1
|
Huang Y, Lei Y, Shi J, Liu W, Zhang X, He P, Ma Y, Zhang X, Cao Y, Cheng Q, Zhang Z, Lei Z. Effects of dietary oregano essential oil supplementation on carcass traits, muscle fiber structure, oxidative stability, meat quality, and regulatory mechanisms in Holstein steers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3097-3110. [PMID: 39821900 DOI: 10.1002/jsfa.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle. Eighteen steers were randomly assigned to two groups (n = 9 per group) and fed either a control diet (CK) or the same diet supplemented with 20 g of OEO per head per day for 300 days. RESULTS Oregano essential oil supplementation improved the body weight, carcass weight, meat production, area and diameter of fiber, ether extract, and water-holding power of muscle. Increasing catalase (CAT), peroxidases (POD), glutathione peroxidase (GSH-Px) and by decreasing lipid droplets (LDs) reduced muscle lipid oxidation. However, the color (L*, a*, b*, C* and H°) and the flavor compounds of muscle were affected adversely by OEO. The transcriptome and metabolome indicated the OEO group enriched fat synthesis, proteo-metabolism, antioxidants, and growth significantly. Five key genes (SH2B2, CD209, LOC504773, C1QC, and HMOX) and ten downregulated metabolites (deoxyguanosine, d-melezitose, maltotriose, raffinose, melatonin, quinic acid, orotic acid, hydrocinnamic acid, 2-methylsuccinic acid, and pyridoxal 5'-phosphate) were identified as key biomarkers. These interacted to positively influence the growth, oxidative status, and meat quality of steers positively. CONCLUSION These findings suggest that OEO, as a natural bioactive compound, can serve as an additive for beef cattle, with a daily dose of 20 g per steer improving growth and meat quality, although it may affect muscle color and flavor negatively. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongzhi Cao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiang Cheng
- Jingchuan Xukang Food Co., Ltd, Pingliang, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Marques JC, Marques MF, Ribeiro H, Neves AP, Zlatanovic P, Neves JR. The Impact of Elevated Lipoprotein (a) Levels on Postoperative Outcomes in Carotid Endarterectomy: A Systematic Review. J Clin Med 2025; 14:2253. [PMID: 40217703 PMCID: PMC11989823 DOI: 10.3390/jcm14072253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Numerous studies have highlighted lipoprotein (a) (Lp(a)) as a significant, independent risk factor for the development and progression of cardiovascular diseases, including carotid artery disease, which is strongly correlated with an elevated risk of ischemic events and stroke. This systematic review aims to determine the impact of elevated Lp(a) levels on the postoperative outcomes in patients undergoing carotid endarterectomy (CEA). Methods: Four electronic databases-PubMed, Scopus, Web of Science, and Cochrane Library-were employed to search for studies assessing the association between elevated Lp(a) levels and the postoperative outcomes following CEA. The effect of elevated Lp(a) levels was systematically reviewed, and the outcomes reported in each study were evaluated. The quality of the studies was evaluated using the National Heart, Lung, and Blood Institute Study Quality Assessment Tool for observational cohorts and cross-sectional studies. Results: A total of five observational studies were included, with 1450 patients. The mean age of the participants in the studies ranged from 57 to 74 years, and the percentage of males ranged from 37.22% to 68.96%. One study showed that elevated Lp(a) levels were significantly associated with major adverse cardiovascular events (MACEs) after CEA, particularly periprocedural stroke, with another manuscript suggesting a long-term predictive value for acute coronary syndromes (ACSs) within 24 months following surgery. There was no association in the included studies with carotid plaque instability, inflammation biomarkers, or restenosis. Conclusions: This systematic review suggests an association of Lp(a) levels with MACEs and ACSs after CEA although no association with restenosis and carotid plaque inflammation and/or instability.
Collapse
Affiliation(s)
| | | | - Hugo Ribeiro
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.F.M.); (H.R.)
- Community Palliative Care Support Team Gaia, Health Local Unit Gaia and Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Coimbra Institute for Biomedical Research, 3000-548 Coimbra, Portugal
| | - António Pereira Neves
- Department of Vascular Surgery, Health Local Unit of São João, 4200-319 Porto, Portugal;
- Department of Biomedicine, Unity of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Peter Zlatanovic
- Clinic for Vascular and Endovascular Surgery, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - João Rocha Neves
- Department of Biomedicine, Unity of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- RISE-Health, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Naderi R, Seyhani A, Shirpoor A, Jafari A, Eyvani K. Effects of curcumin on cyclosporine A-induced oxidative stress, autophagy, and apoptosis in rat heart. Mol Biol Rep 2025; 52:310. [PMID: 40085292 DOI: 10.1007/s11033-025-10334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Cyclosporine A (CsA) is a powerful immunosuppressant commonly used as a prophylaxis on transplant. However, it is associated with serious effects, including cardiotoxicity. Curcumin is a bioactive compound known for its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. So, the present study investigated the possible protective effect of curcumin on CsA-induced heart injury in rats, focusing on oxidative stress, autophagy, and apoptosis. METHODS A total of 32 male Wistar rats were divided into control, sham (drug solvent), CsA (30 mg/kg BW), and curcumin + CsA (40 mg/kg BW, 30 mg/kg BW, respectively) groups. After 4 weeks of treatment, the heart was isolated for molecular assays. Immunoblot detected oxidative and autophagic proteins NOX4, hsp-70, beclin-1, and LC3II. The amount of 8-OHdG was measured by ELISA and heart apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining (TUNEL). RESULTS At the molecular levels, CSA increased the expression of NOX-4, beclin-1, LC3b, and oHdG in heart tissue. In addition, the amount of apoptosis increased in the heart tissue. However, curcumin treatment improved heart injury by significantly downregulating NOX4, LC3b, and decreasing 8-OHdG. Also, curcumin significantly reduced the rate of myocardial apoptosis. CONCLUSION To sum up, curcumin appears to protect against CsA-induced cardiotoxicity in rats by reducing oxidative activity, apoptosis, and regulating autophagy.
Collapse
Affiliation(s)
- Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Kimia Eyvani
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Myszko M, Bychowski J, Skrzydlewska E, Łuczaj W. The Dual Role of Oxidative Stress in Atherosclerosis and Coronary Artery Disease: Pathological Mechanisms and Diagnostic Potential. Antioxidants (Basel) 2025; 14:275. [PMID: 40227238 PMCID: PMC11939617 DOI: 10.3390/antiox14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of atherosclerosis and coronary artery disease (CAD), with both beneficial and detrimental effects on cardiovascular health. On one hand, the excessive production of reactive oxygen species (ROS) contributes to endothelial dysfunction, inflammation, and vascular remodeling, which are central to the development and progression of CAD. These pathological effects drive key processes such as atherosclerosis, plaque formation, and thrombosis. On the other hand, moderate levels of oxidative stress can have beneficial effects on cardiovascular health. These include regulating vascular tone by promoting blood vessel dilation, supporting endothelial function through nitric oxide production, and enhancing the immune response to prevent infections. Additionally, oxidative stress can stimulate cellular adaptation to stress, promote cell survival, and encourage angiogenesis, which helps form new blood vessels to improve blood flow. Oxidative stress also holds promise as a source of biomarkers that could aid in the diagnosis, prognosis, and monitoring of CAD. Specific oxidative markers, such as malondialdehyde (MDA), isoprostanes (isoP), ischemia-modified albumin, and antioxidant enzyme activity, have been identified as potential indicators of disease severity and therapeutic response. This review explores the dual nature of oxidative stress in atherosclerosis and CAD, examining its mechanisms in disease pathogenesis as well as its emerging role in clinical diagnostics and targeted therapies. The future directions for research aimed at harnessing the diagnostic and therapeutic potential of oxidative stress biomarkers are also discussed. Understanding the balance between the detrimental and beneficial effects of oxidative stress could lead to innovative approaches in the prevention and management of CAD.
Collapse
Affiliation(s)
- Marcin Myszko
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Jerzy Bychowski
- Department of Cardiology, Bialystok Regional Hospital, M. Skłodowskiej-Curie 25, 15-950 Bialystok, Poland; (M.M.); (J.B.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland;
| |
Collapse
|
5
|
Ariyasinghe NR, Gupta D, Escopete S, Rai D, Stotland A, Sundararaman N, Ngu B, Dabke K, McCarthy L, Santos RS, McCain ML, Sareen D, Parker SJ. Identification of Disease-Relevant, Sex-Based Proteomic Differences in iPSC-Derived Vascular Smooth Muscle Cells. Int J Mol Sci 2024; 26:187. [PMID: 39796045 PMCID: PMC11719605 DOI: 10.3390/ijms26010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology. Our analysis confirmed that differentiated cells have a proteomic profile more similar to healthy primary aortic smooth muscle cells than iPSCs. We also identified sex-based differences in iPSC-derived vascular smooth muscle cells in pathways related to ATP binding, glycogen metabolic process, and cadherin binding as well as multiple proteins relevant to cardiovascular pathophysiology and disease. Additionally, we explored the role of autosomal and sex chromosomes in protein regulation, identifying that proteins on autosomal chromosomes also show sex-based regulation that may affect the protein expression of proteins from autosomal chromosomes. This work supports the biological relevance of iPSC-derived vascular smooth muscle cells as a model for disease, and further exploration of the pathways identified here can lead to the discovery of sex-specific pharmacological targets for cardiovascular disease.
Collapse
Affiliation(s)
- Nethika R. Ariyasinghe
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Divya Gupta
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Sean Escopete
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Deepika Rai
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Aleksandr Stotland
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Benjamin Ngu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA; (B.N.); (M.L.M.)
| | - Kruttika Dabke
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Liam McCarthy
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Roberta S. Santos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.S.S.); (D.S.)
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA; (B.N.); (M.L.M.)
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dhruv Sareen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.S.S.); (D.S.)
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
- iPSC Core, David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah J. Parker
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Elsangeedy E, Yamaleyeva DN, Edenhoffer NP, Deak A, Soloshenko A, Ray J, Sun X, Shaltout OH, Cruz-Diaz N, Westwood B, Kim-Shapiro D, Diz DI, Soker S, Pulgar VM, Ronca A, Willey JS, Yamaleyeva LM. Sex-specific cardiovascular adaptations to simulated microgravity in Sprague-Dawley rats. NPJ Microgravity 2024; 10:110. [PMID: 39702444 DOI: 10.1038/s41526-024-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8). HLU had no effect on aortic PWV in males (n = 5-6). Aortic α smooth muscle actin, myosin, collagen, elastin, and collagen-to-elastin ratio were not different in rats of either sex following HLU. The levels of G protein-coupled estrogen receptor (GPER) were lower in the aorta of SD females exposed to HLU compared with female controls but were not altered in males. HLU females also had lower aortic PPARγ, increased oxidative stress markers, and diastolic dysfunction compared with control females. GPER agonist G1 prevented the increase in PWV and 8-hydroxy-2'-deoxyguanosine without altering PPARγ or p47phox in HLU females (n = 4 in each group) suggesting that lower GPER may contribute to arterial stiffening in the setting of simulated microgravity. This study highlights sex-specific vascular adaptations to the state of simulated microgravity.
Collapse
Affiliation(s)
- Ebrahim Elsangeedy
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dina N Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas P Edenhoffer
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson Deak
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anna Soloshenko
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jonathan Ray
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xuming Sun
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Omar H Shaltout
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nildris Cruz-Diaz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian Westwood
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Debra I Diz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Victor M Pulgar
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmaceutical & Clinical Sciences, Campbell University, Buies Creek, NC, USA
| | - April Ronca
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Liliya M Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Catussi BLC, Lo Turco EG, Pereira DM, Teixeira RMN, Castro BP, Massaia IFD. Metabolomics: Unveiling biological matrices in precision nutrition and health. Clin Nutr ESPEN 2024; 64:314-323. [PMID: 39427750 DOI: 10.1016/j.clnesp.2024.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Precision nutrition, an expanding field at the intersection of nutrition science and personalized medicine, is rapidly evolving with metabolomics integration. Metabolomics, facilitated by advanced technologies like mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, facilitates comprehensive profiling of metabolites across diverse biological samples. From the perspective of health care systems, precision nutrition gains relevance due to the substantial impact of prevalent non-communicable diseases (NCDs) on societal well-being, which is directly linked with dietary habits and eating behavior. Furthermore, biomarker products derived from metabolomics have been utilized in Europe, the USA, and Brazil to understand metabolic dysregulations and tailor diets accordingly. Despite its burgeoning status, metabolomics holds great potential in revolutionizing nutritional science, particularly with the integration of artificial intelligence and machine learning, offering novel insights into personalized dietary interventions and disease prediction. This narrative review emphasizes the transformative impact of metabolomics in precision and delineates avenues for future research and application, paving the way for a more tailored and practical approach to nutrition management.
Collapse
|
8
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
9
|
Liu X, Chen R, Li B, Zhang J, Liu P, Li B, Li F, Zhang W, Lyu X, Hu M. Oxidative stress indexes as biomarkers of the severity in COVID-19 patients. Int J Med Sci 2024; 21:3034-3045. [PMID: 39628680 PMCID: PMC11610340 DOI: 10.7150/ijms.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024] Open
Abstract
Background: SARS-CoV-2 causes a global pandemic, with severe and critically ill COVID-19 patients often experiencing poor prognoses. Severe infection with SARS-CoV-2 is associated with oxidative stress (OS) and inflammation. Detecting markers of macromolecular damage caused by OS may provide valuable insights into disease progression. Methods: This study included 187 patients with laboratory-confirmed SARS-CoV-2 infection, categorized into non-severe, severe, and critically ill COVID-19 groups. We monitored the changes in serum indexes such as oxidized low-density lipoprotein (OxLDL), OxLDL/LDL-C ratio, advanced oxidation protein products (AOPP), 3-nitrotyrosine (3-NT), 8-hydroxydeoxyguanosine (8-OHdG), lipoprotein-associated phospholipase A2 (Lp-PLA2) and thromboxane B2 (TXB2) in patients with different clinical types. Results: 48 non-severe patients, 90 severe patients, and 49 critically ill patients were enrolled. Compared with the non-severe group, OxLDL level and OxLDL/LDL-C ratio were increased in severe COVID-19 patients and critically ill COVID-19 patients, while 3-NT and TXB2 concentrations were lower in critically ill COVID-19 patients. Critically ill COVID-19 patients also exhibited lower concentrations of Lp-PLA2 and a higher OxLDL/LDL-C ratio compared to severe COVID-19 patients. No significant differences were observed in AOPP and 8-OHdG concentrations. Spearman's correlation analysis revealed that CRP was associated with OxLDL, OxLDL/LDL-C ratio, AOPP, 3-NT, TXB2, and Lp-PLA2 (P <0.05). OxLDL was identified as an independent risk factor for progression from non-severe to severe/critically ill COVID-19. OxLDL and OxLDL/LDL-C ratio demonstrated good discriminatory value between non-severe and severe/critically ill COVID-19, with the OxLDL/LDL-C ratio also distinguishing between severe and critically ill patients. Conclusion: Patients with severe and critically ill COVID-19 exhibit elevated levels of oxidative damage to lipoproteins. OxLDL and the OxLDL/LDL-C ratio can serve as biomarkers for assessing disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Xin Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ruohong Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Binghui Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jialiang Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Peiting Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingchu Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fengfan Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Weilin Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing Lyu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Clinical Molecular Diagnostics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
10
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
11
|
Li G, Xu S, Messerlian C, Zhang Y, Chen YJ, Sun Y, Mustieles V, Wang Y, Pan A, Liu C, Wang YX. Blood trihalomethane and urinary haloacetic acid concentrations in relation to hypertension: An observational study among 1162 healthy men. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135411. [PMID: 39111173 DOI: 10.1016/j.jhazmat.2024.135411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Disinfection byproducts (DBPs) have demonstrated cardiovascular and reproductive toxicity. However, the associations and mechanisms of DBP exposure in relation to hypertension among healthy young men, which are critical for gaining new insights into the prevention and treatment of male subfertility, remain unclear. In 2017-2018, we recruited 1162 healthy Chinese men. A single blood sample was collected and measured for trihalomethane (THM) concentrations (n = 956). Up to 2930 repeated urinary samples were collected at baseline and during follow-up periods and determined for haloacetic acid concentrations. Oxidative stress (OS) biomarkers were measured in within-subject pooled urinary samples (n = 1003). In total, 403 (34.68 %) participants were diagnosed with stage 1-2 hypertension (≥130/80 mmHg) and 108 (9.29 %) stage 2 hypertension (≥140/90 mmHg). In adjusted models, blood bromodichloromethane (BDCM) concentrations were positively associated with the risk of stage 1-2 and stage 2 hypertension [ORs= 1.48 (95 % CI: 1.15, 1. 91) and 1.65 (95 % CI: 1.08, 2.51), respectively, per 2.7-fold increase in BDCM concentrations]. Additionally, we found positive associations between DBP exposure biomarkers and urinary concentrations of 4-hydroxy-2-nonenal-mercapturic acid and 8-hydroxy-2-deoxyguanosine. However, these OS biomarkers were unrelated to hypertension. Our results suggest that BDCM exposure may be associated with a greater risk of hypertension among healthy young men.
Collapse
Affiliation(s)
- Guangming Li
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiyu Xu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Carmen Messerlian
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Yu Zhang
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Ying-Jun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yang Sun
- Department of Otolaryngology-Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain. University of Granada, Center for Biomedical Research (CIBM), Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 18010 Granada, Spain
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Ariyasinghe NR, Gupta D, Escopete S, Stotland AB, Sundararaman N, Ngu B, Dabke K, Rai D, McCarthy L, Santos RS, McCain ML, Sareen D, Parker SJ. Identification of Disease-relevant, Sex-based Proteomic Differences in iPSC-derived Vascular Smooth Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605659. [PMID: 39211096 PMCID: PMC11361011 DOI: 10.1101/2024.07.30.605659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insight into some aspects of human biology, however not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology. Our analysis confirmed that differentiated cells have a proteomic profile more similar to healthy primary aortic smooth muscle than iPSCs. We also identified sex-based differences in iPSC- derived vascular smooth muscle in pathways related to ATP binding, glycogen metabolic process, and cadherin binding as well as multiple proteins relevant to cardiovascular pathophysiology and disease. Additionally, we explored the role of autosomal and sex chromosomes in protein regulation, identifying that proteins on autosomal chromosomes also show sex-based regulation that may affect the protein expression of proteins from autosomal chromosomes. This work supports the biological relevance of iPSC-derived vascular smooth muscle cells as a model for disease, and further exploration of the pathways identified here can lead to the discovery of sex-specific pharmacological targets for cardiovascular disease. Significance In this work, we have differentiated 4 male and 4 female iPSC lines into vascular smooth muscle cells, giving us the ability to identify statistically-significant sex-specific proteomic markers that are relevant to cardiovascular disease risk (such as PCK2, MTOR, IGFBP2, PTGR2, and SULTE1).
Collapse
|
13
|
Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F, Mao Z. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne) 2024; 15:1390351. [PMID: 39076514 PMCID: PMC11284038 DOI: 10.3389/fendo.2024.1390351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that affects the digestive system and includes Crohn's disease (CD) and ulcerative colitis (UC). Although the exact etiology of IBD remains uncertain, dysfunctional immunoregulation of the gut is believed to be the main culprit. Amongst the immunoregulatory factors, reactive oxygen species (ROS) and reactive nitrogen species (RNS), components of the oxidative stress event, are produced at abnormally high levels in IBD. Their destructive effects may contribute to the disease's initiation and propagation, as they damage the gut lining and activate inflammatory signaling pathways, further exacerbating the inflammation. Oxidative stress markers, such as malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and serum-free thiols (R-SH), can be measured in the blood and stool of patients with IBD. These markers are elevated in patients with IBD, and their levels correlate with the severity of the disease. Thus, oxidative stress markers can be used not only in IBD diagnosis but also in monitoring the response to treatment. It can also be targeted in IBD treatment through the use of antioxidants, including vitamin C, vitamin E, glutathione, and N-acetylcysteine. In this review, we summarize the role of oxidative stress in the pathophysiology of IBD, its diagnostic targets, and the potential application of antioxidant therapies to manage and treat IBD.
Collapse
Affiliation(s)
- Peter Muro
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuxuan Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Liu S, Gu Y. INFLA score: a novel inflammatory marker for assessing cardiometabolic disease risk in obese individuals. Diabetol Metab Syndr 2024; 16:151. [PMID: 38982554 PMCID: PMC11232261 DOI: 10.1186/s13098-024-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The low-grade inflammation score (INFLA-score) is a composite index that assesses chronic inflammatory status using multiple inflammatory markers. However, its correlation with cardiometabolic diseases (CMDs) in obese populations remains unclear. METHODS We conducted a prospective cohort study involving 79,160 participants with obesity (BMI ≥ 30 kg/m2) from the UK Biobank. The INFLA-score was calculated based on high-sensitivity C-reactive protein, leukocyte count, platelet count and granulocyte/lymphocyte ratio. We employed Kaplan-Meier survival curves, multivariable Cox regression, restricted cubic splines and accelerated time-to-failure models to analyse the association between the INFLA-score and CMDs risk, including coronary heart disease (CAD), stroke and type 2 diabetes mellitus (T2DM). RESULTS Over a median follow-up of 161.41 months, we recorded 14,903 CMDs events, comprising 7184 CAD cases, 1914 strokes and 7924 T2DM cases. Cox regression analysis revealed that each unit increase in the INFLA-score corresponded to a 1.5%, 1.1%, 1.2% and 2.4% increase CMDs risk (HR: 1.015, 95% CI 1.013-1.018), CAD risk (HR: 1.011, 95% CI 1.007-1.015), stroke risk (HR: 1.012, 95% CI 1.004-1.020) and T2DM risk (HR: 1.024, 95% CI 1.020-1.028), respectively. Restricted cubic spline analysis indicated a non-linear relationship between cumulative INFLA-score and CMDs risk (P = 0.044). Subgroup analysis revealed interactions between sex, age, history of lipid-lowering drug use, and INFLA-score regarding CMDs risk. Sensitivity analysis corroborated the main findings. CONCLUSION Our findings strongly support the close association between INFLA-score and CMDs risk, particularly notable in women, those aged < 55, and individuals with a history of lipid-lowering drug use. These findings offer new insights into the role of inflammation in obesity-related CMDs, suggesting potential applications for prevention and identification of high-risk populations.
Collapse
Affiliation(s)
- Shuke Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai Road, Xuzhou, 221000, Jiangsu, China
| | - Yan Gu
- Department of Cardiovascular Medicine, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
15
|
Woźniak A, Satała J, Gorzelak‐Pabiś P, Pawlos A, Broncel M, Kaźmierski P, Woźniak E. OxLDL as a prognostic biomarker of plaque instability in patients qualified for carotid endarterectomy. J Cell Mol Med 2024; 28:e18459. [PMID: 39039803 PMCID: PMC11263466 DOI: 10.1111/jcmm.18459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 07/24/2024] Open
Abstract
Atherosclerotic plaque instability increases the risk of stroke. As such, determining the nature of an instability atherosclerotic plaque may speed up qualification for carotid endarterectomy (CEA), thus reducing the risk of acute vascular events. The aim of the study was to determine the diagnostic value of oxidized LDL cholesterol (ox-LDL), matrix metalloproteinase 9 (MMP-9) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in serum as a prognostic markers of instability atherosclerotic plaques. Serum was collected from 67 patients who underwent CEA in accordance with the qualification criteria. The levels of ox-LDL, MMP-9 and 8-OHdG were assessed by ELISA. The predictive value of the markers was determined based on an ROC curve, and the cut-off points with the highest sensitivity and specificity were determined. Patients with unstable atherosclerotic plaque had significantly higher serum ox-LDL, MMP-9 and 8-OHdG values. It was found that in patients before CEA, ox-LDL >31.4 ng/mL was associated with an 82.5% probability of unstable atherosclerotic plaque, MMP-9 >113.1 ng/mL with 78.6%, and 8-OHdG >2.15 ng/mL with 64.7%. Multivariate regression analysis found ox-LDL to be an independent factor associated with plaque instability. Patients with unstable plaques tend to have higher serum levels of ox-LDL, MMP-9 and 8-OHdG compared to those with stable plaques. The optimal cut-off point for ox-LDL (AUC 0.86, p <0.0001) was 31.14 ng/mL, with 91.18% sensitivity and 78.79% specificity. The high sensitivity and specificity of ox-LDL suggests that it can be used as an independent marker of plaque instability.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Joanna Satała
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Paulina Gorzelak‐Pabiś
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Agnieszka Pawlos
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Piotr Kaźmierski
- Department of Vascular, General, and Oncologic SurgeryMedical University of LodzLodzPoland
| | - Ewelina Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| |
Collapse
|
16
|
Qi Z, Zhao Q, Yu Z, Yang Z, Feng J, Song P, He X, Lu X, Chen X, Li S, Yuan Y, Cai Z. Assessing the Impact of PM 2.5-Bound Arsenic on Cardiovascular Risk among Workers in a Non-ferrous Metal Smelting Area: Insights from Chemical Speciation and Bioavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8228-8238. [PMID: 38695658 PMCID: PMC11097390 DOI: 10.1021/acs.est.3c10761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/15/2024]
Abstract
Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 μg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Qiting Zhao
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zixun Yu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| | - Jie Feng
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Pengfei Song
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xiaochong He
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Xin Chen
- The
Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of
Shunde), 528300 Foshan, Guangdong, China
| | - Shoupeng Li
- Analysis
and Test Center, Guangdong University of
Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangdong
University of Technology, Guangzhou 510006, China
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
17
|
Yu J, Ren J, Ren Y, Wu Y, Zeng Y, Zhang Q, Xiao X. Using metabolomics and proteomics to identify the potential urine biomarkers for prediction and diagnosis of gestational diabetes. EBioMedicine 2024; 101:105008. [PMID: 38368766 PMCID: PMC10882130 DOI: 10.1016/j.ebiom.2024.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic complications during pregnancy, threatening both maternal and fetal health. Prediction and diagnosis of GDM is not unified. Finding effective biomarkers for GDM is particularly important for achieving early prediction, accurate diagnosis and timely intervention. Urine, due to its accessibility in large quantities, noninvasive collection and easy preparation, has become a good sample for biomarker identification. In recent years, a number of studies using metabolomics and proteomics approaches have identified differential expressed urine metabolites and proteins in GDM patients. In this review, we summarized these potential urine biomarkers for GDM prediction and diagnosis and elucidated their role in development of GDM.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
18
|
Bosch-Sierra N, Grau-del Valle C, Salom C, Zaragoza-Villena B, Perea-Galera L, Falcón-Tapiador R, Rovira-Llopis S, Morillas C, Monleón D, Bañuls C. Effect of a Very Low-Calorie Diet on Oxidative Stress, Inflammatory and Metabolomic Profile in Metabolically Healthy and Unhealthy Obese Subjects. Antioxidants (Basel) 2024; 13:302. [PMID: 38539836 PMCID: PMC10967635 DOI: 10.3390/antiox13030302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 10/07/2024] Open
Abstract
The purpose of the study was to determine the impact of weight loss through calorie restriction on metabolic profile, and inflammatory and oxidative stress parameters in metabolically healthy (MHO) and unhealthy (MUHO) obese individuals. A total of 74 subjects (34 MHO and 40 MUHO) received two cycles of a very low-calorie diet, alternating with a hypocaloric diet for 24 weeks. Biochemical, oxidative stress, and inflammatory markers, as well as serum metabolomic analysis by nuclear magnetic resonance, were performed at baseline and at the end of the intervention. After the diet, there was an improvement in insulin resistance, as well as a significant decrease in inflammatory parameters, enhancing oxidative damage, mitochondrial membrane potential, glutathione, and antioxidant capacity. This improvement was more significant in the MUHO group. The metabolomic analysis showed a healthier profile in lipoprotein profile. Lipid carbonyls also decrease at the same time as unsaturated fatty acids increase. We also display a small decrease in succinate, glycA, alanine, and BCAAs (valine and isoleucine), and a slight increase in taurine. These findings show that moderate weight reduction leads to an improvement in lipid profile and subfractions and a reduction in oxidative stress and inflammatory markers; these changes are more pronounced in the MUHO population.
Collapse
Affiliation(s)
- Neus Bosch-Sierra
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Carmen Grau-del Valle
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Christian Salom
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Begoña Zaragoza-Villena
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Laura Perea-Galera
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Rosa Falcón-Tapiador
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| | - Susana Rovira-Llopis
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
- Department of Physiology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (N.B.-S.); (C.G.-d.V.); (C.S.); (B.Z.-V.); (L.P.-G.); (R.F.-T.); (S.R.-L.); (C.M.)
| |
Collapse
|
19
|
Goriuc A, Cojocaru KA, Luchian I, Ursu RG, Butnaru O, Foia L. Using 8-Hydroxy-2'-Deoxiguanosine (8-OHdG) as a Reliable Biomarker for Assessing Periodontal Disease Associated with Diabetes. Int J Mol Sci 2024; 25:1425. [PMID: 38338704 PMCID: PMC10855048 DOI: 10.3390/ijms25031425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, research has shown that oxidative stress plays a significant role in chronic inflammatory conditions. The alteration of the oxidant/antioxidant balance leads to the appearance of free radicals, important molecules involved in both diabetes mellitus and periodontal disease. Diabetes is considered to be one of the major risk factors of periodontal disease and the inflammation characterizing this condition is associated with oxidative stress, implicitly resulting in oxidative damage to DNA. 8-Hydroxydeoxyguanosine (8-OHdG) is the most common stable product of oxidative DNA damage caused by reactive oxygen species, and its levels have been reported to increase in body fluids and tissues during inflammatory conditions. 8-OHdG emerges as a pivotal biomarker for assessing oxidative DNA damage, demonstrating its relevance across diverse health conditions, including neurodegenerative disorders, cancers, inflammatory conditions, and periodontal disease. Continued research in this field is crucial for developing more precise treatments and understanding the detailed link between oxidative stress and the progression of periodontitis. The use of the 8-OHdG biomarker in assessing and managing chronic periodontitis is an area of increased interest in dental research, with the potential to provide crucial information for diagnosis and treatment.
Collapse
Affiliation(s)
- Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| | - Karina-Alexandra Cojocaru
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Ramona-Garbriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| |
Collapse
|
20
|
Sastre-Oliva T, Corbacho-Alonso N, Rodriguez-Sanchez E, Mercado-García E, Perales-Sanchez I, Hernandez-Fernandez G, Juarez-Alia C, Tejerina T, López-Almodóvar LF, Padial LR, Sánchez PL, Martín-Núñez E, López-Andrés N, Ruiz-Hurtado G, Mourino-Alvarez L, Barderas MG. Albumin Redox Modifications Promote Cell Calcification Reflecting the Impact of Oxidative Status on Aortic Valve Disease and Atherosclerosis. Antioxidants (Basel) 2024; 13:108. [PMID: 38247532 PMCID: PMC10812654 DOI: 10.3390/antiox13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Calcific aortic valve disease (CAVD) and coronary artery disease (CAD) are related cardiovascular diseases in which common mechanisms lead to tissue calcification. Oxidative stress plays a key role in these diseases and there is also evidence that the redox state of serum albumin exerts a significant influence on these conditions. To further explore this issue, we used multimarker scores (OxyScore and AntioxyScore) to assess the global oxidative status in patients with CAVD, with and without CAD, also evaluating their plasma thiol levels. In addition, valvular interstitial cells were treated with reduced, oxidized, and native albumin to study how this protein and its modifications affect cell calcification. The differences we found suggest that oxidative status is distinct in CAVD and CAD, with differences in redox markers and thiol levels. Importantly, the in vitro interstitial cell model revealed that modified albumin affects cell calcification, accelerating this process. Hence, we show here the importance of the redox system in the development of CAVD, emphasizing the relevance of multimarker scores, while also offering evidence of how the redox state of albumin influences vascular calcification. These data highlight the relevance of understanding the overall redox processes involved in these diseases, opening the door to new studies on antioxidants as potential therapies for these patients.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elena Rodriguez-Sanchez
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
| | - Ines Perales-Sanchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Luis F. López-Almodóvar
- Cardiac Surgery, Hospital General Universitario de Toledo, Servicio de Salud de Castilla-La Mancha (SESCAM), 45007 Toledo, Spain;
| | - Luis R. Padial
- Department of Cardiology, Hospital General Universitario de Toledo, Servicio de Salud de Castilla-La Mancha (SESCAM), 45007 Toledo, Spain;
| | - Pedro L. Sánchez
- Department of Cardiology, Hospital Universitario de Salamanca-Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.M.-N.); (N.L.-A.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.M.-N.); (N.L.-A.)
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
21
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
El-Sabbagh WA, Fadel NA, El-Hazek RM, Osman AH, Ramadan LA. Ubiquinol attenuates γ-radiation induced coronary and aortic changes via PDGF/p38 MAPK/ICAM-1 related pathway. Sci Rep 2023; 13:22959. [PMID: 38151557 PMCID: PMC10752893 DOI: 10.1038/s41598-023-50218-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
Endothelial vascular injury is one of the most pivotal disorders emerging during radiotherapy. It is crucial to rely on strong antioxidants to defend against vascular damage. The current study was carried out to investigate the ameliorative effect of ubiquinol (Ubq) against gamma (γ)-radiation induced aortic and coronary changes, with highlighting its role in suppression of p38 mitogen activated protein kinase (MAPK). Exposure to γ-radiation was adopted as a potent detrimental model that induces vascular tissue damage. Concisely, male albino rats were irradiated at a dose level of 7 Gy and treated daily with Ubq (10 mg/kg/day, p.o.) for 7 days pre-and post-irradiation. At the end of the experiment, lipid profile, 8-hydroxydeoxyguanosine (8-OHdG), gene expression of intercellular adhesion molecule (ICAM-1), platelet derived growth factor (PDGF), p38 MAPK and matrix metalloproteinase-9 (MMP-9) were estimated. Exposure to radiation significantly deteriorates aortic and coronary tissues. Conversely, administration of Ubq significantly reduced serum t-cholesterol, LDL and triglycerides (p = 0.001). In addition, Ubq prevented oxidative DNA damage (8-OHdG) (p = 0.1) and reduced serum MMP-9 (p = 0.001) which contributed to the endothelial cells damage. The positive impact of Ubq was more apparent in suppression of both PDGF (p = 0.001) and p38 MAPK (p = 0.1) protein concentrations, leading subsequently in reduction of ICAM-1 (p = 0.001) gene expression. As a conclusion, vascular endothelial damage brought on by γ-radiation is one of the leading causes of coronary and aortic deteriorations which could be successfully mitigated by Ubq.
Collapse
Affiliation(s)
- Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Noha A Fadel
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Rania M El-Hazek
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed H Osman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Laila A Ramadan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University (ERU), Cairo, Egypt
| |
Collapse
|
23
|
Mirzaei R, Khosrokhavar R, Arbabi Bidgoli S. The Role of High-Fructose Diet in Liver Function of Rodent Models: A Systematic Review of Molecular Analysis. IRANIAN BIOMEDICAL JOURNAL 2023; 27:326-39. [PMID: 38193285 PMCID: PMC10826909 DOI: 10.52547/ibj.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 01/10/2024]
Abstract
The present systematic review of animal studies on long-term fructose intake in rodents revealed a significant decrease in the activities of antioxidant enzymes due to a fructose-rich diet. The reduced activity of these enzymes led to an increase in oxidative stress, which can cause liver damage in rodents. Of eight studies analyzed, 5 (62.5%) and 1 (12.5%) used male and female rats, respectively, while 2 studies (25%) used female mice. Moreover, half of the studies used HFCS, but the other half employed fructose in the diet. Hence, it is essential to monitor dietary habits to ensure public health and nutrition research outcomes.
Collapse
Affiliation(s)
- Roya Mirzaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Khosrokhavar
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Fan H, Tian H, Jin F, Zhang X, Su S, Liu Y, Wen Z, He X, Li X, Duan C. CypD induced ROS output promotes intracranial aneurysm formation and rupture by 8-OHdG/NLRP3/MMP9 pathway. Redox Biol 2023; 67:102887. [PMID: 37717465 PMCID: PMC10514219 DOI: 10.1016/j.redox.2023.102887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Reactive Oxygen Species (ROS) are widely accepted as a pernicious factor in the progression of intracranial aneurysm (IA), which is eminently related to cell apoptosis and extracellular matrix degradation, but the mechanism remains to be elucidated. Recent evidence has identified that enhancement of Cyclophilin D (CypD) under stress conditions plays a critical role in ROS output, thus accelerating vascular destruction. However, no study has confirmed whether cypD is a detrimental mediator of cell apoptosis and extracellular matrix degradation in the setting of IA development. Our data indicated that endogenous cypD mRNA was significantly upregulated in human IA lesions and mouse IA wall, accompanied by higher level of ROS, MMPs and cell apoptosis. CypD-/- remarkably reversed vascular smooth muscle cells (VSMCs) apoptosis and elastic fiber degradation, and significantly decreased the incidence of aneurysm and ruptured aneurysm, together with the downregulation of ROS, 8-OHdG, NLRP3 and MMP9 in vivo and vitro. Furthermore, we demonstrated that blockade of cypD with CsA inhibited the above processes, thus preventing IA formation and rupture, these effects were highly dependent on ROS output. Mechanistically, we found that cypD directly interacts with ATP5B to promote ROS release in VSMCs, and 8-OHdG directly bind to NLRP3, which interacted with MMP9 to increased MMP9 level and activity in vivo and vitro. Our data expound an unexpected role of cypD in IA pathogenesis and an undescribed 8-OHdG/NLRP3/MMP9 pathway involved in accelerating VSMCs apoptosis and elastic fiber degradation. Repressing ROS output by CypD inhibition may be a promising therapeutic strategy for prevention IA development.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Hao Tian
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Fa Jin
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xin Zhang
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shixing Su
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yanchao Liu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zhuohua Wen
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xuying He
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xifeng Li
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Chuanzhi Duan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
25
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
26
|
Lee SR, Directo D. Fish Oil Supplementation with Resistance Exercise Training Enhances Physical Function and Cardiometabolic Health in Postmenopausal Women. Nutrients 2023; 15:4516. [PMID: 37960168 PMCID: PMC10650161 DOI: 10.3390/nu15214516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Menopause is a condition associated with an increased risk of dysregulation in cardiovascular and metabolic health among older women. While fish oil (FO) has garnered great attention for its health-enhancing properties, its potential for enhancing cardiometabolic health in this demographic remains to be established. The purpose of this study was to determine the clinical efficacy of an 8 wk administration of FO combined with programmed resistance exercise training (RET) on physical function and risk factors associated with cardiometabolic health in healthy older women. Twenty, healthy, older women were randomly assigned to one of the two experimental groups: resistance training with placebo (RET-PL) or RET with fish oil (RET-FO). Physical function, blood pressure (BP), triglyceride (TG), and systemic inflammation and oxidative stress biomarkers were assessed before and after the intervention. Statistical significance was set at p ≤ 0.05. Physical function was greatly enhanced in both RET and RET-FO. Handgrip strength substantially increased only in RET-FO. RET-FO exhibited significant decreases in BP, TG, inflammatory cytokines (TNF-α and IL-6), and oxidative stress (MDA and 8-OHdG) levels, while no detectable changes were found in RET-PL. Our findings indicate that FO administration during 8 wks of RET appears to enhance muscle function and lower risk factors linked to cardiometabolic disorders in postmenopausal women.
Collapse
Affiliation(s)
- Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| | | |
Collapse
|
27
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [PMID: 37797345 DOI: 10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oat (Avena sativa L.), an annual herbaceous plant belonging to the Gramineae family, is widely grown in various regions including EU, Canada, America, Australia, etc. Due to the nutritional and pharmacological values, oats have been developed into various functional food including fermented beverage, noodle, cookie, etc. Meanwhile, numerous studies have demonstrated that oats may effectively improve metabolic syndrome, such as dyslipidemia, hyperglycemia, atherosclerosis, hypertension, and obesity. However, the systematic pharmacological mechanisms of oats on metabolic syndrome have not been fully revealed. Therefore, in order to fully explore the benefits of oat in food industry and clinic, this review aims to provide up-to-date information on oat and its constituents, focusing on the effects on metabolic syndrome.
Collapse
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People's Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
28
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [DOI: https:/doi.org/10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People’s Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
29
|
Peng P, He M, Fang W, Lai M, Xiao F, He W, Xiao H, Wei Q. Plasma 8-OHdG act as a biomarker for steroid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord 2023; 24:808. [PMID: 37828532 PMCID: PMC10568778 DOI: 10.1186/s12891-023-06804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Oxidative stress was closely related to the occurrence and development of Steroid-induced osteonecrosis of the femoral head (SIONFH). 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a important index of oxidative stress. The aim of this study is to investigate the role of 8-OHdG in the development of SIONFH. METHODS From May 2021 and November 2021, 33 patients diagnosed with SIONFH and 26 healthy controls were recruited in this study. Assessment included the radiography and pathology evaluation of clinical bone tissue, expression position and level of 8-OHdG, level of plasma 8-OHdG, as well as the receiver operating characteristic (ROC) curve. RESULTS We observed that expression levels of 8-OHdG in bone samples decreased with Association Research Circulation Osseous (ARCO) stages. Plasma 8-OHdG levels were significantly increased in the SIONFH group compared to the healthy control group. Plasma 8-OHdG level of pre-collapse patients was higher than that of post-collapse patients, the decreased plasma 8-OHdG level was related to higher ARCO stages. CONCLUSION Plasma 8-OHdG may represent potential biomarkers during SIONFH at different stages. Higher plasma 8-OHdG levels indicated early stage of SIONFH. The current study provided new clues for early diagnosis and treatment for SIONFH.
Collapse
Affiliation(s)
- Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Mincong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, 510378, China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Weihua Fang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Mengqi Lai
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, 510378, China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Huan Xiao
- Department of Orthopedics, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
| | - Qiushi Wei
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, 510378, China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510378, China.
| |
Collapse
|
30
|
Tang CF, Wu MY, Wei YH, Ho Y, Kuo KL. Leukocyte 8-hydroxy-2'-deoxyguanosine as an oxidative stress marker to predict cardiovascular events and death in chronic hemodialysis patients. J Chin Med Assoc 2023; 86:911-916. [PMID: 37563751 DOI: 10.1097/jcma.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Hemodialysis patients have a markedly increased risk of cardiovascular (CV) morbidity and mortality. Oxidative stress plays a pathogenic role in the progression of atherosclerosis and CV disease among chronic hemodialysis patients. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) content in leukocyte deoxyribonucleic acid (DNA) has been shown as a sensitive and well-known biomarker of oxidant-induced DNA damage in chronic hemodialysis patients. METHODS We conducted a retrospective cohort study to investigate the association of leukocyte 8-OHdG and CV events and deaths in patients of chronic hemodialysis. In this study, 217 chronic hemodialysis patients were recruited from 2016 to 2021. The 8-OHdG content of leukocyte DNA was measured by a high-performance liquid chromatography electrochemical detection method. Study outcomes were CV events as well as CV and all-cause deaths. The patients were followed until May 2021. RESULTS The median follow-up period was 34.8 months. At the end of May 2021, 57 first CV events and 89 all-CV events occurred. Among the first and all CV events, 17 (29.8%) and 32 (36.0%) were fatal, respectively. Multivariate Cox regression analysis showed per 1/10 5 dG increment in leukocyte 8-OHdG values increased risk of CV events (adjusted hazard ratio [aHR], 1.19; 95% CI, 1.10-1.41; p < 0.001), CV death (aHR, 1.27; 95% CI, 1.03-1.72; p = 0.034), and all-cause death (aHR, 1.11; 95% CI, 1.01-1.30; p = 0.038). CONCLUSION This is the first study to demonstrate that oxidative stress assessed by 8-OHdG levels of leukocyte DNA predicted CV events as well as CV and all-cause deaths among chronic hemodialysis patients.
Collapse
Affiliation(s)
- Ching-Fang Tang
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan, ROC
- College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Yang Ho
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
31
|
Tomoda F, Koike T, Nitta A, Kurosaki H, Sugimori H, Oh-Hara M, Kinugawa K. Urinary levels of cortisol but not catecholamines are associated with those of 8-hydroxy-2'-deoxyguanosine in uncomplicated primary hypertension. J Hypertens 2023; 41:1571-1577. [PMID: 37642591 DOI: 10.1097/hjh.0000000000003507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVES The relationships between stress hormones and oxidative DNA damage have not yet been explored in human hypertension. We investigated the associations of urinary levels of cortisol or catecholamines with those of 8-hydroxy-2'-deoxyguanosine, a marker of oxidative DNA damage in primary hypertension. METHODS Untreated 156 primary hypertensives without apparent cardiovascular diseases were entered into the study. Following blood sampling after an overnight fast, 24-h blood pressure monitoring and 24-h urinary sampling were performed simultaneously to determine 24-h averaged values for blood pressure and urinary levels of cortisol, catecholamines and 8-hydroxy-2'-deoxyguanosine. RESULTS Urinary cortisol significantly correlated positively with urinary 8-hydroxy-2'-deoxyguanosine in all studied participants (r = 0.334, P < 0.001). Contrary, either urinary adrenaline or urinary noradrenaline did not significantly correlate with urinary 8-hydroxy-2'-deoxyguanosine (r = 0.050, P = 0.553 or r = 0.063, P = 0.435). Additionally, the positive association of urinary cortisol with urinary 8-hydroxy-2'-deoxyguanosine remained highly significant after the adjustments for multiple confounders of oxidative stress such as age, gender, body mass index, smoking status, 24-h blood pressure, C-reactive protein and estimated glomerular filtration rate (partial r = 0.323, P < 0.001), although only approximately 10% of the variance in urinary cortisol was attributable to differences in urinary 8-OHdG (partial r2 = 0.104). Thus, our data indicate that cortisol but not catecholamines could at least partially contribute to the occurrence of oxidative DNA damage in primary hypertensives. CONCLUSION The present study suggested the possibility that the overactivation of hypothalamic-pituitary-adrenal axis rather than sympathoadrenal system could enhance oxidative stress and attendant DNA oxidation in uncomplicated primary hypertension.
Collapse
Affiliation(s)
- Fumihiro Tomoda
- The Faculty of Health Science, Fukui Health Science University, Fukui
- The Second Department of Internal Medicine
| | | | - Atsumi Nitta
- The Department of Pharmaceutical Therapy & Neuropharmacology, University of Toyama, Toyama, Japan
| | | | | | | | | |
Collapse
|
32
|
Shipra, Tembhre MK, Hote MP, Bhari N, Lakshmy R, Kumaran SS. PGC-1α Agonist Rescues Doxorubicin-Induced Cardiomyopathy by Mitigating the Oxidative Stress and Necroptosis. Antioxidants (Basel) 2023; 12:1720. [PMID: 37760023 PMCID: PMC10525725 DOI: 10.3390/antiox12091720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiomyopathy (particularly dilated cardiomyopathy (DCM)) significantly contributes to development and progression of heart failure (HF), and inflammatory factors further deteriorate the symptoms. Morphological and functional defects of the heart in doxorubicin (DOX)-induced cardiomyopathy (cardiotoxicity) are similar to those of DCM. We used anagonist of PGC-1α (PPAR (peroxisome proliferator-activated receptor-gamma)-γ coactivator-1α) that is considered as the 'master regulator' of mitochondrial biogenesis with an aim to rescue the DOX-induced deleterious effects on the heart. Forty male C57BL/6J mice (8 weeks old) were divided in four groups, Control, DOX, ZLN005, and ZLN005 + DOX (n = 10 each group). The DOX-induced (10 mg/kg, single dose) cardiomyopathy mimics a DCM-like phenotype with marked morphologic alteration in cardiac tissue and functional derangements. Significant increased staining was observed for Masson Trichrome/Picrosirius red and α-Smooth Muscle Actinin (α-SMA) that indicated enhanced fibrosis in the DOX group compared to the control that was attenuated by (peroxisome proliferator-activated receptor-gamma (PPAR-γ) coactivator) (PGC)-1α (alpha) agonist (four doses of 2.5 mg/kg/dose; cumulative dose = 10 mg/kg). Similarly, elevated expression of necroptosis markers along with enhanced oxidative stress in the DOX group were alleviated by PGC-1α agonist. These data collectively suggested the potent therapeutic efficacy of PGC-1α agonist in mitigating the deleterious effects of DOX-induced cardiomyopathy, and it may be targeted in developing the future therapeutics for the management of DCM/HF.
Collapse
Affiliation(s)
- Shipra
- Department of Cardiac Biochemistry, AIIMS, New Delhi 110029, India; (S.)
| | | | | | - Neetu Bhari
- Dermatology & Venereology, AIIMS, New Delhi 110029, India
| | | | | |
Collapse
|
33
|
Artymowicz M, Struck-Lewicka W, Wiczling P, Markuszewski M, Markuszewski MJ, Siluk D. Targeted quantitative metabolomics with a linear mixed-effect model for analysis of urinary nucleosides and deoxynucleosides from bladder cancer patients before and after tumor resection. Anal Bioanal Chem 2023; 415:5511-5528. [PMID: 37460824 PMCID: PMC10444683 DOI: 10.1007/s00216-023-04826-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
In the present study, we developed and validated a fast, simple, and sensitive quantitative method for the simultaneous determination of eleven nucleosides and deoxynucleosides from urine samples. The analyses were performed with the use of liquid chromatography coupled with triple quadrupole mass spectrometry. The sample pretreatment procedure was limited to centrifugation, vortex mixing of urine samples with a methanol/water solution (1:1, v/v), evaporation and dissolution steps. The analysis lasted 20 min and was performed in dynamic multiple reaction monitoring mode (dMRM) in positive polarity. Process validation was conducted to determine the linearity, precision, accuracy, limit of quantification, stability, recovery and matrix effect. All validation procedures were carried out in accordance with current FDA and EMA regulations. The validated method was applied for the analysis of 133 urine samples derived from bladder cancer patients before tumor resection and 24 h, 2 weeks, and 3, 6, 9, and 12 months after the surgery. The obtained data sets were analyzed using a linear mixed-effect model. The analysis revealed that concentration level of 2-methylthioadenosine was decreased, while for inosine, it was increased 24 h after tumor resection in comparison to the preoperative state. The presented quantitative longitudinal study of urine nucleosides and deoxynucleosides before and up to 12 months after bladder tumor resection brings additional prospective insight into the metabolite excretion pattern in bladder cancer disease. Moreover, incurred sample reanalysis was performed proving the robustness and repeatability of the developed targeted method.
Collapse
Affiliation(s)
- Małgorzata Artymowicz
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Marcin Markuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
34
|
Hayden H, Klopf J, Ibrahim N, Knöbl V, Sotir A, Mekis R, Nowikovsky K, Eilenberg W, Neumayer C, Brostjan C. Quantitation of oxidized nuclear and mitochondrial DNA in plasma samples of patients with abdominal aortic aneurysm. Free Radic Biol Med 2023; 206:94-105. [PMID: 37353175 DOI: 10.1016/j.freeradbiomed.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
There is accumulating evidence that pro-inflammatory features are inherent to mitochondrial DNA and oxidized DNA species. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most frequently studied oxidatively generated lesion. Modified DNA reaches the circulation upon cell apoptosis, necrosis or neutrophil extracellular trap (NET) formation. Standard chromatography-based techniques for the assessment of 8-oxodGuo imply degradation of DNA to a single base level, thus precluding the attribution to a nuclear or mitochondrial origin. We therefore aimed to establish a protocol for the concomitant assessment of oxidized mitochondrial and nuclear DNA from human plasma samples. We applied immunoprecipitation (IP) for 8-oxodGuo to separate oxidized from non-oxidized DNA species and subsequent quantitative polymerase chain reaction (qPCR) to assign them to their subcellular source. The IP procedure failed when applied directly to plasma samples, i.e. isotype control precipitated similar amounts of DNA as the specific 8-oxodGuo antibody. In contrast, DNA isolation from plasma prior to the IP process provided assay specificity with little impact on DNA oxidation status. We further optimized sensitivity and efficiency of qPCR analysis by reducing amplicon length and targeting repetitive nuclear DNA elements. When the established protocol was applied to plasma samples of abdominal aortic aneurysm (AAA) patients and control subjects, the AAA cohort displayed significantly elevated circulating non-oxidized and total nuclear DNA and a trend for increased levels of oxidized mitochondrial DNA. An enrichment of mitochondrial versus nuclear DNA within the oxidized DNA fraction was seen for AAA patients. Regarding the potential source of circulating DNA, we observed a significant correlation of markers of neutrophil activation and NET formation with nuclear DNA, independent of oxidation status. Thus, the established method provides a tool to detect and distinguish the release of oxidized nuclear and mitochondrial DNA in human plasma and offers a refined biomarker to monitor disease conditions of pro-inflammatory cell and tissue destruction.
Collapse
Affiliation(s)
- Hubert Hayden
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes Klopf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nahla Ibrahim
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Viktoria Knöbl
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anna Sotir
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ronald Mekis
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Karin Nowikovsky
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
35
|
Kankaya S, Yavuz F, Tari A, Aygun AB, Gunes EG, Bektan Kanat B, Ulugerger Avci G, Yavuzer H, Dincer Y. Glutathione-related antioxidant defence, DNA damage, and DNA repair in patients suffering from post-COVID conditions. Mutagenesis 2023; 38:216-226. [PMID: 37422797 DOI: 10.1093/mutage/gead021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023] Open
Abstract
Post-COVID conditions are defined as the continuation of the symptoms of Coronavirus Disease 2019 (COVID-19) 3 months after the initial Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, with no other explanation. Post-COVID conditions are seen among 30%-60% of patients with asymptomatic or mild forms of COVID-19. The underlying pathophysiological mechanisms of post-COVID conditions are not known. In SARS-CoV-2 infection, activation of the immune system leads to increased production of reactive oxygen molecules, depleted antioxidant reserve, and finally occurrence of oxidative stress. In oxidative stress conditions, DNA damage increases and DNA repair systems impair. In this study, glutathione (GSH) level, glutathione peroxidase (GPx) activity, 8-hydroxydeoxyguanosine (8-OHdG) level, basal, induced, and post-repair DNA damage were investigated in individuals suffering from post-COVID conditions. In the red blood cells, GSH levels and GPx activities were measured with a spectrophotometric assay and a commercial kit. Basal, in vitro H2O2 (hydrogen peroxide)-induced, and post-repair DNA damage (DNA damage after a repair incubation following H2O2-treatment, in vitro) were determined in lymphocytes by the comet assay. The urinary 8-OHdG levels were measured by using a commercial ELISA kit. No significant difference was found between the patient and control groups for GSH level, GPx activity, and basal and H2O2-induced DNA damage. Post-repair DNA damage was found to be higher in the patient group than those in the control group. Urinary 8-OHdG level was lower in the patient group compared to the control group. In the control group, GSH level and post-repair DNA damage were higher in the vaccinated individuals. In conclusion, oxidative stress formed due to the immune response against SARS-COV-2 may impair DNA repair mechanisms. Defective DNA repair may be an underlying pathological mechanism of post-COVID conditions.
Collapse
Affiliation(s)
- Selin Kankaya
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fatih Yavuz
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alper Tari
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Bera Aygun
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Gizem Gunes
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahar Bektan Kanat
- Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gulru Ulugerger Avci
- Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Yavuzer
- Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Yildiz Dincer
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
36
|
Lichtenberg D, Pinchuk I, Yonassi E, Weber D, Grune T. Oxidative Stress Is a Concept, Not an Indication for Selective Antioxidant Treatment. Antioxidants (Basel) 2023; 12:1188. [PMID: 37371918 DOI: 10.3390/antiox12061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The steady-state redox status is physiologically important and therefore homeostatically maintained. Changes in the status result in signaling (eustress) or oxidative damage (distress). Oxidative stress (OS) is a hard-to-quantitate term that can be estimated only based on different biomarkers. Clinical application of OS, particularly for selective antioxidant treatment of people under oxidative stress, requires quantitative evaluation and is limited by the lack of universal biomarkers to describe it. Furthermore, different antioxidants have different effects on the redox state. Hence, as long as we do not have the possibility to determine and quantify OS, therapeutic interventions by the "identify-and-treat" approach cannot be assessed and are, therefore, not likely to be the basis for selective preventive measures against oxidative damage.
Collapse
Affiliation(s)
- Dov Lichtenberg
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon 5810201, Israel
| | - Ilya Pinchuk
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eleni Yonassi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Weber
- Department Molecular Toxicology, German Institute of Human Nutritio Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Tilman Grune
- Department Molecular Toxicology, German Institute of Human Nutritio Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13357 Berlin, Germany
- Institute of Nutrition, University of Potsdam, 14558 Nutmeal, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
37
|
Maraventano G, Ticli G, Cazzalini O, Stivala LA, Ramos-Gonzalez M, Rodríguez JL, Prosperi E. Single Cell Determination of 7,8-dihydro-8-oxo-2'-deoxyguanosine by Fluorescence Techniques: Antibody vs. Avidin Labeling. Molecules 2023; 28:molecules28114326. [PMID: 37298802 DOI: 10.3390/molecules28114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
An important biomarker of oxidative damage in cellular DNA is the formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG). Although several methods are available for the biochemical analysis of this molecule, its determination at the single cell level may provide significant advantages when investigating the influence of cell heterogeneity and cell type in the DNA damage response. to. For this purpose, antibodies recognizing 8-oxodG are available; however, detection with the glycoprotein avidin has also been proposed because of a structural similarity between its natural ligand biotin and 8-oxodG. Whether the two procedures are equivalent in terms of reliability and sensitivity is not clear. In this study, we compared the immunofluorescence determination of 8-oxodG in cellular DNA using the monoclonal antibody N45.1 and labeling using avidin conjugated with the fluorochrome Alexa Fluor488 (AF488). Oxidative DNA damage was induced in different cell types by treatment with potassium bromate (KBrO3), a chemical inducer of reactive oxygen species (ROS). By using increasing concentrations of KBrO3, as well as different reaction conditions, our results indicate that the monoclonal antibody N45.1 provides a specificity of 8-oxodG labeling greater than that attained with avidin-AF488. These findings suggest that immunofluorescence techniques are best suited to the in situ analysis of 8-oxodG as a biomarker of oxidative DNA damage.
Collapse
Affiliation(s)
- Giusy Maraventano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Giulio Ticli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy
| | - Lucia A Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy
| | - Mariella Ramos-Gonzalez
- Zootecnia and Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15081, Peru
| | - José-Luis Rodríguez
- Zootecnia and Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15081, Peru
- Faculty of Veterinary, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ennio Prosperi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| |
Collapse
|
38
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
39
|
Janoš T, Ottenbros I, Bláhová L, Šenk P, Šulc L, Pálešová N, Sheardová J, Vlaanderen J, Čupr P. Effects of pesticide exposure on oxidative stress and DNA methylation urinary biomarkers in Czech adults and children from the CELSPAC-SPECIMEn cohort. ENVIRONMENTAL RESEARCH 2023; 222:115368. [PMID: 36716809 PMCID: PMC10009299 DOI: 10.1016/j.envres.2023.115368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 05/13/2023]
Abstract
Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.
Collapse
Affiliation(s)
- Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ilse Ottenbros
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Libor Šulc
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jessica Sheardová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
40
|
Vasbinder A, Cheng RK, Heckbert SR, Thompson H, Zaslavksy O, Chlebowski RT, Shadyab AH, Johnson L, Wactawski-Wende J, Wells G, Yung R, Martin LW, Paskett ED, Reding K. Chronic Oxidative Stress as a Marker of Long-term Radiation-Induced Cardiovascular Outcomes in Breast Cancer. J Cardiovasc Transl Res 2023; 16:403-413. [PMID: 36178659 PMCID: PMC10060433 DOI: 10.1007/s12265-022-10320-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
While biomarkers have been proposed to identify individuals at risk for radiation-induced cardiovascular disease (RICVD), little is known about long-term associations with cardiac events. We examined associations of biomarkers of oxidative stress (myeloperoxidase, growth differentiation factor-15, 8-hydroxy-2'-deoxyguanosine [8-OH-dG], placental growth factor), cardiac injury (troponin I, cystatin-C), inflammation (interleukin-6, C-reactive protein), and myocardial fibrosis (transforming growth factor-ß) with long-term RICVD in breast cancer (BC) survivors. We conducted a nested case-control study within the Women's Health Initiative of postmenopausal women with incident BC stages I-III, who received radiation and had pre- and post-BC diagnosis serum samples. Cases (n = 55) were defined as developing incident, physician-adjudicated myocardial infarction, coronary heart disease death, other CVD death, heart failure, or stroke after BC. Cases were matched to three controls (n = 158). After adjustment, a higher 8-OH-dG ratio was significantly associated with an elevated long-term risk of RICVD, suggesting oxidative DNA damage may be a putative pathway for RICVD.
Collapse
Affiliation(s)
- Alexi Vasbinder
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, USA
| | - Richard K Cheng
- Division of Cardiology, Department of Medicine, University of Washington Medical Center, Seattle, USA
| | - Susan R Heckbert
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Hilaire Thompson
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, USA
| | - Oleg Zaslavksy
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, USA
| | - Rowan T Chlebowski
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
| | - Lisa Johnson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, USA
| | - Gretchen Wells
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington-Fayette, USA
| | - Rachel Yung
- Division of Medical Oncology, University of Washington, Seattle, USA
| | - Lisa Warsinger Martin
- Division of Cardiology, School of Medicine and Health Sciences, George Washington University, Seattle, USA
| | - Electra D Paskett
- Comprehensive Cancer Center, Department of Medicine, The Ohio State University, Columbus, USA
| | - Kerryn Reding
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, USA.
| |
Collapse
|
41
|
Cardioprotective Effect of Pistacia vera L. (Green Pistachio) Hull Extract in Wistar Albino Rats with Doxorubicin-Induced Cardiac Damage. Anatol J Cardiol 2023; 27:135-145. [PMID: 36856595 PMCID: PMC9995555 DOI: 10.14744/anatoljcardiol.2022.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Pistacia vera L. (green pistachio) has been shown to increase antioxidant capacity and protect against cardiovascular diseases and cancer. This study investigated the protective effect of the Pistacia vera L. hull in rats with experimental cardiac damage induced by doxorubicin. METHODS Sixty adult Wistar albino rats were randomly divided into 5 groups (n = 12). Sham, doxorubicin, doxorubicin + Pistacia vera L. extract 50 mg/kg, doxorubicin + Pistacia vera L. extract 100 mg/kg, and Pistacia vera L. extract 100 mg/kg. Biochemistry parameters, total antioxidant status, total oxidant status, oxidative stress index, 8-hydroxydeoxy guanosine, and caspase 3/7 values were measured in serum samples. Excised heart tissues were examined histopathologically. RESULTS The groups were statistically significantly different in 8hydroxydeoxy guanosine, caspase 3/7, total antioxidant status, total oxidant status, oxidative stress index, and basal biochemical parameter values (P <.05, P <.001). In group II, 8-hydroxydeoxy guanosine, caspase 3/7, and total oxidant status values increased while the total antioxidant status value decreased (P <.001). In the treatment groups (group III and group IV), 8-hydroxydeoxy guano sine and caspase 3/7 values decreased compared to group II (P < .001). While total oxidant status and oxidative stress index values decreased in the treatment groups, total antioxidant status values increased (P <.001). The histopathological examination of the heart revealed fewer areas of focal necrosis in the treatment groups compared to group II. CONCLUSION In this study, the cardioprotective effect of Pistacia vera L. hull extract was investigated in vivo. It was shown that Pistacia vera L. hull extract reduced apoptosis and deoxyribonucleic acid damage in the face of cardiac damage and had antioxidant activity. Future studies will increase our knowledge on this subject.
Collapse
|
42
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
43
|
Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem 2023; 402:134351. [DOI: 10.1016/j.foodchem.2022.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
|
44
|
Babakr A, Mukhtar M, Althubiti M, Al-Amodi H, Almaimani R, Nour Eldin MM, Elzubeir Abdalla M, Nasif W. Investigation of Hyperlipidemia Associated with Increased Levels of Oxidized Low-Density Lipoproteins and 8-Hydroxy-2´-Deoxyguanosine. Diabetes Metab Syndr Obes 2023; 16:447-455. [PMID: 36816817 PMCID: PMC9931501 DOI: 10.2147/dmso.s396676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Hyperlipidemia is a common risk factor for atherosclerosis, heart diseases, and other pathological conditions. The factors leading to the oxidation of native low-density lipoproteins remain of valuable importance for a better understanding of the mechanisms leading to these pathologies. The aim of the present study was to evaluate the association between lipid status and the levels of oxidized low-density lipoproteins and 8-hydroxy-2´-deoxyguanosine. METHODS One hundred and fourteen participants were enrolled. Lipid profile parameters were measured and used individually to categorize subjects into two groups of normal and hyperlipidemic cases according to the international reference ranges. Oxidized low-density lipoproteins and 8-hydroxy-2´-deoxyguanosine were then compared in normal and high lipid profile groups. The obtained results were then statistically analyzed. RESULTS 8-Hydroxy-2´-deoxyguanosine was found to be positively correlated with hypercholesterolemia, hypertriglyceridemia, and high levels of low-density lipoproteins (r = 0.53, 0.41, and 0.60), respectively (p<0.001). A positive correlation was observed also between the levels of oxidized low-density lipoproteins and the same lipid profile parameters (r = 0.42, 0.31, and 0.45), respectively (p<0.001). CONCLUSION The present study suggests that disturbance in lipid profile may result in increased levels of oxidized low-density lipoproteins and oxidative stress in the study group; however, a larger sample is needed to confirm the present findings.
Collapse
Affiliation(s)
- Abdullatif Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
- Correspondence: Abdullatif Babakr, Department of Medical Biochemistry, Faculty of medicine, Umm Al-Qura University, Abdia, Makkah, Kingdom of Saudi Arabia, Tel +966-25270000/4322, Fax +96625270000/4319, Email
| | - Mohamed Mukhtar
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohammad Althubiti
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hiba Al-Amodi
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Riyad Almaimani
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohamed Mahmoud Nour Eldin
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohamed Elzubeir Abdalla
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Wesam Nasif
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| |
Collapse
|
45
|
Petito G, Giacco A, Cioffi F, Mazzoli A, Magnacca N, Iossa S, Goglia F, Senese R, Lanni A. Short-term fructose feeding alters tissue metabolic pathways by modulating microRNAs expression both in young and adult rats. Front Cell Dev Biol 2023; 11:1101844. [PMID: 36875756 PMCID: PMC9977821 DOI: 10.3389/fcell.2023.1101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury. In this perspective, the aim of the present study was to investigate the involvement of miR-122-5p, miR-34a-5p, and miR-125b-5p examining the effects induced by fructose overconsumption and to evaluate whether a differential miRNA regulation exists between young and adult animals. We used young rats (30 days) and adult rats (90 days) fed on HFrD for a short period (2 weeks) as animal models. The results indicate that both young and adult rats fed on HFrD exhibit an increase in systemic oxidative stress, the establishment of an inflammatory state, and metabolic perturbations involving the relevant miRNAs and their axes. In the skeletal muscle of adult rats, HFrD impair insulin sensitivity and triglyceride accumulation affecting the miR-122-5p/PTP1B/P-IRS-1(Tyr612) axis. In liver and skeletal muscle, HFrD acts on miR-34a-5p/SIRT-1: AMPK pathway resulting in a decrease of fat oxidation and an increase in fat synthesis. In addition, liver and skeletal muscle of young and adult rats exhibit an imbalance in antioxidant enzyme. Finally, HFrD modulates miR-125b-5p expression levels in liver and white adipose tissue determining modifications in de novo lipogenesis. Therefore, miRNA modulation displays a specific tissue trend indicative of a regulatory network that contributes in targeting genes of various pathways, subsequently yielding extensive effects on cell metabolism.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Giacco
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
46
|
Strohm L, Ubbens H, Münzel T, Daiber A, Daub S. Role of CD40(L)-TRAF signaling in inflammation and resolution-a double-edged sword. Front Pharmacol 2022; 13:995061. [PMID: 36267276 PMCID: PMC9577411 DOI: 10.3389/fphar.2022.995061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular diseases (CVD) and cardiovascular risk factors are the leading cause of death in the world today. According to the Global Burden of Disease Study, hypertension together with ischemic heart and cerebrovascular diseases is responsible for approximately 40% of all deaths worldwide. The major pathomechanism underlying almost all CVD is atherosclerosis, an inflammatory disorder of the vascular system. Recent large-scale clinical trials demonstrated that inflammation itself is an independent cardiovascular risk factor. Specific anti-inflammatory therapy could decrease cardiovascular mortality in patients with atherosclerosis (increased markers of inflammation). Inflammation, however, can also be beneficial by conferring so-called resolution, a process that contributes to clearing damaged tissue from cell debris upon cell death and thereby represents an essential step for recovery from, e.g., ischemia/reperfusion damage. Based on these considerations, the present review highlights features of the detrimental inflammatory reactions as well as of the beneficial process of immune cell-triggered resolution. In this context, we discuss the polarization of macrophages to either M1 or M2 phenotype and critically assess the role of the CD40L-CD40-TRAF signaling cascade in atherosclerosis and its potential link to resolution. As CD40L can bind to different cellular receptors, it can initiate a broad range of inflammatory processes that may be detrimental or beneficial. Likewise, the signaling of CD40L downstream of CD40 is mainly determined by activation of TRAF1-6 pathways that again can be detrimental or beneficial. Accordingly, CD40(L)-based therapies may be Janus-faced and require sophisticated fine-tuning in order to promote cardioprotection.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
47
|
Allen AJH, Peres BU, Liu Y, Jen R, Shah A, Laher I, Almeida F, Taylor C, Ghafoor AA, Ayas NT. Circulating markers of oxidative stress and risk of incident cardiovascular events in obstructive sleep apnea. Sleep Biol Rhythms 2022; 20:533-540. [PMID: 38468626 PMCID: PMC10899996 DOI: 10.1007/s41105-022-00399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
The identification of which patients with obstructive sleep apnea (OSA) are more likely to develop cardiovascular disease (CVD) remains a challenge. OSA causes oxidative stress (OS) which may contribute to CVD pathogenesis. Therefore, OS markers could be useful in risk-stratifying cardiovascular (CV) risk in OSA patients. The purpose of this pilot study was to assess whether three OS marker levels could be associated with incident CVD in suspected OSA patients. Morning plasma levels of 8-isoprostane, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and superoxide dismutase (SOD) were measured in patients with suspected OSA referred for a polysomnogram (PSG). A composite outcome of CV events was defined by linkage with provincial administrative health databases. Cox proportional hazards models were used to assess the relationship between the levels of OS markers and events. 352 patients were included (mean age of 51.4 years, 68% male, median apnea hypopnea index of 16/h). Thirty-one first CV events occurred over an 8-year follow-up. In univariate or fully adjusted models, none of the OS markers were significantly associated with incident CV events (hazard ratio in adjusted models of: 1.25 (95% CI 0.56-2.80, p = 0.59), 1.15 (0.52-2.57, p = 0.73), 0.77 (0.37-1.61, p = 0.48), for 8-OHdG, 8-isoprostane and SOD; however, confidence intervals were wide. In this small preliminary study, oxidative stress markers were not significantly associated with risk of CV events. However, moderate associations between these markers and risk of CV events are possible and should be the focus of future larger studies. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-022-00399-0.
Collapse
Affiliation(s)
- A. J. Hirsch Allen
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Bernardo U. Peres
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Yu Liu
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Rachel Jen
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
| | - Aditi Shah
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
| | - Ismail Laher
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Fernanda Almeida
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Carolyn Taylor
- Division of Cardiology, Department of Medicine, University of British Columbia and Providence Health Care, Vancouver, Canada
| | - Ali Abdul Ghafoor
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Najib T. Ayas
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
- Canadian Sleep and Circadian Network, Montréal, Canada
| |
Collapse
|
48
|
Jorgensen A, Baago IB, Rygner Z, Jorgensen MB, Andersen PK, Kessing LV, Poulsen HE. Association of Oxidative Stress-Induced Nucleic Acid Damage With Psychiatric Disorders in Adults: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022; 79:920-931. [PMID: 35921094 PMCID: PMC9350850 DOI: 10.1001/jamapsychiatry.2022.2066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Nucleic acid damage from oxidative stress (NA-OXS) may be a molecular mechanism driving the severely increased morbidity and mortality from somatic causes in adults with psychiatric disorders. OBJECTIVE To systematically retrieve and analyze data on NA-OXS across the psychiatric disorder diagnostic spectrum. DATA SOURCES The PubMed, Embase, and PsycINFO databases were searched from inception to November 16, 2021. A hand search of reference lists of relevant articles was also performed. STUDY SELECTION Key study inclusion criteria in this meta-analysis were as follows: adult human study population, measurement of any marker of DNA or RNA damage from oxidative stress, and either a (1) cross-sectional design comparing patients with psychiatric disorders (any diagnosis) with a control group or (2) prospective intervention. Two authors screened the studies, and 2 senior authors read the relevant articles in full and assessed them for eligibility. DATA EXTRACTION AND SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. Two authors performed data extraction independently, and a senior coauthor was consulted in cases of disagreement. Data were synthesized with random-effects and multilevel meta-analyses. MAIN OUTCOMES AND MEASURES The predefined hypothesis was that individuals with psychiatric disorders have increased NA-OXS levels. The main outcome was the standardized mean differences (SMDs) among patients and controls in nucleic acid oxidation markers compared across diagnostic groups. Analyses were divided into combinations of biological matrices and nucleic acids. RESULTS Eighty-two studies fulfilled the inclusion criteria, comprising 205 patient vs control group comparisons and a total of 10 151 patient and 10 532 control observations. Overall, the data showed that patients with psychiatric disorders had higher NA-OXS levels vs controls across matrices and molecules. Pooled effect sizes ranged from moderate for urinary DNA markers (SMD = 0.44 [95% CI, 0.20-0.68]; P < .001) to very large for blood cell DNA markers (SMD = 1.12 [95% CI, 0.69-1.55; P < .001). Higher NA-OXS levels were observed among patients with dementias followed by psychotic and bipolar disorders. Sensitivity analyses excluding low-quality studies did not materially alter the results. Intervention studies were few and too heterogenous for meaningful meta-analysis. CONCLUSIONS AND RELEVANCE The results of this meta-analysis suggest that there is an association with increased NA-OXS levels in individuals across the psychiatric disorder diagnostic spectrum. NA-OXS may play a role in the somatic morbidity and mortality observed among individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ida Bendixen Baago
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Zerlina Rygner
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| | - Martin Balslev Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| |
Collapse
|
49
|
Sutkowy P, Wróblewska J, Wróblewski M, Nuszkiewicz J, Modrzejewska M, Woźniak A. The Impact of Exercise on Redox Equilibrium in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11164833. [PMID: 36013072 PMCID: PMC9410476 DOI: 10.3390/jcm11164833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases constitute the most important public health problem in the world. They are characterized by inflammation and oxidative stress in the heart and blood. Physical activity is recognized as one of the best ways to prevent these diseases, and it has already been applied in treatment. Physical exercise, both aerobic and anaerobic and single and multiple, is linked to the oxidant–antioxidant imbalance; however, this leads to positive adaptive changes in, among others, the increase in antioxidant capacity. The goal of the paper was to discuss the issue of redox equilibrium in the human organism in the course of cardiovascular diseases to systemize updated knowledge in the context of exercise impacts on the organism. Antioxidant supplementation is also an important issue since antioxidant supplements still have great potential regarding their use as drugs in these diseases.
Collapse
|
50
|
Sepúlveda M, Arauna D, García F, Albala C, Palomo I, Fuentes E. Frailty in Aging and the Search for the Optimal Biomarker: A Review. Biomedicines 2022; 10:1426. [PMID: 35740447 PMCID: PMC9219911 DOI: 10.3390/biomedicines10061426] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023] Open
Abstract
In the context of accelerated aging of the population worldwide, frailty has emerged as one of the main risk factors that can lead to loss of self-sufficiency in older people. This syndrome is defined as a reduced state of physiological reserve and functional capacity. The main diagnostic tools for frailty are based on scales that show deficits compared to their clinical application, such as the Fried frailty phenotype, among others. In this context, it is important to have one or more biomarkers with clinical applicability that can objectively and precisely determine the degree or risk of frailty in older people. The objective of this review was to analyze the biomarkers associated with frailty, classified according to the pathophysiological components of this syndrome (inflammation, coagulation, antioxidants, and liver function, among others). The evidence demonstrates that biomarkers associated with inflammation, oxidative stress, skeletal/cardiac muscle function, and platelet function represent the most promising markers of frailty due to their pathophysiological association with this syndrome. To a lesser extent but with the possibility of greater innovation, biomarkers associated with growth factors, vitamins, amino acids, and miRNAs represent alternatives as markers of this geriatric syndrome. Likewise, the incorporation of artificial intelligence represents an interesting approach to strengthening the diagnosis of frailty by biomarkers.
Collapse
Affiliation(s)
- Magdalena Sepúlveda
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Francisco García
- Department of Geriatric Medicine, Complejo Hospitalario de Toledo, 45007 Toledo, Spain;
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos, Interuniversity Center for Healthy Aging, Universidad de Chile, Santiago 8320000, Chile;
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| |
Collapse
|