1
|
Lu Y, Sun Y, Feng Z, Jia X, Que J, Cui N, Yu L, Zheng YR, Wei YB, Liu JJ. Genetic insights into the role of mitochondria-related genes in mental disorders: An integrative multi-omics analysis. J Affect Disord 2025; 380:685-695. [PMID: 40180044 DOI: 10.1016/j.jad.2025.03.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Mitochondrial dysfunction has been implicated in the development of mental disorders, yet the underlying mechanisms remain unclear. In this study, we employed summary-data-based Mendelian randomization (SMR) analysis to explore the associations between mitochondrial-related genes and seven common mental disorders across gene expression, DNA methylation, and protein levels. METHOD Summary statistics from genome-wide association studies were used for seven mental disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, anxiety, bipolar disorder, major depressive disorder, post-traumatic stress disorder, and schizophrenia (SCZ). Instrumental variables associated with 1136 mitochondria-related genes were derived from summary statistics for DNA methylation, gene expression, and protein quantitative trait loci. SMR analyses and colocalization analyses were then conducted across these three biological levels to explore the associations with each of the seven mental disorders. RESULTS We identified mitochondria-related genes associated with mental disorders with multi-omics evidence: RMDN1 for ADHD, and ACADVL, ETFA, MMAB, and PPA2 for SCZ. Specifically, an increase of one standard deviation in the level of RMDN1 was linked to a 12 % decrease in the risk of developing ADHD (OR = 0.88, 95 % CI: 0.83-0.94). Increased levels of ETFA (OR = 1.79, 95 % CI: 1.24-2.60) and MMAB (OR = 1.10, 95 % CI: 1.05-1.16) were significantly associated with increased risk of SCZ. Conversely, high levels of ACADVL (OR = 0.50, 95 % CI: 0.33-0.77) and PPA2 (OR = 0.68, 95 % CI: 0.55-0.85) were associated with a reduced risk of SCZ. CONCLUSIONS These findings suggested that dysfunction in mitochondria-related genes may underlie the molecular mechanisms of ADHD and SCZ, providing novel biomarkers for diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Yan'e Lu
- School of Nursing, Peking University, Beijing 100191, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhendong Feng
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Xinlei Jia
- School of Nursing, Peking University, Beijing 100191, China
| | - Jianyu Que
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, Fujian, China
| | - Naixue Cui
- School of Nursing and Rehabilitation, Shandong University, Shandong Province 250012, China
| | - Lulu Yu
- Mental Health Center, the First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei Province 050031, China
| | - Yi-Ran Zheng
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Ya Bin Wei
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Jia Jia Liu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Schilliger Z, Pavan T, Alemán-Gómez Y, Steullet P, Céléreau E, Binz PA, Celen Z, Piguet C, Merglen A, Hagmann P, Do K, Conus P, Jelescu I, Klauser P, Dwir D. Sex-differences in brain multimodal estimates of white matter microstructure during early adolescence: Sex-specific associations with biological factors. Brain Behav Immun 2025; 126:98-110. [PMID: 39921149 DOI: 10.1016/j.bbi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/21/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Adolescence is marked by significant maturation of brain white matter microstructure, with evidence for sex-specific maturational trajectory. Most studies have examined conventional diffusion tensor imaging (DTI) metrics, which lack specificity to the underlying tissue modifications. In this study, we characterized sex-differences in white matter microstructure cross-sectionally using DTI, advanced diffusion spectrum imaging (DSI) and diffusion kurtosis imaging (DKI), as well as the white matter tract integrity-Watson (WMTI-W) biophysical model. We also aimed to explore the effect of age and biological systems undergoing sex-specific changes during adolescence, namely pubertal hormones, hypothalamic-pituitary-adrenal (HPA)-axis function, and glutathione-redox cycle homeostasis. The results indicate widespread sex-differences in all the white matter derived metrics, suggesting more advanced maturation in females compared to males as well as distinct tissue modifications underlying white matter maturation between males and females during this narrow developmental period. Additionally, the three biological factors explored appeared to be associated with indices of white matter maturation in females specifically, emphasizing this period as critical in female white matter development and sensitivity to environmental factors.
Collapse
Affiliation(s)
- Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tommaso Pavan
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Edgar Céléreau
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Alain Binz
- Division of General Pediatrics, Geneva University Hospitals & Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Zeynep Celen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arnaud Merglen
- Service of Clinical Chemistry, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Balasubramanian R, Saha D, Arun A, Vinod PK. Hypometabolism in Autism Spectrum Disorder: Insights from Brain and Blood Transcriptomics. Mol Neurobiol 2025:10.1007/s12035-025-04941-2. [PMID: 40232643 DOI: 10.1007/s12035-025-04941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, repetitive behaviors, and restricted interests. Recent research has emphasized the importance of metabolic dysfunctions in the pathophysiology of ASD. This study investigates metabolic alterations associated with ASD by analyzing transcriptomic data obtained from the prefrontal cortex (bulk tissue and single-nucleus) and data from peripheral blood mononuclear cells (PBMC). We assessed the metabolic activity of each patient based on gene expression profiles, revealing significant downregulation of vital metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation, indicative of hypometabolism. Our analysis also highlighted dysregulation in lipid, vitamin, amino acid, and heme metabolism, which may contribute to the neurodevelopmental delays associated with ASD. Cell-specific metabolic activities in the ASD brain showed altered pathways in astrocytes, oligodendrocytes, excitatory neurons, and interneurons. Furthermore, we identified critical metabolic pathways and genes from PBMC gene expression data that distinguish ASD patients from typically developing individuals. Our findings demonstrate a consistent pattern of metabolic dysfunction across brain and blood samples. This research provides a comprehensive understanding of metabolic alterations in ASD, paving the way for exploring potential therapeutic strategies targeting metabolic dysregulation.
Collapse
Affiliation(s)
- Rami Balasubramanian
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Debayan Saha
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Ananya Arun
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Palakkad Krishnanunni Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
4
|
Du N, Xie Y, Geng D, Li J, Xu H, Wang Y, Gou J, Tan X, Xu X, Shi L, Chen Y, Chen F, Zhou Z, Liu G, Kuang L. Restoration of mitochondrial energy metabolism by electroconvulsive therapy in adolescent and juvenile mice. Front Psychiatry 2025; 16:1555144. [PMID: 40276069 PMCID: PMC12018324 DOI: 10.3389/fpsyt.2025.1555144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Background Adolescent depression is an increasingly serious public health issue, and traditional treatment methods often have side effects or limited efficacy. Electroconvulsive therapy (ECT), a widely used treatment for severe depression, has recently gained attention for its potential in treating adolescent depression. Previous studies suggest that mitochondrial dysfunction is closely related to the onset of depression. Therefore, investigating the mechanism by which ECT alleviates depressive symptoms through the improvement of mitochondrial energy metabolism is of great significance. Methods This study employed the chronic unpredictable mild stress (CUMS) mouse model to assess the effects of ECT on depression-like behaviors through the sucrose preference test, open field test, and tail suspension test. Additionally, mitochondrial energy metabolism markers, including ATP levels, oxygen consumption rate (OCR), lactate, and pyruvate, were measured in both mouse and human plasma to evaluate the effects of ECT on mitochondrial function. Results The results showed that ECT significantly improved depression-like and anxiety-like behaviors in mice, as evidenced by the reversal of abnormal behaviors in the sucrose preference test, open field test, and tail suspension test. Analysis of plasma mitochondrial energy metabolism markers revealed that ECT significantly increased ATP levels, restored OCR, reduced lactate accumulation, and increased pyruvate levels. These findings suggest that ECT alleviates depressive symptoms by restoring mitochondrial energy metabolism and improving brain energy supply. Conclusion This study systematically explored the potential mechanism by which ECT alleviates adolescent depression through the improvement of mitochondrial energy metabolism. The results indicate that ECT not only effectively alleviates depressive symptoms but also provides new insights and experimental evidence for the treatment of adolescent depression through mitochondrial function restoration. Future research could further investigate how to combine drug treatments to enhance mitochondrial function, improve ECT efficacy, and evaluate the effects of ECT in different depression subtypes, providing guidance for personalized clinical treatment.
Collapse
Affiliation(s)
- Ning Du
- Center for Mental Health, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xie
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Geng
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingran Li
- Center for Mental Health, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Heyan Xu
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuna Wang
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jijia Gou
- Center for Mental Health, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xiwen Tan
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Xu
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Chen
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengming Chen
- Sleep Medicine Center, Shiyan Hospital of Traditional Chinese Medicine, Shiyan, Hubei, China
| | - Zixuan Zhou
- Department of Psychiatry, The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Feeney SP, McCarthy JM, Petruconis CR, Tudor JC. Sleep loss is a metabolic disorder. Sci Signal 2025; 18:eadp9358. [PMID: 40198749 DOI: 10.1126/scisignal.adp9358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Sleep loss dysregulates cellular metabolism and energy homeostasis. Highly metabolically active cells, such as neurons, enter a catabolic state during periods of sleep loss, which consequently disrupts physiological functioning. Specific to the central nervous system, sleep loss results in impaired synaptogenesis and long-term memory, effects that are also characteristic of neurodegenerative diseases. In this review, we describe how sleep deprivation increases resting energy expenditure, leading to the development of a negative energy balance-a state with insufficient metabolic resources to support energy expenditure-in highly active cells like neurons. This disruption of energetic homeostasis alters the balance of metabolites, including adenosine, lactate, and lipid peroxides, such that energetically costly processes, such as synapse formation, are attenuated. During sleep loss, metabolically active cells shunt energetic resources away from those processes that are not acutely essential, like memory formation, to support cell survival. Ultimately, these findings characterize sleep loss as a metabolic disorder.
Collapse
Affiliation(s)
- Sierra P Feeney
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jordan M McCarthy
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Cecilia R Petruconis
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jennifer C Tudor
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| |
Collapse
|
6
|
Zhang W, Wang T, Li L, Xu J, Wang J, Wang G, Du J. The Role of Mitochondrial Dysfunction-Mediated Changes in Immune Cytokine Expression in the Pathophysiology and Treatment of Major Depressive Disorder. Mol Neurobiol 2025:10.1007/s12035-025-04872-y. [PMID: 40163267 DOI: 10.1007/s12035-025-04872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Recent studies have demonstrated an association between major depressive disorder (MDD) and both mitochondrial dysfunction and alterations in pro-inflammatory cytokine expression, suggesting that such changes may be key drivers of MDD pathogenesis. Mechanistically, changes in mitochondrial function are related to endoplasmic reticulum stress, reactive oxygen species production, oxidative phosphorylation, apoptosis, and disrupted calcium ion homeostasis, all of which trigger the activation of signaling cascades that affect the expression of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1, interleukin 6, and interferons. Certain factors present in the gut microbiota ecosystem can influence communication between microorganisms and the brain through the neuroendocrine, immune, and autonomic nervous systems, thereby altering mitochondrial function and cytokine production. This review article explores the means through which mitochondria regulate immune cytokine expression and the role of mitochondrial dysfunction in the pathogenesis and treatment of MDD to provide new perspectives for the diagnosis of this disease and the development of novel therapeutic interventions with greater efficacy and improved safety profiles.
Collapse
Affiliation(s)
- Wanjun Zhang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jiyi Xu
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Jing Du
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Wang L, Xu Y, Jiang M, Wang M, Ji M, Xie X, Sheng H. Chronic stress induces depression-like behavior in rats through affecting brain mitochondrial function and inflammation. Psychoneuroendocrinology 2025; 172:107261. [PMID: 39721083 DOI: 10.1016/j.psyneuen.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Chronic stress is involved in pathophysiology of depression, and causes some neurochemical alterations in brain. Both mitochondrial dysfunction and neuroinflammation are implicated in mediating the depression-like behavior. The objectives of present study were, at first, to confirm that chronic unpredictable mild stress (CUMS) induces depression-like behavior and alters mitochondrial function and inflammatory responses within the brain, and then to explore the role of mitochondria in the development of this depression-like behavior. It has been found that CUMS exposure induced depression-like behavior, mitochondrial dysfunction, increased IL-1, IL-6, IFN-γ and TNF-α levels in hippocampus and PFC. Moreover, the level of ATP, the key index of mitochondrial function, was inversely correlated with the levels of proinflammatory cytokine. Intracerebroventricular (ICV) injection of the mitochondrial targeted antioxidant MnTBAP significantly alleviated depression-like behavior in CUMS group. These findings suggested that CUMS results in depression-like behavior, mitochondrial dysfunction as well as neuroinflammation, and mitochondria dysfunction contributes to depression-like behavior caused by CUMS.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Yongjun Xu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou, China; Laboratory of Basic Medicine, Dongfang Hospital (900th Hospital of the Joint Logistics Team), Xiamen University, Fuzhou, China; Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengruo Jiang
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengqi Wang
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Meijiao Ji
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Xin Xie
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Hui Sheng
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China.
| |
Collapse
|
8
|
Lin YL, Yao T, Wang YW, Lu JH, Chen YM, Wu YQ, Qian XG, Liu JC, Fang LX, Zheng C, Wu CH, Lin JF. Causal association between mitochondrial function and psychiatric disorders: Insights from a bidirectional two-sample Mendelian randomization study. J Affect Disord 2025; 368:55-66. [PMID: 39265869 DOI: 10.1016/j.jad.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Previous observational studies have suggested that there appears to be a close association between mitochondrial function and psychiatric disorders, but whether a causal role exists remains unclear. METHODS We extracted genetic instruments for 67 mitochondrial-related proteins and 10 psychiatric disorders from publicly available genome-wide association studies, and employed five distinct MR methods and false discovery rate correction to detect causal associations between them. Additionally, we conducted a series of sensitivity tests and additional model analysis to ensure the robustness of the results. For potential causal associations, we further performed reverse MR analyses to assess the impact of reverse causality. RESULTS We identified a total of 2 significant causal associations and 24 suggestive causal associations. Specifically, Phenylalanine-tRNA ligase was found to increase the risk of Alzheimer's disease, while Mitochondrial glutamate carrier 2 decreased the risk of autism spectrum disorder. Furthermore, there was no evidence of significant pleiotropy, heterogeneity, or reverse causality. LIMITATIONS This study was limited to individuals of European ancestry, and the conclusions drawn are merely revelatory. CONCLUSION This study provides novel insights into the relationship between mitochondria and psychiatric disorders, as well as the pathogenesis and treatment strategies for psychiatric disorders.
Collapse
Affiliation(s)
- Yun-Lu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ying-Wei Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jia-Hao Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan-Min Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yu-Qing Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xin-Ge Qian
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jing-Chen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Luo-Xiang Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Cheng Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chun-Hui Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Department of Ultrasonography, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Jia-Feng Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
9
|
Dai Y, Hao Y. The adverse effect of mood swings on the risk of cardiovascular diseases: Evidence from Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e41003. [PMID: 39705472 DOI: 10.1097/md.0000000000041003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Recent studies have explored the impact of personality traits, including mood swings, on physical health. However, it remains unclear whether there is a direct cause-and-effect link between mood swings and cardiovascular diseases (CVDs). A STROBE-compliant cross-sectional observational study was conducted and analyzed using a two-sample Mendelian randomization (MR) approach to examine the potential causal relationship between mood swings and a range of CVDs, such as arrhythmia, artery aneurysm, coronary heart disease (CHD), heart failure, hypertension, stroke, ischemic stroke, and peripheral artery disease. We sourced genome-wide association studies (GWAS) summary data for mood swings from the UK Biobank, and for CVDs from the GWAS Catalog and FinnGen databases. We excluded single-nucleotide polymorphisms (SNPs) linked to potential confounders such as obesity, smoking, sex, diabetes, as well as SNPs suspected of horizontal pleiotropy, as identified by MR-PRESSO and the MR-pleiotropy method, prior to the final analysis. Sensitivity analyses were conducted using the MR-Egger, inverse variance weighted, and leave-one-out methods. After screening, 57 SNPs were identified as instrumental variables for mood swings, and 9 SNPs related to confounding factors were excluded. An increase in mood swing frequency is correlated with a significant increase in the likelihood of various conditions. Notably, arrhythmia in the FinnGen dataset showed an odds ratio (OR: 2.28, 95% confidence interval [CI]: 1.44-3.61, P < .001), and atrial fibrillation had an OR (OR: 2.25, 95% CI: 1.23-4.11, P = .01). CHD risk was elevated in both the IEU OpenGWAS project (OR: 2.05, 95% CI: 1.30-3.21, P < .001) and GWAS Catalog (OR: 4.45, 95% CI: 1.75-11.33, P < .001). Increased risks were also noted for heart failure (GWAS Catalog: OR: 1.75, 95% CI: 1.09-2.83, P = .02) and hypertension (FinnGen: OR, 2.17; 95% CI: 1.47-3.19, P < .001). However, no significant associations were found for conditions such as arterial aneurysms or ischemic stroke. In combined analyses, mood swings were associated with a higher risk of CHD (OR: 2.21, 95% CI: 1.64-2.97, P < .01), heart failure (OR: 1.74, 95% CI: 1.21-2.50, P < .01), and other CVDs. This study revealed a causal link between mood swings and various CVDs, highlighting intriguing findings. This suggests that implementing proper psychological interventions to stabilize mood may be beneficial for preventing negative cardiovascular events.
Collapse
Affiliation(s)
- Yuanhui Dai
- Department of Cardiovascular Center, The First Affiliated Hospital, Key Laboratory of High Incidence Disease Research in Xinjiang, Ministry of Education, Xinjiang Medical University, Urumqi, China
| | | |
Collapse
|
10
|
Li W, Xue X, Li X, Wu X, Zhou P, Xia Y, Zhang J, Zhang M, Zhu F. Ancestral retrovirus envelope protein ERVWE1 upregulates circ_0001810, a potential biomarker for schizophrenia, and induces neuronal mitochondrial dysfunction via activating AK2. Cell Biosci 2024; 14:138. [PMID: 39543767 PMCID: PMC11566632 DOI: 10.1186/s13578-024-01318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Increasingly studies highlight the crucial role of the ancestral retrovirus envelope protein ERVWE1 in the pathogenic mechanisms of schizophrenia, a severe psychiatric disorder affecting approximately 1% of the global population. Recent studies also underscore the significance of circular RNAs (circRNAs), crucial for neurogenesis and synaptogenesis, in maintaining neuronal functions. However, the precise relationship between ERVWE1 and circRNAs in the etiology of schizophrenia remains elusive. RESULTS This study observed elevated levels of hsa_circ_0001810 (circ_0001810) in the blood samples of schizophrenia patients, displaying a significant positive correlation with ERVWE1 expression. Interestingly, in vivo studies demonstrated that ERVWE1 upregulated circ_0001810 in neuronal cells. Circ_0001810, acting as a competing endogenous RNA (ceRNA), bound to miR-1197 and facilitated the release of adenylate kinase 2 (AK2). The bioinformatics analysis of the schizophrenia datasets revealed increased levels of AK2 and enrichment of mitochondrial dynamics. Notably, miR-1197 was reduced in schizophrenia patients, while AK2 levels were increased. Additionally, AK2 showed positive correlations with ERVWE1 and circ_0001810. Further studies demonstrated that AK2 led to mitochondrial dysfunction, characterized by loss of intracellular ATP, mitochondrial depolarization, and disruption of mitochondrial dynamics. Our comprehensive investigation suggested that ERVWE1 influenced ATP levels, promoted mitochondrial depolarization, and disrupted mitochondrial dynamics through the circ_0001810/AK2 pathway. CONCLUSIONS Circ_0001810 and AK2 were increased in schizophrenia and positively correlated with ERVWE1. Importantly, ERVWE1 triggered mitochondrial dysfunction through circ_0001810/miR-1197/AK2 pathway. Recent focus on the impact of mitochondrial dynamics on schizophrenia development had led to our discovery of a novel mechanism by which ERVWE1 contributed to the etiology of schizophrenia, particularly through mitochondrial dynamics. Moreover, these findings collectively proposed that circ_0001810 might serve as a potential blood-based biomarker for schizophrenia. Consistent with our previous theories, ERVWE1 is increasingly recognized as a promising therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Mengqi Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
11
|
Oyovwi MO, Ugwuishi EW, Udi OA, Uchechukwu GJ. Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy. J Mol Neurosci 2024; 74:107. [PMID: 39514132 DOI: 10.1007/s12031-024-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Gregory Joseph Uchechukwu
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
12
|
Huizer K, Banga IK, Kumar RM, Muthukumar S, Prasad S. Dynamic Real-Time Biosensing Enabled Biorhythm Tracking for Psychiatric Disorders. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2021. [PMID: 39654328 DOI: 10.1002/wnan.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 01/12/2025]
Abstract
This review article explores the transformative potential of dynamic, real-time biosensing in biorhythm tracking for psychiatric disorders. Psychiatric diseases, characterized by a complex, heterogeneous, and multifactorial pathophysiology, pose challenges in both diagnosis and treatment. Common denominators in the pathophysiology of psychiatric diseases include disruptions in the stress response, sleep-wake cycle, energy metabolism, and immune response: all of these are characterized by a strong biorhythmic regulation (e.g., circadian), leading to dynamic changes in the levels of biomarkers involved. Technological and practical limitations have hindered the analysis of such dynamic processes to date. The integration of biosensors marks a paradigm shift in psychiatric research. These advanced technologies enable multiplex, non-invasive, and near-continuous analysis of biorhythmic biomarkers in real time, overcoming the constraints of conventional approaches. Focusing on the regulation of the stress response, sleep/wake cycle, energy metabolism, and immune response, biosensing allows for a deeper understanding of the heterogeneous and multifactorial pathophysiology of psychiatric diseases. The potential applications of nanobiosensing in biorhythm tracking, however, extend beyond observation. Continuous monitoring of biomarkers can provide a foundation for personalized medicine in Psychiatry, and allow for the transition from syndromal diagnostic entities to pathophysiology-based psychiatric diagnoses. This evolution promises enhanced disease tracking, early relapse prediction, and tailored disease management and treatment strategies. As non-invasive biosensing continues to advance, its integration into biorhythm tracking holds promise not only to unravel the intricate etiology of psychiatric disorders but also for ushering in a new era of precision medicine, ultimately improving the outcomes and quality of life for individuals grappling with these challenging conditions.
Collapse
Affiliation(s)
- Karin Huizer
- Parnassia Academy, Parnassia Psychiatric Institute, Hague, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
14
|
Mendes-Silva AP, Nikolova YS, Rajji TK, Kennedy JL, Diniz BS, Gonçalves VF, Vieira EL. Exosome-associated mitochondrial DNA in late-life depression: Implications for cognitive decline in older adults. J Affect Disord 2024; 362:217-224. [PMID: 38945405 PMCID: PMC11316645 DOI: 10.1016/j.jad.2024.06.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Disrupted cellular communication, inflammatory responses and mitochondrial dysfunction are consistently observed in late-life depression (LLD). Exosomes (EXs) mediate cellular communication by transporting molecules, including mitochondrial DNA (EX-mtDNA), playing critical role in immunoregulation alongside tumor necrosis factor (TNF). Changes in EX-mtDNA are indicators of impaired mitochondrial function and might increase vulnerability to adverse health outcomes. Our study examined EX-mtDNA levels and integrity, exploring their associations with levels of TNF receptors I and II (TNFRI and TNFRII), and clinical outcomes in LLD. METHODS Ninety older adults (50 LLD and 40 controls (HC)) participated in the study. Blood was collected and exosomes were isolated using size-exclusion chromatography. DNA was extracted and EX-mtDNA levels and deletion were assessed using qPCR. Plasma TNFRI and TNFRII levels were quantified by multiplex immunoassay. Correlation analysis explored relationships between EX-mtDNA, clinical outcomes, and inflammatory markers. RESULTS Although no differences were observed in EX-mtDNA levels between groups, elevated levels correlated with poorer cognitive performance (r = -0.328, p = 0.002) and increased TNFRII levels (r = 0.367, p = 0.004). LLD exhibited higher deletion rates (F(83,1) = 4.402, p = 0.039), with a trend remaining after adjusting for covariates (p = 0.084). Deletion correlated with poorer cognitive performance (r = -0.335, p = 0.002). No other associations were found. LIMITATION Cross-sectional study with a small number of participants from a specialized geriatric psychiatry treatment center. CONCLUSION Our findings suggest that EX-mtDNA holds promise as an indicator of cognitive outcomes in LLD. Additional research is needed to further comprehend the role of EX-mtDNA levels/integrity in LLD, paving the way for its clinical application in the future.
Collapse
MESH Headings
- Humans
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/blood
- Male
- Female
- Aged
- Cognitive Dysfunction/blood
- Cognitive Dysfunction/genetics
- Exosomes/genetics
- Receptors, Tumor Necrosis Factor, Type II/blood
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type I/blood
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Aged, 80 and over
- Depression/blood
- Depression/genetics
- Case-Control Studies
- Biomarkers/blood
Collapse
Affiliation(s)
- Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Breno S Diniz
- UConn Center on Aging & Department of Psychiatry, UConn School of Medicine, University of Connecticut Health Center, USA
| | - Vanessa F Gonçalves
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Erica L Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
15
|
Frank GKW, Scolnick B. Therapeutic ketogenic diet as treatment for anorexia nervosa. Front Nutr 2024; 11:1392135. [PMID: 39296512 PMCID: PMC11409850 DOI: 10.3389/fnut.2024.1392135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder. However, we lack neurobiological models and interventions to explain and treat the core characteristics of food restriction, feeling fat, and body size overestimation. Research has made progress in understanding brain function involved in the pathophysiology of AN, but translating those results into biological therapies has been challenging. Studies have suggested that metabolic factors could contribute to developing and maintaining AN pathophysiology. Here, we describe a neurobiological model for why using a therapeutic ketogenic diet could address key alterations in brain function in AN and prevent the desire for weight loss and associated eating disorder-specific symptoms. This translational model is based on animal studies and human data and integrates behavioral traits, brain neural energy metabolism, and neurotransmitter function. Pilot data indicate that the intervention can dramatically reduce eating and body-related fears, although larger studies across illness stages still need to be conducted.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | | |
Collapse
|
16
|
Vannelli A, Mariano V, Bagni C, Kanellopoulos AK. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci 2024; 25:8787. [PMID: 39201473 PMCID: PMC11354613 DOI: 10.3390/ijms25168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
Collapse
Affiliation(s)
- Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | |
Collapse
|
17
|
Li S, Jiang J, Zhu W, Wang D, Dong C, Bu Y, Zhang J, Gao D, Hu X, Wan C. Increased cell-free DNA is associated with oxidative damage in patients with schizophrenia. J Psychiatr Res 2024; 175:20-28. [PMID: 38701608 DOI: 10.1016/j.jpsychires.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Cell-free DNA (cfDNA) has been found to be elevated in patients with schizophrenia (SZ), potentially derived from activated apoptosis, but the underlying mechanisms remain unknown. Moreover, whether the concentrations of cfDNA are altered with disease stage has not been investigated, which limits its clinical application as an auxiliary diagnostic marker for SZ. Using an improved fluorescence correlation spectroscopy (FCS) method that does not require DNA extraction, we measured the molar concentrations of cfDNA in plasma samples of 191 patients with SZ, 78 patients with mood disorders (MD) and 65 healthy controls (HC). We also analyzed the cfDNA composition from either the nucleus or mitochondria, oxidation markers and biochemical indexes to explore the potential mechanistic associations of the increased cfDNA levels. We found that in SZ patients, the cfDNA levels were significantly increased (P = 0.003) regardless of the different disease stages or antipsychotic medication use. Furthermore, qPCR revealed that cell-free nuclear DNA (cf-nDNA) (P = 0.041) but not cell-free mitochondrial DNA (cf-mtDNA) was elevated in SZ patients. Moreover, decreased SOD activity in SZ patients (P = 0.005) was negatively correlated with cfDNA levels (P = 0.047), and fasting blood glucose was positively correlated with cfDNA levels in SZ patients (P = 0.013). Our study provides evidence to support that the elevated cfDNA may be a convenient, effective and stable trait indicator of SZ. Further analysis showed that it mainly came from nucleus, suggesting increased apoptosis, and potentially related to oxidative stress and high blood glucose levels in patients.
Collapse
Affiliation(s)
- Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangying Bu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Daiyutong Gao
- Department of Mathematics, Nanjing University, Nanjing, 210093, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
18
|
Zhao Y, Chen Y, Guo C, Li P, Cheng Z, Zheng L, Sha B, Xu H, Su X, Wang Y. Chronic stress dysregulates the Hippo/YAP/14-3-3η pathway and induces mitochondrial damage in basolateral amygdala in a mouse model of depression. Theranostics 2024; 14:3653-3673. [PMID: 38948066 PMCID: PMC11209716 DOI: 10.7150/thno.92676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shannxi 710021, China
| | - Chihua Guo
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Cheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Lei Zheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Baoyong Sha
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Hao Xu
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Xingli Su
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yunpeng Wang
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Lead contact
| |
Collapse
|
19
|
Liu Y, Lin H, Liu M, Lin L, Wen Y. Establishment of a Mitochondrial Metabolism-Related Diagnostic Model in Schizophrenia Based on LASSO Algorithm. Psychiatry Investig 2024; 21:618-628. [PMID: 38960439 PMCID: PMC11222072 DOI: 10.30773/pi.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Schizophrenia is a common mental disorder, and mitochondrial function represents a potential therapeutic target for psychiatric diseases. The role of mitochondrial metabolism-related genes (MRGs) in the diagnosis of schizophrenia remains unknown. This study aimed to identify candidate genes that may influence the diagnosis and treatment of schizophrenia based on MRGs. METHODS Three schizophrenia datasets were obtained from the Gene Expression Omnibus database. MRGs were collected from relevant literature. The differentially expressed genes between normal samples and schizophrenia samples were screened using the limma package. Venn analysis was performed to identify differentially expressed MRGs (DEMRGs) in schizophrenia. Based on the STRING database, hub genes in DEMRGs were identified using the MCODE algorithm in Cytoscape. A diagnostic model containing hub genes was constructed using LASSO regression and logistic regression analysis. The relationship between hub genes and drug sensitivity was explored using the DSigDB database. An interaction network between miRNA-transcription factor (TF)-hub genes was created using the Network-Analyst website. RESULTS A total of 1,234 MRGs, 172 DEMRGs, and 6 hub genes with good diagnostic performance were identified. Ten potential candidate drugs (rifampicin, fulvestrant, pentadecafluorooctanoic acid, etc.) were selected. Thirty-four miRNAs targeting genes in the diagnostic model (ANGPTL4, CPT2, GLUD1, MED1, and MED20), as well as 137 TFs, were identified. CONCLUSION Six potential candidate genes showed promising diagnostic significance. rifampicin, fulvestrant, and pentadecafluorooctanoic acid were potential drugs for future research in the treatment of schizophrenia. These findings provided valuable evidence for the understanding of schizophrenia pathogenesis, diagnosis, and drug treatment.
Collapse
Affiliation(s)
- Yinfang Liu
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Han Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Meicen Liu
- Department of Pharmacy, The First Hospital of Longyan, Longyan, China
| | - Liping Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Yaohui Wen
- Department of Laboratory Medicine, The Third Hospital of Longyan, Longyan, China
| |
Collapse
|
20
|
Zhang Y, Tong L, Ma L, Ye H, Zeng S, Zhang S, Ding Y, Wang W, Bao T. Progress in The Research of Lactate Metabolism Disruption And Astrocyte-Neuron Lactate Shuttle Impairment in Schizophrenia: A Comprehensive Review. Adv Biol (Weinh) 2024; 8:e2300409. [PMID: 38596839 DOI: 10.1002/adbi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Yingying Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Liang Tong
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Li Ma
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Hong Ye
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shue Zeng
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shaochuan Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Yu Ding
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Weiwei Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Tianhao Bao
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| |
Collapse
|
21
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
22
|
Yang H, Zhu D, Liu Y, Xu Z, Liu Z, Zhang W, Cai J. Employing graph attention networks to decode psycho-metabolic interactions in Schizophrenia. Psychiatry Res 2024; 335:115841. [PMID: 38522150 DOI: 10.1016/j.psychres.2024.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Schizophrenia is a severe mental disorder characterized by intricate and underexplored interactions between psychological symptoms and metabolic health, presenting challenges in understanding the disease mechanisms and designing effective treatment strategies. To delve deeply into the complex interactions between mental and metabolic health in patients with schizophrenia, this study constructed a psycho-metabolic interaction network and optimized the Graph Attention Network (GAT). This approach reveals complex data patterns that traditional statistical analyses fail to capture. The results show that weight management and medication management play a central role in the interplay between psychiatric disorders and metabolic health. Furthermore, additional analysis revealed significant correlations between the history of psychiatric symptoms and physical health indicators, as well as the key roles of biochemical markers(e.g., triglycerides and low-density lipoprotein cholesterol), which have not been sufficiently emphasized in previous studies. This highlights the importance of medication management approaches, weight management, psychological treatment, and biomarker monitoring in comprehensive treatment and underscores the significance of the biopsychosocial model. This study is the first to utilize a GNN to explore the interactions between schizophrenia symptoms and metabolic features, providing new insights into understanding psychiatric disorders and guiding the development of more comprehensive treatment strategies for schizophrenia.
Collapse
Affiliation(s)
- Hongyi Yang
- School of Design, Shanghai Jiao Tong University, Shanghai, PR China
| | - Dian Zhu
- School of Design, Shanghai Jiao Tong University, Shanghai, PR China
| | - YanLi Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhiqi Xu
- School of Design, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhao Liu
- School of Design, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Weibo Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
23
|
Khavari B, Barnett MM, Mahmoudi E, Geaghan MP, Graham A, Cairns MJ. microRNA and the Post-Transcriptional Response to Oxidative Stress during Neuronal Differentiation: Implications for Neurodevelopmental and Psychiatric Disorders. Life (Basel) 2024; 14:562. [PMID: 38792584 PMCID: PMC11121913 DOI: 10.3390/life14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress is one of the most important environmental exposures associated with psychiatric disorders, but the underlying molecular mechanisms remain to be elucidated. In a previous study, we observed a substantial alteration of the gene expression landscape in neuron-like cells that were differentiated from SH-SY5Y cells after or during exposure to oxidative stress, with a subset of dysregulated genes being enriched for neurodevelopmental processes. To further explore the regulatory mechanisms that might account for such profound perturbations, we have now applied small RNA-sequencing to investigate changes in the expression of miRNAs. These molecules are known to play crucial roles in brain development and response to stress through their capacity to suppress gene expression and influence complex biological networks. Through these analyses, we observed more than a hundred differentially expressed miRNAs, including 80 previously reported to be dysregulated in psychiatric disorders. The seven most influential miRNAs associated with pre-treatment exposure, including miR-138-5p, miR-96-5p, miR-34c-5p, miR-1287-5p, miR-497-5p, miR-195-5p, and miR-16-5p, supported by at least 10 negatively correlated mRNA connections, formed hubs in the interaction network with 134 genes enriched with neurobiological function, whereas in the co-treatment condition, miRNA-mRNA interaction pairs were enriched in cardiovascular and immunity-related disease ontologies. Interestingly, 12 differentially expressed miRNAs originated from the DLK1-DIO3 location, which encodes a schizophrenia-associated miRNA signature. Collectively, our findings suggest that early exposure to oxidative stress, before and during prenatal neuronal differentiation, might increase the risk of mental illnesses in adulthood by disturbing the expression of miRNAs that regulate neurodevelopmentally significant genes and networks.
Collapse
Affiliation(s)
- Behnaz Khavari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michelle M. Barnett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Adam Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
24
|
Yang H, Sun W, Yang M, Li J, Zhang J, Zhang X. Variations to plasma H 2O 2 levels and TAC in chronical medicated and treatment-resistant male schizophrenia patients: Correlations with psychopathology. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:45. [PMID: 38605069 PMCID: PMC11009317 DOI: 10.1038/s41537-024-00468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Accumulating evidence suggests that imbalanced oxidative stress (OS) may contribute to the mechanism of schizophrenia. The aim of the present study was to evaluate the associations of OS parameters with psychopathological symptoms in male chronically medicated schizophrenia (CMS) and treatment-resistant schizophrenia (TRS) patients. Levels of hydrogen peroxide (H2O2), hydroxyl radical (·OH), peroxidase (POD), α-tocopherol (α-toc), total antioxidant capacity (TAC), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were assayed in males with CMS and TRS, and matched healthy controls. Schizophrenia symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). The results demonstrated significant differences in the variables H2O2 (F = 5.068, p = 0.008), ·OH (F = 31.856, p < 0.001), POD (F = 14.043, p < 0.001), α-toc (F = 3.711, p = 0.027), TAC (F = 24.098, p < 0.001), and MMP-9 (F = 3.219, p = 0.043) between TRS and CMS patients and healthy controls. For TRS patients, H2O2 levels were correlated to the PANSS positive subscale (r = 0.386, p = 0.032) and smoking (r = -0,412, p = 0.021), while TAC was significantly negatively correlated to the PANSS total score (r = -0.578, p = 0.001) and POD and TAC levels were positively correlated to body mass index (r = 0.412 and 0.357, p = 0.021 and 0.049, respectively). For patients with CMS, ·OH levels and TAC were positively correlated to the PANSS general subscale (r = 0.308, p = 0.031) and negatively correlated to the PANSS total score (r = -0.543, p < 0.001). Furthermore, H2O2, α-toc, and ·OH may be protective factors against TRS, and POD was a risk factor. Patients with CMS and TRS exhibit an imbalance in OS, thus warranting future investigations.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Wenxi Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| |
Collapse
|
25
|
Chen J, Amdanee N, Zuo X, Wang Y, Gong M, Yang Y, Li H, Zhang X, Zhang C. Biomarkers of bipolar disorder based on metabolomics: A systematic review. J Affect Disord 2024; 350:492-503. [PMID: 38218254 DOI: 10.1016/j.jad.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Bipolar disorder (BD) is a severe affective disorder characterized by recurrent episodes of depression or mania/hypomania, which significantly impair cognitive function, life skills, and social abilities of patients. There is little understanding of the neurobiological mechanisms of BD. The diagnosis of BD is primarily based on clinical assessment and psychiatric examination, highlighting the urgent need for objective markers to facilitate the diagnosis of BD. Metabolomics can be used as a diagnostic tool for disease identification and evaluation. This study summarized the altered metabolites in BD and analyzed aberrant metabolic pathways, which might contribute to the diagnosis of BD. Search of PubMed and Web of science for human BD studies related to metabolism to identify articles published up to November 19, 2022 yielded 987 articles. After screening and applying the inclusion and exclusion criteria, 16 untargeted and 11 targeted metabolomics studies were included. Pathway analysis of the potential differential biometabolic markers was performed using the Kyoto encyclopedia of genes and genomes (KEGG). There were 72 upregulated and 134 downregulated biomarkers in the untargeted metabolomics studies using blood samples. Untargeted metabolomics studies utilizing urine specimens revealed the presence of 78 upregulated and 54 downregulated metabolites. The targeted metabolomics studies revealed abnormalities in the metabolism of glutamate and tryptophan. Enrichment analysis revealed that the differential metabolic pathways were mainly involved in the metabolism of glucose, amino acid and fatty acid. These findings suggested that certain metabolic biomarkers or metabolic biomarker panels might serve as a reference for the diagnosis of BD.
Collapse
Affiliation(s)
- Jin Chen
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China; Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China
| | - Nousayhah Amdanee
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China
| | - Xiaowei Zuo
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China
| | - Muxin Gong
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Yujing Yang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Hao Li
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Xiangrong Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China; Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China.
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China.
| |
Collapse
|
26
|
Yin B, Cai Y, Teng T, Wang X, Liu X, Li X, Wang J, Wu H, He Y, Ren F, Kou T, Zhu ZJ, Zhou X. Identifying plasma metabolic characteristics of major depressive disorder, bipolar disorder, and schizophrenia in adolescents. Transl Psychiatry 2024; 14:163. [PMID: 38531835 DOI: 10.1038/s41398-024-02886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are classified as major mental disorders and together account for the second-highest global disease burden, and half of these patients experience symptom onset in adolescence. Several studies have reported both similar and unique features regarding the risk factors and clinical symptoms of these three disorders. However, it is still unclear whether these disorders have similar or unique metabolic characteristics in adolescents. We conducted a metabolomics analysis of plasma samples from adolescent healthy controls (HCs) and patients with MDD, BD, and SCZ. We identified differentially expressed metabolites between patients and HCs. Based on the differentially expressed metabolites, correlation analysis, metabolic pathway analysis, and potential diagnostic biomarker identification were conducted for disorders and HCs. Our results showed significant changes in plasma metabolism between patients with these mental disorders and HCs; the most distinct changes were observed in SCZ patients. Moreover, the metabolic differences in BD patients shared features with those in both MDD and SCZ, although the BD metabolic profile was closer to that of MDD than to SCZ. Additionally, we identified the metabolites responsible for the similar and unique metabolic characteristics in multiple metabolic pathways. The similar significant differences among the three disorders were found in fatty acid, steroid-hormone, purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism. Interestingly, we found unique characteristics of significantly altered glycolysis, glycerophospholipid, and sphingolipid metabolism in SCZ; lysine, cysteine, and methionine metabolism in MDD and BD; and phenylalanine, tyrosine, and aspartate metabolism in SCZ and BD. Finally, we identified five panels of potential diagnostic biomarkers for MDD-HC, BD-HC, SCZ-HC, MDD-SCZ, and BD-SCZ comparisons. Our findings suggest that metabolic characteristics in plasma vary across psychiatric disorders and that critical metabolites provide new clues regarding molecular mechanisms in these three psychiatric disorders.
Collapse
Affiliation(s)
- Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Wang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tianzhang Kou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Xiao L, Wei Y, Yang H, Fan W, Jiang L, Ye Y, Qin Y, Wang X, Ma C, Liao L. Proteomic Characteristics of the Prefrontal Cortex and Hippocampus in Mice with Chronic Ketamine-Induced Anxiety and Cognitive Impairment. Neuroscience 2024; 541:23-34. [PMID: 38266908 DOI: 10.1016/j.neuroscience.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024]
Abstract
Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.
Collapse
Affiliation(s)
- Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying Wei
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hong Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linzhi Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongping Qin
- Clinical Pharmacology Laboratory, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China.
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Wu S, Hu H, Li Y, Ren Y. Exploring hub genes and crucial pathways linked to oxidative stress in bipolar disorder depressive episodes through bioinformatics analysis. Front Psychiatry 2024; 15:1323527. [PMID: 38510807 PMCID: PMC10950934 DOI: 10.3389/fpsyt.2024.1323527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Background Bipolar disorder (BD) is a complex and serious psychiatric condition primarily characterized by bipolar depression, with the underlying genetic determinants yet to be elucidated. There is a substantial body of literature linking psychiatric disorders, including BD, to oxidative stress (OS). Consequently, this study aims to assess the relationship between BD and OS by identifying key hub genes implicated in OS pathways. Methods We acquired gene microarray data from GSE5392 through the Gene Expression Omnibus (GEO). Our approach encompassed differential expression analysis, weighted gene co-expression network analysis (WGCNA), and Protein-Protein Interaction (PPI) Network analysis to pinpoint hub genes associated with BD. Subsequently, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to identify hub genes relevant to OS. To evaluate the diagnostic accuracy of these hub genes, we performed receiver operating characteristic curve (ROC) analysis on both GSE5388 and GSE5389 datasets. Furthermore, we conducted a study involving ten BD patients and ten healthy controls (HCs) who met the special criteria, assessing the expression levels of these hub genes in their peripheral blood mononuclear cells (PBMCs). Results We identified 411 down-regulated genes and 69 up-regulated genes for further scrutiny. Through WGCNA, we obtained 22 co-expression modules, with the sienna3 module displaying the strongest association with BD. By integrating differential analysis with genes linked to OS, we identified 44 common genes. Subsequent PPI Network and WGCNA analyses confirmed three hub genes as potential biomarkers for BD. Functional enrichment pathway analysis revealed their involvement in neuronal signal transduction, oxidative phosphorylation, and metabolic obstacle pathways. Using the Cytoscape plugin "ClueGo assay," we determined that a majority of these targets regulate neuronal synaptic plasticity. ROC curve analysis underscored the excellent diagnostic value of these three hub genes. Quantitative reverse transcription-PCR (RT-qPCR) results indicated significant changes in the expression of these hub genes in the PBMCs of BD patients compared to HCs. Conclusion We identified three hub genes (TAC1, MAP2K1, and MAP2K4) in BD associated with OS, potentially influencing the diagnosis and treatment of BD. Based on the GEO database, our study provides novel insights into the relationship between BD and OS, offering promising therapeutic targets.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyang Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yilin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yan Ren
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 PMCID: PMC10930936 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel;
| |
Collapse
|
30
|
Delgado-Sequera A, Garcia-Mompo C, Gonzalez-Pinto A, Hidalgo-Figueroa M, Berrocoso E. A Systematic Review of the Molecular and Cellular Alterations Induced by Cannabis That May Serve as Risk Factors for Bipolar Disorder. Int J Neuropsychopharmacol 2024; 27:pyae002. [PMID: 38175142 PMCID: PMC10863486 DOI: 10.1093/ijnp/pyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cannabis use is a risk factor of psychiatric illness, such as bipolar disorder type-I (BDI). Indeed, cannabis use strongly influences the onset and clinical course of BDI, although the biological mechanisms underlying this interaction remain unknown. Therefore, we have reviewed the biological mechanisms affected by cannabis use that may trigger BD. METHODS A systematic review was carried out of articles in which gene expression was studied in cannabis users or human-derived cells exposed to tetrahydrocannabinol (THC) or cannabidiol (CBD). A second systematic review was then performed to identify articles in which gene expression was studied in BDI samples, highlighting those that described alterations to the same molecular and cellular mechanisms affected by cannabis/THC/CBD. RESULTS The initial search identified 82 studies on cannabis and 962 on BDI. After removing duplicates and applying the inclusion/exclusion criteria, 9 studies into cannabis and 228 on BDI were retained. The molecular and cellular mechanisms altered by cannabis use or THC/CBD exposure were then identified, including neural development and function, cytoskeletal function, cell adhesion, mitochondrial biology, inflammatory related pathways, lipid metabolism, the endocannabinoid system, the hypocretin/orexin system, and apoptosis. Alterations to those activities were also described in 19 of 228 focused on BDI. CONCLUSIONS The biological mechanisms described in this study may be good candidates to the search for diagnostic biomarkers and therapeutic targets for BDI. Because cannabis use can trigger the onset of BD, further studies would be of interest to determine whether they are involved in the early development of the disorder, prompting early treatment.
Collapse
Affiliation(s)
- Alejandra Delgado-Sequera
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
| | - Clara Garcia-Mompo
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Ana Gonzalez-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Department of Psychiatry, Hospital Universitario de Alava, BIOARABA, UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Maria Hidalgo-Figueroa
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
- Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Esther Berrocoso
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
- Department of Neuroscience, Universidad de Cádiz, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
31
|
Ibanez A, Northoff G. Intrinsic timescales and predictive allostatic interoception in brain health and disease. Neurosci Biobehav Rev 2024; 157:105510. [PMID: 38104789 PMCID: PMC11184903 DOI: 10.1016/j.neubiorev.2023.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The cognitive neuroscience of brain diseases faces challenges in understanding the complex relationship between brain structure and function, the heterogeneity of brain phenotypes, and the lack of dimensional and transnosological explanations. This perspective offers a framework combining the predictive coding theory of allostatic interoceptive overload (PAIO) and the intrinsic neural timescales (INT) theory to provide a more dynamic understanding of brain health in psychiatry and neurology. PAIO integrates allostasis and interoception to assess the interaction between internal patterns and environmental stressors, while INT shows that different brain regions operate on different intrinsic timescales. The allostatic overload can be understood as a failure of INT, which involves a breakdown of proper temporal integration and segregation. This can lead to dimensional disbalances between exteroceptive/interoceptive inputs across brain and whole-body levels (cardiometabolic, cardiovascular, inflammatory, immune). This approach offers new insights, presenting novel perspectives on brain spatiotemporal hierarchies and interactions. By integrating these theories, the paper opens innovative paths for studying brain health dynamics, which can inform future research in brain health and disease.
Collapse
Affiliation(s)
- Agustin Ibanez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Trinity College Dublin, Dublin, Ireland.
| | - Georg Northoff
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, People's Republic of China; Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
32
|
Shen M, Sirois CL, Guo Y, Li M, Dong Q, Méndez-Albelo NM, Gao Y, Khullar S, Kissel L, Sandoval SO, Wolkoff NE, Huang SX, Xu Z, Bryan JE, Contractor AM, Korabelnikov T, Glass IA, Doherty D, Levine JE, Sousa AMM, Chang Q, Bhattacharyya A, Wang D, Werling DM, Zhao X. Species-specific FMRP regulation of RACK1 is critical for prenatal cortical development. Neuron 2023; 111:3988-4005.e11. [PMID: 37820724 PMCID: PMC10841112 DOI: 10.1016/j.neuron.2023.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.
Collapse
Affiliation(s)
- Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lee Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sabrina X Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jonathan E Bryan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya M Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ian A Glass
- Birth Defects Research Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Dan Doherty
- Birth Defects Research Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Jon E Levine
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Donna M Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
33
|
Santos R, Lokmane L, Ozdemir D, Traoré C, Agesilas A, Hakibilen C, Lenkei Z, Zala D. Local glycolysis fuels actomyosin contraction during axonal retraction. J Cell Biol 2023; 222:e202206133. [PMID: 37902728 PMCID: PMC10616508 DOI: 10.1083/jcb.202206133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
In response to repulsive cues, axonal growth cones can quickly retract. This requires the prompt activity of contractile actomyosin, which is formed by the non-muscle myosin II (NMII) bound to actin filaments. NMII is a molecular motor that provides the necessary mechanical force at the expense of ATP. Here, we report that this process is energetically coupled to glycolysis and is independent of cellular ATP levels. Induction of axonal retraction requires simultaneous generation of ATP by glycolysis, as shown by chemical inhibition and genetic knock-down of GAPDH. Co-immunoprecipitation and proximal-ligation assay showed that actomyosin associates with ATP-generating glycolytic enzymes and that this association is strongly enhanced during retraction. Using microfluidics, we confirmed that the energetic coupling between glycolysis and actomyosin necessary for axonal retraction is localized to the growth cone and near axonal shaft. These results indicate a tight coupling between on-demand energy production by glycolysis and energy consumption by actomyosin contraction suggesting a function of glycolysis in axonal guidance.
Collapse
Affiliation(s)
- Renata Santos
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Institut des Sciences Biologiques, Centre national de la recherche scientifique, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l’Ecole Normale Supérieure, École Normale Supérieure, Centre national de la recherche scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Dersu Ozdemir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Clément Traoré
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Annabelle Agesilas
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Coralie Hakibilen
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Diana Zala
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| |
Collapse
|
34
|
Peng K, Li Y, Adegboro AA, Wanggou S, Li X. Mood swings are causally associated with intracranial aneurysm subarachnoid hemorrhage: A Mendelian randomization study. Brain Behav 2023; 13:e3233. [PMID: 37632147 PMCID: PMC10636415 DOI: 10.1002/brb3.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Mood swings have been observed in patients with intracranial aneurysm (IA), but it is still unknown whether mood swings can affect IA. AIM To explore the causal association between mood swings or experiencing mood swings and IA through a two-sample Mendelian randomization (MR) study. METHODS Summary-level statistics of mood swings, experiencing mood swings, IA, aneurysm-associated subarachnoid hemorrhage (aSAH), and non-ruptured IA (uIA) were collected from the genome-wide association study. Two-sample MR and various sensitivity analyses were employed to explore the causal association between mood swings or experiencing mood swings and IA, or aSAH, or uIA. The inverse-variance weighted method was used as the primary method. RESULTS Genetically determined mood swings (odds ratio [OR] = 5.23, 95% confidence interval (95%CI): 1.65-16.64, p = .005) and experiencing mood swings (OR = 2.50, 95%CI: 1.37-4.57, p = .003) were causally associated with an increased risk of IA. Mood swings (OR = 5.67, 95%CI: 1.40-23.04, p = .015) and experiencing mood swings were causally associated with the risk of aSAH (OR = 2.91, 95%CI: 1.47-5.75, p = .002). Neither mood swings (OR = 1.95, 95%CI: .31-12.29, p = .478) nor experiencing mood swings (OR = 1.20, 95%CI: .48-3.03, p = .693) were associated with uIA. CONCLUSIONS Mood swings and experiencing mood swings increased the risk of IA and aSAH incidence. These results suggest that alleviating mood swings may reduce IA rupture incidence and aSAH incidence.
Collapse
Affiliation(s)
- Kang Peng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Yanwen Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Abraham Ayodeji Adegboro
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Siyi Wanggou
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Xuejun Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
35
|
Zucchini C, Serpe C, De Sanctis P, Ghezzo A, Visconti P, Posar A, Facchin F, Marini M, Abruzzo PM. TLDc Domain-Containing Genes in Autism Spectrum Disorder: New Players in the Oxidative Stress Response. Int J Mol Sci 2023; 24:15802. [PMID: 37958785 PMCID: PMC10647648 DOI: 10.3390/ijms242115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress (OS) plays a key role in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by deficits in social communication, restricted interests, and repetitive behaviors. Recent evidence suggests that the TLDc [Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic] domain is a highly conserved motif present in proteins that are important players in the OS response and in neuroprotection. Human proteins sharing the TLDc domain include OXR1, TLDC1, NCOA7, TBC1D24, and C20ORF118. This study was aimed at understanding whether TLDc domain-containing mRNAs together with specific microRNAs (200b-3p and 32-5p) and long noncoding RNAs (TUG1), known to target TLDc proteins, contributed to regulate the OS response in ASD. Data showed a significant increase in the levels of OXR1 and TLDC1 mRNAs in peripheral blood mononuclear cells (PBMCs) of ASD children compared to their neurotypically developing (NTD) counterparts, along with an increase in TUG1 mRNA expression levels, suggesting its possible role in the regulation of TLDc proteins. A positive correlation between the expression of some TLDc mRNAs and the Childhood Autism Rating Scale (CARS) global score as well as inflammatory gene expression was found. In conclusion, our data suggest a novel biological pathway in the OS response of ASD subjects that deserves further exploration.
Collapse
Affiliation(s)
- Cinzia Zucchini
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Carmela Serpe
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Paola De Sanctis
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Alessandro Ghezzo
- Grioni Center-Danelli Foundation, Largo Stefano ed Angela Danelli 1, 26900 Lodi, Italy;
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Via Altura 3, 40139 Bologna, Italy; (P.V.); (A.P.)
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Via Altura 3, 40139 Bologna, Italy; (P.V.); (A.P.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Marina Marini
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| |
Collapse
|
36
|
You M, Li S, Yan S, Yao D, Wang T, Wang Y. Exposure to nonylphenol in early life causes behavioural deficits related with autism spectrum disorders in rats. ENVIRONMENT INTERNATIONAL 2023; 180:108228. [PMID: 37802007 DOI: 10.1016/j.envint.2023.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Early-life exposure to environmental endocrine disruptors (EDCs) is a potential risk factor for autism spectrum disorder (ASD). Exposure to nonylphenol (NP), a typical EDC, is known to cause some long-term behavioural abnormalities. Moreover, these abnormal behaviours are the most frequent psychiatric co-morbidities in ASD. However, the direct evidence for the link between NP exposure in early life and ASD-like behavioural phenotypes is still missing. In the present study, typical ASD-like behaviours induced by valproic acid treatment were considered as a positive behavioural control. We investigated impacts on social behaviours following early-life exposure to NP, and explored effects of this exposure on neuronal dendritic spines, mitochondria function, oxidative stress, and endoplasmic reticulum (ER) stress. Furthermore, primary cultured rat neurons were employed as in vitro model to evaluate changes in dendritic spine caused by exposure to NP, and oxidative stress and ER stress were specifically modulated to further explore their roles in these changes. Our results indicated rats exposed to NP in early life showed mild ASD-like behaviours. Moreover, we also found the activation of ER stress triggered by oxidative stress may contribute to dendritic spine decrease and synaptic dysfunction, which may underlie neurobehavioural abnormalities induced by early-life exposure to NP.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Tingyu Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
37
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
38
|
Newell AJ, Jima D, Reading B, Patisaul HB. Machine learning reveals common transcriptomic signatures across rat brain and placenta following developmental organophosphate ester exposure. Toxicol Sci 2023; 195:103-122. [PMID: 37399109 PMCID: PMC10695431 DOI: 10.1093/toxsci/kfad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
Toxicogenomics is a critical area of inquiry for hazard identification and to identify both mechanisms of action and potential markers of exposure to toxic compounds. However, data generated by these experiments are highly dimensional and present challenges to standard statistical approaches, requiring strict correction for multiple comparisons. This stringency often fails to detect meaningful changes to low expression genes and/or eliminate genes with small but consistent changes particularly in tissues where slight changes in expression can have important functional differences, such as brain. Machine learning offers an alternative analytical approach for "omics" data that effectively sidesteps the challenges of analyzing highly dimensional data. Using 3 rat RNA transcriptome sets, we utilized an ensemble machine learning approach to predict developmental exposure to a mixture of organophosphate esters (OPEs) in brain (newborn cortex and day 10 hippocampus) and late gestation placenta of male and female rats, and identified genes that informed predictor performance. OPE exposure had sex specific effects on hippocampal transcriptome, and significantly impacted genes associated with mitochondrial transcriptional regulation and cation transport in females, including voltage-gated potassium and calcium channels and subunits. To establish if this holds for other tissues, RNAseq data from cortex and placenta, both previously published and analyzed via a more traditional pipeline, were reanalyzed with the ensemble machine learning methodology. Significant enrichment for pathways of oxidative phosphorylation and electron transport chain was found, suggesting a transcriptomic signature of OPE exposure impacting mitochondrial metabolism across tissue types and developmental epoch. Here we show how machine learning can complement more traditional analytical approaches to identify vulnerable "signature" pathways disrupted by chemical exposures and biomarkers of exposure.
Collapse
Affiliation(s)
- Andrew J Newell
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Dereje Jima
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin Reading
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
39
|
Wei R, Yehia L, Ni Y, Eng C. The mitochondrial genome as a modifier of autism versus cancer phenotypes in PTEN hamartoma tumor syndrome. HGG ADVANCES 2023; 4:100199. [PMID: 37216009 PMCID: PMC10193119 DOI: 10.1016/j.xhgg.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer and autism spectrum disorder/developmental delay (ASD/DD) are two common clinical phenotypes in individuals with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS). Burgeoning studies have shown that genomic and metabolomic factors may act as modifiers of ASD/DD versus cancer in PHTS. Recently, we showed copy number variations to be associated with ASD/DD versus cancer in these PHTS individuals. We also found that mitochondrial complex II variants occurring in 10% of PHTS individuals modify breast cancer risk and thyroid cancer histology. These studies suggest that mitochondrial pathways could act as important factors in PHTS phenotype development. However, the mitochondrial genome (mtDNA) has never been systematically studied in PHTS. We therefore investigated the mtDNA landscape extracted from whole-genome sequencing data from 498 PHTS individuals, including 164 with ASD/DD (PHTS-onlyASD/DD), 184 with cancer (PHTS-onlyCancer), 132 with neither ASD/DD nor cancer (PHTS-neither), and 18 with both ASD/DD and cancer (PHTS-ASDCancer). We demonstrate that PHTS-onlyASD/DD has significantly higher mtDNA copy number than PHTS-onlyCancer group (p = 9.2 × 10-3 in all samples; p = 4.2 × 10-3 in the H haplogroup). PHTS-neither group has significantly higher mtDNA variant burden than PHTS-ASDCancer group (p = 4.6 × 10-2); the PHTS-noCancer group (PHTS-onlyASD/DD and PHTS-neither groups) also shows higher variant burden than the PHTS-Cancer group (PHTS-onlyCancer and PHTS-ASD/Cancer groups; p = 3.3 × 10-2). Our study implicates the mtDNA as a modifier of ASD/DD versus cancer phenotype development in PHTS.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Miskowiak KW, Simonsen AH, Meyer M, Poulsen HE, Wilkan M, Forman J, Hasselbalch SG, Kessing LV, Knorr U. Cerebrospinal fluid erythropoietin, oxidative stress, and cognitive functions in patients with bipolar disorder and healthy control participants: A longitudinal case-control study. J Psychiatr Res 2023; 163:240-246. [PMID: 37244061 DOI: 10.1016/j.jpsychires.2023.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Persistent cognitive impairments occur in a large proportion of patients with bipolar disorder (BD) but their underlying pathological cellular processes are unclear. The aims of this longitudinal study of BD and healthy control (HC) participants were to investigate (i) the association of brain erythropoietin (EPO) and oxidative stress with cognitive functions and (ii) the changes in brain EPO during and after affective episodes. Participants underwent neurocognitive testing, lumbar punctures for cerebrospinal fluid (CSF) sampling and provided urine spot tests at baseline (all), after an affective episode (patients) and after one year (all). EPO was assayed in the CSF and oxidative stress metabolites related to RNA and DNA damage (8-dihydroguanosine [8-oxo-Guo], 8-hydroxy-2-deoxyguanosine [8-oxo-dG]) were assayed in the CSF and spot urine. Data was available for analyses for 60 BD and 37 HC participants. In unadjusted primary analyses, verbal memory decreased with increasing concentrations of CSF EPO and oxidative stress. In unadjusted explorative analyses, poorer verbal memory and psychomotor speed were associated with higher levels of oxidative stress. However, no associations between cognitive functions and CSF levels of EPO or oxidative stress were observed after adjustment for multiple testing. CSF EPO concentrations were unchanged during and after affective episodes. While CSF EPO correlated negatively with CSF DNA damage marker 8-oxo-dG, this association rendered non-significant after adjusting for multiple testing. In conclusion, EPO and oxidative stress do not seem to be robustly related to cognitive status in BD. Further insight into the cellular processes involved in cognitive impairments in BD is necessary to pave the way for novel therapeutic strategies to improve patients' cognitive outcomes.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Anja H Simonsen
- Department of Neurology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Meyer
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Enghusen Poulsen
- Department of Endocrinology I, Bispebjerg Frederiksberg Hospital, Frederiksberg, Denmark; Department of Cardiology, Nordsjællands Hospital Hillerød, Hillerød, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mira Wilkan
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Julie Forman
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars V Kessing
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Knorr
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Hossain T, Eckmann DM. Hyperoxic exposure alters intracellular bioenergetics distribution in human pulmonary cells. Life Sci 2023:121880. [PMID: 37356749 DOI: 10.1016/j.lfs.2023.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIMS Pulmonary oxygen toxicity is caused by exposure to a high fraction of inspired oxygen, which damages multiple cell types within the lung. The cellular basis for pulmonary oxygen toxicity includes mitochondrial dysfunction. The aim of this study was to identify the effects of hyperoxic exposure on mitochondrial bioenergetic and dynamic functions in pulmonary cells. MAIN METHODS Mitochondrial respiration, inner membrane potential, dynamics (including motility), and distribution of mitochondrial bioenergetic capacity in two intracellular regions were quantified using cultured human lung microvascular endothelial cells, human pulmonary artery endothelial cells and A549 cells. Hyperoxic (95 % O2) exposures lasted 24, 48 and 72 h, durations relevant to mechanical ventilation in intensive care settings. KEY FINDINGS Mitochondrial motility was altered following all hyperoxic exposures utilized in experiments. Inhomogeneities in inner membrane potential and respiration parameters were present in each cell type following hyperoxia. The partitioning of ATP-linked respiration was also hyperoxia-duration and cell type dependent. Hyperoxic exposure lasting 48 h or longer provoked the largest alterations in mitochondrial motility and the greatest decreases in ATP-linked respiration, with a suggestion of decreases in respiration complex protein levels. SIGNIFICANCE Hyperoxic exposures of different durations produce intracellular inhomogeneities in mitochondrial dynamics and bioenergetics in pulmonary cells. Oxygen therapy is utilized commonly in clinical care and can induce undesirable decrements in bioenergy function needed to maintain pulmonary cell function and viability. There may be adjunctive or prophylactic measures that can be employed during hyperoxic exposures to prevent the mitochondrial dysfunction that signals the presence of oxygen toxcity.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH 43210, United States of America
| | - David M Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH 43210, United States of America; Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
42
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
43
|
Zhu W, Zhang W, Yang F, Cai M, Li X, Xiang Y, Xiang J, Yang Y, Cai D. Role of PGC-1α mediated synaptic plasticity, mitochondrial function, and neuroinflammation in the antidepressant effect of Zi-Shui-Qing-Gan-Yin. Front Neurol 2023; 14:1108494. [PMID: 37251232 PMCID: PMC10213669 DOI: 10.3389/fneur.2023.1108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/15/2023] [Indexed: 05/31/2023] Open
Abstract
Depression is the most prevalent psychiatric disorder, which needs deeper mechanism research studies and effective therapy. Zi-Shui-Qing-Gan-Yin (ZSQGY) is a traditional Chinese medicine decoction that has been widely used in China in the treatment of depressive symptoms. The aim of the study was to examine the anti-depressive effects of ZSQGY and the possible mechanism of action in the monosodium glutamate (MSG)-induced depressive model and the corticosterone (CORT)-induced PC12 cell model. Liquid chromatography-mass spectrometry (LC-MS) was performed to determine the major compounds in the water extract of ZSQGY. The depressive behaviors were evaluated by the field swimming test (FST), the sucrose preference test (SPT), and the open field test (OFT). Golgi staining and transmission electron microscopy (TEM) were performed to display the alterations of synaptic ultrastructure. The mitochondrion function and inflammatory factors were also quantified. The changes in peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) expression were evaluated. The results of this study demonstrated that ZSQGY significantly improved depressive behaviors. ZSQGY also reversed the changes in synaptic plasticity, improved mitochondrion function, and reduced the levels of inflammatory factors. The neuroprotective effects were accompanied by the increased expression of PGC-1α. However, the beneficial changes were reversed after the inhibition of PGC-1α. These results indicated that ZSQGY effectively could improve depressive behaviors via the mechanisms that regulate synaptic structural plasticity, improve mitochondrion function, and alleviate neuroinflammation, which could, or partly, attribute to the regulation of PGC-1α.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yijin Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yunke Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
44
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
45
|
Sun D, Deng J, Wang Y, Xie J, Li X, Li X, Wang X, Zhou F, Qin S, Liu X. SAG, a sonic hedgehog signaling agonist, alleviates anxiety behavior in high-fat diet-fed mice. Brain Res Bull 2023; 195:25-36. [PMID: 36736922 DOI: 10.1016/j.brainresbull.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Anxiety is a prevalent and disabling psychiatric disorder. Mitochondrial dysfunction due to the high-fat diet (HFD) was regarded as a risk factor in the pathogenesis of anxiety. The Sonic hedgehog (SHH) pathway was known to improve mitochondrial dysfunction through antioxidant and anti-apoptotic effects on some neurological diseases. Nonetheless, its effect on anxiety has not been well studied. In this study, we aimed to explore whether SHH signaling pathway plays a protective role in anxiety by regulating mitochondrial homeostasis. SAG, a typical SHH signaling agonist, was administered intraperitoneally in HFD-fed mice. HFD-induced anxiety-like behavior in mice was confirmed using the open field and elevated plus maze tests. Immunofluorescence staining and Western blotting assays showed that the SHH signaling was downregulated in the prefrontal cortex neurons from HFD-fed mice. Electron microscopy results showed the mitochondria in the prefrontal cortex of HFD-fed mice were fragmented, which appeared small and spherical, and the area, perimeter and circularity of mitochondria were decreased. Mitofusin2 (Mfn2) and dynamin-related protein 1 (Drp1) were the key proteins involved in mitochondrial division and fusion. SAG treatment could rectify the imbalanced expression of Mfn2 and Drp1 in the prefrontal cortex of the HFD-fed mice, and alleviate the mitochondrial fragmentation. Furthermore, SAG decreased anxiety-like behavior in the HFD-fed mice. These findings suggested that SHH signal was neuroprotective in obesity and SAG relieved anxiety-like behavior through reducing mitochondrial fragmentation.
Collapse
Affiliation(s)
- Dexu Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiaxin Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinyu Xie
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
46
|
Li Z, Sun X, He J, Kong D, Wang J, Wang L. Identification of a Hypoxia-Related Signature as Candidate Detector for Schizophrenia Based on Genome-Wide Gene Expression. Hum Hered 2023; 88:18-28. [PMID: 36913932 PMCID: PMC10124753 DOI: 10.1159/000529902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
INTRODUCTION Schizophrenia (SCZ), a severe neuropsychiatric disorder with high genetic susceptibility, has high rates of misdiagnosis due to the unavoidably subjective factors and heterogeneous clinical presentations. Hypoxia has been identified as an importantly risk factor that participates in the development of SCZ. Therefore, development of a hypoxia-related biomarker for SCZ diagnosis is promising. Therefore, we dedicated to develop a biomarker that could contribute to distinguishing healthy controls and SCZ patients. METHODS GSE17612, GSE21935, and GSE53987 datasets, consisting of 97 control samples and 99 SCZ samples, were involved in our study. The hypoxia score was calculated based on the single-sample gene-set enrichment analysis using the hypoxia-related differentially expressed genes to quantify the expression levels of these genes for each SCZ patient. Patients in high-score groups were defined if their hypoxia score was in the upper half of all hypoxia scores and patients in low-score groups if their hypoxia score was in the lower half. GSEA was applied to detect the functional pathway of these differently expressed genes. CIBERSORT algorithm was utilized to evaluate the tumor-infiltrating immune cells of SCZ patients. RESULTS In this study, we developed and validated a biomarker consisting of 12 hypoxia-related genes that could distinguish healthy controls and SCZ patients robustly. We found that the metabolism reprogramming might be activated in the patient with high hypoxia score. Finally, CIBERSORT analysis illustrated that lower composition of naive B cells and higher composition of memory B cells might be observed in low-score groups of SCZ patients. CONCLUSION These findings revealed that the hypoxia-related signature was acceptable as a detector for SCZ, providing further insight into effective diagnosis and treatment strategies for SCZ.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Xinyu Sun
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Jia He
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Dongyan Kong
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Jinyi Wang
- Department of Psychiatry, Quanzhou Third Hospital, Quanzhou, China
| | - Lili Wang
- Department of Psychiatry, Quanzhou Third Hospital, Quanzhou, China
| |
Collapse
|
47
|
Nano-hesperetin attenuates ketamine-induced schizophrenia-like symptoms in mice: participation of antioxidant parameters. Psychopharmacology (Berl) 2023; 240:1063-1074. [PMID: 36879073 DOI: 10.1007/s00213-023-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Antioxidant natural herb hesperetin (Hst) offers powerful medicinal properties. Despite having noticeable antioxidant properties, it has limited absorption, which is a major pharmacological obstacle. OBJECTIVES The goal of the current investigation was to determine if Hst and nano-Hst might protect mice against oxidative stress and schizophrenia (SCZ)-like behaviors brought on by ketamine (KET). METHODS Seven treatment groups (n=7) were created for the animals. For 10 days, they received distilled water or KET (10 mg/kg) intraperitoneally (i.p). From the 11th to the 40th day, they received daily oral administration of Hst and nano-Hst (10, 20 mg/kg) or vehicle. With the use of the forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), SCZ-like behaviors were evaluated. Malondialdehyde (MDA) and glutathione levels and antioxidant enzyme activities were assessed in the cerebral cortex. RESULTS Our findings displayed that behavioral disorders induced by KET would be improved by nano-Hst treated. MDA levels were much lower after treatment with nano-Hst, and brain antioxidant levels and activities were noticeably higher. The mice treated with nano-Hst had improved outcomes in the behavioral and biochemical tests when compared to the Hst group. CONCLUSIONS Our study's findings showed that nano-Hst had a stronger neuroprotective impact than Hst. In cerebral cortex tissues, nano-Hst treatment dramatically reduced KET-induced (SCZ)-like behavior and oxidative stress indicators. As a result, nano-Hst may have more therapeutic potential and may be effective in treating behavioral impairments and oxidative damage brought on by KET.
Collapse
|
48
|
Li H, Li H, Zhu Z, Xiong X, Huang Y, Feng Y, Li Z, Wu K, Wu F. Association of serum homocysteine levels with intestinal flora and cognitive function in schizophrenia. J Psychiatr Res 2023; 159:258-265. [PMID: 36773527 DOI: 10.1016/j.jpsychires.2023.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Some studies have indicated that elevated homocysteine (Hcy) levels and intestinal flora may be involved in schizophrenia (SZ) cognition pathophysiology. This study was the first to investigate the association among Hcy, intestinal flora and schizophrenia cognition. Here, 140 individuals were divided into two groups: SZ patients (N = 68) and healthy controls (HCs, N = 72). Participant data on serum Hcy levels, intestinal flora and cognitive function evaluation using the MATRICS Consensus Cognitive Battery (MCCB) were collected. Clinical symptoms of patients were evaluated using the Positive and Negative Syndrome Scale. Serum Hcy levels and the incidence of hyperhomocysteinaemia were considerably increased in SZ patients compared with HCs. Hcy levels were significantly negatively associated with verbal learning index scores (r = -0.425, p < 0.001) but positively associated with Eubacterium (r = 0.32, p = 0.007), Lactobacillus (r = 0.32, p = 0.008), Corynebacterium (r = 0.26, p = 0.035), Mogibacterium (r = 0.31, p = 0.01), and Bulleidia (r = 0.31, p = 0.01) in SZ patients. Our findings suggest that serum Hcy levels are associated with cognitive function and intestinal flora in SZ patients. However, the mechanism of the interaction between Hcy and intestinal flora and its effects on cognitive function in SZ patients requires further investigation.
Collapse
Affiliation(s)
- Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqiu Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhimin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Xiong
- The Second People's Hospital of Guizhou Province, Guiyang City, Guizhou Province, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangdong Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
49
|
Jeon S, Park JE, Do YH, Santos R, Lee SM, Kim BN, Cheong JH, Kim Y. Atomoxetine and Fluoxetine Activate AMPK-ACC-CPT1 Pathway in Human SH-SY5Y and U-87 MG Cells. Psychiatry Investig 2023; 20:212-219. [PMID: 36990664 PMCID: PMC10064201 DOI: 10.30773/pi.2022.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/04/2022] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE Atomoxetine and fluoxetine are psychopharmacologic agents associated with loss of appetite and weight. Adenosine monophosphate-activated protein kinase (AMPK) is the cellular energy sensor that regulate metabolism and energy, being activated by fasting and inhibited by feeding in the hypothalamus. METHODS Human brain cell lines (SH-SY5Y and U-87 MG cells) were used to study the outcome of atomoxetine and fluoxetine treatment in the activity of AMPK-acetyl-CoA carboxylase (ACC)- carnitine palmitoyl transferase 1 (CPT1) pathway and upstream regulation by calcium/calmodulin-dependent kinase kinase β (CaMKKβ) using immunoblotting and CPT1 enzymatic activity measures. RESULTS Phosphorylation of AMPK and ACC increased significantly after atomoxetine and fluoxetine treatment in the first 30-60 minutes of treatment in the two cell lines. Activation of AMPK and inhibition of ACC was associated with an increase by 5-fold of mitochondrial CPT1 activity. Although the neuronal isoform CPT1C could be detected by immunoblotting, activity was not changed by the drug treatments. In addition, the increase in phospho-AMPK and phospho-ACC expression induced by atomoxetine was abolished by treatment with STO-609, a CaMKKβ inhibitor, indicating that AMPK-ACC-CPT1 pathway is activated through CaMKKβ phosphorylation. CONCLUSION These findings indicate that at the cellular level atomoxetine and fluoxetine treatments may activate AMPK-ACC-CPT1 pathways through CaMKKβ in human SH-SY5Y and U-87 MG cells.
Collapse
Affiliation(s)
- Songhee Jeon
- Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Eun Park
- Department of Otorhinolaryngology Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Young Ho Do
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Renata Santos
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Laboratory of Dynamics of Neuronal Structure in Health and Disease, Université Paris Cité, Paris, France
| | - Seong Mi Lee
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
- Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang, Republic of Korea
- Department of Neuropsychiatry, Dongguk University School of Medicine, Goyang, Republic of Korea
| |
Collapse
|
50
|
Golubnitschaja O. What Is the Routine Mitochondrial Health Check-Up Good For? A Holistic Approach in the Framework of 3P Medicine. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:19-44. [DOI: 10.1007/978-3-031-34884-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|