1
|
Ho CM, Feng W, Li X, Ngien SK, Yu X, Song F, Yang F, Liao H. Microplastic distribution and its implications for human health through marine environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125427. [PMID: 40252426 DOI: 10.1016/j.jenvman.2025.125427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Microplastics are pervasive pollutants in the ocean, threatening ecosystems and human health through bioaccumulation and toxicological effects. This review synthesizes recent findings on microplastic distribution, trophic transfer, and human health impacts. Key findings indicate that microplastic abundance is highest in the Indian and Pacific Oceans, particularly in seawater and sediment. Morphologically, fibers and fragments dominate, with polypropylene, polyethylene, and polyester being the most prevalent polymers. Smaller particles (<1 mm) undergo long-range transport via ocean currents, while biofouling accelerates vertical sinking. Trophic transfer studies confirm microplastic ingestion across marine food webs. Human exposure is associated with seafood consumption, inhalation of airborne particles, and potential dermal contact, particularly in marine environments. These exposures can lead to adverse health effects, including inflammation, organ damage, respiratory issues, oxidative stress, and metabolic disruptions. Finally, this review explores potential strategies for minimizing human exposure to microplastic pollution in marine environments, paving the way for further research in this critical area.
Collapse
Affiliation(s)
- Chia Min Ho
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Xiaofeng Li
- China Hebei Construction and Geotechnical Investigation Group Ltd., Shijiazhuang, 050227, China
| | - Su Kong Ngien
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300, Pahang, Malaysia
| | - Xuezheng Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Gogoi J, Pawar KI, Sivakumar K, Bhatnagar A, Suma K, Ann KJ, Pottabathini S, Kruparani SP, Sankaranarayanan R. A metal ion mediated functional dichotomy encodes plasticity during translation quality control. Nat Commun 2025; 16:3625. [PMID: 40240361 PMCID: PMC12003907 DOI: 10.1038/s41467-025-58787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn2+ binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.e., the metal ion is ubiquitous in one and inhibitor for the other. The universally conserved Zn2+ in AlaRS-Ed protects its proofreading activity from reactive oxygen species (ROS) to maintain high fidelity Ala-codons translation, necessary for cell survival. On the other hand, mistranslation of Thr-codons is well tolerated by the cells, thereby allowing for a ROS-based modulation of ThrRS-Ed's activity. A single residue rooted over ~3.5 billion years of evolution has been shown to be primarily responsible for the functional divergence. The study presents a remarkable example of how protein quality control is integrated with redox signalling through leveraging the tunability of metal binding sites from the time of last universal common ancestor (LUCA).
Collapse
Affiliation(s)
- Jotin Gogoi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Komal Ishwar Pawar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Koushick Sivakumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akshay Bhatnagar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Katta Suma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Kezia J Ann
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | | | - Shobha P Kruparani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Utzman PH, Mays VP, Miller BC, Fairbanks MC, Brazelton WJ, Horvath MP. Metagenome mining and functional analysis reveal oxidized guanine DNA repair at the Lost City Hydrothermal Field. PLoS One 2024; 19:e0284642. [PMID: 38718041 PMCID: PMC11078426 DOI: 10.1371/journal.pone.0284642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2 and low levels of O2 in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome-assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2 levels rose following the great oxidation event.
Collapse
Affiliation(s)
- Payton H. Utzman
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Vincent P. Mays
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Briggs C. Miller
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary C. Fairbanks
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Martin P. Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
4
|
Wu X, Zhu J, He H, Konhauser KO, Li Y. Comments on "was hydrogen peroxide present before the arrival of oxygenic photosynthesis? The important role of iron(II) in the archean ocean". Redox Biol 2024; 71:103111. [PMID: 38521703 PMCID: PMC11313173 DOI: 10.1016/j.redox.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024] Open
Abstract
Recent research has hypothesized that hydrogen peroxide (H2O2) may have emerged from abiotic geochemical processes during the Archean eon (4.0-2.5 Ga), stimulating the evolution of an enzymatic antioxidant system in early life. This eventually led to the evolution of cyanobacteria, and in turn, the accumulation of oxygen on Earth. In the latest issue of Redox Biology, Koppenol and Sies (vol. 29, no. 103012, 2024) argued against this hypothesis and suggested instead that early organisms would not have been exposed to H2O2 due to its short half-life in the ferruginous oceans of the Archean. We find these arguments to be factually incomplete because they do not consider that freshwater or some coastal marine environments during the Archean could indeed have led to H2O2 generation and accumulation. In these environments, abiotic oxidants could have interacted with early life, thus steering its evolutionary course.
Collapse
Affiliation(s)
- Xiao Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
5
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Koppenol WH, Sies H. Was hydrogen peroxide present before the arrival of oxygenic photosynthesis? The important role of iron(II) in the Archean ocean. Redox Biol 2024; 69:103012. [PMID: 38183797 PMCID: PMC10808959 DOI: 10.1016/j.redox.2023.103012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024] Open
Abstract
We address the chemical/biological history of H2O2 back at the times of the Archean eon (2.5-3.9 billion years ago (Gya)). During the Archean eon the pO2 was million-fold lower than the present pO2, starting to increase gradually from 2.3 until 0.6 Gya, when it reached ca. 0.2 bar. The observation that some anaerobic organisms can defend themselves against O2 has led to the view that early organisms could do the same before oxygenic photosynthesis had developed at about 3 Gya. This would require the anaerobic generation of H2O2, and here we examine the various mechanisms which were suggested in the literature for this. Given the concentration of Fe2+ at 20-200 μM in the Archean ocean, the estimated half-life of H2O2 is ca. 0.7 s. The oceanic H2O2 concentration was practically zero. We conclude that early organisms were not exposed to H2O2 before the arrival of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Willem H Koppenol
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zürich, Switzerland.
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
7
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
8
|
Gull M, Feng T, Smith B, Calcul L, Pasek MA. Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents. Life (Basel) 2023; 13:2134. [PMID: 38004274 PMCID: PMC10672063 DOI: 10.3390/life13112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Reduced-oxidation-state phosphorus (reduced P, hereafter) compounds were likely available on the early Earth via meteorites or through various geologic processes. Due to their reactivity and high solubility, these compounds could have played a significant role in the origin of various organophosphorus compounds of biochemical significance. In the present work, we study the reactions between reduced P compounds and their oxidation products, with the three nucleosides (uridine, adenosine, and cytidine), with organic alcohols (glycerol and ethanolamine), and with the tertiary ammonium organic compound, choline chloride. These reactions were studied in the non-aqueous solvent formamide and in a semi-aqueous solvent comprised of urea: ammonium formate: water (UAFW, hereafter) at temperatures of 55-68 °C. The inorganic P compounds generated through Fenton chemistry readily dissolve in the non-aqueous and semi-aqueous solvents and react with organics to form organophosphites and organophosphates, including those which are identified as phosphate diesters. This dual approach (1) use of non-aqueous and semi-aqueous solvents and (2) use of a reactive inorganic P source to promote phosphorylation and phosphonylation reactions of organics readily promoted anhydrous chemistry and condensation reactions, without requiring any additive, catalyst, or other promoting agent under mild heating conditions. We also present a comparative study of the release of P from various prebiotically relevant phosphate minerals and phosphite salts (e.g., vivianite, apatite, and phosphites of iron and calcium) into formamide and UAFW. These results have direct implications for the origin of biological P compounds from non-aqueous solvents of prebiotic provenance.
Collapse
Affiliation(s)
- Maheen Gull
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave. NES 204, Tampa, FL 33584, USA; (T.F.); (M.A.P.)
| | - Tian Feng
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave. NES 204, Tampa, FL 33584, USA; (T.F.); (M.A.P.)
| | - Benjamin Smith
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL 33620, USA; (L.C.); (B.S.)
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL 33620, USA; (L.C.); (B.S.)
| | - Matthew A. Pasek
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave. NES 204, Tampa, FL 33584, USA; (T.F.); (M.A.P.)
| |
Collapse
|
9
|
Pirasteh-Anosheh H, Samadi M, Kazemeini SA, Ozturk M, Ludwiczak A, Piernik A. ROS Homeostasis and Antioxidants in the Halophytic Plants and Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:3023. [PMID: 37687270 PMCID: PMC10490260 DOI: 10.3390/plants12173023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023]
Abstract
Reactive oxygen species (ROS) are excited or partially reduced forms of atmospheric oxygen, which are continuously produced during aerobic metabolism like many physiochemical processes operating throughout seed life. Previously, it was believed that ROS are merely cytotoxic molecules, however, now it has been established that they perform numerous beneficial functions in plants including many critical roles in seed physiology. ROS facilitate seed germination via cell wall loosening, endosperm weakening, signaling, and decreasing abscisic acid (ABA) levels. Most of the existing knowledge about ROS homeostasis and functions is based on the seeds of common plants or model ones. There is little information about the role of ROS in the germination process of halophyte seeds. There are several definitions for halophytic plants, however, we believed "halophytes are plants that can grow in very saline environment and complete their life cycle by adopting various phenological, morphological and physiological mechanisms at canopy, plant, organelle and molecular scales". Furthermore, mechanisms underlying ROS functions such as downstream targets, cross-talk with other molecules, and alternative routes are still obscure. The primary objective of this review is to decipher the mechanisms of ROS homeostasis in halophytes and dry seeds, as well as ROS flux in germinating seeds of halophytes.
Collapse
Affiliation(s)
- Hadi Pirasteh-Anosheh
- National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd 8917357676, Iran
- Natural Resources Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz 7155863511, Iran
| | - Maryam Samadi
- Department of Plant Production and Genetics, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Seyed Abdolreza Kazemeini
- Department of Plant Production and Genetics, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir 35100, Turkey;
| | - Agnieszka Ludwiczak
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (A.L.); (A.P.)
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (A.L.); (A.P.)
| |
Collapse
|
10
|
Hewitt OH, Degnan SM. Antioxidant enzymes that target hydrogen peroxide are conserved across the animal kingdom, from sponges to mammals. Sci Rep 2023; 13:2510. [PMID: 36781921 PMCID: PMC9925728 DOI: 10.1038/s41598-023-29304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Oxygen is the sustenance of aerobic life and yet is highly toxic. In early life, antioxidants functioned solely to defend against toxic effects of reactive oxygen species (ROS). Later, as aerobic metabolisms evolved, ROS became essential for signalling. Thus, antioxidants are multifunctional and must detoxify, but also permit ROS signalling for vital cellular processes. Here we conduct metazoan-wide genomic assessments of three enzymatic antioxidant families that target the predominant ROS signaller, hydrogen peroxide: namely, monofunctional catalases (CAT), peroxiredoxins (PRX), and glutathione peroxidases (GPX). We reveal that the two most evolutionary ancient families, CAT and PRX, exhibit metazoan-wide conservation. In the basal animal lineage, sponges (phylum Porifera), we find all three antioxidant families, but with GPX least abundant. Poriferan CATs are distinct from bilaterian CATs, but the evolutionary divergence is small. Amongst PRXs, subfamily PRX6 is the most conserved, whilst subfamily AhpC-PRX1 is the largest; PRX4 is the only core member conserved from sponges to mammals and may represent the ancestral animal AhpC-PRX1. Conversely, for GPX, the most recent family to arise, only the cysteine-dependent subfamily GPX7 is conserved across metazoans, and common across Porifera. Our analyses illustrate that the fundamental functions of antioxidants have resulted in gene conservation throughout the animal kingdom.
Collapse
Affiliation(s)
- Olivia H Hewitt
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sandie M Degnan
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
11
|
Organophosphorus Compound Formation Through the Oxidation of Reduced Oxidation State Phosphorus Compounds on the Hadean Earth. J Mol Evol 2023; 91:60-75. [PMID: 36576533 DOI: 10.1007/s00239-022-10086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Reduced oxidation state phosphorus compounds may have been brought to the early Earth via meteorites or could have formed through geologic processes. These compounds could have played a role in the origin of biological phosphorus (P, hereafter) compounds. Reduced oxidation state P compounds are generally more soluble in water and are more reactive than orthophosphate and its associated minerals. However, to date no facile routes to generate C-O-P type compounds using reduced oxidation state P compounds have been reported under prebiotic conditions. In this study, we investigate the reactions between reduced oxidation state P compounds-and their oxidized products generated via Fenton reactions-with the nucleosides uridine and adenosine. The inorganic P compounds generated via Fenton chemistry readily react with nucleosides to produce organophosphites and organophosphates, including phosphate diesters via one-pot syntheses. The reactions were facilitated by NH4+ ions and urea as a condensation agent. We also present the results of the plausible stability of the organic compounds such as adenosine in an environment containing an abundance of H2O2. Such results have direct implications on finding organic compounds in Martian environments and other rocky planets (including early Earth) that were richer in H2O2 than O2. Finally, we also suggest a route for the sink of these inorganic P compounds, as a part of a plausible natural P cycle and show the possible formation of secondary phosphate minerals such as struvite and brushite on the early Earth.
Collapse
|
12
|
Valenti R, Jabłońska J, Tawfik DS. Characterization of ancestral Fe/Mn superoxide dismutases indicates their cambialistic origin. Protein Sci 2022; 31:e4423. [PMID: 36173172 PMCID: PMC9490801 DOI: 10.1002/pro.4423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Superoxide dismutases (SODs) are critical metalloenzymes mitigating the damages of the modern oxygenated world. However, the emergence of one family of SODs, the Fe/Mn SOD, has been recurrently proposed to predate the great oxygenation event (GOE). This ancient family lacks metal binding selectivity, but displays strong catalytic selectivity. Therefore, some homologues would only be active when bound to Fe or Mn, although others, dubbed cambialistic, would function when loaded with either ion. This posed the longstanding question about the identity of the cognate metal ion of the first SODs to emerge. In this work, we utilize ancestral sequence reconstruction techniques to infer the earliest SODs. We show that the "ancestors" are active in vivo and in vitro. Further, we test their metal specificity and demonstrate that they are cambialistic in nature. Our findings shed light on how the predicted Last Common Universal Ancestor was capable of dealing with decomposition of the superoxide anion, and the early relationship between life, oxygen, and metal ion availability.
Collapse
Affiliation(s)
- Rosario Valenti
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Jagoda Jabłońska
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Dan S. Tawfik
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
13
|
Hewitt OH, Degnan SM. Distribution and diversity of ROS-generating enzymes across the animal kingdom, with a focus on sponges (Porifera). BMC Biol 2022; 20:212. [PMID: 36175868 PMCID: PMC9524095 DOI: 10.1186/s12915-022-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive derivatives of oxygen (reactive oxygen species; ROS) are essential in signalling networks of all aerobic life. Redox signalling, based on cascades of oxidation-reduction reactions, is an evolutionarily ancient mechanism that uses ROS to regulate an array of vital cellular processes. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are employed as signalling molecules that alter the oxidation state of atoms, inhibiting or activating gene activity. Here, we conduct metazoan-wide comparative genomic assessments of the two enzyme families, superoxide dismutase (SOD) and NADPH oxidases (NOX), that generate H2O2 and/or O2•- in animals. RESULTS Using the genomes of 19 metazoan species representing 10 phyla, we expand significantly on previous surveys of these two ancient enzyme families. We find that the diversity and distribution of both the SOD and NOX enzyme families comprise some conserved members but also vary considerably across phyletic animal lineages. For example, there is substantial NOX gene loss in the ctenophore Mnemiopsis leidyi and divergent SOD isoforms in the bilaterians D. melanogaster and C. elegans. We focus particularly on the sponges (phylum Porifera), a sister group to all other metazoans, from which these enzymes have not previously been described. Within Porifera, we find a unique calcium-regulated NOX, the widespread radiation of an atypical member of CuZnSOD named Rsod, and a novel endoplasmic reticulum MnSOD that is prevalent across aquatic metazoans. CONCLUSIONS Considering the precise, spatiotemporal specificity of redox signalling, our findings highlight the value of expanding redox research across a greater diversity of organisms to better understand the functional roles of these ancient enzymes within a universally important signalling mechanism.
Collapse
Affiliation(s)
- Olivia H Hewitt
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sandie M Degnan
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
14
|
Stone J, Edgar JO, Gould JA, Telling J. Tectonically-driven oxidant production in the hot biosphere. Nat Commun 2022; 13:4529. [PMID: 35941147 PMCID: PMC9360021 DOI: 10.1038/s41467-022-32129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic reconstructions of the common ancestor to all life have identified genes involved in H2O2 and O2 cycling. Commonly dismissed as an artefact of lateral gene transfer after oxygenic photosynthesis evolved, an alternative is a geological source of H2O2 and O2 on the early Earth. Here, we show that under oxygen-free conditions high concentrations of H2O2 can be released from defects on crushed silicate rocks when water is added and heated to temperatures close to boiling point, but little is released at temperatures <80 °C. This temperature window overlaps the growth ranges of evolutionary ancient heat-loving and oxygen-respiring Bacteria and Archaea near the root of the Universal Tree of Life. We propose that the thermal activation of mineral surface defects during geological fault movements and associated stresses in the Earth’s crust was a source of oxidants that helped drive the (bio)geochemistry of hot fractures where life first evolved. Researchers at Newcastle University have discovered a mechanism by which earthquakes create bursts of hydrogen peroxide and oxygen in hot underground fractures. These may have played a vital role in the early evolution and origin of life on Earth.
Collapse
Affiliation(s)
- Jordan Stone
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - John O Edgar
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Jamie A Gould
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Jon Telling
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
15
|
Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat Commun 2022; 13:3870. [PMID: 35790765 PMCID: PMC9256739 DOI: 10.1038/s41467-022-31433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractEconomically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.
Collapse
|
16
|
González Henao S, Karanauskas V, Drummond SM, Dewitt LR, Maloney CM, Mulu C, Weber JM, Barge LM, Videau P, Gaylor MO. Planetary Minerals Catalyze Conversion of a Polycyclic Aromatic Hydrocarbon to a Prebiotic Quinone: Implications for Origins of Life. ASTROBIOLOGY 2022; 22:197-209. [PMID: 35100015 DOI: 10.1089/ast.2021.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrochemical environments and are disbursed into planetary environments via meteorites and extraterrestrial infall where they may interact with mineral phases to produce quinones important for origins of life. In this study, we assessed the potential of the phyllosilicates montmorillonite (MONT) and kaolinite (KAO), and the enhanced Mojave Mars Simulant (MMS) to convert the PAH anthracene (ANTH) to the biologically important 9,10-anthraquinone (ANTHQ). All studied mineral substrates mediate conversion over the temperature range assessed (25-500°C). Apparent rate curves for conversion were sigmoidal for MONT and KAO, but quadratic for MMS. Conversion efficiency maxima for ANTHQ were 3.06% ± 0.42%, 1.15% ± 0.13%, and 0.56% ± 0.039% for MONT, KAO, and MMS, respectively. We hypothesized that differential substrate binding and compound loss account for the apparent conversion kinetics observed. Apparent loss rate curves for ANTH and ANTHQ were exponential for all substrates, suggesting a pathway for wide distribution of both compounds in warmer prebiotic environments. These findings improve upon our previously reported ANTHQ conversion efficiency on MONT and provide support for a plausible scenario in which PAH-mineral interactions could have produced prebiotically relevant quinones in early Earth environments.
Collapse
Affiliation(s)
| | | | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | | | - Christina Mulu
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| |
Collapse
|
17
|
Oxidative Phosphorus Chemistry Perturbed by Minerals. Life (Basel) 2022; 12:life12020198. [PMID: 35207486 PMCID: PMC8878404 DOI: 10.3390/life12020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Life is a complex, open chemical system that must be supported with energy inputs. If one fathoms how simple early life must have been, the complexity of modern-day life is staggering by comparison. A minimally complex system that could plausibly provide pyrophosphates for early life could be the oxidation of reduced phosphorus sources such as hypophosphite and phosphite. Like all plausible prebiotic chemistries, this system would have been altered by minerals and rocks in close contact with the evolving solutions. This study addresses the different types of perturbations that minerals might have on this chemical system. This study finds that minerals may inhibit the total production of oxidized phosphorus from reduced phosphorus species, they may facilitate the production of phosphate, or they may facilitate the production of pyrophosphate. This study concludes with the idea that mineral perturbations from the environment increase the chemical complexity of this system.
Collapse
|
18
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|
19
|
He H, Wu X, Xian H, Zhu J, Yang Y, Lv Y, Li Y, Konhauser KO. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nat Commun 2021; 12:6611. [PMID: 34785682 PMCID: PMC8595356 DOI: 10.1038/s41467-021-26916-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
The evolution of oxygenic photosynthesis is a pivotal event in Earth's history because the O2 released fundamentally changed the planet's redox state and facilitated the emergence of multicellular life. An intriguing hypothesis proposes that hydrogen peroxide (H2O2) once acted as the electron donor prior to the evolution of oxygenic photosynthesis, but its abundance during the Archean would have been limited. Here, we report a previously unrecognized abiotic pathway for Archean H2O2 production that involves the abrasion of quartz surfaces and the subsequent generation of surface-bound radicals that can efficiently oxidize H2O to H2O2 and O2. We propose that in turbulent subaqueous environments, such as rivers, estuaries and deltas, this process could have provided a sufficient H2O2 source that led to the generation of biogenic O2, creating an evolutionary impetus for the origin of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China.
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xiao Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haiyang Xian
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiping Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Lv
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, 999077, Hong Kong, China.
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
20
|
Jabłońska J, Tawfik DS. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat Ecol Evol 2021; 5:442-448. [PMID: 33633374 DOI: 10.1038/s41559-020-01386-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Production of molecular oxygen was a turning point in the Earth's history. The geological record indicates the Great Oxidation Event, which marked a permanent transition to an oxidizing atmosphere around 2.4 Ga. However, the degree to which oxygen was available to life before oxygenation of the atmosphere remains unknown. Here, phylogenetic analysis of all known oxygen-utilizing and -producing enzymes (O2-enzymes) indicates that oxygen became widely available to living organisms well before the Great Oxidation Event. About 60% of the O2-enzyme families whose birth can be dated appear to have emerged at the separation of terrestrial and marine bacteria (22 families, compared to two families assigned to the last universal common ancestor). This node, dubbed the last universal oxygen ancestor, coincides with a burst of emergence of both oxygenases and other oxidoreductases, thus suggesting a wider availability of oxygen around 3.1 Ga.
Collapse
Affiliation(s)
- Jagoda Jabłońska
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Hammarlund EU, Flashman E, Mohlin S, Licausi F. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 2020; 370:370/6515/eaba3512. [PMID: 33093080 DOI: 10.1126/science.aba3512] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
Oxygen-sensing mechanisms of eukaryotic multicellular organisms coordinate hypoxic cellular responses in a spatiotemporal manner. Although this capacity partly allows animals and plants to acutely adapt to oxygen deprivation, its functional and historical roots in hypoxia emphasize a broader evolutionary role. For multicellular life-forms that persist in settings with variable oxygen concentrations, the capacity to perceive and modulate responses in and between cells is pivotal. Animals and higher plants represent the most complex life-forms that ever diversified on Earth, and their oxygen-sensing mechanisms demonstrate convergent evolution from a functional perspective. Exploring oxygen-sensing mechanisms across eukaryotic kingdoms can inform us on biological innovations to harness ever-changing oxygen availability at the dawn of complex life and its utilization for their organismal development.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden. .,Nordic Center for Earth Evolution, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Sofie Mohlin
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden.,Division of Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. .,PlantLab, Institute of Life Sciences, Scuola Superiore, Sant'Anna, 56124 Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Bailey DM. Elemental 'particle physics-iology'; the Big Bang behind being human. Exp Physiol 2020; 105:401-407. [PMID: 31943409 DOI: 10.1113/ep088292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/13/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
23
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
24
|
Johnson LA, Hug LA. Distribution of reactive oxygen species defense mechanisms across domain bacteria. Free Radic Biol Med 2019; 140:93-102. [PMID: 30930298 DOI: 10.1016/j.freeradbiomed.2019.03.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 11/25/2022]
Abstract
Bacteria are the most diverse and numerous organisms on the planet, inhabiting environments from the deep subsurface to particles in clouds. Across this range of conditions, bacteria have evolved a diverse suite of enzymes to mitigate cellular damage from reactive oxygen species (ROS). Here, we review the diversity and distribution of ROS enzymatic defense mechanisms across the domain Bacteria, using both peer-reviewed literature and publicly available genome databases. We describe the specific strategies used by well-characterized organisms in order to highlight differences in oxidative stress responses between aerobic, facultatively anaerobic, and anaerobic lifestyles. We present evidence from genome minimization experiments to suggest that ROS defenses are obligately required for life. This review clarifies the variability in ROS defenses across Bacteria, including the novel diversity found in currently uncharacterized Candidate Phyla.
Collapse
Affiliation(s)
- Lisa A Johnson
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
25
|
Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic Biol Med 2019; 140:61-73. [PMID: 30862543 DOI: 10.1016/j.freeradbiomed.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
One of the former definitions of "obligate anaerobiosis" was based on three main criteria: 1) it occurs in organisms, so-called obligate anaerobes, which live in environments without oxygen (O2), 2) O2-dependent (aerobic) respiration, and 3) antioxidant enzymes are absent in obligate anaerobes. In contrast, aerobes need O2 in order to grow and develop properly. Obligate (or strict) anaerobes belong to prokaryotic microorganisms from two domains, Bacteria and Archaea. A closer look at anaerobiosis covers a wide range of microorganisms that permanently or in a time-dependent manner tolerate different concentrations of O2 in their habitats. On this basis they can be classified as obligate/facultative anaerobes, microaerophiles and nanaerobes. Paradoxically, O2 tolerance in strict anaerobes is usually, as in aerobes, associated with the activity of the antioxidant response system, which involves different antioxidant enzymes responsible for removing excess reactive oxygen species (ROS). In our opinion, the traditional definition of "obligate anaerobiosis" loses its original sense. Strict anaerobiosis should only be restricted to the occurrence of O2-independent pathways involved in energy generation. For that reason, a term better than "obligate anaerobes" would be O2/ROS tolerant anaerobes, where the role of the O2/ROS detoxification system is separated from O2-independent metabolic pathways that supply energy. Ubiquitous key antioxidant enzymes like superoxide dismutase (SOD) and superoxide reductase (SOR) in contemporary obligate anaerobes might suggest that their origin is ancient, maybe even the beginning of the evolution of life on Earth. It cannot be ruled out that c. 3.5 Gyr ago, local microquantities of O2/ROS played a role in the evolution of the last universal common ancestor (LUCA) of all modern organisms. On the basis of data in the literature, the hypothesis that LUCA could be an O2/ROS tolerant anaerobe is discussed together with the question of the abiotic sources of O2/ROS and/or the early evolution of cyanobacteria that perform oxygenic photosynthesis.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Monika Kula
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
26
|
Lin W, Kirschvink JL, Paterson GA, Bazylinski DA, Pan Y. On the origin of microbial magnetoreception. Natl Sci Rev 2019; 7:472-479. [PMID: 34692062 PMCID: PMC8288953 DOI: 10.1093/nsr/nwz065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/15/2022] Open
Abstract
A broad range of organisms, from prokaryotes to higher animals, have the ability to sense and utilize Earth's geomagnetic field—a behavior known as magnetoreception. Although our knowledge of the physiological mechanisms of magnetoreception has increased substantially over recent decades, the origin of this behavior remains a fundamental question in evolutionary biology. Despite this, there is growing evidence that magnetic iron mineral biosynthesis by prokaryotes may represent the earliest form of biogenic magnetic sensors on Earth. Here, we integrate new data from microbiology, geology and nanotechnology, and propose that initial biomineralization of intracellular iron nanoparticles in early life evolved as a mechanism for mitigating the toxicity of reactive oxygen species (ROS), as ultraviolet radiation and free-iron-generated ROS would have been a major environmental challenge for life on early Earth. This iron-based system could have later been co-opted as a magnetic sensor for magnetoreception in microorganisms, suggesting an origin of microbial magnetoreception as the result of the evolutionary process of exaptation.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152–8551, Japan
| | - Greig A Paterson
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Abstract
Sam Granick opened his seminal 1957 paper titled 'Speculations on the origins and evolution of photosynthesis' with the assertion that there is a constant urge in human beings to seek beginnings (I concur). This urge has led to an incessant stream of speculative ideas and debates on the evolution of photosynthesis that started in the first half of the twentieth century and shows no signs of abating. Some of these speculative ideas have become commonplace, are taken as fact, but find little support. Here, I review and scrutinize three widely accepted ideas that underpin the current study of the evolution of photosynthesis: first, that the photochemical reaction centres used in anoxygenic photosynthesis are more primitive than those in oxygenic photosynthesis; second, that the probability of acquiring photosynthesis via horizontal gene transfer is greater than the probability of losing photosynthesis; and third, and most important, that the origin of anoxygenic photosynthesis pre-dates the origin of oxygenic photosynthesis. I shall attempt to demonstrate that these three ideas are often grounded in incorrect assumptions built on more assumptions with no experimental or observational support. I hope that this brief review will not only serve as a cautionary tale but also that it will open new avenues of research aimed at disentangling the complex evolution of photosynthesis and its impact on the early history of life and the planet.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
28
|
Suzuki S, Nealson KH, Ishii S. Genomic and in-situ Transcriptomic Characterization of the Candidate Phylum NPL-UPL2 From Highly Alkaline Highly Reducing Serpentinized Groundwater. Front Microbiol 2018; 9:3141. [PMID: 30619209 PMCID: PMC6305446 DOI: 10.3389/fmicb.2018.03141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 12/05/2022] Open
Abstract
Serpentinization is a process whereby water interacts with reduced mantle rock called peridotite to produce a new suite of minerals (e.g., serpentine), a highly alkaline fluid, and hydrogen. In previous reports, we identified abundance of microbes of the candidate phylum NPL-UPA2 in a serpentinization site called The Cedars. Here, we report the first metagenome assembled genome (MAG) of the candidate phylum as well as the in-situ gene expression. The MAG of the phylum NPL-UPA2, named Unc8, is only about 1 Mbp and its biosynthetic properties suggest it should be capable of independent growth. In keeping with the highly reducing niche of Unc8, its genome encodes none of the known oxidative stress response genes including superoxide dismutases. With regard to energy metabolism, the MAG of Unc8 encodes all enzymes for Wood-Ljungdahl acetogenesis pathway, a ferredoxin:NAD+ oxidoreductase (Rnf) and electron carriers for flavin-based electron bifurcation (Etf, Hdr). Furthermore, the transcriptome of Unc8 in the waters of The Cedars showed enhanced levels of gene expression in the key enzymes of the Wood-Ljungdahl pathway [e.g., Carbon monoxide dehydrogenase /Acetyl-CoA synthase complex (CODH/ACS), Rnf, Acetyl-CoA synthetase (Acd)], which indicated that the Unc8 is an acetogen. However, the MAG of Unc8 encoded no well-known hydrogenase genes, suggesting that the energy metabolism of Unc8 might be focused on CO as the carbon and energy sources for the acetate formation. Given that CO could be supplied via abiotic reaction associated with deep subsurface serpentinization, while available CO2 would be at extremely low concentrations in this high pH environment, CO-associated metabolism could provide advantageous approach. The CODH/ACS in Unc8 is a Bacteria/Archaea hybrid type of six-subunit complex and the electron carriers, Etf and Hdr, showed the highest similarity to those in Archaea, suggesting that archaeal methanogenic energy metabolism was incorporated into the bacterial acetogenesis in NPL-UPA2. Given that serpentinization systems are viewed as potential habitats for early life, and that acetogenesis via the Wood-Ljungdahl pathway is proposed as an energy metabolism of Last Universal Common Ancestor, a phylogenetically distinct acetogen from an early earth analog site may provide important insights in primordial lithotrophs and their habitat.
Collapse
Affiliation(s)
- Shino Suzuki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan.,Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Shun'ichi Ishii
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, United States.,R&D Center for Submarine Resources, JAMSTEC, Nankoku, Japan
| |
Collapse
|
29
|
Bailey DM. Oxygen, evolution and redox signalling in the human brain; quantum in the quotidian. J Physiol 2018; 597:15-28. [PMID: 30315729 DOI: 10.1113/jp276814] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Rising atmospheric oxygen (O2 ) levels provided a selective pressure for the evolution of O2 -dependent micro-organisms that began with the autotrophic eukaryotes. Since these primordial times, the respiring mammalian cell has become entirely dependent on the constancy of electron flow, with molecular O2 serving as the terminal electron acceptor in mitochondrial oxidative phosphorylation. Indeed, the ability to 'sense' O2 and maintain homeostasis is considered one of the most important roles of the central nervous system (CNS) and probably represented a major driving force in the evolution of the human brain. Today, modern humans have evolved with an oversized brain committed to a continually active state and, as a consequence, paradoxically vulnerable to failure if the O2 supply is interrupted. However, our pre-occupation with O2 , the elixir of life, obscures the fact that it is a gas with a Janus face, capable of sustaining life in physiologically controlled amounts yet paradoxically deadly to the CNS when in excess. A closer look at its quantum structure reveals precisely why; the triplet ground state diatomic O2 molecule is paramagnetic and exists in air as a free radical, constrained from reacting aggressively with the brain's organic molecules due to its 'spin restriction', a thermodynamic quirk of evolutionary fate. By further exploring O2 's free radical 'quantum quirkiness', including emergent (quantum) physiological phenomena, our understanding of precisely how the human brain senses O2 deprivation (hypoxia) and the elaborate redox-signalling defence mechanisms that defend O2 homeostasis has the potential to offer unique insights into the pathophysiology and treatment of human brain disease.
Collapse
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| |
Collapse
|
30
|
Bailey DM. RETRACTED ARTICLE: The quantum physiology of oxygen; from electrons to the evolution of redox signaling in the human brain. Bioelectron Med 2018; 4:13. [PMID: 32232089 PMCID: PMC7098224 DOI: 10.1186/s42234-018-0014-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Rising atmospheric oxygen (O2) levels provided a selective pressure for the evolution of O2-dependent micro-organisms that began with the autotrophic eukaryotes. Since these primordial times, the respiring mammalian cell has become entirely dependent on the constancy of electron flow with molecular O2 serving as the terminal electron acceptor in mitochondrial oxidative phosphorylation. Indeed, the ability to “sense” O2 and maintain homeostasis is considered one of the most important roles of the central nervous system (CNS) and likely represented a major driving force in the evolution of the human brain. Today, modern humans have evolved with an oversized brain committed to a continually active state and as a consequence, paradoxically vulnerable to failure if the O2 supply is interrupted. However, our pre-occupation with O2, the elixir of life, obscures the fact that it is a gas with a Janus Face, capable of sustaining life in physiologically controlled amounts yet paradoxically deadly to the CNS when in excess. A closer look at its quantum structure reveals precisely why; the triplet ground state diatomic O2 molecule is paramagnetic and exists in air as a free radical, constrained from reacting aggressively with the brain’s organic molecules due to its “spin restriction”, a thermodynamic quirk of evolutionary fate. By further exploring O2’s free radical “quantum quirkiness” including emergent quantum physiological phenomena, our understanding of precisely how the human brain senses O2 deprivation (hypoxia) and the elaborate redox-signaling defense mechanisms that defend O2 homeostasis has the potential to offer unique insights into the pathophysiology and treatment of human brain disease.
Collapse
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory, Alfred Russel Wallace Building, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT UK
| |
Collapse
|
31
|
Golubev A, Hanson AD, Gladyshev VN. A Tale of Two Concepts: Harmonizing the Free Radical and Antagonistic Pleiotropy Theories of Aging. Antioxid Redox Signal 2018; 29:1003-1017. [PMID: 28874059 PMCID: PMC6104246 DOI: 10.1089/ars.2017.7105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The two foremost concepts of aging are the mechanistic free radical theory (FRT) of how we age and the evolutionary antagonistic pleiotropy theory (APT) of why we age. Both date from the late 1950s. The FRT holds that reactive oxygen species (ROS) are the principal contributors to the lifelong cumulative damage suffered by cells, whereas the APT is generally understood as positing that genes that are good for young organisms can take over a population even if they are bad for the old organisms. Recent Advances: Here, we provide a common ground for the two theories by showing how aging can result from the inherent chemical reactivity of many biomolecules, not just ROS, which imposes a fundamental constraint on biological evolution. Chemically reactive metabolites spontaneously modify slowly renewable macromolecules in a continuous way over time; the resulting buildup of damage wrought by the genes coding for enzymes that generate such small molecules eventually masquerades as late-acting pleiotropic effects. In aerobic organisms, ROS are major agents of this damage but they are far from alone. CRITICAL ISSUES Being related to two sides of the same phenomenon, these theories should be compatible. However, the interface between them is obscured by the FRT mistaking a subset of damaging processes for the whole, and the APT mistaking a cumulative quantitative process for a qualitative switch. FUTURE DIRECTIONS The manifestations of ROS-mediated cumulative chemical damage at the population level may include the often-observed negative correlation between fitness and the rate of its decline with increasing age, further linking FRT and APT. Antioxid. Redox Signal. 29, 1003-1017.
Collapse
Affiliation(s)
- Alexey Golubev
- Department of Carcinogenesis and Oncogerontology, Petrov Research Institute of Oncology, Saint Petersburg, Russia
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow Russia
| |
Collapse
|
32
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
33
|
Huang XL. Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. ASTROBIOLOGY 2018; 18:294-310. [PMID: 29489387 DOI: 10.1089/ast.2016.1628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus ester hydrolysis is one of the key chemical processes in biological systems, including signaling, free-energy transaction, protein synthesis, and maintaining the integrity of genetic material. Hydrolysis of this otherwise kinetically stable phosphoester and/or phosphoanhydride bond is induced by enzymes such as purple acid phosphatase. Here, I report that, as in previously reported aged inorganic iron ion solutions, the iron oxide nanoparticles in the solution, which are trapped in a dialysis membrane tube filled with the various iron oxides, significantly promote the hydrolysis of the various phosphate esters, including the inorganic polyphosphates, with enzyme-like kinetics. This observation, along with those of recent studies of iron oxide, vanadium pentoxide, and molybdenum trioxide nanoparticles that behave as mimics of peroxidase, bromoperoxidase, and sulfite oxidase, respectively, indicates that the oxo-metal bond in the oxide nanoparticles is critical for the function of these corresponding natural metalloproteins. These inorganic biocatalysts challenge the traditional concept of replicator-first scenarios and support the metabolism-first hypothesis. As biocatalysts, these inorganic nanoparticles with enzyme-like activity may work in natural terrestrial environments and likely were at work in early Earth environments as well. They may have played an important role in the C, H, O, S, and P metabolic pathway with regard to the emergence and early evolution of life. Key Words: Enzyme-Hydrolysis-Iron oxide-Nanoparticles-Origin of life-Phosphate ester. Astrobiology 18, 294-310.
Collapse
|
34
|
Taverne YJ, Merkus D, Bogers AJ, Halliwell B, Duncker DJ, Lyons TW. Reactive Oxygen Species: Radical Factors in the Evolution of Animal Life: A molecular timescale from Earth's earliest history to the rise of complex life. Bioessays 2018; 40. [PMID: 29411901 DOI: 10.1002/bies.201700158] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Indexed: 12/27/2022]
Abstract
Introduction of O2 to Earth's early biosphere stimulated remarkable evolutionary adaptations, and a wide range of electron acceptors allowed diverse, energy-yielding metabolic pathways. Enzymatic reduction of O2 yielded a several-fold increase in energy production, enabling evolution of multi-cellular animal life. However, utilization of O2 also presented major challenges as O2 and many of its derived reactive oxygen species (ROS) are highly toxic, possibly impeding multicellular evolution after the Great Oxidation Event. Remarkably, ROS, and especially hydrogen peroxide, seem to play a major part in early diversification and further development of cellular respiration and other oxygenic pathways, thus becoming an intricate part of evolution of complex life. Hence, although harnessing of chemical and thermo-dynamic properties of O2 for aerobic metabolism is generally considered to be an evolutionary milestone, the ability to use ROS for cell signaling and regulation may have been the first true breakthrough in development of complex life.
Collapse
Affiliation(s)
- Yannick J Taverne
- Department of Cardiothoracic Surgery Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040 - Room BD-559 3000 CA Rotterdam, Rotterdam, The Netherlands.,Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Ad J Bogers
- Department of Cardiothoracic Surgery Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040 - Room BD-559 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Barry Halliwell
- Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore, MD 7, 8 Medical Drive Singapore 117597 Singapore, Singapore
| | - Dirk J Duncker
- Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Timothy W Lyons
- Department of Earth Sciences University of California, University of California, Riverside, 900 University Ave. Riverside, 92521 California, California, USA
| |
Collapse
|
35
|
On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel) 2017; 6:antiox6040082. [PMID: 29084153 PMCID: PMC5745492 DOI: 10.3390/antiox6040082] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
The field of free radical biology originated with the discovery of superoxide dismutase (SOD) in 1969. Over the last 5 decades, a plethora of research has been performed in species ranging from bacteria to mammals that has elucidated the molecular reaction, subcellular location, and specific isoforms of SOD. However, while humans have only begun to study this class of enzymes over the past 50 years, it has been estimated that these enzymes have existed for billions of years, and may be some of the original enzymes found in primitive life. As life evolved over this expanse of time, these enzymes have taken on new and different functional roles potentially in contrast to how they were originally derived. Herein, examination of the evolutionary history of these enzymes provides both an explanation and further inquiries into the modern-day role of SOD in physiology and disease.
Collapse
|
36
|
Ślesak I, Ślesak H, Kruk J. RubisCO Early Oxygenase Activity: A Kinetic and Evolutionary Perspective. Bioessays 2017; 39. [PMID: 28976010 DOI: 10.1002/bies.201700071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/10/2017] [Indexed: 11/09/2022]
Abstract
RubisCO (D-ribulose 1,5-bisphosphate carboxylase/oxygenase) is Earth's main enzyme responsible for CO2 fixation via carboxylation of ribulose-1,5-bisphosphate (RuBP) into organic matter. Besides the carboxylation reaction, RubisCO also catalyzes the oxygenation of RuBP by O2 , which is probably as old as its carboxylation properties. Based on molecular phylogeny, the occurrence of the reactive oxygen species (ROS)-removing system and kinetic properties of different RubisCO forms, we postulated that RubisCO oxygenase activity appeared in local microoxic areas, yet before the appearance of oxygenic photosynthesis. Here, in reviewing the literature, we present a novel hypothesis: the RubisCO early oxygenase activity hypothesis. This hypothesis may be compared with the exaptation hypothesis, according to which latent RubisCO oxygenase properties emerged later during the oxygenation of the Earth's atmosphere. The reconstruction of ancestral RubisCO forms using ancestral sequence reconstruction (ASR) techniques, as a promising way for testing of RubisCO early oxygenase activity hypothesis, is presented.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków 30-239, Poland
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, Kraków 30-387, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
37
|
Woehle C, Dagan T, Landan G, Vardi A, Rosenwasser S. Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis. NATURE PLANTS 2017; 3:17066. [PMID: 28504699 PMCID: PMC5438061 DOI: 10.1038/nplants.2017.66] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/07/2017] [Indexed: 05/19/2023]
Abstract
The redox-sensitive proteome (RSP) consists of protein thiols that undergo redox reactions, playing an important role in coordinating cellular processes. Here, we applied a large-scale phylogenomic reconstruction approach in the model diatom Phaeodactylum tricornutum to map the evolutionary origins of the eukaryotic RSP. The majority of P. tricornutum redox-sensitive cysteines (76%) is specific to eukaryotes, yet these are encoded in genes that are mostly of a prokaryotic origin (57%). Furthermore, we find a threefold enrichment in redox-sensitive cysteines in genes that were gained by endosymbiotic gene transfer during the primary plastid acquisition. The secondary endosymbiosis event coincides with frequent introduction of reactive cysteines into existing proteins. While the plastid acquisition imposed an increase in the production of reactive oxygen species, our results suggest that it was accompanied by significant expansion of the RSP, providing redox regulatory networks the ability to cope with fluctuating environmental conditions.
Collapse
Affiliation(s)
| | - Tal Dagan
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany
| | - Giddy Landan
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
38
|
Ślesak I, Ślesak H, Zimak-Piekarczyk P, Rozpądek P. Enzymatic Antioxidant Systems in Early Anaerobes: Theoretical Considerations. ASTROBIOLOGY 2016; 16:348-58. [PMID: 27176812 PMCID: PMC4876498 DOI: 10.1089/ast.2015.1328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/01/2015] [Indexed: 05/14/2023]
Abstract
UNLABELLED It is widely accepted that cyanobacteria-dependent oxygen that was released into Earth's atmosphere ca. 2.5 billion years ago sparked the evolution of the aerobic metabolism and the antioxidant system. In modern aerobes, enzymes such as superoxide dismutases (SODs), peroxiredoxins (PXs), and catalases (CATs) constitute the core of the enzymatic antioxidant system (EAS) directed against reactive oxygen species (ROS). In many anaerobic prokaryotes, the superoxide reductases (SORs) have been identified as the main force in counteracting ROS toxicity. We found that 93% of the analyzed strict anaerobes possess at least one antioxidant enzyme, and 50% have a functional EAS, that is, consisting of at least two antioxidant enzymes: one for superoxide anion radical detoxification and another for hydrogen peroxide decomposition. The results presented here suggest that the last universal common ancestor (LUCA) was not a strict anaerobe. O2 could have been available for the first microorganisms before oxygenic photosynthesis evolved, however, from the intrinsic activity of EAS, not solely from abiotic sources. KEY WORDS Archaea-Atmospheric gases-Evolution-H2O2 resistance-Oxygenic photosynthesis. Astrobiology 16, 348-358.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Kraków, Poland
| | | | - Piotr Rozpądek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
39
|
Ball R, Brindley J. The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world. J R Soc Interface 2015; 12:20150366. [PMID: 26202683 PMCID: PMC4535408 DOI: 10.1098/rsif.2015.0366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that primordial non-cellular RNA communities must have been subject to a periodic drive in order to replicate and prosper. We have proposed the oxidation of thiosulfate by hydrogen peroxide as this drive. This reaction system behaves as (i) a thermochemical and (ii) a pH oscillator, and in this work, we unify (i) and (ii) for the first time. We report thermally self-consistent, dynamical simulations in which the system transitions smoothly from nearly isothermal pH to fully developed thermo-pH oscillatory regimes. We use this oscillator to drive simulated replication of a 39-bp RNA species. Production of replicated duplex under thermo-pH drive was significantly enhanced compared with that under purely thermochemical drive, effectively allowing longer strands to replicate. Longer strands are fitter, with more potential to evolve enzyme activity and resist degradation. We affirm that concern over the alleged toxicity of hydrogen peroxide to life is largely misplaced in the current context, we survey its occurrence in the solar system to motivate its inclusion as a biosignature in the search for life on other worlds and highlight that pH oscillations in a spatially extended, bounded system manifest as the fundamental driving force of life: a proton gradient.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, The Australian National University, Canberra 2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
40
|
Briehl MM. Oxygen in human health from life to death--An approach to teaching redox biology and signaling to graduate and medical students. Redox Biol 2015; 5:124-139. [PMID: 25912168 PMCID: PMC4412967 DOI: 10.1016/j.redox.2015.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
In the absence of oxygen human life is measured in minutes. In the presence of oxygen, normal metabolism generates reactive species (ROS) that have the potential to cause cell injury contributing to human aging and disease. Between these extremes, organisms have developed means for sensing oxygen and ROS and regulating their cellular processes in response. Redox signaling contributes to the control of cell proliferation and death. Aberrant redox signaling underlies many human diseases. The attributes acquired by altered redox homeostasis in cancer cells illustrate this particularly well. This teaching review and the accompanying illustrations provide an introduction to redox biology and signaling aimed at instructors of graduate and medical students. The ability to sense oxygen and respond to oxidative stress is ancient. Chemical and kinetic properties of ROS are key to understanding redox signaling. Redox signaling participates in normal control of cell proliferation and death. Aberrant redox signaling contributes to the hallmarks of cancer. Novel redox-based chemotherapeutics are being developed.
Collapse
Affiliation(s)
- Margaret M Briehl
- Department of Pathology, University of Arizona, PO Box 24-5043, Tucson, AZ 85724-5043, USA.
| |
Collapse
|
41
|
Pecoits E, Smith ML, Catling DC, Philippot P, Kappler A, Konhauser KO. Atmospheric hydrogen peroxide and Eoarchean iron formations. GEOBIOLOGY 2015; 13:1-14. [PMID: 25324177 DOI: 10.1111/gbi.12116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF.
Collapse
Affiliation(s)
- E Pecoits
- Equipe Géobiosphère, Institut de Physique du Globe-Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
42
|
St Denis TG, Vecchio D, Zadlo A, Rineh A, Sadasivam M, Avci P, Huang L, Kozinska A, Chandran R, Sarna T, Hamblin MR. Thiocyanate potentiates antimicrobial photodynamic therapy: in situ generation of the sulfur trioxide radical anion by singlet oxygen. Free Radic Biol Med 2013; 65:800-810. [PMID: 23969112 PMCID: PMC3889203 DOI: 10.1016/j.freeradbiomed.2013.08.162] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (OH) and singlet oxygen ((1)O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN(-)) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN(-) enhanced PDT (10 µM MB, 5 J/cm(2) 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10mM (P<0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10mM (P<0.01). We determined that SCN(-) rapidly depleted O2 from an irradiated MB system, reacting exclusively with (1)O2, without quenching the MB excited triplet state. SCN(-) reacted with (1)O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN(-) in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of OH, which, together with kinetic data, strongly suggests that MB, known to produce OH and (1)O2, may, under the conditions used, preferentially form (1)O2.
Collapse
Affiliation(s)
- Tyler G St Denis
- Department of Chemistry, Columbia University, New York, NY, USA; The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniela Vecchio
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Andrzej Zadlo
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ardeshir Rineh
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; School of Chemistry, University of Wollongong, NSW2522, Australia
| | - Magesh Sadasivam
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pinar Avci
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary; Department of Dermatology, Semmelweis University School of Medicine, 1085 Budapest, Hungary
| | - Liyi Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary; Department of Infectious Disease, First Affiliated College & Hospital, Guangxi Medical University, Nanning, China
| | - Anna Kozinska
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Rakkiyappan Chandran
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michael R Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|