlying mechanisms. METHODS The study included four groups: a control group, a group pretreated with tofisopam, an isoprenaline toxic group, and an isoprenaline toxic group pretreated with tofisopam. RESULTS The findings demonstrated that isoprenaline significantly increased cardiac enzyme levels, as well as elevated oxidative and inflammatory stress parameters, along with evident apoptosis in cardiac cells. In contrast, the tofisopam-pretreated group showed a significant reversal of the cardiac damage induced by isoprenaline. CONCLUSIONS Tofisopam protects against isoprenaline-induced MI through its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | | | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Nada Amgad Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba Marey
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Asmaa S Taghian
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Amr Setouhi
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ashraf Radi
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sara M Ahmed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
7
|
Castillo RL, Farías J, Sandoval C, González-Candia A, Figueroa E, Quezada M, Cruz G, Llanos P, Jorquera G, Kostin S, Carrasco R. Role of NLRP3 Inflammasome in Heart Failure Patients Undergoing Cardiac Surgery as a Potential Determinant of Postoperative Atrial Fibrillation and Remodeling: Is SGLT2 Cotransporter Inhibition an Alternative for Cardioprotection? Antioxidants (Basel) 2024; 13:1388. [PMID: 39594530 PMCID: PMC11591087 DOI: 10.3390/antiox13111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
In heart failure (HF) patients undergoing cardiac surgery, an increased activity of mechanisms related to cardiac remodeling may determine a higher risk of postoperative atrial fibrillation (POAF). Given that atrial fibrillation (AF) has a negative impact on the course and management of HF, including the need for anticoagulation therapy, identifying the factors associated with AF occurrence after cardiac surgery is crucial for the prognosis of these patients. POAF is thought to occur when various clinical and biochemical triggers act on susceptible cardiac tissue (first hit), with oxidative stress and inflammation during cardiopulmonary bypass (CPB) surgery being potential contributing factors (second hit). However, the molecular mechanisms involved in these processes remain poorly characterized. Recent research has shown that patients who later develop POAF often have pre-existing abnormalities in calcium handling and activation of NLRP3-inflammasome signaling in their atrial cardiomyocytes. These molecular changes may make cardiomyocytes more susceptible to spontaneous Ca2+-releases and subsequent arrhythmias, particularly when exposed to inflammatory mediators. Additionally, some clinical studies have linked POAF with elevated preoperative inflammatory markers, but there is a need for further research in order to better understand the impact of CPB surgery on local and systemic inflammation. This knowledge would make it possible to determine whether patients susceptible to POAF have pre-existing inflammatory conditions or cellular electrophysiological factors that make them more prone to developing AF and cardiac remodeling. In this context, the NLRP3 inflammasome, expressed in cardiomyocytes and cardiac fibroblasts, has been identified as playing a key role in the development of HF and AF, making patients with pre-existing HF with reduced ejection fraction (HFrEF) the focus of several clinical studies with interventions that act at this level. On the other hand, HFpEF has been linked to metabolic and non-ischemic risk factors, but more research is needed to better characterize the myocardial remodeling events associated with HFpEF. Therefore, since ventricular remodeling may differ between HFrEF and HFpEF, it is necessary to perform studies in both groups of patients due to their pathophysiological variations. Clinical evidence has shown that pharmacological therapies that are effective for HFrEF may not provide the same anti-remodeling benefits in HFpEF patients, particularly compared to traditional adrenergic and renin-angiotensin-aldosterone system inhibitors. On the other hand, there is growing interest in medications with pleiotropic or antioxidant/anti-inflammatory effects, such as sodium-glucose cotransporter 2 inhibitors (SGLT-2is). These drugs may offer anti-remodeling effects in both HFrEF and HFpEF by inhibiting pro-inflammatory, pro-oxidant, and NLRP3 signaling pathways and their mediators. The anti-inflammatory, antioxidant, and anti-remodeling effects of SGLT-2 i have progressively expanded from HFrEF and HFpEF to other forms of cardiac remodeling. However, these advances in research have not yet encompassed POAF despite its associations with inflammation, oxidative stress, and remodeling. Currently, the direct or indirect effects of NLRP3-dependent pathway inhibition on the occurrence of POAF have not been clinically assessed. However, given that NLRP3 pathway inhibition may also indirectly affect other pathways, such as inhibition of NF-kappaB or inhibition of matrix synthesis, which are strongly linked to POAF and cardiac remodeling, it is reasonable to hypothesize that this type of intervention could play a role in preventing these events.
Collapse
Affiliation(s)
- Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago 7500922, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro González-Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Esteban Figueroa
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Mauricio Quezada
- Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Gonzalo Cruz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Paola Llanos
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago 8380544, Chile
| | - Gonzalo Jorquera
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8331051, Chile;
| | - Sawa Kostin
- Faculty of Health Sciences, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany;
| | - Rodrigo Carrasco
- Departamento de Cardiología, Clínica Alemana de Santiago, Santiago 7500922, Chile;
| |
Collapse
|
8
|
Yoladi FB, Palabiyik-Yucelik SS, Bahador Zirh E, Halici Z, Baydar T. Effects of idebenone and coenzyme Q10 on NLRP3/caspase-1/IL-1β pathway regulation on ethanol-induced hepatotoxicity in rats. Drug Chem Toxicol 2024; 47:1205-1217. [PMID: 38804209 DOI: 10.1080/01480545.2024.2351191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Chronic and excessive alcohol consumption leads to liver toxicity. There is a need to investigate effective therapeutic strategies to alleviate alcohol-induced liver injury, which remains the leading cause of liver-related morbidity and mortality worldwide. Therefore here, we looked into and evaluated how ethanol-induced hepatotoxicity was affected by coenzyme Q10 (CoQ10) and its analog, idebenone (IDE), on the NLRP3/caspase-1/IL-1 pathway. Hepatotoxicity induced in rats through the oral administration of gradually increasing dosages of ethanol (from 2 to 6 g/kg/day) over 30 days and the effect of CoQ10 (10 or 20 mg/kg) and IDE (50 or 100 mg/kg) were evaluated. Serum hepatotoxicity markers (ALT, AST, GGT, ALP, and TBIL), tissue oxidative stress markers and the mRNA expressions of IL-1β, IL-18, TGF-β, NF-κB, NLRP3, and caspase-1 were evaluated. Masson's trichrome staining was also used to visualize fibrosis in the liver tissue. The results indicated that ethanol exposure led to hepatotoxicity as well as considerable NLRP3/caspase-1/IL-1β pathway activation. Moreover, CoQ10 or IDE treatment reduced measured parameters in a dosage-dependent manner. Thus, by inhibiting the NLRP3/caspase-1/IL-1 pathway, CoQ10 and IDE can prevent the hepatotoxicity caused by ethanol, although CoQ10 is more effective than IDE. This study will provide insight into new therapeutic avenues that take advantage of the anti-inflammatory and antioxidant properties of CoQ10 and IDE in ethanol-induced liver diseases.
Collapse
Affiliation(s)
- Fatma Betül Yoladi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Saziye Sezin Palabiyik-Yucelik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Elham Bahador Zirh
- Department of Histology and Embryology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Miao M, Yang Y, Dai H. Current research status and future prospects of NLRP3 inflammasome in cardiovascular diseases: a bibliometric and visualization analysis. Front Cardiovasc Med 2024; 11:1407721. [PMID: 39022620 PMCID: PMC11253129 DOI: 10.3389/fcvm.2024.1407721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of global mortality, with atherosclerosis (AS) contributing to its pathological basis. Inflammation plays a critical role in the pathophysiological process of AS, and the NOD-like receptor protein 3 (NLRP3) inflammasome has been extensively studied in this context. This study aimed to analyze the research status of the NLRP3 inflammasome in cardiovascular disease and provide research directions for further exploration in this field. METHODS Using the "Bibliometrix" and "CiteSpace" software, a total of 516 articles were retrieved from the Web of Science (WoS) database published between 2012 and 2023. The search query used the keywords "["CVD" OR "cardiovascular disease"] AND ["NLRP3 inflammasome "OR "NLRP3"]". Visual analysis was performed on authors, countries, institutions, journal sources, keywords, references, and future trends. RESULTS A total of 516 English articles were retrieved, showing an overall upward trend in annual publication volume with slight fluctuations. China, the United States, and Europe were the countries and regions with the highest number of published articles. Among them, China had the highest article count (170), while the United States had the highest citation count (18,664), centrality score (0.43), and h-index (90), indicating its influential role in this research area. These countries also possessed elite institutions, professional researchers, and high-impact journals, making them leading contributors in this field. The main pathogenic mechanisms of the NLRP3 inflammasome in CVD were identified as "oxidative stress", "pyroptosis", and "inflammation". The most frequently studied signaling pathways included "NF-κB", "IL-1", and "C-reactive protein". The most studied disease types were coronary heart disease, atherosclerosis, metabolic syndrome, and myocardial infarction. Additionally, research on the correlation between cholesterol markers and inflammatory indicators associated with NLRP3 inflammasome in CVD risk assessment has gained significant momentum, with the main mechanism being NLRP3/IL-6/hs-CRP and cholesterol lipoproteins emerging as a major keyword in this context. CONCLUSION This study provides valuable insights into the research hotspots and emerging trends of the NLRP3 inflammasome in cardiovascular disease. The findings offer guidance for researchers and scholars in this field and facilitate the exploration of new research directions.
Collapse
Affiliation(s)
- Meiqi Miao
- Department of Cardiology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuanyuan Yang
- Department of Acupuncture, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hailong Dai
- Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Cheng Y, Xiao X, Fu J, Zong X, Lu Z, Wang Y. Escherichia coli K88 activates NLRP3 inflammasome-mediated pyroptosis in vitro and in vivo. Biochem Biophys Rep 2024; 38:101665. [PMID: 38419757 PMCID: PMC10900769 DOI: 10.1016/j.bbrep.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Pyroptosis induced by lipopolysaccharide (LPS) has an obvious impact on intestinal inflammation and immune regulation. Enterotoxigenic Escherichia coli (ETEC) K88 has been proved to induce inflammatory responses in several models, but whether E. coli K88 participates in the same process of pyroptotic cell death as LPS remains to be identified. We conducted a pilot experiment to confirm that E. coli K88, instead of Escherichia coli O157 and Salmonella typhimurium, promotes the secretion of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) in macrophages. Further experiments were carried out to dissect the molecular mechanism both in vitro and in vivo. The Enzyme-Linked Immunosorbent Assay (ELISA) results suggested that E. coli K88 treatment increased the expression of pro-inflammatory cytokines IL-18 and IL-1β in both C57BL/6 mice and the supernatant of J774A.1 cells. Intestinal morphology observations revealed that E. coli K88 treatment mainly induced inflammation in the colon. Real-time PCR and Western blot analysis showed that the mRNA and protein expressions of pyroptosis-related factors, such as NLRP3, ASC, and Caspase1, were significantly upregulated by E. coli K88 treatment. The RNA-seq results confirmed that the effect was associated with the activation of NLRP3, ASC, Caspase1, GSDMD, IL-18, and IL-1β, and might also be related to inflammatory bowel disease and the tumor necrosis factor pathway. The pyroptosis-activated effect of E. coli K88 was significantly blocked by NLRP3 siRNA. Our data suggested that E. coli K88 caused inflammation by triggering pyroptosis, which provides a theoretical basis for the prevention and treatment of ETEC in intestinal infection.
Collapse
Affiliation(s)
- Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| |
Collapse
|
11
|
Toldo S, Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol 2024; 21:219-237. [PMID: 37923829 PMCID: PMC11550901 DOI: 10.1038/s41569-023-00946-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
An intense, stereotyped inflammatory response occurs in response to ischaemic and non-ischaemic injury to the myocardium. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a finely regulated macromolecular protein complex that senses the injury and triggers and amplifies the inflammatory response by activation of caspase 1; cleavage of pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, to their mature forms; and induction of inflammatory cell death (pyroptosis). Inhibitors of the NLRP3 inflammasome and blockers of IL-1β and IL-18 activity have been shown to reduce injury to the myocardium and pericardium, favour resolution of the inflammation and preserve cardiac function. In this Review, we discuss the components of the NLRP3 inflammasome and how it is formed and activated in various ischaemic and non-ischaemic cardiac pathologies (acute myocardial infarction, cardiac dysfunction and remodelling, atherothrombosis, myocarditis and pericarditis, cardiotoxicity and cardiac sarcoidosis). We also summarize current preclinical and clinical evidence from studies of agents that target the NLRP3 inflammasome and related cytokines.
Collapse
Affiliation(s)
- Stefano Toldo
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Wang K, Wang A, Deng J, Yang J, Chen Q, Chen G, Ye M, Lin D. Rivaroxaban down-regulates pyroptosis and the TLR4/NF-κB/NLRP3 signaling pathway to promote flap survival. Int Immunopharmacol 2024; 128:111568. [PMID: 38266447 DOI: 10.1016/j.intimp.2024.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Flap placement remains the primary method for wound repair, but postoperative ischemic flap necrosis is of major concern. This study explored whether rivaroxaban, a factor Xa inhibitor, enhanced flap survival. METHODS Thirty-six rats were randomly divided into control, low-dose rivaroxaban (3 mg/kg/day), and high-dose rivaroxaban (7 mg/kg/day) groups. On postoperative day 7, the flap survival rate was analyzed and the average survival area calculated. After the rats were euthanized, immunological and molecular biological techniques were employed to assess vascular regeneration, pyroptosis, and inflammation. RESULTS Rivaroxaban upregulated VEGF expression, in turn enhancing angiogenesis, and it downregulated IL-1β, IL-6, and TNF-α expression, thereby mitigating inflammation. The drug also suppressed TLR4, NF-κB p65, NLRP3, caspase-1, and IL-18 syntheses, thus inhibiting pyroptosis. CONCLUSIONS Rivaroxaban enhanced random flap survival by down-regulating the TLR4/NF-κB/NLRP3 signaling pathway to suppress pyroptosis, promoting vascular regeneration and inhibiting inflammation.
Collapse
Affiliation(s)
- Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qingyu Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Minle Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
14
|
Del Buono MG, Bonaventura A, Vecchié A, Moroni F, Golino M, Bressi E, De Ponti R, Dentali F, Montone RA, Kron J, Lazzerini PE, Crea F, Abbate A. Pathogenic pathways and therapeutic targets of inflammation in heart diseases: A focus on Interleukin-1. Eur J Clin Invest 2024; 54:e14110. [PMID: 37837616 DOI: 10.1111/eci.14110] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND An exuberant and dysregulated inflammatory response contributes to the development and progression of cardiovascular diseases (CVDs). METHODS This narrative review includes original articles and reviews published over the past 20 years and found through PubMed. The following search terms (or combination of terms) were considered: "acute pericarditis," "recurrent pericarditis," "myocarditis," "cardiac sarcoidosis," "atherosclerosis," "acute myocardial infarction," "inflammation," "NLRP3 inflammasome," "Interleukin-1" and "treatment." RESULTS Recent evidence supports the role of inflammation across a wide spectrum of CVDs including myocarditis, pericarditis, inflammatory cardiomyopathies (i.e. cardiac sarcoidosis) as well as atherosclerotic CVD and heart failure. Interleukins (ILs) are the signalling mediators of the inflammatory response. The NACHT, leucine-rich repeat and pyrin-domain containing protein 3 (NLRP3) inflammasome play a key role in producing IL-1β, the prototypical pro-inflammatory cytokine involved in CVDs. Other pro-inflammatory cytokines (e.g. tumour necrosis factor) have been implicated in cardiac sarcoidosis. As a proof of this, IL-1 blockade has been proven efficacious in pericarditis and chronic coronary syndrome. CONCLUSION Tailored strategies aiming at quenching the inflammatory response have emerged as promising to treat CVDs. In this review article, we summarize recent evidence regarding the role of inflammation across a broad spectrum of CVDs. We also review novel evidence regarding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Aldo Bonaventura
- Department of Internal Medicine, Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Alessandra Vecchié
- Department of Internal Medicine, Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Francesco Moroni
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Michele Golino
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Bressi
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Roberto De Ponti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco Dentali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Jordana Kron
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Carmo HRP, Bonilha I, Barreto J, Tognolini M, Zanotti I, Sposito AC. High-Density Lipoproteins at the Interface between the NLRP3 Inflammasome and Myocardial Infarction. Int J Mol Sci 2024; 25:1290. [PMID: 38279290 PMCID: PMC10816227 DOI: 10.3390/ijms25021290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.
Collapse
Affiliation(s)
- Helison R. P. Carmo
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | | | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Andrei C. Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| |
Collapse
|
16
|
Mahesutihan M, Yan J, Midilibieke H, Yu L, Dawulin R, Yang WX, Wulasihan M. Role of cyclophilin A in aggravation of myocardial ischemia reperfusion injury via regulation of apoptosis mediated by thioredoxin-interacting protein. Clin Hemorheol Microcirc 2024; 87:491-513. [PMID: 38669522 DOI: 10.3233/ch-242142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND The progression and persistence of myocardial ischemia/reperfusion injury (MI/RI) are strongly linked to local inflammatory responses and oxidative stress. Cyclophilin A (CypA), a pro-inflammatory factor, is involved in various cardiovascular diseases. However, the role and mechanism of action of CypA in MI/RI are still not fully understood. METHODS We used the Gene Expression Omnibus (GEO) database for bioinformatic analysis. We collected blood samples from patients and controls for detecting the levels of serum CypA using enzyme-linked immunosorbent assay (ELISA) kits. We then developed a myocardial ischemia/reperfusion (I/R) injury model in wild-type (WT) mice and Ppia-/- mice. We utilized echocardiography, hemodynamic measurements, hematoxylin and eosin (H&E) staining, immunohistochemistry, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the role of CypA in myocardial I/R injury. Finally, we conducted an in vitrostudy, cell transfection, flow cytometry, RNA interference, and a co-immunoprecipitation assay to clarify the mechanism of CypA in aggravating cardiomyocyte apoptosis. RESULTS We found that CypA inhibited TXNIP degradation to enhance oxidative stress-induced cardiomyocyte apoptosis during MI/RI. By comparing and analyzing CypA expression in patients with coronary atherosclerotic heart disease and in healthy controls, we found that CypA was upregulated in patients with Coronary Atmospheric Heart Disease, and its expression was positively correlated with Gensini scores. In addition, CypA deficiency decreased cytokine expression, oxidative stress, and cardiomyocyte apoptosis in I/R-treated mice, eventually alleviating cardiac dysfunction. CypA knockdown also reduced H2O2-induced apoptosis in H9c2 cells. Mechanistically, we found that CypA inhibited K48-linked ubiquitination mediated by atrophin-interacting protein 4 (AIP4) and proteasomal degradation of TXNIP, a thioredoxin-binding protein that mediates oxidative stress and induces apoptosis. CONCLUSION These findings highlight the critical role CypA plays in myocardial injury caused by oxidative stress-induced apoptosis, indicating that CypA can be a viable biomarker and a therapeutic target candidate for MI/RI.
Collapse
Affiliation(s)
- Madina Mahesutihan
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ju Yan
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hasidaer Midilibieke
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Reyizha Dawulin
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wen-Xian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Muhuyati Wulasihan
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Medical University, Urumqi, China
| |
Collapse
|
17
|
Yang S, Bi Y, Wei Y, Li W, Liu J, Mao T, Tang Y. Muscone attenuates susceptibility to ventricular arrhythmia by inhibiting NLRP3 inflammasome activation in rats after myocardial infarction. J Biochem Mol Toxicol 2023; 37:e23458. [PMID: 37455625 DOI: 10.1002/jbt.23458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Fibrosis and abnormal expression of connexin 43 (Cx43) in the ventricle play vital roles in ventricular arrhythmias (VAs) after myocardial infarction (MI). Muscone, an active monomer of heart-protecting musk pill, has various biological activities, but its effect on susceptibility to VAs in rats with MI has not been determined. In the present study, we investigated the effects of muscone on ventricular inflammation, fibrosis, Cx43 expression, and the occurrence of VAs after MI. An MI model was established by ligating the proximal left anterior descending coronary artery. Then, the MI model rats were administered muscone (2 mg/kg/day) or vehicle (saline)via intragastric injection for 14 days. Cardiac function was evaluated by echocardiography, and an in vivo electrophysiological study was performed on Day 14. Cardiac inflammation, fibrosis, and Cx43 expression were determined by histochemical analysis and western blot analysis. Our results indicated that muscone treatment significantly improved cardiac function and inhibited ventricular inflammation, fibrosis, and nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome activation. Electrocardiogrphy and electrophysiology studies showed that muscone shortened the QRS interval, QT interval, QTc interval, and action potential duration; prolonged the effective refractory period; and reduced susceptibility to VAs in rats after MI. Furthermore, Cx43 expression in the BZ was increased by muscone treatment, and this change was coupled by inhibition of the NLRP3/IL-1β/p38 MAPK pathway. Taken together, our results demonstrated that muscone reduces susceptibility to VA, mainly by decreasing ventricular inflammation and fibrosis, and attenuates abnormal Cx43 expression by inhibiting NLRP3 inflammasome activation after myocardial infarction in rats.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Yingying Bi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Yanzhao Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Wei Li
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, People's Republic of China
| | - Jiangwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
18
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
19
|
Amodio D, Pascucci GR, Cotugno N, Rossetti C, Manno EC, Pighi C, Morrocchi E, D'Alessandro A, Perrone MA, Valentini A, Franceschini A, Chinali M, Deodati A, Azzari C, Rossi P, Cianfarani S, Andreani M, Porzio O, Palma P. Similarities and differences between myocarditis following COVID-19 mRNA vaccine and multiple inflammatory syndrome with cardiac involvement in children. Clin Immunol 2023; 255:109751. [PMID: 37660743 DOI: 10.1016/j.clim.2023.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Despite the multiple benefits of vaccination, cardiac adverse Events Following COVID-19 Immunization (c-AEFI) have been reported. These events as well as the severe cardiac involvement reported in Multisystem inflammatory syndrome in children (MIS-C) appear more frequent in young adult males. Herein, we firstly report on the inflammatory profiles of patients experiencing c-AEFI in comparison with age, pubertal age and gender matched MIS-C with cardiac involvement. Proteins related to systemic inflammation were found higher in MIS-C compared to c-AEFI, whereas a higher level in proteins related to myocardial injury was found in c-AEFI. In addition, higher levels of DHEAS, DHEA, and cortisone were found in c-AEFI which persisted at follow-up. No anti-heart muscle and anti-endothelial cell antibodies have been detected. Overall current comparative data showed a distinct inflammatory and androgens profile in c-AEFI patients which results to be well restricted on heart and to persist months after the acute event.
Collapse
Affiliation(s)
- Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Rubens Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Rossetti
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emma Concetta Manno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elena Morrocchi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Annamaria D'Alessandro
- Clinical Biochemistry Laboratory, IRCCS "Bambino Gesù" Children's Hospital, 00165 Rome, Italy
| | - Marco Alfonso Perrone
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy; Division of Cardiology and CardioLab, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Alessandra Valentini
- Department of laboratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Alessio Franceschini
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marcello Chinali
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Annalisa Deodati
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164 Rome, Italy
| | - Chiara Azzari
- Department of Health Sciences, Section of Pediatrics, University of Florence, Florence, Italy
| | - Paolo Rossi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164 Rome, Italy; Department of Women's and Children's Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Andreani
- Transplantation Immunogenetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, IRCCS "Bambino Gesù" Children's Hospital, 00165 Rome, Italy; Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
20
|
Li B, Xu L, Liu J, Zhou M, Jiang X. Phloretin ameliorates heart function after myocardial infarction via NLRP3/Caspase-1/IL-1β signaling. Biomed Pharmacother 2023; 165:115083. [PMID: 37413902 DOI: 10.1016/j.biopha.2023.115083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVES/AIMS Inflammation is crucial in structural and electrical remodeling after myocardial infarction (MI), affecting cardiac pump function and conduction pathways. Phloretin possesses an anti-inflammation role by inhibiting the NLRP3/Caspase-1/IL-1β pathway. However, the effects of Phloretin on cardiac contractile and electrical conduction function after MI remained unclear. Therefore, we aimed to investigate the potential role of Phloretin in a rat model of MI. METHODS Rats were assigned into four groups: Sham, Sham+Phloretin, MI and MI+Phloretin, with ad libitum food and water. In the MI and MI+Phloretin groups, the left anterior descending coronary artery was occluded for 4 weeks, while the Sham and Sham+Phloretin groups received sham operation. The Sham+Phloretin group and the MI+Phloretin group received oral administration of Phloretin. In vitro, H9c2 cells were subjected to hypoxic conditions to simulate an MI model, with Phloretin for 24 h. Cardiac electrophysiological properties were assessed following MI, including the effective refractory period (ERP), action potential duration (APD)90 and ventricular fibrillation (VF) incidence. Echocardiography evaluated left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), left ventricular internal diameter at end-diastole (LVIDd), left ventricular internal diameter at end-systole (LVIDs), left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) to assess cardiac function. Serum type B natriuretic peptide (BNP) level was applied to evaluate the degree of Heart failure (HF). The fibrosis area and severity were assessed by Masson staining and protein expression levels of collagen 3, collagen 1, TGF-β and α-SMA. Western blot analysis estimated the protein expression levels of NLRP3, Pro Caspase-1, Caspase-1, ASC, IL-18, IL-1β, pp38, p38, and Connexin43(Cx43) to elucidate the influence of inflammation on electrical remodeling after MI. RESULTS Our findings demonstrate that Phloretin inhibits the NLRP3/Caspase-1/IL-1β pathway, leading to the upregulation of Cx43 by limiting p38 phosphorylation, which further decreases susceptibility to ventricular arrhythmias (VAs). Additionally, Phloretin attenuated fibrosis by inhibiting inflammation to prevent HF. In vitro experiments also provided strong evidence supporting the inhibitory effects of Phloretin on the NLRP3/Caspase-1/IL-1β pathway. CONCLUSION Our results suggest that Phloretin could suppress the NLRP3/Caspase-1/IL-1β pathway to reverse structural and electrical remodeling after MI to prevent the occurrence of VAs and HF.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiangwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
21
|
Shnayder NA, Ashhotov AV, Trefilova VV, Novitsky MA, Medvedev GV, Petrova MM, Narodova EA, Kaskaeva DS, Chumakova GA, Garganeeva NP, Lareva NV, Al-Zamil M, Asadullin AR, Nasyrova RF. High-Tech Methods of Cytokine Imbalance Correction in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:13333. [PMID: 37686139 PMCID: PMC10487844 DOI: 10.3390/ijms241713333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
An important mechanism for the development of intervertebral disc degeneration (IDD) is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected result, or give a short period of time. This explains the relevance of high-tech medical care, which is part of specialized care and includes the use of new resource-intensive methods of treatment with proven effectiveness. The aim of the review is to update knowledge about new high-tech methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches to IDD management in patients resistant to previously used therapies, including: cell therapy (stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl oxidase; corticostatin; etc.).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - Maxim A. Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - German V. Medvedev
- R.R. Vreden National Medical Research Center for Traumatology and Orthopedics, 195427 Saint-Petersburg, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Daria S. Kaskaeva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia;
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
22
|
Bassiouni W, Valencia R, Mahmud Z, Seubert JM, Schulz R. Matrix metalloproteinase-2 proteolyzes mitofusin-2 and impairs mitochondrial function during myocardial ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:29. [PMID: 37495895 DOI: 10.1007/s00395-023-00999-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
During myocardial ischemia and reperfusion (IR) injury matrix metalloproteinase-2 (MMP-2) is rapidly activated in response to oxidative stress. MMP-2 is a multifunctional protease that cleaves both extracellular and intracellular proteins. Oxidative stress also impairs mitochondrial function which is regulated by different proteins, including mitofusin-2 (Mfn-2), which is lost in IR injury. Oxidative stress and mitochondrial dysfunction trigger the NLRP3 inflammasome and the innate immune response which invokes the de novo expression of an N-terminal truncated isoform of MMP-2 (NTT-MMP-2) at or near mitochondria. We hypothesized that MMP-2 proteolyzes Mfn-2 during myocardial IR injury, impairing mitochondrial function and enhancing the inflammasome response. Isolated hearts from mice subjected to IR injury (30 min ischemia/40 min reperfusion) showed a significant reduction in left ventricular developed pressure (LVDP) compared to aerobically perfused hearts. IR injury increased MMP-2 activity as observed by gelatin zymography and increased degradation of troponin I, an intracellular MMP-2 target. MMP-2 preferring inhibitors, ARP-100 or ONO-4817, improved post-ischemic recovery of LVDP compared to vehicle perfused IR hearts. In muscle fibers isolated from IR hearts the rates of mitochondrial oxygen consumption and ATP production were impaired compared to those from aerobic hearts, whereas ARP-100 or ONO-4817 attenuated these reductions. IR hearts showed higher levels of NLRP3, cleaved caspase-1 and interleukin-1β in the cytosolic fraction, while the mitochondria-enriched fraction showed reduced levels of Mfn-2, compared to aerobic hearts. ARP-100 or ONO-4817 attenuated these changes. Co-immunoprecipitation showed that MMP-2 is associated with Mfn-2 in aerobic and IR hearts. ARP-100 or ONO-4817 also reduced infarct size and cell death in hearts subjected to 45 min ischemia/120 min reperfusion. Following myocardial IR injury, impaired contractile function and mitochondrial respiration and elevated inflammasome response could be attributed, at least in part, to MMP-2 activation, which targets and cleaves mitochondrial Mfn-2. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in IR injury in part by preserving Mfn-2 and suppressing inflammation.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zabed Mahmud
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
23
|
Jia N, Shen Z, Zhao S, Wang Y, Pei C, Huang D, Wang X, Wu Y, Shi S, He Y, Wang Z. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr.etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway. Int Immunopharmacol 2023; 121:110423. [PMID: 37331291 DOI: 10.1016/j.intimp.2023.110423] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Eleutheroside E, a major natural bioactive compound in Acanthopanax senticosus (Rupr.etMaxim.) Harms, possesses anti-oxidative, anti-fatigue, anti-inflammatory, anti-bacterial and immunoregulatory effects. High-altitude hypobaric hypoxia affects blood flow and oxygen utilisation, resulting in severe heart injury that cannot be reversed, thereby eventually causing or exacerbating high-altitude heart disease and heart failure. The purpose of this study was to determine the cardioprotective effects of eleutheroside E against high-altitude-induced heart injury (HAHI), and to study the mechanisms by which this happens. A hypobaric hypoxia chamber was used in the study to simulate hypobaric hypoxia at the high altitude of 6000 m. 42 male rats were randomly assigned to 6 equal groups and pre-treated with saline, eleutheroside E 100 mg/kg, eleutheroside E 50 mg/kg, or nigericin 4 mg/kg. Eleutheroside E exhibited significant dose-dependent effects on a rat model of HAHI by suppressing inflammation and pyroptosis. Eleutheroside E downregulated the expressions of brain natriuretic peptide (BNP), creatine kinase isoenzymes (CK-MB) and lactic dehydrogenase (LDH). Moreover, The ECG also showed eleutheroside E improved the changes in QT interval, corrected QT interval, QRS interval and heart rate. Eleutheroside E remarkably suppressed the expressions of NLRP3/caspase-1-related proteins and pro-inflammatory factors in heart tissue of the model rats. Nigericin, known as an agonist of NLRP3 inflammasome-mediated pyroptosis, reversed the effects of eleutheroside E. Eleutheroside E prevented HAHI and inhibited inflammation and pyroptosis via the NLRP3/caspase-1 signalling pathway. Taken together, eleutheroside E is a prospective, effective, safe and inexpensive agent that can be used to treat HAHI.
Collapse
Affiliation(s)
- Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
24
|
Chen Z, Gu X. Effects of NLRP3 on implants placement. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:126-133. [PMID: 37283126 DOI: 10.3724/zdxbyxb-2022-0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bone stability is precisely controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. When the balance is broken, the integrity of the bone structure will be destroyed. Inflammasomes are important protein complexes in response to pathogen-related molecular models or injury-related molecular models, which can promote the activation and secretion of proinflammatory cytokines and activate a local inflammatory response. NOD-like receptor thermal protein domain associated protein (NLRP) 3 inflammasome can promote bone resorption through the activation of the proinflammatory cytokines interleukin (IL)-1β, IL-18 and the induction of caspase-1-mediated pyroptosis. Inhibiting the production of NLRP3 inflammasome may be beneficial to improve comfort and bone stability. The presence of metal particles and microorganisms around implants can activate NLRP3 and promote bone absorption. NLRP3 inflammasome plays an important role in the maintenance of bone stability around implants, however, most studies focus on orthopedic implants and periodontitis. This article reviews the effects of NLRP3 inflammasome on bone formation, resorption and pain induced by implants, and the possibility of NLRP3 as a target for preventing peri-implantitis is discussed.
Collapse
Affiliation(s)
- Ziyun Chen
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xinhua Gu
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
25
|
Mauro AG, Mezzaroma E, Toldo S, Melendez GC, Franco RL, Lesnefsky EJ, Abbate A, Hundley WG, Salloum FN. NLRP3-mediated inflammation in cardio-oncology: sterile yet harmful. Transl Res 2023; 252:9-20. [PMID: 35948198 PMCID: PMC9839540 DOI: 10.1016/j.trsl.2022.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
Despite significant advances and the continuous development of novel, effective therapies to treat a variety of malignancies, cancer therapy-induced cardiotoxicity has been identified as a prominent cause of morbidity and mortality, closely competing with secondary malignancies. This unfortunate limitation has prompted the inception of the field of cardio-oncology with its purpose to provide the necessary knowledge and key information on mechanisms that support the use of the most efficacious cancer therapy with minimal or no interruption while paying close attention to preventing cardiovascular related morbidity and mortality. Several mechanisms that contribute to cancer therapy-induced cardiotoxicity have been proposed and studied. These mainly involve mitochondrial dysfunction and reactive oxygen species-induced oxidative stress, lysosomal damage, impaired autophagy, cell senescence, DNA damage, and sterile inflammation with the formation and activation of the NLRP3 inflammasome. In this review, we focus on describing the principal mechanisms for different classes of cancer therapies that lead to cardiotoxicity involving the NLRP3 inflammasome. We also summarize current evidence of cardio-protection with inflammasome inhibitors in the context of heart disease in general, and further highlight the potential application of this evidence for clinical translation in at risk patients for the purpose of preventing cancer therapy associated cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Adolfo G Mauro
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Eleonora Mezzaroma
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Stefano Toldo
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Giselle C Melendez
- Department of Internal Medicine, Sections on Cardiovascular Medicine, Department of Pathology, Section on Comparative Medicine, Wake Forest, School of Medicine, Winston-Salem, NC
| | - R Lee Franco
- College of Humanities and Sciences, Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Edward J Lesnefsky
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA; Department of the Medical Service of the McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Antonio Abbate
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - W Gregory Hundley
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA
| | - Fadi N Salloum
- Pauley Heart Center, Department of Internal Medicine, Cardiology, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
26
|
Zhao J, Li J, Li G, Chen M. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1059576. [PMID: 36588561 PMCID: PMC9794868 DOI: 10.3389/fcvm.2022.1059576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is essential for the homeostasis of cells. Appropriate production of ROS is an important signaling molecule, but excessive ROS production can damage cells. ROS and ROS-associated proteins can act as damage associated molecular pattern molecules (DAMPs) to activate the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in cardiovascular diseases. Previous studies have shown that there are connected sites, termed mitochondria-associated membranes (MAMs), between mitochondria and the endoplasmic reticulum. In cardiovascular disease progression, MAMs play multiple roles, the most important of which is the ability to mediate ROS generation, which further activates the NLPR3 inflammasome, exacerbating the progression of disease. In this review, the following topics will be covered: 1. Molecular structures on MAMs that can mediate ROS generation; 2. Specific mechanisms of molecule-mediated ROS generation and the molecules' roles in cardiovascular disease, 3. The effects of MAMs-mediated ROS on the NLRP3 inflammasome in cardiovascular disease. The purpose of this review is to provide a basis for subsequent clinical treatment development.
Collapse
Affiliation(s)
- Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mao Chen
| |
Collapse
|
27
|
Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiol 2022; 18:867-882. [PMID: 36111579 DOI: 10.2217/fca-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SGLT2 inhibitors have been developed as a novel class of glucose-lowering drugs affecting reabsorption of glucose and metabolic processes. They have been recently identified to be remarkably favorable in treating cardiovascular diseases, especially heart failure. Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction and alleviate cardiac remodeling by mechanisms of metabolism influence, autophagy induction, inflammation attenuation and fibrosis reduction. Here we summarize the direct mechanism of SGLT2 inhibitors on myocardial infarction and investigate whether it could be applied to the clinic in improving cardiac function and healing after myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
28
|
Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022; 64:101549. [PMID: 35863639 PMCID: PMC9352970 DOI: 10.1016/j.molmet.2022.101549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome and related metabolic disturbances represent a state of low-grade inflammation, which accelerates insulin resistance, type 2 diabetes (T2D) and cardiovascular disease (CVD) progression. Among antidiabetic medications, sodium glucose co-transporter (SGLT) 2 inhibitors are the only agents which showed remarkable reductions in heart failure (HF) hospitalizations and major cardiovascular endpoints (MACE) as well as renal endpoints regardless of diabetes status in large randomized clinical outcome trials (RCTs). Although the exact mechanisms underlying these benefits are yet to be established, growing evidence suggests that modulating inflammation by SGLT2 inhibitors may play a key role. SCOPE OF REVIEW In this manuscript, we summarize the current knowledge on anti-inflammatory effects of SGLT2 inhibitors as one of the mechanisms potentially mediating their cardiovascular (CV) benefits. We introduce the different metabolic and systemic actions mediated by these agents which could mitigate inflammation, and further present the signalling pathways potentially responsible for their proposed direct anti-inflammatory effects. We also discuss controversies surrounding some of these mechanisms. MAJOR CONCLUSIONS SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signalling pathways. These effects were achieved, to a great extent, in a glucose-independent manner which established their clinical use in HF patients with and without diabetes.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Clinical Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Martin J Hug
- Pharmacy, Medical Centre - University of Freiburg, 79106 Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
29
|
Li Y, Sun X, Liu X, Li J, Li X, Wang G, Liu Y, Lu X, Cui L, Shao M, Wang Y, Wang W, Li C. P2X7R-NEK7-NLRP3 Inflammasome Activation: A Novel Therapeutic Pathway of Qishen Granule in the Treatment of Acute Myocardial Ischemia. J Inflamm Res 2022; 15:5309-5326. [PMID: 36124207 PMCID: PMC9482414 DOI: 10.2147/jir.s373962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Acute myocardial ischemia (AMI) is a common heart disease with increasing morbidity and mortality year by year. Persistent and sterile inflammatory infiltration of myocardial tissue is an important factor triggering of acute myocardial ischemia secondary to acute myocardial infarction, and NLRP3 inflammasome activation is an important part of sterile inflammatory response after acute myocardial ischemia. Previous studies have shown that Qishen granule (QSG) can significantly inhibit the inflammatory injury of myocardial tissue caused by ischemia, but its effect and specific mechanism of inhibiting the activation of NLRP3 inflammasome have not been reported. This study was to investigate the specific mechanism of QSG inhibiting inflammation after AMI, and to validate the possible targets. Methods The myocardial ischemia model in mice was established by ligation of the left anterior descending coronary artery. Echocardiography was used to evaluate the cardiac function of the mice. Plasma CK-MB and cTnl were detected by ELISA to evaluate the degree of myocardial injury. The extent of myocardial tissue inflammation in mice was assessed by HE staining and immunohistochemistry of IL-18, IL-1β. The expressions of NLRP3, ASC, Caspase-1, and CD86 were detected by immunofluorescence; detection of key pathway proteins P2X7R, NEK7, NLRP3, ASC, Caspase-1, and effector proteins IL-18, IL-1β by Western blot. In vitro experiments, ATP+LPS was used to construct a RAW264.7 macrophage NLRP3 inflammasome activation model. Immunofluorescence and Western blot analysis were performed to detect the expression of NLRP3 pathway activator and effector proteins. Plasmid-transfected P2X7R overexpression and immunoprecipitation assays were used to evaluate the QSG-regulated NLRP3 inflammasome activation pathway. Results QSG rescued cardiac function and further reduced inflammatory effects in mice by inhibiting NLRP3 inflammasome activation. In vitro, QSG inhibited LPS combined with ATP-induced NLRP3 inflammasome activation in RAW264.7 macrophages by downregulating the expression of NLRP3 inflammasome key pathway proteins. In addition, inhibition or overexpression of P2X7R in RAW264.7 macrophages and immunoprecipitated protein interactions further confirmed that QSG reduces macrophages inflammasome activation via the P2X7R-NEK7-NLRP3 pathway. Conclusion P2X7R-NEK7-NLRP3 inflammasome activation is a novel therapeutic mechanism of QSG in the treatment of acute myocardial ischemia.
Collapse
Affiliation(s)
- Yanqin Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiangning Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Junjun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xuan Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Gang Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yizhou Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiangyu Lu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Lingwen Cui
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Guangzhou University of Chinese Medicine, Guangdong, 510006, People's Republic of China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
30
|
Qi S, Wang Q, Zhang J, Liu Q, Li C. Pyroptosis and Its Role in the Modulation of Cancer Progression and Antitumor Immunity. Int J Mol Sci 2022; 23:ijms231810494. [PMID: 36142404 PMCID: PMC9501080 DOI: 10.3390/ijms231810494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pyroptosis is a type of programmed cell death (PCD) accompanied by an inflammatory reaction and the rupture of a membrane. Pyroptosis is divided into a canonical pathway triggered by caspase-1, and a non-canonical pathway independent of caspase-1. More and more pyroptosis-related participants, pathways, and regulatory mechanisms have been exploited in recent years. Pyroptosis plays crucial roles in the initiation, progression, and metastasis of cancer and it affects the immunotherapeutic outcome by influencing immune cell infiltration as well. Extensive studies are required to elucidate the molecular mechanisms between pyroptosis and cancer. In this review, we introduce the discovery history of pyroptosis, delineate the signaling pathways of pyroptosis, and then make comparisons between pyroptosis and other types of PCD. Finally, we provide an overview of pyroptosis in different cancer types. With the progression in the field of pyroptosis, new therapeutic targets and strategies can be explored to combat cancer.
Collapse
Affiliation(s)
- Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qian Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
31
|
Pan L, Yan B, Zhang J, Zhao P, Jing Y, Yu J, Hui J, Lu Q. Mesenchymal stem cells-derived extracellular vesicles-shuttled microRNA-223-3p suppress lipopolysaccharide-induced cardiac inflammation, pyroptosis, and dysfunction. Int Immunopharmacol 2022; 110:108910. [DOI: 10.1016/j.intimp.2022.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
|
32
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2022; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
33
|
Cheng X, Zhang R, Wei S, Huang J, Zhai K, Li Y, Gao B. Dexamethasone Alleviates Myocardial Injury in a Rat Model of Acute Myocardial Infarction Supported by Venoarterial Extracorporeal Membrane Oxygenation. Front Public Health 2022; 10:900751. [PMID: 35928492 PMCID: PMC9343845 DOI: 10.3389/fpubh.2022.900751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial ischemia causes myocardial inflammation. Research indicates that the venoarterial extracorporeal membrane oxygenation (VA ECMO) provides cardiac support; however, the inflammatory response caused by myocardial ischemia remains unresolved. Dexamethasone (Dex), a broad anti-inflammatory agent, exhibits a cardioprotective effect. This study aims to investigate the effect of Dex on a rat model of acute myocardial infarction (AMI) supported by VA ECMO. Male Sprague-Dawley rats (300–350 g) were randomly divided into three groups: Sham group (n = 5), ECMO group (n = 6), and ECMO + Dex group (n = 6). AMI was induced by ligating the left anterior descending (LAD) coronary artery. Sham group only thoracotomy was performed but LAD was not ligated. The ECMO and ECMO + Dex groups were subjected to 1 h of AMI and 2 h of VA ECMO. In the ECMO + Dex group, Dex (0.2 mg/kg) was intravenously injected into the rats after 1 h of AMI. Lastly, myocardial tissue and blood samples were harvested for further evaluation. The ECMO + Dex group significantly reduced infarct size and levels of cTnI, cTnT, and CK-MB. Apoptotic cells and the expression levels of Bax, Caspase3, and Cle-Caspase3 proteins were markedly lower in the ECMO + Dex group than that in the ECMO group. Neutrophil and macrophage infiltration was lower in the ECMO + Dex group than in the ECMO group. A significant reduction was noted in ICAM-1, C5a, MMP-9, IL-1β, IL-6, and TNF-α. In summary, our findings revealed that Dex alleviates myocardial injury in a rat model of AMI supported by VA ECMO.
Collapse
Affiliation(s)
- Xingdong Cheng
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Rongzhi Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jian Huang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Kerong Zhai
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Bingren Gao
| |
Collapse
|
34
|
Zhao X, Liu Y, Wang L, Yan C, Liu H, Zhang W, Zhao H, Cheng C, Chen Z, Xu T, Li K, Cai J, Qiao T. Oridonin attenuates hind limb ischemia-reperfusion injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115206. [PMID: 35301099 DOI: 10.1016/j.jep.2022.115206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oridonin (Ori), extracted from Isodon rubescens (Hemsl.) H.Hara, is a well-known traditional Chinese herbal medicinal product that possesses antioxidant and anti-inflammatory activities. Oxidative stress and inflammation are the main pathophysiological mechanisms in hindlimb IR injury. However, whether Ori has a protective effect on hind limb IR injury is unknown. AIM OF THE STUDY The present study was designed to determine the effect of Ori on hindlimb IR injury and its relationship with oxidative stress and inflammation. MATERIALS AND METHODS The hind limb IR injury model in mice was used to evaluate the protective effect and related mechanisms of Ori. Forty-eight C57BL/6 mice (n = 12 per group) were randomly divided into four groups: Sham group; IR group; IR + Ori (10 mg/kg) group and IR + Ori (20 mg/kg) group. Mice in the IR and IR + Ori groups were subjected to hindlimb IR injury, while mice in the Sham group were subjected to no hindlimb IR injury. HE staining, Masson's staining, TTC staining, DHE staining, TUNEL staining, western blotting analysis and quantitative real-time PCR were employed to explore the mechanisms by which Ori exerts a protective effect on a classical hindlimb IR model in mice. RESULTS We found that Ori pretreatment prevented muscle damage and decreased cell apoptosis levels compared with the vehicle control. Moreover, the SOD2, CAT, MDA and ROS levels in muscle showed that Ori could significantly reduce oxidative stress in hindlimb IR mice, while the IL-1β and TNF-α levels in muscle showed that Ori could significantly attenuate IR-induced inflammation. We also found that Ori could increase the expression of Nrf2 and its downstream protein HO-1 and inhibit the expression levels of NLRP3-related proteins (NLRP3, ASC and Caspase-1) in vivo. CONCLUSIONS Our study suggested that Ori has a protective effect on hindlimb IR injury, which may be related to Nrf2-mediated oxidative stress and NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Han Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Chen Cheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tianze Xu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
35
|
Jiang J, Ding S, Zhang G, Dong Y. Ambient particulate matter exposure plus a high-fat diet exacerbate renal injury by activating the NLRP3 inflammasome and TGF-β1/Smad2 signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113571. [PMID: 35512472 DOI: 10.1016/j.ecoenv.2022.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a public health problem of which the prevalence is increasing worldwide. Several studies have reported that ambient particulate matter (PM) causes kidney injury, which may be related to the risk of CKD. However, the underlying molecular mechanisms have not been fully clarified. In addition, whether a high-fat diet (HFD) could exacerbate ambient PM-induced nephrotoxicity has not been evaluated. This study aimed to investigate the combined effect of ambient PM and a HFD on renal injury. METHODS AND RESULTS Male C57BL/6 J mice were fed either a normal diet or a HFD and exposed to filtered air (FA) or particulate matter (PM) for 18 weeks. In the present study, we observed that renal function changed (serum blood urea nitrogen and serum creatinine), and exposure to PM and a HFD caused a synergistic effect on renal injury. Histopathological analysis showed that PM exposure induced renal fibrosis in mice, and combined exposure to PM and a HFD exacerbated these adverse effects. Moreover, ambient PM exposure activated the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome and increased the inflammatory response, as indicated by the increases in interleukin-1β, interleukin-6 and tumor necrosis factor-α in the serum and kidney, as well as the upregulation of specific renal fibrosis-related markers (transforming growth factor-β1 and p-Smad2) in the kidney tissues of mice. Furthermore, combined exposure to PM and a HFD augmented these changes in the kidney. In vitro, inhibition of the NLRP3 inflammasome by MCC950 (an inhibitor of NLRP3) reduced the levels of proinflammatory cytokines and the expression of transforming growth factor-β1 and p-Smad2 in HK-2 cells. CONCLUSION Taken together, our data indicated that PM exposure caused renal inflammation and induced profibrotic effects on the kidney, and combined exposure to ambient PM and a HFD exacerbated renal injury, which may involve activation of the NLRP3 inflammasome and the TGF-β1/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China.
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Yaqi Dong
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| |
Collapse
|
36
|
Wu G, Zhang D, Yang L, Wu Q, Yuan L. MicroRNA-200c-5p targets NIMA Related Kinase 7 (NEK7) to inhibit NOD-like receptor 3 (NLRP3) inflammasome activation, MODE-K cell pyroptosis, and inflammatory bowel disease in mice. Mol Immunol 2022; 146:57-68. [DOI: 10.1016/j.molimm.2022.03.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 12/30/2022]
|
37
|
Giral H, Franke V, Moobed M, Müller MF, Lübking L, James DM, Hartung J, Kuschnerus K, Meteva D, Seppelt C, Jakob P, Klingenberg R, Kränkel N, Leistner D, Zeller T, Blankenberg S, Zimmermann F, Haghikia A, Lüscher TF, Akalin A, Landmesser U, Kratzer A. Rapid Inflammasome Activation Is Attenuated in Post-Myocardial Infarction Monocytes. Front Immunol 2022; 13:857455. [PMID: 35558073 PMCID: PMC9090500 DOI: 10.3389/fimmu.2022.857455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammasomes are crucial gatekeepers of the immune response, but their maladaptive activation associates with inflammatory pathologies. Besides canonical activation, monocytes can trigger non-transcriptional or rapid inflammasome activation that has not been well defined in the context of acute myocardial infarction (AMI). Rapid transcription-independent inflammasome activation induced by simultaneous TLR priming and triggering stimulus was measured by caspase-1 (CASP1) activity and interleukin release. Both classical and intermediate monocytes from healthy donors exhibited robust CASP1 activation, but only classical monocytes produced high mature interleukin-18 (IL18) release. We also recruited a limited number of coronary artery disease (CAD, n=31) and AMI (n=29) patients to evaluate their inflammasome function and expression profiles. Surprisingly, monocyte subpopulations isolated from blood collected during percutaneous coronary intervention (PCI) from AMI patients presented diminished CASP1 activity and abrogated IL18 release despite increased NLRP3 gene expression. This unexpected attenuated rapid inflammasome activation was accompanied by a significant increase of TNFAIP3 and IRAKM expression. Moreover, TNFAIP3 protein levels of circulating monocytes showed positive correlation with high sensitive troponin T (hsTnT), implying an association between TNFAIP3 upregulation and the severity of tissue injury. We suggest this monocyte attenuation to be a protective phenotype aftermath following a very early inflammatory wave in the ischemic area. Damage-associated molecular patterns (DAMPs) or other signals trigger a transitory negative feedback loop within newly recruited circulating monocytes as a mechanism to reduce post-injury tissue damage.
Collapse
Affiliation(s)
- Hector Giral
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Vedran Franke
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Minoo Moobed
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maja F Müller
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Laura Lübking
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divya Maria James
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Hartung
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kira Kuschnerus
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Denitsa Meteva
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Claudio Seppelt
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, University Hospital Zurich, Zurich, Switzerland.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Klingenberg
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolle Kränkel
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Leistner
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Friederike Zimmermann
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Altuna Akalin
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
38
|
Mitochondrial Damage in Myocardial Ischemia/Reperfusion Injury and Application of Natural Plant Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8726564. [PMID: 35615579 PMCID: PMC9126658 DOI: 10.1155/2022/8726564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease (IHD) is currently one of the leading causes of death among cardiovascular diseases worldwide. In addition, blood reflow and reperfusion paradoxically also lead to further death of cardiomyocytes and increase the infarct size. Multiple evidences indicated that mitochondrial function and structural disorders were the basic driving force of IHD. We summed up the latest evidence of the basic associations and underlying mechanisms of mitochondrial damage in the event of ischemia/reperfusion (I/R) injury. This review then reviewed natural plant products (NPPs) which have been demonstrated to mitochondria-targeted therapeutic effects during I/R injury and the potential pathways involved. We realized that NPPs mainly maintained the integrality of mitochondria membrane and ameliorated dysfunction, such as improving abnormal mitochondrial calcium handling and inhibiting oxidative stress, so as to protect cardiomyocytes during I/R injury. This information will improve our knowledge of mitochondrial biology and I/R-induced injury's pathogenesis and exhibit that NPPs hold promise for translation into potential therapies that target mitochondria.
Collapse
|
39
|
Zhang ZY, Dang SP, Li SS, Liu Y, Qi MM, Wang N, Miao LF, Wu Y, Li XY, Wang CX, Qian LL, Wang RX. Glucose Fluctuations Aggravate Myocardial Fibrosis via the Nuclear Factor-κB-Mediated Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Inflammasome Activation. Front Cardiovasc Med 2022; 9:748183. [PMID: 35592403 PMCID: PMC9110689 DOI: 10.3389/fcvm.2022.748183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundGlucose fluctuations may be associated with myocardial fibrosis. This study aimed to investigate the underlying mechanisms of glucose fluctuation-related myocardial fibrosis.MethodsStreptozotocin (STZ)-injected type 1 diabetic rats were randomized to five groups: the controlled blood glucose (CBG) group, uncontrolled blood glucose (UBG) group, fluctuated blood glucose (FBG) group, FBG rats injected with 0.9% sodium chloride (NaCl) (FBG + NaCl) group, and FBG rats injected with MCC950 (FBG + MCC950) group. Eight weeks later, left ventricular function was evaluated by echocardiography and myocardial fibrosis was observed by Masson trichrome staining. The primary neonatal rat cardiac fibroblasts were cultured with different concentrations of glucose in vitro.ResultsThe left ventricular function was impaired and myocardial fibrosis was aggravated most significantly in the FBG group compared with the CBG and UBG groups. The levels of interleukin (IL)-1β, IL-18, transforming growth factor-β1 (TGF-β1), collagen type 1 (collagen I), nuclear factor (NF)-κB, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome were significantly increased in the FBG group. In vitro, the inhibition of NF-κB and inflammasome reversed these effects. In vivo, NLRP3 inhibition with MCC950 reversed left ventricular systolic dysfunction and myocardial fibrosis induced by glucose fluctuations.ConclusionGlucose fluctuations promote diabetic myocardial fibrosis by the NF-κB-mediated inflammasome activation.
Collapse
Affiliation(s)
- Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Shi-Peng Dang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Shan-Shan Li
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ying Liu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Miao-Miao Qi
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ning Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ling-Feng Miao
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ying Wu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiao-Yan Li
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chun-Xin Wang
- Department of Medical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ling-Ling Qian,
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Ru-Xing Wang,
| |
Collapse
|
40
|
Su X, Zhou M, Li Y, Zhang J, An N, Yang F, Zhang G, Yuan C, Chen H, Wu H, Xing Y. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomed Pharmacother 2022; 149:112893. [PMID: 35366532 DOI: 10.1016/j.biopha.2022.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyang Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
41
|
Liao Y, Liu K, Zhu L. Emerging Roles of Inflammasomes in Cardiovascular Diseases. Front Immunol 2022; 13:834289. [PMID: 35464402 PMCID: PMC9021369 DOI: 10.3389/fimmu.2022.834289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are known as the leading cause of morbidity and mortality worldwide. As an innate immune signaling complex, inflammasomes can be activated by various cardiovascular risk factors and regulate the activation of caspase-1 and the production and secretion of proinflammatory cytokines such as IL-1β and IL-18. Accumulating evidence supports that inflammasomes play a pivotal role in the progression of atherosclerosis, myocardial infarction, and heart failure. The best-known inflammasomes are NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes, among which NLRP3 inflammasome is the most widely studied in the immune response and disease development. This review focuses on the activation and regulation mechanism of inflammasomes, the role of inflammasomes in cardiovascular diseases, and the research progress of targeting NLRP3 inflammasome and IL-1β for related disease intervention.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kui Liu
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
42
|
Lei Z, Luan F, Zhang X, Peng L, Li B, Peng X, Liu Y, Liu R, Zeng N. Piperazine ferulate protects against cardiac ischemia/reperfusion injury in rat via the suppression of NLRP3 inflammasome activation and pyroptosis. Eur J Pharmacol 2022; 920:174856. [DOI: 10.1016/j.ejphar.2022.174856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
|
43
|
Del Buono MG, Damonte JI, Trankle CR, Kadariya D, Carbone S, Thomas G, Turlington J, Markley R, Canada JM, Biondi-Zoccai GG, Kontos MC, Van Tassell BW, Abbate A. Effect of interleukin-1 blockade with anakinra on leukocyte count in patients with ST-segment elevation acute myocardial infarction. Sci Rep 2022; 12:1254. [PMID: 35075216 PMCID: PMC8786840 DOI: 10.1038/s41598-022-05374-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
Leukocytosis is a common finding in patients with ST elevation myocardial infarction (STEMI) and portends a poor prognosis. Interleukin 1-β regulates leukopoiesis and pre-clinical studies suggest that anakinra (recombinant human interleukin-1 [IL-1] receptor antagonist) suppresses leukocytosis in myocardial infarction. However, the effect of IL-1 blockade with anakinra on leukocyte count in patients with STEMI is unknown. We reviewed the white blood cell (WBC) and differential count of 99 patients enrolled in a clinical trial of anakinra (n = 64) versus placebo (n = 35) for 14 days after STEMI. A complete blood cell count with differential count were obtained at admission, and after 72 h, 14 days and 3 months. After 72 h from treatment, anakinra compared to placebo led to a statistically significant greater percent reduction in total WBC count (- 35% [- 48 to - 24] vs. - 21% [- 34 to - 10], P = 0.008), absolute neutrophil count (- 48% [- 60 to - 22] vs. - 27% [- 46 to - 5], P = 0.004) and to an increase in absolute eosinophil count (+ 50% [0 to + 100] vs. 0% [- 50 to + 62], P = 0.022). These changes persisted while on treatment at 14 days and were no longer apparent at 3 months after treatment discontinuation. We found that in patients with STEMI IL-1 blockade with anakinra accelerates resolution of leukocytosis and neutrophilia. This modulation may represent one of the mechanisms by which IL-1 blockade improves clinical outcomes.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Juan Ignacio Damonte
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Cory R Trankle
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
| | - Dinesh Kadariya
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
| | - Salvatore Carbone
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Georgia Thomas
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
| | - Jeremy Turlington
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
| | - Roshanak Markley
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
| | - Justin M Canada
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
| | - Giuseppe G Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Michael C Kontos
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
| | - Benjamin W Van Tassell
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital, West Wing 5-020, 1200 E Broad Street, P.O. Box 980204, Richmond, VA, 23298, USA.
| |
Collapse
|
44
|
Díaz-Vesga MC, Zúñiga-Cuevas Ú, Ramírez-Reyes A, Herrera-Zelada N, Palomo I, Bravo-Sagua R, Riquelme JA. Potential Therapies to Protect the Aging Heart Against Ischemia/Reperfusion Injury. Front Cardiovasc Med 2021; 8:770421. [PMID: 34869687 PMCID: PMC8639870 DOI: 10.3389/fcvm.2021.770421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Despite important advances in the treatment of myocardial infarction that have significantly reduced mortality, there is still an unmet need to limit the infarct size after reperfusion injury in order to prevent the onset and severity of heart failure. Multiple cardioprotective maneuvers, therapeutic targets, peptides and drugs have been developed to effectively protect the myocardium from reperfusion-induced cell death in preclinical studies. Nonetheless, the translation of these therapies from laboratory to clinical contexts has been quite challenging. Comorbidities, comedications or inadequate ischemia/reperfusion experimental models are clearly identified variables that need to be accounted for in order to achieve effective cardioprotection studies. The aging heart is characterized by altered proteostasis, DNA instability, epigenetic changes, among others. A vast number of studies has shown that multiple therapeutic strategies, such as ischemic conditioning phenomena and protective drugs are unable to protect the aged heart from myocardial infarction. In this Mini-Review, we will provide an updated state of the art concerning potential new cardioprotective strategies targeting the aging heart.
Collapse
Affiliation(s)
- Magda C Díaz-Vesga
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia.,Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Úrsula Zúñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Ramírez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iván Palomo
- Thrombosis Research Center, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.,Interuniversity Center for Healthy Aging, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging, Chile.,Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging, Chile
| |
Collapse
|
45
|
Kron J, Crawford T, Mihalick V, Bogun F, Jordan JH, Koelling T, Syed H, Syed A, Iden T, Polly K, Federmann E, Bray K, Lathkar-Pradhan S, Jasti S, Rosenfeld L, Birnie D, Smallfield M, Kang L, Fowler AB, Ladd A, Ellenbogen K, Van Tassell B, Gregory Hundley W, Abbate A. Interleukin-1 blockade in cardiac sarcoidosis: study design of the multimodality assessment of granulomas in cardiac sarcoidosis: Anakinra Randomized Trial (MAGiC-ART). J Transl Med 2021; 19:460. [PMID: 34749739 PMCID: PMC8575149 DOI: 10.1186/s12967-021-03130-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sarcoidosis is an inflammatory disease characterized by the formation of granulomas, which involve the heart in up to 25% of patients. Cardiac sarcoidosis can lead to life threatening arrhythmias and heart failure. While corticosteroids have been used as a treatment for over 50 years, they are associated with hypertension, diabetes, and weight gain, further increasing cardiovascular risk. Interleukin-1 (IL-1) is the prototypical proinflammatory cytokine that works to activate the nuclear transcription factor NF-kB, one of the targets of glucocorticoids. IL-1 also plays an important role also in the pathophysiology of heart disease including atherosclerosis, myocardial infarction, and myocarditis. METHODS Building on a network of research collaborators developed in the Cardiac Sarcoidosis Consortium, we will investigate the feasibility and tolerability of treatment of CS with anakinra at two National Institute of Health Clinical and Translational Science Award (CTSA) hubs with expertise in cardiac sarcoidosis. In this pilot study, up to 28 patients with cardiac sarcoidosis will be recruited to compare the administration of an IL-1 blocker, anakinra, 100 mg daily on top of standard of care versus standard of care only for 28 days and followed for 180 days. Utilizing surrogate endpoints of changes in systemic inflammatory biomarkers and cardiac imaging, we aim to determine whether IL-1 blockade with anakinra can combat systemic and cardiac inflammation in patients with cardiac sarcoidosis. DISCUSSION The current trial demonstrates an innovative collaborative approach to clinical trial development in a rare, understudied disease that disproportionately affects females and minorities. Trial Registration The trial was registered prospectively with ClinicalTrials.gov on July 12, 2019, identifier NCT04017936.
Collapse
Affiliation(s)
- Jordana Kron
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA.
| | - Thomas Crawford
- Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Virginia Mihalick
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA
| | - Frank Bogun
- Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer H Jordan
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd Koelling
- Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Huzaefah Syed
- Division of Rheumatology, Virginia Commonwealth University, Allergy, and Immunology, Richmond, VA, USA
| | - Aamer Syed
- Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas Iden
- Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Kelly Polly
- Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Emily Federmann
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA
| | - Kirsta Bray
- Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Shilpa Jasti
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA
| | - Lynda Rosenfeld
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - David Birnie
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Melissa Smallfield
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA
| | - Le Kang
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alpha Berry Fowler
- Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy Ladd
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA
| | - Kenneth Ellenbogen
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA
| | - Benjamin Van Tassell
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA.,Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - W Gregory Hundley
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Virginia Commonwealth University Medical Center, P.O. Box 980053, Richmond, VA, 23298-0053, USA.,Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
46
|
Yang X, An X, Wang C, Gao F, Lin Y, Chen W, Deng Q, Xu D, Li S, Zhang P, Sun B, Hou Y, Wu J. Protective Effect of Oxytocin on Ventilator-Induced Lung Injury Through NLRP3-Mediated Pathways. Front Pharmacol 2021; 12:722907. [PMID: 34733156 PMCID: PMC8558354 DOI: 10.3389/fphar.2021.722907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical ventilation is an indispensable life-support treatment for acute respiratory failure in critically ill patients, which is generally believed to involve uncontrolled inflammatory responses. Oxytocin (OT) has been reported to be effective in animal models of acute lung injury. However, it is not clear whether Oxytocin has a protective effect on ventilator-induced lung injury (VILI). Therefore, in this study, we aimed to determine whether OT can attenuate VILI and explore the possible mechanism of this protection. To this end, a mouse VILI model was employed. Mice were pretreated with OT 30 min before the intraperitoneal injection of saline or nigericin and ventilation for 4 h, after which they were euthanized. Pathological changes, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, the levels of inflammatory cytokines [i.e., interleukin (IL)-1β, IL-6, and IL-18] in lung tissues and bronchoalveolar lavage fluid (BALF), and expression of NLRP3, Toll-like receptor 4 (TLR4), caspase-1, nuclear factor (NF)-κB, and GSDMD in lung tissues were measured. OT treatment could reduce pathological injury, the W/D ratio, and MPO activity in VILI mice. Our data also indicated that OT administration alleviated the expression of TLR4/My-D88 and the activation of NF-κB, NLRP3, and caspase-1 in lung tissues from the VILI mice model. Furthermore, OT also decreased the levels of IL-1β, IL-6, and IL-18 in the bronchoalveolar lavage fluid. Moreover, the OT administration may alleviate the activation of GSDMD partially through its effects on the NLRP3-mediated pathway. Collectively, OT exerted a beneficial effect on VILI by downregulating TLR4-and NLRP3-mediated inflammatory pathways.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of medicine, Shandong University, Jinan, China.,Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaona An
- Department of Anesthesiology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Cheng Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of medicine, Shandong University, Jinan, China
| | - Feng Gao
- School of Medicine, Cheeloo College of medicine, Shandong University, Jinan, China
| | - Yicheng Lin
- Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjing Chen
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiming Deng
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongsheng Xu
- Department of Kidney Transplantation, The Second Hospital, Shandong University, Jinan, China
| | - Shengqiang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhu Sun
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuedong Hou
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
47
|
Shen J, Fan Z, Sun G, Qi G. Sacubitril/valsartan (LCZ696) reduces myocardial injury following myocardial infarction by inhibiting NLRP3‑induced pyroptosis via the TAK1/JNK signaling pathway. Mol Med Rep 2021; 24:676. [PMID: 34296299 PMCID: PMC8335743 DOI: 10.3892/mmr.2021.12315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the protective effects of sacubitril/valsartan (LCZ696) on ventricular remodeling in myocardial infarction (MI) and the effects of the inflammasome‑mediated inflammatory response. First, a rat model was established. Animals were then treated with LCZ696 so that the histopathological changes associated with ventricular remodeling could be investigated. The serum levels of the inflammatory factors IL‑18 and IL‑1β were also determined by ELISA. Immunofluorescence was used to investigate the ratio of pyroptosis following MI modelling. Western blotting and reverse transcription‑quantitative PCR were used to detect the relative expression levels of proteins and mRNAs in the transforming growth factor β‑activated kinase‑1 (TAK1)/JNK pathway and those associated with the NLR pyrin family domain containing 3 (NLRP3) inflammasome, respectively. The present study also investigated the regulatory mechanisms and associations between the TAK1 and JNK pathways, NOD‑, leucine‑rich repeat‑ and the NLRP3 inflammasome, in H9C2 cells and myocardial cells from the rat model of MI. LCZ696 improved MI‑induced myocardial fibrosis, rescued myocardial injury and suppressed the release of inflammatory factors. With regards to myocardial cell damage, pyroptosis in cardiomyocytes was observed. The in vitro experiments demonstrated that the overexpression of TAK1 promoted lysis of the N‑terminal of GSDMD, thereby activating the NLRP3 inflammasome and promoting the conversion of pro‑IL‑1β and pro‑IL‑18 into mature IL‑1β and IL‑18, respectively. In contrast, the silencing of TAK1 inhibited the expression levels of the NLRP3 inflammasome. In summary, LCZ696 reduced the expression levels of the NLRP3 inflammasome, suppressed inflammatory responses, improved the ventricular remodeling and exhibited protective effects in the MI heart by inhibiting the TAK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Jianfen Shen
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhongbao Fan
- Department of Hepatobiliary Surgery, People's Hospital of China Medical University, Liaoning Provincial People's Hospital, Shenyang, Liaoning 110016, P.R. China
| | - Guang Sun
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
48
|
Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther 2021; 6:247. [PMID: 34210954 PMCID: PMC8249422 DOI: 10.1038/s41392-021-00650-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are protein complexes of the innate immune system that initiate inflammation in response to either exogenous pathogens or endogenous danger signals. Inflammasome multiprotein complexes are composed of three parts: a sensor protein, an adaptor, and pro-caspase-1. Activation of the inflammasome leads to the activation of caspase-1, which cleaves pro-inflammatory cytokines such as IL-1β and IL-18, leading to pyroptosis. Effectors of the inflammasome not only provide protection against infectious pathogens, but also mediate control over sterile insults. Aberrant inflammasome signaling has been implicated in the development of cardiovascular and metabolic diseases, cancer, and neurodegenerative disorders. Here, we review the role of the inflammasome as a double-edged sword in various diseases, and the outcomes can be either good or bad depending on the disease, as well as the genetic background. We highlight inflammasome memory and the two-shot activation process. We also propose the M- and N-type inflammation model, and discuss how the inflammasome pathway may be targeted for the development of novel therapy.
Collapse
|
49
|
Aliaga J, Bonaventura A, Mezzaroma E, Dhakal Y, Mauro AG, Abbate A, Toldo S. Preservation of Contractile Reserve and Diastolic Function by Inhibiting the NLRP3 Inflammasome with OLT1177 ® (Dapansutrile) in a Mouse Model of Severe Ischemic Cardiomyopathy Due to Non-Reperfused Anterior Wall Myocardial Infarction. Molecules 2021; 26:molecules26123534. [PMID: 34207886 PMCID: PMC8227554 DOI: 10.3390/molecules26123534] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Interleukin-1β (IL-1β), a product of the NLRP3 inflammasome, modulates cardiac contractility and diastolic function. We proposed that OLT1177® (dapansutrile), a novel NLRP3 inhibitor, could preserve contractile reserve and diastolic function after myocardial infarction (MI). We used an experimental murine model of severe ischemic cardiomyopathy through the ligation of the left coronary artery without reperfusion, and after 7 days randomly assigned mice showing large anterior MI (>4 akinetic segments), increased left ventricular (LV) dimensions ([LVEDD] > 4.4 mm), and reduced function (LV ejection fraction < 40%) to a diet that was enriched with OLT1177® admixed with the chow in the diet at 3.75 g/kg (Group 1 [n = 10]) or 7.5 g/kg (Group 2 [n = 9]), or a standard diet as the no-treatment control group (Group 3 [n = 10]) for 9 weeks. We measured the cardiac function and contractile reserve with an isoproterenol challenge, and the diastolic function with cardiac catheterization at 10 weeks following the MI surgery. When compared with the control (Group 3), the mice treated with OLT1177 (Group 1 and 2) showed significantly greater preservation of their contractile reserve (the percent increase in the left ventricular ejection fraction [LVEF] after the isoproterenol challenge was +33 ± 11% and +40 ± 6% vs. +9 ± 7% in the standard diet; p < 0.05 and p < 0.005 for Group 1 and 2, respectively) and of diastolic function measured as the lower left ventricular end-diastolic pressure (3.2 ± 0.5 mmHg or 4.5 ± 0.5 mmHg vs. 10.0 ± 1.6 mmHg; p < 0.005 and p < 0.009 respectively). No differences were noted between the resting LVEF of the MI groups. These effects were independent of the effects on the ventricular remodeling after MI. NLRP3 inflammasome inhibition with OLT1177® can preserve β-adrenergic responsiveness and prevent left ventricular diastolic dysfunction in a large non-reperfused anterior MI mouse model. OLT1177® could therefore be used to prevent the development of heart failure in patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Joseph Aliaga
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.A.); (A.B.); (Y.D.); (A.G.M.); (A.A.)
| | - Aldo Bonaventura
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.A.); (A.B.); (Y.D.); (A.G.M.); (A.A.)
| | - Eleonora Mezzaroma
- Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Yogesh Dhakal
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.A.); (A.B.); (Y.D.); (A.G.M.); (A.A.)
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.A.); (A.B.); (Y.D.); (A.G.M.); (A.A.)
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.A.); (A.B.); (Y.D.); (A.G.M.); (A.A.)
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.A.); (A.B.); (Y.D.); (A.G.M.); (A.A.)
- Correspondence:
| |
Collapse
|
50
|
Jiang J, Gu X, Wang H, Ding S. Resveratrol improves cardiac function and left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3 inflammasome activity and the TGF- β1/SMAD2 signaling pathway. PeerJ 2021; 9:e11501. [PMID: 34123595 PMCID: PMC8166236 DOI: 10.7717/peerj.11501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies have shown that resveratrol (RES), a naturally occurring polyphenol found in many plants, is beneficial for preventing cardiovascular diseases. However, the mechanism underlying the RES-mediated protection against myocardial infarction has not yet been revealed entirely. In this study, we investigated the protective effects of RES on cardiac function in a rat model of acute myocardial infarction (AMI) and the related underlying mechanisms. METHODS Male Sprague-Dawley rats were randomly divided into four groups: Sham (sham operation), Sham-RES, AMI (AMI induction), and AMI-RES. The rat AMI model was established by the permanent ligation of left anterior descending coronary artery method. The rats in the RES-treated groups were gavaged with RES (50 mg/kg/day) daily for 45 days after the Sham operation or AMI induction; rats in the Sham and AMI groups were gavaged with deionized water. Cardiac function was evaluated by echocardiography. Atrial interstitial fibrosis was assessed by hematoxylin-eosin or Masson's trichrome staining. Real-time PCR and western blotting analyses were performed to examine the levels of signaling pathway components. RESULTS RES supplementation decreased the inflammatory cytokine levels, improved the cardiac function, and ameliorated atrial interstitial fibrosis in the rats with AMI. Furthermore, RES supplementation inhibited NLRP3 inflammasome activity, decreased the TGF-β1 production, and downregulated the p-SMAD2/SMAD2 expression in the heart. CONCLUSION RES shows notable cardioprotective effects in a rat model of AMI; the possible mechanisms underlying these effects may involve the improvement of cardiac function and atrial interstitial fibrosis via the RES-mediated suppression of NLRP3 inflammasome activity and inhibition of the TGF-β1/SMAD2 signaling pathway in the heart.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Xiuping Gu
- Department of Cardiology, General Hospital of TISCO, Taiyuan, Shanxi, China
| | - Huifeng Wang
- Department of Cardiology, General Hospital of TISCO, Taiyuan, Shanxi, China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| |
Collapse
|