1
|
El-Raghi AA, Elmorsy E, Hassan MAE, Essawi WM, Hassab SHM, Embaby EM, Marghani BH. The beneficial impact of silymarin-loaded chitosan nanoparticles on the quality of frozen-thawed buffalo sperm: Antioxidant and anti-apoptotic effects. Theriogenology 2025; 241:117425. [PMID: 40198938 DOI: 10.1016/j.theriogenology.2025.117425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
The objective of this study was to evaluate the impact of incorporating silymarin-loaded chitosan nanoparticles (SMCS-NPs) into semen extender on the semen quality, redox balance, enzymatic activities, apoptotic genes, and ultrastructural integrity of cryopreserved buffalo sperm. Semen samples were obtained using the artificial vagina technique from seven fertile bulls aged between 4 and 6 years. The collected semen was cryopreserved in a tris extender supplemented with varying levels of SMCS-NPs: 0 μg/mL (SMCS-NPs0), 50 μg/mL (SMCS-NPs50), 100 μg/mL (SMCS-NPs100), and 200 μg/mL (SMCS-NPs200). The inclusion of 100 μg of SMCS-NPs in the cryopreservation media significantly improved sperm progressive motility, viability, membrane integrity, and kinematic parameters. Additionally, this concentration improved key antioxidant enzyme activities, reduced malondialdehyde, hydrogen peroxide, and nitric oxide levels, and enhanced enzymatic activity in the seminal plasma compared to the control group (p < 0.05). The supplementation of SMCS-NPs notably boosted the expression of apoptotic genes like caspase 3, Bcl2, and Bax in sperm. Examination through electron microscopy revealed that enriching the cryopreservation medium with 100 μg or 200 μg of SMCS-NPs maintained the integrity of acrosome and the plasma membrane, and preserved the structural integrity of cryopreserved buffalo spermatozoa. The docking exploration revealed strong affinities for key proteins regulating apoptosis (caspase) and oxidative stress (catalase and glutathione peroxidase), emphasizing their therapeutic potential in reducing apoptosis and oxidative damage. In conclusion, supplementing the semen freezing extender with 100 μg of SMCS-NPs improved post-thaw sperm quality.
Collapse
Affiliation(s)
- Ali Ali El-Raghi
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt.
| | - Ekramy Elmorsy
- Center for Health Research, Northern Border University, P.O. Box 1321, Arar, 91431, Saudi Arabia.
| | - Mahmoud A E Hassan
- Animal Production Research Institute (APRI), Agriculture Research Center, Ministry of Agriculture, Dokki, Giza, 12619, Egypt.
| | - Walaa M Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Sara H M Hassab
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt.
| | - Eman M Embaby
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Biochemistry, Physiology and Pharmacology, Faculty of Veterinary Medicine, King Salman International, South of Sinai, 46612, Egypt.
| |
Collapse
|
2
|
Taheri-Khas Z, Gharzi A, Vaissi S, Heshmatzad P, Kalhori Z. Advanced sperm preservation techniques in yellow spotted mountain newts Neurergus derjugini enhance genetic management and conservation efforts. Sci Rep 2025; 15:9334. [PMID: 40102525 PMCID: PMC11920051 DOI: 10.1038/s41598-025-93284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Advances in cold storage and cryopreservation of amphibian sperm are critical for the genetic management and conservation of threatened species. This study represents the first investigation into the sperm of the yellow spotted mountain newt (Neurergus derjugini), focusing on both short-term and long-term storage for future reproductive efforts. We examined the effects of seven extenders on sperm motility over time at three storage temperatures (4 ± 1 °C, 9 ± 1 °C, and 20 ± 1 °C). Additionally, we assessed the impact of 16 cryoprotectants on sperm motility and morphology post-thawing. Following the identification of the most effective freezing medium, we evaluated sperm DNA fragmentation to ensure viability. Our results indicate that 10% Holtfreter's solution is the optimal extender for short-term storage at all three temperatures, maintaining sperm motility for up to 15 days at 4 °C. For long-term storage, a combination of 10% Holtfreter's solution and 10% DMSO was found to best preserve sperm motility, morphology, and minimize DNA fragmentation after thawing. These findings underscore the importance of specific extenders and temperature treatments in enhancing sperm functionality, thereby supporting successful assisted reproductive technologies (ART) for endangered species.
Collapse
Affiliation(s)
- Zeynab Taheri-Khas
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Pouria Heshmatzad
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zahra Kalhori
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Liu F, Dai J, Gao J, He M, Xu J, Wu C, Zhang S, Zhu X, Sun L. BGP-15 improves quality of goat sperm by mitigating oxidative stress during cryopreservation. Cryobiology 2025; 119:105232. [PMID: 40088860 DOI: 10.1016/j.cryobiol.2025.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
The objective of this study was to evaluate the effect of the addition of BGP-15 ((Z)-N'-(2-hydroxy-3-(piperidin-1-yl) propoxy) nicotinimidamide) on goat sperm during cryopreservation. The semen from six rams was diluted with a soybean lecithin-based extender containing different doses of BGP-15 (0, 50, 100, 150, and 200 μM). After the freeze-thawing process, sperm characteristics, plasma membrane integrity and functionality, acrosomal status, mitochondria activity, apoptosis status, and gene expression of post-thawed ram spermatozoa were assessed. Compared to fresh spermatozoa, the ultrastructure of frozen spermatozoa was damaged, and frozen spermatozoa had a reduced number of duplex microtubules with partially asymmetric distributions, localized disappearance of the central microtubule, and ambiguous submicrotubule structures. Moreover, the 100 μM BGP-15 treatment group had the highest percentage of viability, plasma membrane and acrosome integrities, and mitochondrial activity of frozen-thawed spermatozoa when compared to the control (P < 0.05). In the Computer-Assisted Semen Analyzer, sperm motility parameters were significantly increased in the BGP-15 treatment group against the control group (P < 0.05), except wobble. Similarly, BGP-15 treatment increased the levels of T-AOC, SOD, CAT, and GHS-Px and decreased the level of ROS which compared to controls (P < 0.05). Only the 100 μM BGP-15 treatment group had a higher MDA level than the control group (P < 0.05). In all BGP-15 treatment groups, the mRNA expressions of the ROMO1 gene were significantly reduced compared to controls (P < 0.05), and the mRNA expressions of the SMCP, MnSOD, and CuZnSOD genes were significantly increased (P < 0.05). While the difference in the mRNA expression of the SMOX gene between the 50 μM BGP-15 treatment group and the control group was not significant (P > 0.05). Moreover, the apoptosis rate of freeze-thawed spermatozoa significantly decreased in the 100 μM BGP-15 treatment group compared to the control (P < 0.05), while the MMP of freeze-thawed spermatozoa significantly enhanced in the 100 μM BGP-15 treatment group (P < 0.05). In conclusion, BGP-15 enhances cryo-protective effects on goat spermatozoa, and 100 μM BGP-15 addition to the extender during cryopreservation is beneficial to the goat breeding industry.
Collapse
Affiliation(s)
- Fuqin Liu
- College of Animal Sciences, Guizhou University, Guiyang, 550025, China
| | - Jianjun Dai
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Jun Gao
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Mengqian He
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Jiehuan Xu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Caifeng Wu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Shushan Zhang
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Xing Zhu
- College of Animal Sciences, Guizhou University, Guiyang, 550025, China.
| | - Lingwei Sun
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
4
|
Hai E, Li B, Song Y, Zhang J, Zhang J. Inhibiting ferroptosis mitigates sheep sperm freezing damage. Front Vet Sci 2025; 12:1526474. [PMID: 40125327 PMCID: PMC11926617 DOI: 10.3389/fvets.2025.1526474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Objectives To evaluate the roles of apoptosis and ferroptosis in cryopreservation-induced damage to sheep sperm, with a focus on assessing the effectiveness of inhibitors targeting these pathways. Methods Initial analysis compared the expression of apoptotic marker Cleaved-caspase3 (CL-caspase3) and ferroptotic marker Transferrin receptor (TFRC) between fresh and cryopreserved sheep sperm. Elevated CL-caspase3 expression and sustained high TFRC expression post-cryopreservation suggested concurrent occurrence of apoptosis and ferroptosis. Consequently, the study employed Deferoxamine Mesylate (DFO), ferrostatin-1 (Fer-1), liproxstatin-1 (Lip-1), and the apoptosis inhibitor Z-VAD-FMK (Z-VAD) at concentrations ranging from 0 to 10 μM. Post-thaw assessments encompassed plasma membrane integrity, acrosome integrity, and ferroptosis biomarkers. Additional experiments were conducted to measure the expression of GPX4, a key regulator of ferroptosis. Results Optimal concentrations (2 μM for DFO, Fer-1, and Lip-1; 5 μM for Z-VAD) significantly improved sperm motility and membrane integrity. Among these, Fer-1 demonstrated the greatest efficacy, reducing reactive oxygen species (ROS), lipid peroxidation, and Fe2+ levels. Z-VAD primarily decreased ROS but was less potent than ferroptosis inhibitors. Notably, Glutathione Peroxidase 4 (GPX4) expression was reduced post-cryopreservation, while Fer-1 supplementation restored its levels to those comparable with fresh sperm. Conclusion Both apoptosis and ferroptosis play critical roles in sheep sperm cryopreservation. Fer-1 effectively enhanced cryopreservation outcomes by inhibiting ferroptosis, as evidenced by the restoration of GPX4 expression and improvement in sperm quality indicators. These findings highlight ferroptosis inhibition as a promising strategy for preserving genetic material, with implications for animal breeding and biodiversity conservation.
Collapse
Affiliation(s)
| | | | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep and Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Duma M, Galarza DA, Delgado K, Morocho A, Bermúdez G, Soria ME, Méndez MS, Muñoz-León E, Perea FP. Epididymal bull sperm selection by Percoll® density-gradient centrifugation prior to conventional or ultra-rapid freezing enhances post-thaw sperm quality. Cryobiology 2025; 118:105200. [PMID: 39824241 DOI: 10.1016/j.cryobiol.2025.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
This study evaluated the effectiveness of Percoll® density gradient centrifugation (Percoll-DGC) for selecting bull epididymal sperm prior to conventional slow (CS) or ultra-rapid (UR) freezing and its effects on sperm quality. Fifteen pooled samples from 30 epididymides (2 different samples/pool) of 15 bulls were split into two aliquots assigned to either CS or UR freezing. Samples were either selected using Percoll-DGC (40/80 %) or left non-selected (control), resulting in four pre-freezing treatments: Percoll-CS, Control-CS, Percoll-UR, and Control-UR. The CS freezing used 5 % glycerol, exposing sperm straws to liquid nitrogen (LN2) vapors, while UR freezing used 100 mM sucrose with direct submersion of 30 μL samples into LN2. Overall, sperm quality was higher in CS treatments than in UR treatments. Pre-freezing, Percoll-CS improved straight-line velocity (VSL), linearity (LIN), and beat-cross frequency (BCF) compared to Control-CS (P < 0.05). Similarly, Percoll-UR treatment enhanced progressive motility (PSM), velocities, straightness (STR), amplitude of lateral head displacement (ALH), and BCF compared to Control-UR (P < 0.05). Post-thaw, Percoll-CS demonstrated higher kinematic parameters, viability, and acrosome integrity compared to Control-CS (P < 0.05). Meanwhile, Percoll-UR improved viability and acrosome integrity relative to Control-UR (P < 0.05). Notably, both Percoll-UR and Control-UR resulted in lower DNA fragmentation compared to Percoll-CS. In conclusion, Percoll-DGC selection prior to CS freezing significantly improved post-thaw sperm quality, including kinematics, viability, and acrosome integrity. For UR freezing, Percoll-DGC primarily enhanced post-thaw viability and acrosome integrity.
Collapse
Affiliation(s)
- Mauricio Duma
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.
| | - Diego A Galarza
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador; Centro Latinoamericano de Formación de Especies Mayores y Menores, CLAFEM, Cuenca, Ecuador.
| | - Kelly Delgado
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.
| | - Angie Morocho
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.
| | - Guido Bermúdez
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.
| | - Manuel E Soria
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.
| | - María S Méndez
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.
| | - Esteban Muñoz-León
- Centro Latinoamericano de Formación de Especies Mayores y Menores, CLAFEM, Cuenca, Ecuador
| | - Fernando P Perea
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador.
| |
Collapse
|
6
|
Zhu Y, Yu J, Li X, Chen Z, Li Y, Xiong Y, He H, Yin S, Lan D, Li J, Yang L, Xiong X. Supplementation of DHA enhances the cryopreservation of yak semen via alleviating oxidative stress and inhibiting apoptosis. Front Vet Sci 2025; 12:1532473. [PMID: 40078211 PMCID: PMC11897752 DOI: 10.3389/fvets.2025.1532473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Semen cryopreservation is a crucial method for preserving genetic resources and accelerating the breeding process in domestic animals. However, the frozen-thawed process often leads to physical and chemical damage in semen, resulting in oxidative stress that diminishes sperm vitality and fertilization potential. This study aimed to explore the effects of docosahexaenoic acid (DHA) on the quality of frozen-thawed yak semen. Methods Semen samples were collected from six healthy adult Maiwa yaks and cryopreserved in liquid nitrogen using extenders with varying DHA concentrations: 0, 0.1, 1, 10, and 100 ng/mL. After thawing, we assessed indices, antioxidant capacity, mitochondrial activity, and apoptosis status to identify the optimal DHA concentration. Results and discussion Our findings indicate that the addition of DHA significantly improved the total motility (TM), progressive motility (PM), velocity of straight line (VSL), curvilinear velocity (VCL), and average path velocity (VAP) of cryopreserved spermatozoa, as well as the integrity of membrane and acrosome (P < 0.05). Additionally, DHA supplementation markedly reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in frozen-thawed yak spermatozoa (P < 0.05) and enhanced the antioxidant enzyme activities (T-AOC, SOD, CAT, GSH-Px, P < 0.05). It also improved the mitochondrial membrane potential (MMP) and ATP levels (P < 0.05). Notably, the group treated with 10 ng/mL DHA showed significantly better outcomes than the other treatment groups (P < 0.05). Furthermore, the addition of 10 ng/mL DHA to the semen cryopreservation dilution effectively decreased the apoptotic ratio of frozen-thawed yak spermatozoa (P < 0.05), and notably upregulated the expression level of anti-apoptotic protein Bcl-2 (P < 0.05), while downregulating the expression of the pro-apoptotic protein Bax and Caspase3 (P < 0.05). Conclusion In conclusion, the incorporation of 10 ng/mL DHA into semen extenders enhances the quality and viability of yak sperm after cryopreservation by alleviating the oxidative stress, bolstering antioxidant defenses, and preserving mitochondria function, as well as inhibiting the apoptotic pathway activation.
Collapse
Affiliation(s)
- Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
- Reproductive Medicine Center, The Third People's Hospital of Chengdu, Chengdu, China
| | - Jun Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Xupeng Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Zhuo Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yuan Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Honghong He
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Lixue Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Xianrong Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| |
Collapse
|
7
|
Hai E, Li B, Song Y, Zhang J, Zhang J. Ferroptosis emerges as the predominant form of regulated cell death in goat sperm cryopreservation. J Anim Sci Biotechnol 2025; 16:26. [PMID: 39966967 PMCID: PMC11834235 DOI: 10.1186/s40104-025-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Freezing-induced sperm damage, often associated with oxidative stress, can result in regulated cell death. Given that oxidative stress can trigger various forms of regulated cell death, the prevailing form during sperm cryopreservation remains unknown. Our study aimed to investigate this issue using cashmere goats as a model. RESULTS We found a significant increase in lyso-phospholipids in frozen-thawed sperm suggested ferroptosis. Assessment of cryopreserved sperm, with or without prior treatment with ferroptosis or apoptosis inhibitors, demonstrated the significant efficacy of ferroptosis inhibitors in reducing freezing damage. This implicates ferroptosis as the primary form of regulated cell death induced during sperm cryopreservation. Additionally, the positive rate of transferrin receptor protein 1 was significantly lower in fresh live sperm (47.8%) than in thawed live sperm (71.5%), and the latter rate was lower than that in dead sperm (82.5%). By contrast, cleaved caspase-3 positivity showed no significant difference between fresh live sperm and thawed live sperm but was notably lower in thawed live sperm than in dead sperm. CONCLUSIONS Our findings establish ferroptosis as the dominant regulated cell death form during goat sperm cryopreservation, providing novel insights into freezing-induced sperm damage mechanisms. These findings have significant implications for optimizing cryopreservation protocols and enhancing sperm viability after freezing-thawing.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yukun Song
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
8
|
Arif A, Zahoor N, Tang J, Tang M, Dong L, Khan SZ, Dai G. Cryopreservation Strategies for Poultry Semen: A Comprehensive Review of Techniques and Applications. Vet Sci 2025; 12:145. [PMID: 40005904 PMCID: PMC11861739 DOI: 10.3390/vetsci12020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Poultry semen preservation is crucial for sustaining genetic diversity, improving production efficiency, and facilitating various breeding initiatives. This review underscores the importance and challenges associated with different preservation techniques. We investigate effective techniques for semen collection and evaluation, focusing on vital parameters such as volume, concentration, motility, and morphology. Preservation strategies are categorized into short-term approaches, such as dilution with extenders, and mid-to-long-term strategies, like freezing and the use of cryoprotectants. Additionally, we explore several factors affecting semen quality, including male age and genetics, seasonal impacts, and stress during handling. Assessing the quality of preserved semen is critical, particularly regarding post-thaw motility. The applications of these preservation techniques in artificial insemination, genetic enhancement, the conservation of endangered breeds, and biobanking are highlighted. This review identifies critical research opportunities, including the development of improved cryoprotectants, refining freezing protocols, comprehending the mechanisms of semen damage, and innovating novel preservation technologies. Addressing these challenges will enhance poultry semen preservation and contribute to sustainable poultry farming.
Collapse
Affiliation(s)
- Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (A.A.); (N.Z.); (J.T.); (M.T.); (L.D.)
| | - Nousheen Zahoor
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (A.A.); (N.Z.); (J.T.); (M.T.); (L.D.)
| | - Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (A.A.); (N.Z.); (J.T.); (M.T.); (L.D.)
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (A.A.); (N.Z.); (J.T.); (M.T.); (L.D.)
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (A.A.); (N.Z.); (J.T.); (M.T.); (L.D.)
| | - Sardar Zarq Khan
- Riphah College of Veterinary Science, Riphah University, Lahore 05450, Pakistan;
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (A.A.); (N.Z.); (J.T.); (M.T.); (L.D.)
| |
Collapse
|
9
|
Zhu Y, Yu J, Yang Q, Xie Y, Li X, Chen Z, Xiong Y, Fu W, He H, Yin S, Lan D, Li J, Xiong X. Mitochondria-targeted antioxidant MitoQ improves the quality of low temperature-preserved yak semen via alleviating oxidative stress. Anim Reprod Sci 2025; 273:107680. [PMID: 39709684 DOI: 10.1016/j.anireprosci.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Low-temperature preservation of yak semen during transportation and conservation is crucial to accelerate yak breeding. The effects of low-temperature cooling on yak semen quality, however, are poorly understood. This study aimed to determine the dose-dependent effect of mitochondria-targeted antioxidant "MitoQ" on the motility, oxidative status, and mitochondrial function of yak semen during low-temperature preservation. Semen samples were collected from six adult healthy Maiwa yaks and preserved at 4 ℃ in semen extender containing 0, 50, 100, 200, and 400 nM MitoQ, respectively. Firstly, the motility, membrane integrity, acrosome integrity, and abnormity index of yak spermatozoa were evaluated to determine the optimal MitoQ concentration. Next, the effect of MitoQ at the optimal concentration on spermatozoa antioxidant capacity, including reactive oxygen species (ROS) and malondialdehyde (MDA) contents, total antioxidant capacity (T-AOC), and superoxide dismutase content (SOD) levels, as well as mitochondrial membrane potential were analyzed. Up to 96 h of low-temperature storage, 200 nM MitoQ showed the most optimal effect on motility, membrane integrity, and acrosome integrity (P < 0.05) but not on sperm morphology (P > 0.05). Also, 200 nM MitoQ markedly reduced yak spermatozoa ROS and MDA contents for up to 48 h of low-temperature storage (P < 0.05). Finally, 200 nM MitoQ significantly improved T-AOC, SOD, and mitochondrial membrane potential for up to 24, 48, and 72 h of low-temperature storage, respectively (P < 0.05). In summary, semen extender supplementation with 200 nM MitoQ is beneficial for low-temperature yak semen preservation via improving the oxidative status.
Collapse
Affiliation(s)
- Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jun Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xupeng Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zhuo Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
10
|
He Y, Wei Q, Chen X, Zhang C, Wang Z. What are the Thoughts of Women Whose Husbands' Frozen Testicular Sperm Is Thawed for in vitro Fertilization on the Day of Oocyte Retrieval? A Qualitative Study. Int J Womens Health 2025; 17:87-98. [PMID: 39866820 PMCID: PMC11759575 DOI: 10.2147/ijwh.s505757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Objective The psychological experiences will be analyzed to understand the needs and burdens of women on the day of oocyte retrieval when the thawed testicular sperm of their husbands is used for in vitro fertilization, in order to provide a basis for the subsequent formulation of relevant nursing measures. Methods This study utilized a descriptive phenomenological research approach. A cohort of 13 women undergoing oocyte retrieval on the day when thawed testicular sperm from their husbands is used for in vitro fertilization at the Reproductive Medicine Center of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, between August and October 2024, were chosen as participants for this study. Semi-structured, in-depth interviews were conducted to gather qualitative data. The Colaizzi 7-step analysis method was subsequently utilized to analyze the interview transcripts and identify emerging themes. Results The analysis yielded 3 themes: (1) facing challenges and requiring assistance (a. demonstrate a strong desire to acquire professional knowledge; b. demonstrate a strong desire for recognition); (2) overwhelming psychological stress (a. concerns about potential privacy breaches; b. concerns about security issues; c. concerns about the therapeutic efficacy); (3) improving family atmosphere and marital relationships (a. communication between couples has increased.; b. shared expectations for children help couples establish a common goal). Conclusion It is recommended that healthcare practitioners implement strategies to enhance patient education and awareness surrounding assisted reproductive technology. Additionally, establishing and strengthening social support, reinforcing privacy protections and safety measures, promoting effective communication between partners, and managing treatment outcome expectations are crucial steps forward. Immediate Practical Implications Women prioritize treatment efficacy, privacy preservation, and the necessity of acquiring comprehensive professional knowledge when employing their partner's testicular sperm for in vitro fertilization. The study is instrumental in shaping policy dialogues on reproductive health, highlighting the critical significance of women's psychological health in the realm of in vitro fertilization.
Collapse
Affiliation(s)
- Yu He
- Nursing Department, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Qun Wei
- Nursing Department, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Xiaojie Chen
- Nursing Department, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Chen Zhang
- Nursing Department, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Zilian Wang
- Nursing Department, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
11
|
Hakimi F, Karimi Torshizi MA, Hezavehei M, Sharafi M. Protective Effect of N-Acetylcysteine on Rooster Semen Cryopreservation. Biopreserv Biobank 2024; 22:609-615. [PMID: 38634668 PMCID: PMC11656127 DOI: 10.1089/bio.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cryopreservation of avian semen is a useful reproductive technique in the poultry industry. However, during cooling, elevated reactive oxygen species (ROS) levels have destructive effects on both quality and function of thawed sperm. The aim of the current study is to investigate the antioxidant effects of N-acetylcysteine (NAC) during rooster semen cryopreservation. Semen samples were collected from ten Ross 308 broiler breeder roosters (32 weeks) and mixed. The mixed samples were divided into five equal parts and cryopreserved in Lake Buffer extender that contained different concentrations (0, 0.01, 0.1, 1, and 10 mM) of NAC. The optimum concentration of NAC was determined based on quality parameters of mobility, viability, membrane integrity, acrosome integrity, lipid peroxidation, and mitochondrial membrane potential after the freeze-thaw process. There was a higher percentage (p < 0.05) of total motility (TM) (60.9 ± 2.4%) and progressive motility (PM) (35.6 ± 1.9%) observed with the NAC-0.1 group compared to the other groups. Significantly higher percentages of viability (74.4 ± 2.3% and 71 ± 2.3%), membrane integrity (76.4 ± 1.5% and 74.7 ± 1.5%) and mitochondrial membrane potential (67.1 ± 1.6% and 66.3 ± 1.6%) were observed in the NAC-0.1 and NAC-1 groups compared to the other frozen groups (p < 0.05). The lowest percentage of lipid peroxidation and nonviable sperm was found in the NAC-0.1 and NAC-1 groups compared to the other groups (p < 0.05). The average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and acrosome integrity, were not affected by different concentrations of NAC in the thawed sperm (p > 0.05). Both NAC-0.1 and NAC-1 appear to be beneficial for maintaining the quality of rooster sperm after thawing.
Collapse
Affiliation(s)
- Farhad Hakimi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Mohsen Sharafi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Canada
| |
Collapse
|
12
|
Ramón-López AE, Fernández-Collahuazo JP, Samaniego JX, Duma JM, Méndez MS, Soria ME, Galarza-Álvarez L, Muñoz-León E, Galarza DA. L-carnitine supplementation in conventional slow and ultra-rapid freezing media improves motility, membrane integrity, and fertilizing ability of dog epididymal sperm. Anim Reprod Sci 2024; 270:107580. [PMID: 39216207 DOI: 10.1016/j.anireprosci.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to assess the impact of L-carnitine (LC) supplementation in conventional-slow (CS) and ultra-rapid (UR) freezing media on post-thaw quality and fertilizing ability of dog epididymal spermatozoa. Sperm samples were collected from 60 epididymides obtained from 30 adult orchiectomized dogs via retrograde flushing. Twenty pooled sperm samples were then created (3 epididymal samples/pool). Four treatments were established according to the freezing method (CS and UR) and LC supplementation (5 and 0 mM [control, Co]): CS-LC5, CS-Co, UR-LC5, and UR-Co. The CS freezing involved exposing 0.25 mL straw to liquid nitrogen vapors (LN2), while UR freezing submerged 30-µL drops of sperm samples directly into LN2. Sperm kinematics, membrane integrity, and fertilizing ability (by heterologous in vitro fertilization using bovine oocytes) were evaluated for all treatments. Post-thaw results revealed that the CS freezing treatments resulted in significantly higher values (P < 0.05) of curvilinear and average-path velocities, and beat-cross frequency compared to the UR freezing treatments, regardless of LC supplementation. The CS-LC5 and UR-LC5 treatments cryoprotected the sperm by increasing (P < 0.05) the percentage of 'live-sperm/intact-acrosome' compared to their controls treatments CS-Co and UR-Co. Regarding fertilizing ability, the CS-LC5 treatment yielded a higher percentage (P < 0.05) of pronuclei formation compared to both UR treatments. The UR-LC5 treatment, however, obtained greater percentage (P < 0.05) than their control UR-Co. In conclusion, supplementation with L-carnitine in conventional-slow and ultra-rapid freezing improved sperm motility, plasma, and acrosome membranes integrity and fertilizing ability of dog epididymal spermatozoa.
Collapse
Affiliation(s)
- A E Ramón-López
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - J P Fernández-Collahuazo
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - J X Samaniego
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - J M Duma
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - M S Méndez
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador
| | - M E Soria
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - L Galarza-Álvarez
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - E Muñoz-León
- Centro Latinoamericano de formación en especies mayores y menores - CLAFEM, Cuenca, Ecuador.
| | - D A Galarza
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador; Centro Latinoamericano de formación en especies mayores y menores - CLAFEM, Cuenca, Ecuador.
| |
Collapse
|
13
|
Alam K, Srivastava S, Verma SK, Verma AK, Saurabh, Kumar R, Kumar R, Jaiswal A, Alam A, Rana T. The Effect of Different Concentrations of Melatonin on the Quality of Frozen and Thawed Semen of Jamnapari Goat. Reprod Domest Anim 2024; 59:e14743. [PMID: 39582473 DOI: 10.1111/rda.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Antioxidants help safeguard sperm cells from damage during the freeze-thaw process. Melatonin and its metabolites have an antioxidative effect. The current study aimed to evaluate the impact of melatonin supplementation in tris-based extenders at various concentrations (0.5, 1.0 and 2 mM) on the freezability of Jamnapari goat spermatozoa. A total of 48 ejaculates were collected twice a week from four Jamnapari bucks (n = 12 × 4) using an artificial vagina during the period of October to November 2023. Selected ejaculates diluted with tris-citric acid egg yolk extender were divided into four equal aliquots, and melatonin (dissolved in 0.1% dimethyl sulfoxide) was added later at 0.5, 1.0 and 2.0 mM to the control group (C) (extender and 0.1% DMSO) and treatment groups T1, T2 and T3, respectively. Various seminal attributes such as progressive motility, livability, acrosomal integrity, sperm abnormalities, sperm plasma membrane integrity, sperm penetration distance by vanguard spermatozoa in polyacrylamide gel and seminal plasma enzyme leakage (AST, ALT, ACP and AKP) were evaluated at post-dilution and post-thawed stages. Our findings revealed that all semen quality parameters were superior in melatonin-treated groups than the C, and the differences were noticeably higher in the T2 group (1.0 mM) than the other groups. Adding 1.0 mM melatonin proved to be the most effective to safeguard sperm cells from cryopreservation induced cryodamage of Jamnapari buck.
Collapse
Affiliation(s)
- Kabir Alam
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Sushant Srivastava
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Sanjeev Kumar Verma
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Abhishek Kumar Verma
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Saurabh
- Department of Veterinary Clinical Complex, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Rajesh Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Rabindra Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Ankit Jaiswal
- Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Azeer Alam
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, India
| | - Tanmoy Rana
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata, India
| |
Collapse
|
14
|
Benko F, Baňas Š, Ďuračka M, Kačániová M, Tvrdá E. Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa. Cells 2024; 13:1710. [PMID: 39451229 PMCID: PMC11505711 DOI: 10.3390/cells13201710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Theobromine (TBR) is a methylxanthine known for its bronchodilatory and stimulatory effects. This research evaluated the vitality, capacitation patterns, oxidative characteristics, microbial profile and expression of capacitation-associated proteins (CatSper1/2, sodium bicarbonate cotransporter [NBC], protein kinases A [PKA] and C [PKC] and adenylate cyclase 10 [ADCY10]) in cryopreserved bovine spermatozoa (n = 30) in the absence (cryopreserved control [CtrlC]) or presence of different TBR concentrations (12.5, 25, and 50 µM) in egg yolk extender. Fresh ejaculate served as a negative control (CtrlN). Significant post-thaw maintenance of the sperm motility, membrane and DNA integrity and mitochondrial activity (p < 0.001) were recorded following the administration of 25 μM and 50 μM TBR, then compared to CtrlC. All groups supplemented with TBR exhibited a significantly lower percentage of prematurely capacitated spermatozoa (p < 0.001) than CtrlC. Significantly decreased levels of global reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals were observed in the presence of 25 μM and 50 μM TBR (p < 0.01). Western blot analysis revealed that supplementation with 50 μM TBR significantly prevented the loss of NBC and ADCY10 (p < 0.01), while all TBR doses stabilized the levels of PKC (p < 0.05 at 50 μM TBR; p < 0.001 at 12.5 μM and 25 μM TBR). In summary, we suggest that TBR is effective in protecting the spermatozoa during the cryopreservation process through its potential to stimulate energy synthesis while preventing ROS overproduction and the loss of proteins involved in the sperm activation process.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| | - Štefan Baňas
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 010 43 Warsaw, Poland
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| |
Collapse
|
15
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
16
|
Delgado-Bermúdez A. Insights into crucial molecules and protein channels involved in pig sperm cryopreservation. Anim Reprod Sci 2024; 269:107547. [PMID: 38981798 DOI: 10.1016/j.anireprosci.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Cryopreservation is the most efficient procedure for long-term preservation of mammalian sperm; however, its use is not currently dominant for boar sperm before its use for artificial insemination. In fact, freezing and thawing have an extensive detrimental effect on sperm function and lead to impaired fertility. The present work summarises the basis of the structural and functional impact of cryopreservation on pig sperm that have been extensively studied in recent decades, as well as the molecular alterations in sperm that are related to this damage. The wide variety of mechanisms underlying the consequences of alterations in expression levels and structural modifications of sperm proteins with diverse functions is detailed. Moreover, the use of cryotolerance biomarkers as predictors of the potential resilience of a sperm sample to the cryopreservation process is also discussed. Regarding the proteins that have been identified to be relevant during the cryopreservation process, they are classified according to the functions they carry out in sperm, including antioxidant function, plasma membrane protection, sperm motility regulation, chromatin structure, metabolism and mitochondrial function, heat-shock response, premature capacitation and sperm-oocyte binding and fusion. Special reference is made to the relevance of sperm membrane channels, as their function is crucial for boar sperm to withstand osmotic shock during cryopreservation. Finally, potential aims for future research on cryodamage and cryotolerance are proposed, which might be crucial to minimise the side-effects of cryopreservation and to make it a more advantageous strategy for boar sperm preservation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain.
| |
Collapse
|
17
|
Raspa M, Paoletti R, Scavizzi F. Ascorbic acid 2-glucoside improves survival, quality, and fertility of frozen-thawed C57Bl/6J and C57Bl/6N mouse spermatozoa. Andrology 2024. [PMID: 39330618 DOI: 10.1111/andr.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Ascorbic acid 2-glucoside (AA2G) is a stabilized form of ascorbic acid and a potent antioxidant. Ascorbic acid is present in the testes and epididymis and helps maintain the physiological integrity of reproductive organs. Its properties have been utilized to protect spermatozoa of different species from oxidative stress. MATERIALS AND METHODS Spermatozoa of C57Bl/6J and C57Bl/6N strains were frozen and analyzed, after thawing, by supplementing the capacitation medium with AA2G, both in the presence and absence of methyl-β-cyclodextrin (MBCD). The effect of treatment was evaluated by SCA System (Microptic) analyzing the velocity, vitality, morphology, and the DNA fragmentation. We also examined sperm capacitation (CTC), acrosome reaction (Coomassie Brillant Blue), and fertility (in vitro fertilization) of treated spermatozoa. RESULTS AA2G improved sperm quality and fertility particularly in association with MBCD. We observed a significant increase of sperm motility, velocity, and vitality associated with an enhanced capacitation and acrosome reaction. These improvements resulted in a marked increase in in vitro fertilization success. Embryos obtained were cultured and reached normally the blastocyst stage. DISCUSSION This study aimed to determine if AA2G could safeguard mouse spermatozoa during cryopreservation. We found a protective effect of AA2G that increased sperm survivability resulting in higher fertilization rate. CONCLUSION This newly improved protocol shows potential for reanimating cryopreserved GEMMs stored in mouse biobanks and international repositories, such as the European Mouse Mutant Archive (EMMA). This can serve as a pivotal tool in fulfilling the 3Rs mission (replacement, reduction, and refinement), promoting ethical and humane research practices.
Collapse
Affiliation(s)
- Marcello Raspa
- National Research Council (IBBC), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Scalo, Monterotondo, Italy
| | | | - Ferdinando Scavizzi
- National Research Council (IBBC), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Scalo, Monterotondo, Italy
| |
Collapse
|
18
|
Partyka A, Kostrzewa Susłow E, Dymarska M, Ligocka Z, Smalec B, Kalinin J, Meco M, Niżański W. Flavone and 3-hydroxyflavone supplementation in cryopreservation medium protects canine sperm against apoptosis and lipid peroxidation. Theriogenology 2024; 226:319-327. [PMID: 38959842 DOI: 10.1016/j.theriogenology.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Cryopreservation is a pivotal technique in safeguarding genetic material across diverse species, despite its inherent challenges linked to induced spermatozoa damage, notably apoptosis and lipid peroxidation (LPO). Given the insufficient antioxidant defense of spermatozoa against LPO, there is a rising interest in integrating additional additives into extenders to ameliorate mammalian semen quality. Among these additives, flavonoids have garnered considerable attention due to their potent antioxidative properties. Hence, our study aimed to assess the efficacy of flavone (FL) and 3-hydroxyflavone (3-OH = ) supplementation in the cryopreservation medium to protect canine sperm against the damaging impacts of freezing and ensure the preservation of their reproductive potential. Semen was collected from five Beagle stud dogs and then pooled. Then, the sample was divided into 7 groups, each treated with 1) 0 mM, 2) 0.1 mM FL, 3) 0.2 mM FL, 4) 0.4 mM FL, 5) 0.1 mM 3-OH = , 6) 0.2 mM 3-OH = , 7) 0.4 mM 3-OH = . Semen samples were subjected to cryopreservation in French straws and glycerol as a cryoprotectant. In the frozen thawed semen, sperm motility parameters by CASA system and sperm membrane integrity, acrosome status, mitochondrial activity, DNA fragmentation, early apoptosis with capacitation, and LPO were assessed using flow cytometry just after thawing (0 h) and 4 h post thaw. Results reveal significant increase in the proportion of live spermatozoa with undamaged acrosomes in the FL 0.1 and 3-OH = 0.2 groups at 0 h post thaw. At this time point, 3-OH = 0.1 significantly reduced the DNA fragmentation index (DFI) compared to the FL 0.1 and 0.2 groups. However, after the next 4 h, 3-OH = 0.4 exhibited the lowest (P < 0.05) DFI compared to FL 0.2 and 3-OH = 0.1. Additionally, 3-OH = 0.4 showed the highest (P < 0.05) proportion of non apoptotic and non capacitated spermatozoa compared to FL 0.1 0 h post-thaw. Simultaneously, the same group demonstrated significant reduction in apoptotic and capacitated sperm cells, at 0 h and 4 h post-thaw. Moreover, 3-OH = at 0.1 (0 h and 4 h) and 0.2 mM (4 h) significantly enhances the proportion of live sperm without LPO post thaw. Whitin the FL groups, only 0.4 FL significantly increased the percentage of live sperm without LPO. No significant effect of the tested substances was observed on sperm motility, cell membrane integrity, or mitochondrial activity. These findings highlight the promising role of flavone and 3-hydroxyflavone in enhancing sperm resilience during cryopreservation, suggesting their protective function against acrosome damages, capacitation, apoptosis and lipid peroxidation.
Collapse
Affiliation(s)
- Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Edyta Kostrzewa Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zuzanna Ligocka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Smalec
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Kalinin
- Group no.148 of the Department of Molecular and Cellular Biology, Wroclaw Medical University, Wrocław, Poland
| | - Michele Meco
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
19
|
Kujoana TC, Sehlabela LD, Mabelebele M, Sebola NA. The potential significance of antioxidants in livestock reproduction: Sperm viability and cryopreservation. Anim Reprod Sci 2024; 267:107512. [PMID: 38901083 DOI: 10.1016/j.anireprosci.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Male reproductive efficiency is primarily defined by the generation of high-quality and viable sperm cells in farm animals. However, the literature shows that male fertility has declined in recent years due various factors including heat stress, which causes the development of free radicals and reactive oxygen species (ROS) which damages sperm cells. This review aimed to examine the potential significance of antioxidants in increasing and preserving sperm quality and viability. Data used to produce this review paper came from recently published articles in peer reviewed journals. Google Scholar, Science Direct, Research Gate, Web of Science, and the Directory of Open Access Journals were used to access the data. Various studies have shown that antioxidants play acritical role in preserving the sperm quality and viability by protecting sperm cells from the potential damage from oxidative stress induced by the development of oxygen species imbalances. However, there is less information on the use of natural or synthetic antioxidants to preserve semen quality through in vivo procedures, despite its growing popularity and promising results. Hence, there is a need for researchers to explore more on this topic, especially in other livestock species than poultry.
Collapse
Affiliation(s)
- Tlou Christopher Kujoana
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| | - Lerato Deirdre Sehlabela
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| | - Nthabiseng Amenda Sebola
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| |
Collapse
|
20
|
Oktanella Y, Mustofa I, An-Haru FAFR, Putri DDM, Hendrawan VF, Susilowati S, Degu NY, Hernawati T. Conserving goat sperm post-thawed gene expression and cellular characteristics using the antioxidant coenzyme Q10 supplementation. Vet World 2024; 17:1637-1647. [PMID: 39185048 PMCID: PMC11344105 DOI: 10.14202/vetworld.2024.1637-1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The use of frozen goat semen for artificial insemination frequently results in a decline in sperm quality following thawing, which can be attributed to cold shock from cryopreservation, reduced motility, and possible DNA damage. Freezing may compromise mRNA stability due to the presence of free radicals. Despite strong post-thaw motility and no visible DNA fragmentation, sperm can still exhibit altered gene expression patterns. To reduce the damaging impact of free radicals during cryopreservation, antioxidants are typically added to the freezing medium. This study assessed the impact of adding coenzyme Q10 (CoQ10) to frozen sperm diluent on the ATP5F1A and CPT2 gene expression, sperm motility, and viability post-thawing. Materials and Methods CoQ10 was added to sperm at six different concentrations: 0 mg/dL (P0), 6.25 mg/dL (P1), 12.5 mg/dL (P2), 25 mg/dL (P3), 50 mg/dL (P4), and 100 mg/dL (P5). The Statistical Package for the Social Sciences (SPSS) software version 22 was used to conduct comparative tests using one-way analysis of variance followed by Duncan's test for motility and viability and Kruskal-Wallis test followed by pairwise comparison test for membrane integrity and gene expression. Results The addition of CoQ10 to semen diluent has a notable impact on the post-thawed quality of sperm. The most significant outcomes were observed with a 25 mg/dL dosage (P3) for cell viability, membrane integrity, and ATP5F1A gene expression, and with a 50 mg/dL dosage (P4) for sperm motility, membrane integrity, and CPT2 gene expression. Conclusion Incorporating CoQ10 into frozen semen diluent improves gene expression and prevents deterioration of the cell quality of thawed goat spermatozoa. While the study demonstrates the benefits of CoQ10, the precise molecular mechanisms through which CoQ10 enhances gene expression and cell quality were not fully elucidated. Further investigation is needed to understand these mechanisms in detail. Comparative studies with other antioxidants and cryoprotectants can help establish the relative efficacy of CoQ10 and potentially develop more effective combinations.
Collapse
Affiliation(s)
- Yudit Oktanella
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Imam Mustofa
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| | | | - Desinta Dwi Melati Putri
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Viski Fitri Hendrawan
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Suherni Susilowati
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| | - Nurhusien Yimer Degu
- Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| | - Tatik Hernawati
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, Indonesia
| |
Collapse
|
21
|
Hai E, Li B, Zhang J, Zhang J. Sperm freezing damage: the role of regulated cell death. Cell Death Discov 2024; 10:239. [PMID: 38762505 PMCID: PMC11102515 DOI: 10.1038/s41420-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in this field.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
22
|
Liang S, Treeby BE, Martin E. Review of the Low-Temperature Acoustic Properties of Water, Aqueous Solutions, Lipids, and Soft Biological Tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:607-620. [PMID: 38530713 DOI: 10.1109/tuffc.2024.3381451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Existing data on the acoustic properties of low-temperature biological materials is limited and widely dispersed across fields. This makes it difficult to employ this information in the development of ultrasound applications in the medical field, such as cryosurgery and rewarming of cryopreserved tissues. In this review, the low-temperature acoustic properties of biological materials, and the measurement methods used to acquire them were collected from a range of scientific fields. The measurements were reviewed from the acoustic setup to thermal methodologies for samples preparation, temperature monitoring, and system insulation. The collected data contain the longitudinal and shear velocity, and attenuation coefficient of biological soft tissues and biologically relevant substances-water, aqueous solutions, and lipids-in the temperature range down to -50 °C and in the frequency range from 108 kHz to 25 MHz. The multiple reflection method (MRM) was found to be the preferred method for low-temperature samples, with a buffer rod inserted between the transducer and sample to avoid direct contact. Longitudinal velocity changes are observed through the phase transition zone, which is sharp in pure water, and occurs more slowly and at lower temperatures with added solutes. Lipids show longer transition zones with smaller sound velocity changes; with the longitudinal velocity changes observed during phase transition in tissues lying between these two extremes. More general conclusions on the shear velocity and attenuation coefficient at low-temperatures are restricted by the limited data. This review enhance knowledge guiding for further development of ultrasound applications in low-temperature biomedical fields, and may help to increase the precision and standardization of low-temperature acoustic property measurements.
Collapse
|
23
|
Menzel V, Richter E, Helke C, Bürk BT, Erb HHH, Leike S, Borkowetz A, Thomas C, Baunacke M. Utilization of sperm cryopreservation in patients with testicular cancer. J Cancer Res Clin Oncol 2024; 150:201. [PMID: 38630148 PMCID: PMC11024033 DOI: 10.1007/s00432-024-05725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE We assessed factors that affect the utilization of sperm cryopreservation before 2021, when patients covered expenses, and the influence on quality of life. METHODS Between 2011 and 2021, testicular cancer survivors (TCS) at our clinic completed a questionnaire, including EORTC QLQ-TC26, covering sperm cryopreservation, sociodemographic details, post-treatment births, and artificial insemination. RESULTS After 5.7 ± 3.0 years, 279 participants (64%) responded to the questionnaire. Among them, 33% (91/279) of testicular cancer survivors chose sperm cryopreservation prior to treatment, with 11% (10/91) using it for insemination. Conversely, 2% (3/188) without cryopreservation reported unfulfilled desire to have children. Univariate analysis showed TCS with cryopreservation were younger (30.6 ± 7.1 (35 (21-59)) vs. 42.4 ± 10.9 (48 (22-81)) years; p = 0.001), had a lower BMI (24.2 ± 3.3 vs. 26.6 ± 4.6 kg/m2; p = 0.009) and a lower Charlson Score (> 3: 36% vs. 60%; p < 0.001). Multivariate analysis revealed older age (≥ 37 years: OR 13.1 (5.5-31.2), p < 0.001) and lower education (middle school or less: OR 3.3 (1.6-6.9), p = 0.001) as independent factors associated with not undergoing cryopreservation. Regarding quality of life, multivariate analysis identified a lower infertility anxiety score (OR 4.3 (2.0-9.0), p < 0.001) and higher age (≥ 44 years: OR 5.4 (2.6-11.3); p < 0.001) as predictors for the absence of prior cryopreservation. CONCLUSIONS Age and education seem to impact the choice of undergoing paid sperm cryopreservation. Urologists should inform testicular cancer patients about costs and coverage. Importantly, the occurrence of unmet desires for parenthood is minimal among those who forego cryopreservation.
Collapse
Affiliation(s)
- Viktoria Menzel
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Emilia Richter
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Charlotte Helke
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Björn Thorben Bürk
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Steffen Leike
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christian Thomas
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martin Baunacke
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
24
|
Shokry DM, Badr MR, Sakr AAM, Elmesiry AM, Assy MM, Rawash Z, Abd Eldaim MA. Enhancement potential of Moringa oleifera leaves extract on buffalo bull cryopreserved semen quality and fertilization capacity. Anim Reprod Sci 2024; 262:107414. [PMID: 38330533 DOI: 10.1016/j.anireprosci.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The aim of the present study is to evaluate the effect of Moringa oleifera leave extract (MOLE) on buffalo bull cryopreserved semen quality and fertility. Sixty ejaculates were collected from ten fertile buffalo bulls on a weekly basis for 6 weeks (n = 10 bulls & n = 60) then semen samples were pooled and divided into five groups. The semen of the control group was without additives. The semen of other groups was supplemented with MOLE at doses of 200, 400, 600 and 800 µg/ mL, respectively. One hundred thirty multiparous buffaloes were artificially inseminated with semen supplemented without or with MOLE at dose of 600 µg/ mL. Inclusion of MOLE in semen extender at dose 600 µg/ mL significantly elevated the total motility, progressive motility, membrane integrity and fertilization capacity of the post-thawed spermatozoa, as well as the total antioxidant capacity. However, it significantly decreased acrosomal defects of spermatozoa, and the concentration of malondialdehyde. This study indicated that inclusion of MOLE to semen extender improved the quality and fertility of the post-thawed buffalo bulls' semen through enhancing the activities of the antioxidant enzyme system and decreasing cryodamage of the buffalo bull spermatozoa.
Collapse
Affiliation(s)
- Dina Mahdy Shokry
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Magdy Ramadan Badr
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Abdel-Aziz Mustafa Sakr
- Animal Production Research Institute, Agriculture Research Center, (APRI, ARC), Dokki, Giza, Egypt
| | - Ahmed Mohamed Elmesiry
- Diagnostic Imaging and Endoscopy Unit, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Mohamed Mahmoud Assy
- Department of Pathology, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Zaher Rawash
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shibin Elkom 32512, Egypt.
| |
Collapse
|
25
|
Short SE, Zamorano M, Aranzaez-Ríos C, Lee-Estevez M, Díaz R, Quiñones J, Ulloa-Rodríguez P, Villalobos EF, Bravo LA, Graether SP, Farías JG. Novel Apoplastic Antifreeze Proteins of Deschampsia antarctica as Enhancer of Common Cell Freezing Media for Cryobanking of Genetic Resources, a Preliminary Study. Biomolecules 2024; 14:174. [PMID: 38397411 PMCID: PMC10886522 DOI: 10.3390/biom14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifreeze proteins (AFPs) are natural biomolecules found in cold-adapted organisms that lower the freezing point of water, allowing survival in icy conditions. These proteins have the potential to improve cryopreservation techniques by enhancing the quality of genetic material postthaw. Deschampsia antarctica, a freezing-tolerant plant, possesses AFPs and is a promising candidate for cryopreservation applications. In this study, we investigated the cryoprotective properties of AFPs from D. antarctica extracts on Atlantic salmon spermatozoa. Apoplastic extracts were used to determine ice recrystallization inhibition (IRI), thermal hysteresis (TH) activities and ice crystal morphology. Spermatozoa were cryopreserved using a standard cryoprotectant medium (C+) and three alternative media supplemented with apoplastic extracts. Flow cytometry was employed to measure plasma membrane integrity (PMI) and mitochondrial membrane potential (MMP) postthaw. Results showed that a low concentration of AFPs (0.05 mg/mL) provided significant IRI activity. Apoplastic extracts from D. antarctica demonstrated a cryoprotective effect on salmon spermatozoa, with PMI comparable to the standard medium. Moreover, samples treated with apoplastic extracts exhibited a higher percentage of cells with high MMP. These findings represent the first and preliminary report that suggests that AFPs derived from apoplastic extracts of D. antarctica have the potential to serve as cryoprotectants and could allow the development of novel freezing media.
Collapse
Affiliation(s)
- Stefania E. Short
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| | - Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| | - Cristian Aranzaez-Ríos
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Av. Alemania 1090, Temuco 4810101, Chile;
| | - Rommy Díaz
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (R.D.); (J.Q.)
| | - John Quiñones
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (R.D.); (J.Q.)
| | - Patricio Ulloa-Rodríguez
- Department of Agronomical Sciences, Universidad Católica del Maule, Av. Carmen 684, Curicó 3341695, Chile;
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco 4813302, Chile;
| | - León A. Bravo
- Department of Agronomical Sciences and Natural Resources, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile;
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada;
| | - Jorge G. Farías
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54D, Temuco 4811230, Chile; (S.E.S.); (M.Z.); (C.A.-R.)
| |
Collapse
|
26
|
Hosseini E, Afradiasbagharani P, Mohammadian M, Amjadi F, Tabatabaei M, Tanhaye Kalate Sabz F, Zandieh Z. Granulocyte-Macrophage Colony-Stimulating Factor Cytokine Addition After the Freeze-Thawing Process Improves Human Sperm Motility and Vitality in Asthenoteratozoospermia Patients. Biopreserv Biobank 2024; 22:38-45. [PMID: 37801668 DOI: 10.1089/bio.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
The cryopreservation-thawing process of spermatozoa cells has negative impacts on their structure, function, and fertility parameters, which are known as cryoinjury. Asthenozoospermia patients are more susceptible to cryoinjury. Granulocyte-macrophage colony-stimulating factor (GM-CSF) increases sperm glucose uptake via the induction of glucose transporters, resulting in increased sperm motility. This study aimed to investigate the efficiency of GM-CSF supplementation of the cryopreservation media for semen samples of asthenoteratozoospermia patients. The study was carried out on 20 semen samples from infertile men referred to diagnosing semen analysis. To avoid subjective bias, two main sperm motility parameters, including velocity along the curvilinear path and velocity along the straight-line path were considered by the computer-assisted sperm analysis system. Afterward, each semen sample was divided into three equal aliquots and randomly assigned to one of the following groups: group I (control, freezing media only), group II (+GM-CSF, freezing medium supplemented with 2 μL/mL GM-CSF), or group III (GM-CSF added after thawing and washing). Following semen thawing, standard parameters, mitochondrial membrane potential (MMP), and the DNA Fragmentation Index were analyzed. Total sperm motility (progressive and non-progressive) improved significantly in group III samples after a 30-minute incubation with GM-CSF compared with the control group (26.5% ± 3.1% vs. 17.51% ± 2.59%). However, no differences in progressive motility or sperm morphology were found among the three thawed samples. The percentage of vitality was significantly higher in group III compared with the other two groups (28.38% ± 3.4% vs. 22.4% ± 3.08% and 22.14% ± 2.77%, respectively) (p < 0.05). JC-1 levels (a marker of MMP) were not significantly different between the examined groups (44.95% ± 8.26% vs. 36.61% ± 6.95% vs. 46.67% ± 7.7%, for control, group II, and group III, respectively) (p > 0.05). GM-CSF may be advantageous as an additive after freezing, improving total motility and viability after 30 minutes of post-thaw incubation; however, when supplied to the freezing media before cryopreservation, it is unable to protect against cryoinjury.
Collapse
Affiliation(s)
- Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parivash Afradiasbagharani
- Department of Obstetrics and Gynecology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Masoud Mohammadian
- Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - FatemehSadat Amjadi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Tabatabaei
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
| | - Fateme Tanhaye Kalate Sabz
- Department of Anatomical Sciences and Pathology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zahra Zandieh
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Khalique MA, Andrabi SMH, Majeed KA, Yousaf MS, Ahmad N, Tahir SK, Fayyaz MH, Haider MS, Naz SS, Qureshi IZ, Sulaiman S, Zaneb H, Rehman H. Cerium oxide nanoparticles improve the post-thaw quality and in-vivo fertility of Beetal buck spermatozoa. Theriogenology 2024; 214:166-172. [PMID: 37879286 DOI: 10.1016/j.theriogenology.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
The motility, health quality, and membrane disorders of spermatozoa are adversely affected during the process of semen cryopreservation due to the over-production of reactive oxygen species (ROS). Cerium oxide nanoparticles (CeO2NPs) possess properties to scavenge ROS either by mimicking specific antioxidants or by enhancing the activities of antioxidant enzymes. Therefore, we aimed at evaluating the effects of adding the CeO2NPs in the TRIS-citrate-yolk extender on in-vitro antioxidant enzyme activities, spermatozoa quality attributes, and in-vivo fertility of post-thaw Beetal buck spermatozoa. The CeO2NPs were prepared and characterized (UV-spectrophotometry, FTIR, and XRD). Semen samples, collected from bucks (n = 5), were distributed into five aliquots and diluted in an extender containing increasing concentrations of nanoparticles (0 μg/ml, called the control group, 25 μg/mL, 50 μg/mL, 75 μg/mL, and 100 μg/mL). At post-thaw, spermatozoa were evaluated for the above-mentioned attributes and the pregnancy rate by inseminating Beetal does (n = 252). Results demonstrated that CeO2NPs mitigated the detrimental effects of cryopreservation as ROS production and lipid peroxidation were lower (P < 0.001) in the 25, 50, and 75 μg/mL CeO2NPs-added groups compared to the control and 100 μg/ml CeO2NPs-added group. The addition of 25 μg/mL CeO2NPs improved (P < 0.001) the activities of superoxide dismutase, catalase, and peroxidase and the concentration of reduced glutathione (P < 0.001) compared to the other groups. In terms of sperm kinematics and velocity parameters, the groups added with the 25 and 50 μg/mL CeO2NPs exhibited higher total motility (P < 0.001), sperm progressive motility (P = 0.003), and rapid velocity (P < 0.001). The group added with the 50 μg/mL CeO2NPs had the highest (P = 0.04) average path velocity. The groups added with the 25 and 50 μg/mL CeO2NPs also exhibited higher plasma membrane integrity (P = 0.003), acrosomal integrity, and viability (P < 0.001) compared to the control group. The DNA integrity was also higher (P < 0.001) in all the CeO2NPs-added groups. The pregnancy rate was higher (P = 0.003) in the 25 (51.92 %) and 50 μg/mL CeO2NPs (58.33 %) groups compared to the other groups. Conclusively, our findings suggest that the inclusion of cerium oxide nanoparticles in the TRIS-citrate-yolk freezing extender can reduce the occurrence of cryopreservation-induced damages to Beetal's buck spermatozoa and ultimately enhance the pregnancy rate in does.
Collapse
Affiliation(s)
- Mubashir Ali Khalique
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan; Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | | | - Khalid Abdul Majeed
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Muhammad Shahbaz Yousaf
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Nisar Ahmad
- Department of Parasitology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Sajid Khan Tahir
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Muhammad Hammad Fayyaz
- Animal Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Muhammad Shafiq Haider
- Animal Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Syeda Sohaila Naz
- Department of Nano-sciences and Technology, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Irfan Zia Qureshi
- Department of Zoology, Quaid-i-Azam University, Islamabad, 44000, Pakistan
| | - Sulaiman Sulaiman
- Department of Nano-sciences and Technology, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Hafsa Zaneb
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan.
| |
Collapse
|
28
|
Ahmed H, Ijaz MU, Jahan S, Riaz M, Samir H, Swelum AA. Coenzyme Q10 improves the quality and in vitro fertility of post-thawed buffalo (Bubalus bubalis) semen via its antioxidative effect. Reprod Domest Anim 2024; 59:e14515. [PMID: 38268218 DOI: 10.1111/rda.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024]
Abstract
This study aimed to determine the effects of Coenzyme Q10 (CoQ10) in the freezing medium on functional and oxidative stress parameters and in vitro fertilization (IVF) rate of buffalo sperm. Collected samples were relocated to the laboratory for initial evaluation, gentle dilution in extenders, cooling (4°C, 2 h), equilibration (4°C, 4 h), packaging (straws, 0.5 mL), programmable freezing, and thawing (37°C, 30 s). Statistical analysis depicted that adding CoQ10 (100 μM) in a freezing medium caused a significant augmentation in total motility (%), average path, and straight-line velocities (μm/sec) of buffalo sperm than control. Adding CoQ10 (100 μM) improved sperm progressive motility, rapid velocity, and functional parameters (%) compared to the control and 10 μM of CoQ10. Moreover, CoQ10 in a freezing medium caused a significant augmentation in seminal plasma catalase (U/mL) and glutathione reductase (GSH; nmol/109 ) at 100 μM than control and other treatments. CoQ10 inclusion (100 μM) ameliorates seminal plasma superoxide dismutase (U/mL), glutathione-S-transferase (GST; nmol/mL/min) fructose (μg/mL), and ATP (nmol/million) than control. Furthermore, CoQ10 at 100 μM improved seminal plasma glutathione peroxidase (μM) levels than control, 10 μM, and 20 μM. Lastly, hydrogen peroxide (H2 O2; nM) production was significantly lower at 100 μM than at control and 10 μM. CoQ10 (100 μM) caused a significant augmentation in the un-capacitated pattern followed by a reduction in the capacitated pattern, and apoptosis-like changes (%) than control, and other treatments, whereas viability was increased than control and other treatments. CoQ10 (100 μM) significantly improved the IVF rate in comparison with control, CoQ10 at 10 μM, and 20 μM groups. In conclusion, the addition of CoQ10 (100 μM) in the freezing medium can improve the quality and in vitro fertility of post-thawed buffalo semen via its antioxidative effect. Further studies are needed to evaluate the effect of CoQ10 on the in vivo fertility of buffalo bull semen.
Collapse
Affiliation(s)
- Hussain Ahmed
- Department of Zoology, University of Buner, Khyber Pakhtunkhwa, KP, Pakistan
- Department of Animal Sciences, Reproductive Physiology Laboratory, Quaid-i-Azam University, Campus, Islamabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sarwat Jahan
- Department of Animal Sciences, Reproductive Physiology Laboratory, Quaid-i-Azam University, Campus, Islamabad, Pakistan
| | - Mehreen Riaz
- Department of Zoology, Women University Swabi, Swabi, KP, Pakistan
| | - Haney Samir
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Şimşek S, Erdogan E. The Effects of Silymarin Supplementation on Post-Thawed Human Sperm Functional Parameters. Biopreserv Biobank 2023; 21:569-575. [PMID: 36383149 DOI: 10.1089/bio.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effect of silymarin on human sperm quality during cryopreservation. Samples were collected from 20 normospermic individuals, and each sample was divided into different concentrations of silymarin comprising the following groups: (0, 20, 100, 500, and 1000 μg/mL silymarin). Sperm quality parameters, such as plasma membrane integrity, mitochondrial membrane potential, acrosomal membrane integrity, and caspase 3 were estimated. Silymarin concentrations of 100-500 μg/mL significantly increased motility, plasma membrane integrity, and mitochondrial activity compared with the frozen control group. Acrosomal integrity was increased in the 1000 μg/mL silymarin group. Moreover, 20 and 100 μg/mL concentrations significantly decreased the percentage of caspase 3. The addition of silymarin antioxidant to the frozen medium reduced damage in the sperm after freezing and thawing. This is the first study that showed silymarin can be useful in cryopreservation of human sperm.
Collapse
Affiliation(s)
- Seda Şimşek
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ender Erdogan
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
30
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
31
|
Rodrigues Pessoa E, Roger Vasconcelos F, de Oliveira Paula-Marinho S, de Menezes Daloso D, Damasceno Guerreiro D, Matias Martins JA, Gomes-Filho E, Alencar Moura A. Metabolomic profile of seminal plasma from Guzerá bulls (Bos indicus) with contrasting sperm freezability phenotypes. Reprod Domest Anim 2023; 58:1379-1392. [PMID: 37592767 DOI: 10.1111/rda.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
The present study evaluated the seminal plasma metabolome of Bos indicus Guzerá bulls with good (n = 4) and poor (n = 5) sperm freezability. Animals were raised in natural pasture of a 'Caatinga' ecosystem, in the semi-arid region of Brazil. Seminal plasma samples were subjected to gas chromatography coupled to mass spectrometry and data, analysed using bioinformatics tools (Cytoscape with the MetScape plug-in). Sixty-two metabolites were identified in the bovine seminal plasma. Fatty acids and conjugates and organic compounds were the predominant seminal fluid metabolites, followed by carboxylic acids and derivatives, amino acids, benzenes and steroids and derivatives, carbohydrates and carbohydrate conjugates and prenol lipids. Multivariate analysis indicated a distinct separation of seminal plasma metabolomes from bulls with contrasting sperm freezability. Abundances of propanoic acid, d-ribose and glycine were greater in the seminal plasma of bulls with good sperm freezability. Heptadecanoic acid and undecanoic acid were the predominant in bulls of poor sperm freezability. Propanoic acid is an energy source for spermatozoa and may act as an antimicrobial component in semen. Glycine acts against oxidizing and denaturing reactions. d-ribose is also an energy source and reduces apoptosis and oxidative stress. Undecanoic acid may protect sperm against fungal damage. This study provides fundamental information approximately the seminal plasma metabolome of tropically adapted bulls and its association with sperm freezability. However, further studies with larger groups of animals are needed to validate those metabolites as markers of sperm freezability. This strategy could support the selection of sires with superior sperm cryoresistance.
Collapse
Affiliation(s)
| | | | | | - Danilo de Menezes Daloso
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Jorge André Matias Martins
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Center for Agricultural Sciences and Biodiversity, Federal University of Cariri, Crato, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
32
|
Pezo F, Zambrano F, Uribe P, de Andrade AFC, Sánchez R. Slow Freezing of Preserved Boar Sperm: Comparison of Conventional and Automated Techniques on Post-Thaw Functional Quality by a New Combination of Sperm Function Tests. Animals (Basel) 2023; 13:2826. [PMID: 37760225 PMCID: PMC10525940 DOI: 10.3390/ani13182826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 09/29/2023] Open
Abstract
The slow freezing of boar sperm is the only way to preserve genetic material for extended periods; this can be achieved with exposure to liquid nitrogen vapors (conventional) or by using automated freezing equipment. The aim was to compare the effect of both techniques on post-thaw functionality. Boar sperm devoid of seminal plasma and resuspended in lactose-egg yolk-glycerol medium were cryopreserved. Conventional: straws were exposed to LN2 vapors; automated: using a drop curve of -39.82 °C·min-1 for 113 s from -5 to -80 °C during the critical period; and subsequent immersion in NL2. Cell viability, cholesterol flow, mitochondrial membrane potential (MMP), lipid peroxidation, peroxynitrite, superoxide anion levels, phosphatidylserine translocation, and caspase activation were evaluated by flow cytometry. In addition, total motility (TM) and progressive motility (PM) were determined by the SCA system immediately (T0), 60 (T60), and 120 min (T120) post-thawing. Automated freezing significantly reduces cholesterol flow and free radical and lipid peroxidation levels, making it possible to preserve motility for 120 min of incubation. At the same time, viability, acrosome integrity, MMP, and caspase activation did not differ from the conventional technique. In conclusion, controlling the temperature drop curve using automated freezing equipment reduces oxidative/nitrosative stress, preserving membrane fluidity and sperm motility.
Collapse
Affiliation(s)
- Felipe Pezo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomas, Santiago 8370003, Chile;
| | - Fabiola Zambrano
- Laboratory of Reproductive Physiopathology, Center for Translational Medicine (CEMT-BIOREN), Temuco 4811230, Chile; (F.Z.); (P.U.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Uribe
- Laboratory of Reproductive Physiopathology, Center for Translational Medicine (CEMT-BIOREN), Temuco 4811230, Chile; (F.Z.); (P.U.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil;
| | - Raúl Sánchez
- Laboratory of Reproductive Physiopathology, Center for Translational Medicine (CEMT-BIOREN), Temuco 4811230, Chile; (F.Z.); (P.U.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
33
|
Saadat Maryan H, Ghasemian F, Bahadori MH. Effects of cryopreservation in the presence of Natural Deep Eutectic Solvents (NADESs) on sperm parameters. Cryobiology 2023; 112:104550. [PMID: 37230456 DOI: 10.1016/j.cryobiol.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Natural Deep Eutectic Solvents (NADESs) are being considered as a potential alternative to traditional cryoprotective agents (CPAs) in sperm freezing. The study aimed to assess the effects of NADESs as a CPA on human sperm parameters. A total of 32 normozoospermic semen samples were collected from the Alzahra infertility treatment center (Iran) between July 2021 and September 2022. The samples were categorized into eight different groups: 1) a control (nonfrozen), and groups frozen with 2) SpermFreeze Solution, 3) ChX (Choline chloride and Xylitol), 4) ChS (Choline chloride and D-sorbitol), 5) ChG (Choline chloride and Glucose), 6) ChU (Choline chloride and Urea), 7) EtP (Ethylene glycol and l-proline), and 8) GlyP (Glycerol and l-proline). The study also analyzed the quality of sperm parameters, such as chromatin condensation and integrity, acrosome integrity, and survival, along with the expression of some genes that affect sperm fertility (TRPV1, TRPV4, SPACA3, and OGG1). The study found there were notable variations in sperm parameters (such as viability, chromatin condensation and integrity, and acrosome integrity) among frozen groups with some NADESs compared to the SpermFreeze Solution and control groups (P < 0.05). Analysis of gene expression demonstrated that the levels of TRPV1, TRPV4, SPACA3, and OGG1 genes were superior in the GlyP group compared to the other groups (P < 0.05). Additionally, the ChS and ChU groups exhibited preserved expression of these genes compared with the SpermFreeze Solution group. The use of NADESs led to the discovery of a more appropriate CPA that has low toxicity and is highly effective in maintaining the fertility potential of sperm.
Collapse
Affiliation(s)
| | - Fatemeh Ghasemian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mohammad Hadi Bahadori
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
34
|
Bai J, Zhou G, Hao S, Liu Y, Guo Y, Wang J, Liu H, Wang L, Li J, Liu A, Sun WQ, Wan P, Fu X. Integrated transcriptomics and proteomics assay identifies the role of FCGR1A in maintaining sperm fertilization capacity during semen cryopreservation in sheep. Front Cell Dev Biol 2023; 11:1177774. [PMID: 37601105 PMCID: PMC10433746 DOI: 10.3389/fcell.2023.1177774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Semen cryopreservation is a promising technology employed in preserving high-quality varieties in animal husbandry and is also widely applied in the human sperm bank. However, the compromised qualities, such as decreased sperm motility, damaged membrane structure, and reduced fertilization competency, have significantly hampered the efficient application of this technique. Therefore, it is imperative to depict various molecular changes found in cryopreserved sperm and identify the regulatory network in response to the cryopreservation stress. In this study, semen was collected from three Chinese Merino rams and divided into untreated (fresh semen, FS) and programmed freezing (programmed freezing semen, PS) groups. After measuring different quality parameters, the ultra-low RNA-seq and tandem mass tag-based (TMT) proteome were conducted in both the groups. The results indicated that the motility (82.63% ± 3.55% vs. 34.10% ± 2.90%, p < 0.05) and viability (89.46% ± 2.53% vs. 44.78% ± 2.29%, p < 0.05) of the sperm in the FS group were significantly higher compared to those in the PS group. In addition, 45 upregulated and 291 downregulated genes, as well as 30 upregulated and 48 downregulated proteins, were found in transcriptomics and proteomics data separately. Moreover, three integrated methods, namely, functional annotation and enrichment analysis, Pearson's correlation analysis, and two-way orthogonal partial least squares (O2PLS) analysis, were used for further analysis. The results suggested that various differentially expressed genes and proteins (DEGs and DEPs) were mainly enriched in leishmaniasis and hematopoietic cell lineage, and Fc gamma receptor Ia (FCGR1A) was significantly downregulated in cryopreserved sperm both at mRNA and protein levels in comparison with the fresh counterpart. In addition, top five genes (FCGR1A, HCK, SLX4, ITGA3, and BET1) and 22 proteins could form a distinct network in which genes and proteins were significantly correlated (p < 0.05). Interestingly, FCGR1A also appeared in the top 25 correlation list based on O2PLS analysis. Hence, FCGR1A was selected as the most potential differentially expressed candidate for screening by the three integrated multi-omics analysis methods. In addition, Pearson's correlation analysis indicated that the expression level of FCGR1A was positively correlated with sperm motility and viability. A subsequent experiment was conducted to identify the biological role of FCGR1A in sperm function. The results showed that both the sperm viability (fresh group: 87.65% ± 4.17% vs. 75.8% ± 1.15%, cryopreserved group: 48.15% ± 0.63% vs. 42.45% ± 2.61%, p < 0.05) and motility (fresh group: 83.27% ± 4.15% vs. 70.41% ± 1.07%, cryopreserved group: 45.31% ± 3.28% vs. 35.13% ± 2.82%, p < 0.05) were significantly reduced in fresh and frozen sperm when FCGR1A was blocked. Moreover, the cleavage rate of embryos fertilized by FCGR1A-blocked sperm was noted to be significantly lower in both fresh (95.28% ± 1.16% vs. 90.44% ± 1.56%, p < 0.05) and frozen groups (89.8% ± 1.50% vs. 82.53% ± 1.53%, p < 0.05). In conclusion, our results revealed that the downregulated membrane protein FCGR1A can potentially contribute to the reduced sperm fertility competency in the cryopreserved sheep sperm.
Collapse
Affiliation(s)
- Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaopeng Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yanhua Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Hongtao Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Longfei Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| |
Collapse
|
35
|
Ozimic S, Ban-Frangez H, Stimpfel M. Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Curr Issues Mol Biol 2023; 45:4716-4734. [PMID: 37367049 DOI: 10.3390/cimb45060300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
Collapse
Affiliation(s)
- Sanja Ozimic
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Ban-Frangez
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Calamai C, Ammar O, Rosta V, Farnetani G, Zimmitti S, Giovannelli L, Vignozzi L, Krausz C, Muratori M. Testicular and Haematological Cancer Induce Very High Levels of Sperm Oxidative Stress. Antioxidants (Basel) 2023; 12:1145. [PMID: 37371875 DOI: 10.3390/antiox12061145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer impairs spermatogenesis, whereas results on sperm DNA integrity are controversial and no data are available about sperm oxidative stress. In cancer patients, we detected sperm DNA fragmentation (sDF) and both viable (ROS production in viable sperm fraction/viable spermatozoa) and total (ROS production in viable sperm fraction/total spermatozoa) oxidative stress. We found that cancer (22.50 (17.00-26.75)%, n = 85) increased sDF with respect to the control groups in both normozoospermic subfertile patients (NSP) (12.75 (8.63-14.88)%, n = 52, p < 0.001) and in healthy donors (HD) (8.50 (7.00-14.00)%, n = 19, p < 0.001). The induction of viable oxidative stress (n = 96) with cancer was even higher: 36.60 (24.05-58.65)% versus 11.10 (8.63-14.90)% in NSP (p < 0.001) and 9.60 (8.00-14.03)% in HD (p < 0.001). Similar, albeit lower, differences were found for total oxidative stress. SDF sharply correlated to viable oxidative stress when we considered all subjects (cancer patients and controls) (r = 0.591, p < 0.001, n = 134), but no correlation was found when only cancer patients were studied (r = 0.200; p > 0.05, n = 63). In conclusion, cancer significantly increases sDF and sperm oxidative stress levels. Additional mechanisms to oxidative attack might be responsible for increased sDF in cancer patients. Because sperm oxidative stress might affect the outcomes of sperm cryopreservation, of cancer treatments and of sperm epigenoma, the detection of oxidative stress could be of help in managing the reproductive issues of cancer patients.
Collapse
Affiliation(s)
- Costanza Calamai
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| | - Oumaima Ammar
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| | - Viktoria Rosta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| | - Ginevra Farnetani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| | - Salvatore Zimmitti
- Medical Specialization School of Hygiene and Preventive Medicine, University of Florence, 50139 Florence, Italy
| | - Lisa Giovannelli
- Department NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
- Andrology, Women's Endocrinology and Gender Incongruence Unit, AOU Careggi, 50139 Florence, Italy
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
- Andrology, Women's Endocrinology and Gender Incongruence Unit, AOU Careggi, 50139 Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| |
Collapse
|
37
|
Selvaraju S, Ramya L, Swathi D, Archana SS, Lavanya M, Krishnappa B, Binsila BK, Mahla AS, Arangasamy A, Andonissamy J, Kumar P, Sharma RK. Cryostress induces fragmentation and alters the abundance of sperm transcripts associated with fertilizing competence and reproductive processes in buffalo. Cell Tissue Res 2023:10.1007/s00441-023-03764-8. [PMID: 37079096 DOI: 10.1007/s00441-023-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/09/2023] [Indexed: 04/21/2023]
Abstract
The study aimed to assess the influence of cryostress on RNA integrity and functional significance in sperm fertilizing ability. The fresh and post-thawed buffalo sperm (n = 6 each) samples were evaluated for their functional attributes, and sperm total RNA was subjected to transcriptome sequencing followed by validation using real-time PCR and dot blot. Overall, 6911 genes had an expression of FPKM > 1, and among these 431 genes were abundantly expressed (FPKM > 20) in buffalo sperm. These abundantly expressed genes regulate reproductive functions such as sperm motility (TEKT2, SPEM1, and PRM3, FDR = 1.10E-08), fertilization (EQTN, PLCZ1, and SPESP1, FDR = 7.25E-06) and the developmental process involved in reproduction (SPACA1, TNP1, and YBX2, FDR = 7.21E-06). Cryopreservation significantly (p < 0.05) affected the structural and functional membrane integrities of sperm. The expression levels of transcripts that regulate the metabolic activities and fertility-related functions were compromised during cryopreservation. Interestingly, cryostress induces the expression of genes involved (p < 0.05) in chemokine signaling (CX3CL1, CCL20, and CXCR4), G-protein coupled receptor binding (ADRB1, EDN1, and BRS3), translation (RPS28, MRPL28, and RPL18A), oxidative phosphorylation (ND1, ND2, and COX2), response to reactive oxygen species (GLRX2, HYAL2, and EDN1), and immune responses (CX3CL1, CCL26, and TBXA2R). These precociously expressed genes during cryopreservation alter the signaling mechanisms that govern sperm functional competence and can impact fertilization and early embryonic development.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Laxman Ramya
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | | | - Maharajan Lavanya
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Ajit Singh Mahla
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
- Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304501, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Jerome Andonissamy
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Rakesh Kumar Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| |
Collapse
|
38
|
Yang S, Gao X, Zhang T, Cai F, Zhang H. Density Gradient Centrifugation Alone or the Combination of DGC with Annexin V Magnetic-Activated Cell Sorting Prior to Cryopreservation Enhances the Postthaw Quality of Sperm from Infertile Male Patients with Poor Sperm Quality. Andrologia 2023. [DOI: 10.1155/2023/9030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Objective. To examine whether density gradient centrifugation (DGC) alone or its combination with annexin V magnetic-activated cell sorting (DGC-MACS) can be used to process semen samples from infertile male patients with poor sperm quality prior to subjecting these to freeze/thaw process in order to optimize the outcomes of sperm freezing. Methods. This study enrolled sixteen patients with sperm
, sperm
%, and/or <4% normal sperm morphology. Sperms were processed by DGC or DGC-MACS prior to the freeze/thaw process. Sperm motility, hyperosmotic swelling test (HOS), TUNEL test, and morphological analysis were performed before and after the freeze/thaw process. Results. The freeze/thaw process had a detrimental effect on sperm motility, viability, morphology, and DNA integrity in all three groups (RAW, DGC, and DGC + MACS groups). The DGC and DGC + MACS groups showed increased sperm motility, viability, and normal morphology following freeze/thaw than untreated frozen controls. The motility and viability were not significantly different between DGC-MACS-CPT (cryopreservation-thawing) and DGC-CPT groups. Moreover, almost no grade A or grade B sperm was observed in the DGC-MACS-CPT groups. The sperm selected by DGC or DGC + MACS showed decreased levels of sperm DNA fragmentation than RAW samples following freeze/thaw. Moreover, the sperm DNA fragmentation following freeze/thaw in the DGC-MACS-CPT group was significantly lower than that in the DGC-CPT group. Conclusions. Sperm preparation by DGC before cryopreservation improved the quality of sperm postthaw in infertile males with poor sperm quality. If the sperm quality following freeze/thaw is foreseen to be insufficient for artificial insemination with husband’s sperm or in vitro fertilization, or if there is high DNA fragmentation in RAW sperm, DGC + MACS should be used prior to cryopreservation to reduce sperm DNA fragmentation and improve the quality of sperm available for intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Sijie Yang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012 Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong, China
| | - Xuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012 Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong, China
| | - Taijian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012 Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong, China
| | - Feifei Cai
- Center for Reproductive Medicine, Shandong University, Jinan, 250012 Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong, China
| | - Haobo Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012 Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong, China
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong, China
| |
Collapse
|
39
|
Rauniyar S, Pansare K, Sharda A, Singh SR, Saha P, Chilakapati MK, Gupta S. Raman Spectroscopy Revealed Cell Passage-Dependent Distinct Biochemical Alterations in Radiation-Resistant Breast Cancer Cells. ACS OMEGA 2023; 8:5522-5532. [PMID: 36816694 PMCID: PMC9933476 DOI: 10.1021/acsomega.2c06787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Recapitulating radioresistant cell features in pertinent cell line models is essential for deciphering fundamental cellular mechanisms. The limited understanding of passage and cell cycle phases on radioresistant cells revived post-cryopreservation led us to investigate the effect of sub-culturing in parental and radioresistant MCF-7 cells. In this study, the radioresistant cells showed high-intensity nucleic acid and cytochrome bands, which are potentially a radiation-induced spectral marker. Raman spectroscopy data showed dynamic biochemical alterations in revived radioresistant G2/M synchronized cells at early cell passages 1 and 3 with stabilization at a latter cell passage, 5. The study highlights the importance of cell passaging and cell cycle phases in potentially changing the biochemical parameters during in vitro experiments after the revival of radioresistant cells post-cryopreservation.
Collapse
Affiliation(s)
- Sukanya Rauniyar
- Advanced
Centre for Treatment, Research, and Education in Cancer, Tata Memorial
Centre, Cancer Research Institute, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| | - Kshama Pansare
- Advanced
Centre for Treatment, Research, and Education in Cancer, Tata Memorial
Centre, Cancer Research Institute, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Asmita Sharda
- Advanced
Centre for Treatment, Research, and Education in Cancer, Tata Memorial
Centre, Cancer Research Institute, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| | - Saurav Raj Singh
- Advanced
Centre for Treatment, Research, and Education in Cancer, Tata Memorial
Centre, Cancer Research Institute, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Panchali Saha
- Advanced
Centre for Treatment, Research, and Education in Cancer, Tata Memorial
Centre, Cancer Research Institute, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| | - Murali Krishna Chilakapati
- Advanced
Centre for Treatment, Research, and Education in Cancer, Tata Memorial
Centre, Cancer Research Institute, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| | - Sanjay Gupta
- Advanced
Centre for Treatment, Research, and Education in Cancer, Tata Memorial
Centre, Cancer Research Institute, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Training
School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| |
Collapse
|
40
|
Barbas JP, Pimenta J, Baptista MC, Marques CC, Pereira RMLN, Carolino N, Simões J. Ram Semen Cryopreservation for Portuguese Native Breeds: Season and Breed Effects on Semen Quality Variation. Animals (Basel) 2023; 13:ani13040579. [PMID: 36830367 PMCID: PMC9951670 DOI: 10.3390/ani13040579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The semen quality is one of the determinant factors of ram semen cryopreservation. The present retrospective study aimed to characterize the seasonal ram pattern during the year for ten Portuguese local sheep breeds, hypothesizing that the breed and season had low effects on the main spermatozoa traits. A total of 1471 ejaculates were used and evaluated (fresh semen) from 85 rams between 2004 and 2020 and re-evaluated after thawing (thawed semen). The effect of breed, season, and sperm cryopreservation on nine semen traits were evaluated. The volume per ejaculate, spermatozoa (SPZ) concentration, and total number of SPZ per ejaculate, were affected by breed (p < 0.001) but not by season (p > 0.05). As expected, the semen processing was the most significant (p < 0.001) factor of variation on seminal parameters. Moreover, breed and interactions between breed × semen processing, modulated the response of alive SPZ, abnormal morphology, head, and intermediate piece defects. In fresh semen, season only affected the intermediate piece defects due to the highest percentage observed between February and April period in some breeds. Overall, and despite the mentioned particularities, there were similarities among the ten local breeds. We also concluded that the seasonal effect on ejaculate and SPZ traits is not significant in our region. These local ram breeds have low seasonality and can be employed in natural mating as well as semen donors for cryopreservation and assisted reproductive biotechnologies during the whole year at our latitude.
Collapse
Affiliation(s)
- João Pedro Barbas
- Department of Biotechnology and Genetic Resources of Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Jorge Pimenta
- Department of Biotechnology and Genetic Resources of Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Maria Conceição Baptista
- Department of Biotechnology and Genetic Resources of Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
| | - Carla Cruz Marques
- Department of Biotechnology and Genetic Resources of Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
| | - Rosa Maria Lino Neto Pereira
- Department of Biotechnology and Genetic Resources of Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Nuno Carolino
- Department of Biotechnology and Genetic Resources of Instituto Nacional de Investigação Agrária e Veterinária, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal
- CIISA-AL4AnimalS-Faculty of Veterinary Medicina, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - João Simões
- Department of Veterinary Sciences, Veterinary and Animal Research Centre (CECAV), AL4AnimalS, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-666
| |
Collapse
|
41
|
Carboxylated ε-Poly-l-lysine Improves Post-Thaw Quality, Mitochondrial Functions and Antioxidant Defense of Goat Cryopreserved Sperm. BIOLOGY 2023; 12:biology12020231. [PMID: 36829509 PMCID: PMC9953348 DOI: 10.3390/biology12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Carboxylated ε-poly-l-lysine (CPLL), a novel cryoprotectant, can protect the sperm membranes by inhibiting ice crystal formation during the cryopreservation process. The present study was conducted to investigate the consequence of CPLL supplementation on the post-thaw quality of cryopreserved goat sperm. For this, different doses (0, 0.5%, 1%, 1.5%, and 2%; v/v) of CPLL were added to the cryopreservation medium, and the motility, membrane and acrosome integrity, mitochondrial membrane potential (MMP), ATP level, ROS production, anti-oxidant defense system, malondialdehyde (MDA) level, and apoptosis in post-thaw sperm were evaluated. It was observed that the addition of 1% CPLL significantly (p < 0.05) increased the total motility, membrane integrity, acrosome integrity, and catalase (CAT) activity of post-thaw sperm compared to those of control and other CPLL doses. The ATP content was observed significantly (p < 0.05) higher in 0.5% and 1% CPLL, however, the SOD activity and progressive motility were significantly (p < 0.05) increased by adding CPLL at 1% and 1.5% level. Moreover, the addition of CPLL at 1% dose not only showed a lower percentage of apoptosis, but also significantly (p < 0.05) increased the MMP while reducing ROS production and MDA levels compared to those of other CPLL doses and/or control. Therefore, it is clear that the supplementation of 1% CPLL can remarkably improve the post-thaw goat sperm motility, membrane and acrosome integrity, antioxidant abundance, mitochondrial potentials, and ATP supply by protecting the sperm from cryodamage and undergoing apoptosis. These findings will provide novel insights into sperm cryobiology.
Collapse
|
42
|
Upadhyay VR, Roy AK, Pandita S, Raval K, Patoliya P, Ramesh V, Dewry RK, Yadav HP, Mohanty TK, Bhakat M. Optimized addition of nitric oxide compounds in semen extender improves post-thaw seminal attributes of Murrah buffaloes. Trop Anim Health Prod 2023; 55:47. [PMID: 36702975 DOI: 10.1007/s11250-023-03474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Semen dilution and cryopreservation alter the homogeneity of seminal plasma, resulting in a non-physiological redox milieu and consequently poor sperm functionality. Considering the concentration-specific bimodal action of nitric oxide (NO) in the regulation of sperm functions, cryopreservation media supplemented with optimized concentrations can improve the semen attributes. The present study aimed to evaluate the effect of adding an optimized concentration of sodium nitroprusside (SNP) and N-nitro-L-arginine methyl ester (L-NAME) in an extender on in vitro semen quality. An aliquot of semen samples (n = 32) from Murrah buffalo bulls (n = 8) was divided into control (C) and treatment (T-I: SNP in extender at 1 µmol/L; T-II: L-NAME in extender at 10 µmol/L). Fresh semen quality parameters showed no significant difference at 0 h except for the structural integrity in the T-II group. Post-thaw semen quality parameters and sperm kinematics using computer-aided sperm analysis (CASA) revealed significantly higher (p < 0.05) cryoresistance in the treatment groups. Viability, acrosome integrity, and membrane integrity were significantly higher (p < 0.05) in both treatment groups; however, the results were pervasive in T-II. Lower abnormal spermatozoa were observed in both T-I and T-II. SNP supplementation led to a significant rise (p < 0.05) in NO, whereas L-NAME reduced the NO concentration in post-thawed samples, which was directly correlated with different sperm functionality and associated biomarkers viz. total antioxidant capacity (TAC) and thiobarbituric acid reactive substance (TBARS). It was concluded that the cryopreservation media supplemented with SNP and L-NAME at 1 µmol/L and 10 µmol/L, respectively, lower the cryo-damage and improve post-thaw seminal attributes.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - A K Roy
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sujata Pandita
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kathan Raval
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka Patoliya
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikram Ramesh
- Animal Reproduction and Gynaecology, ICAR-National Research Center on Mithun, Medziphema, India
| | - Raju Kr Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Hanuman P Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
43
|
Algieri C, Blanco‐Prieto O, Llavanera M, Yeste M, Spinaci M, Mari G, Bucci D, Nesci S. Effects of cryopreservation on the mitochondrial bioenergetics of bovine sperm. Reprod Domest Anim 2023; 58:184-188. [PMID: 36107136 PMCID: PMC10092266 DOI: 10.1111/rda.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023]
Abstract
This study evaluated the bioenergetic map of mitochondria metabolism in cryopreserved bovine sperm. The detected oligomycin-sensitive basal respiration supported ATP production; frozen-thawed spermatozoa were found to have a coupling efficiency higher than 0.80. Cell respiration, however, was not stimulated by the protonophoric action of FCCP, as its titration with 1, 2, 4 and 6 μM did not stimulate the uncoupling activity on oxidative phosphorylation as highlighted by unresponsive oxygen consumption. The unusual effect on the stimulation of maximal respiration was not related to fibronectin- or PDL-coated plates used for cellular metabolism analysis. Conversely, irradiation of frozen-thawed bovine sperm with the red light improved mitochondrial parameters. In effect, the maximal respiration of red-light-stimulated sperm in PDL-coated plates was higher than the non-irradiated. In spite of this, red-light irradiation had no impact on membrane integrity and mitochondrial activity evaluated by epifluorescence microscopy.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical SciencesAlma Mater Studiorum–University of BolognaBolognaItaly
| | - Olga Blanco‐Prieto
- Department of Veterinary Medical SciencesAlma Mater Studiorum–University of BolognaBolognaItaly
| | - Marc Llavanera
- Department of Veterinary Medical SciencesAlma Mater Studiorum–University of BolognaBolognaItaly
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Unit of Cell BiologyDepartment of BiologyFaculty of SciencesInstitute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Unit of Cell BiologyDepartment of BiologyFaculty of SciencesInstitute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Marcella Spinaci
- Department of Veterinary Medical SciencesAlma Mater Studiorum–University of BolognaBolognaItaly
| | - Gaetano Mari
- Department of Veterinary Medical SciencesAlma Mater Studiorum–University of BolognaBolognaItaly
- National Institute for Artificial Insemination—AUB INFAUniversity of BolognaBolognaSpain
| | - Diego Bucci
- Department of Veterinary Medical SciencesAlma Mater Studiorum–University of BolognaBolognaItaly
| | - Salvatore Nesci
- Department of Veterinary Medical SciencesAlma Mater Studiorum–University of BolognaBolognaItaly
| |
Collapse
|
44
|
Mellado M, Treviño LM, Chavez MI, Véliz FG, Macías-Cruz U, Avendaño-Reyes L, García JE. Fertility of Holstein cows and heifers submitted to timed artificial insemination and receiving one or two doses (12 h apart) of semen. Reprod Domest Anim 2023; 58:39-47. [PMID: 36073154 DOI: 10.1111/rda.14250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
The objective of this retrospective study was to assess the effect of receiving a single (n = 50,285) or double (n = 4392) artificial insemination (AI), 12 h apart, within a timed artificial insemination protocol on pregnancy per AI (P/AI) in nulliparous heifers (inseminated with either sex-sorted or conventional semen) and pluriparous Holstein cows in a commercial dairy herd. Also, this study aimed to investigate the relationship between temperature-humidity index (THI) and time of the first AI and fertility. Fertility of cows receiving two AI with normothermia (THI <68) was higher (p < .05) than cows receiving a single AI (42.9% vs. 36.4%). P/AI of cows receiving two AI with severe heat stress (THI >85) was higher (p < .05) than cows receiving a single AI (21.0% vs. 12.6%). Regardless of heat stress conditions, applying the first AI in the morning increased (p < .05) P/AI in cows with double AI than in cows whose first AI occurred in the afternoon (38.4 vs. 33.3%). With moderate heat stress, and sexed-sorted semen, P/AI to timed AI was higher (65.0 vs. 51.9%; p < .05) in heifers receiving double AI than those serviced once. It was concluded that double AI, 12 h apart, enhanced fertility at timed AI than herd mates with a single AI, particularly with heat stress at breeding.
Collapse
Affiliation(s)
- Miguel Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Mexico
| | - Lucía M Treviño
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Mexico
| | - María I Chavez
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - Francisco G Véliz
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - Ulises Macías-Cruz
- Institute of Agriculture Science, Autonomous University of Baja California, Mexicali, Mexico
| | - Leonel Avendaño-Reyes
- Institute of Agriculture Science, Autonomous University of Baja California, Mexicali, Mexico
| | - José E García
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Mexico
| |
Collapse
|
45
|
Roca J, Rodriguez-Martinez H, Padilla L, Lucas X, Barranco I. Extracellular vesicles in seminal fluid and effects on male reproduction. An overview in farm animals and pets. Anim Reprod Sci 2022; 246:106853. [PMID: 34556398 DOI: 10.1016/j.anireprosci.2021.106853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles released by most functional cells to body fluids, containing bioactive molecules, mainly proteins, lipids, and nucleic acids having actions at target cells. The EVs have essential functions in cell-to-cell communication by regulating different biological processes in target cells. Fluids from the male reproductive tract, including seminal plasma, contain many extracellular vesicles (sEVs), which have been evaluated to a lesser extent than those of other body fluids, particularly in farm animals and pets. Results from the few studies that have been conducted indicated epithelial cells of the testis, epididymis, ampulla of ductus deferens and many accessory sex glands release sEVs mainly via apocrine mechanisms. The sEVs are morphologically heterogeneous and bind to functional cells of the male reproductive tract, spermatozoa, and cells of the functional tissues of the female reproductive tract after mating or insemination. The sEVs encapsulate proteins and miRNAs that modulate sperm functions and male fertility. The sEVs, therefore, could be important as reproductive biomarkers in breeding sires. Many of the current findings regarding sEV functions, however, need experimental confirmation. Further studies are particularly needed to characterize both membranes and contents of sEVs, as well as the interaction between sEVs and target cells (spermatozoa and functional cells of the internal female reproductive tract). A priority for conducting these studies is development of methods that can be standardized and that are scalable, cost-effective and time-saving for isolation of different subtypes of EVs present in the entire population of sEVs.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, IT-40064 Bologna, Italy
| |
Collapse
|
46
|
Katiyar R, Ghosh SK, Karikalan M, Kumar A, Pande M, Gemeda AI, Rautela R, Dhara SK, Bhure SK, Srivastava N, Patra MK, Chandra V, Devi HL, Singh M. An evidence of Humanin-like peptide and Humanin mediated cryosurvival of spermatozoa in buffalo bulls. Theriogenology 2022; 194:13-26. [PMID: 36183493 DOI: 10.1016/j.theriogenology.2022.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022]
Abstract
Buffalo spermatozoa are vulnerable to cryo-injuries due to inherent deficiency of endogenous antioxidants, high polyunsaturated fatty acids (PUFA) content in plasma membrane and low cholesterol/phospholipid (C/P) ratio. Humanin is a potent cytoprotective agent that protects the cells against oxidative stress and apoptosis. The present study was designed to establish the presence of Humanin in buffalo and effect of Humanin supplementation on freezability of buffalo spermatozoa. Indirect immunofluorescence test revealed presence of Humanin in ejaculated and epididymal spermatozoa, and, elongated spermatids and interstitial space in the testicular tissue section. Humanin levels in seminal plasma were significantly and positively correlated with sperm concentration and individual progressive motility (IPM) in good (n = 22; IPM >70%) and poor (n = 10; IPM <50%) quality ejaculates. For supplementation studies, a total of 24 ejaculates (IPM ≥70%) were collected and each ejaculate was then divided into four aliquots. First aliquot was diluted with egg yolk-tris-glycerol (EYTG) extender without Humanin and served as control group (Group I). Rest three aliquots were diluted with extender containing 2 (Group II), 5 (Group III) and 10 μM Humanin (Group IV), respectively. Semen was cryopreserved using standard protocol and evaluated at pre-freeze for lipid peroxidation (LPO) and post-thaw stages for spermatozoa kinematics, LPO, mitochondrial membrane potential (MMP), capacitation, apoptotic status and DNA integrity. The treatment group that showed best results (5 μM) was compared with control group for in vitro fertility assessment by homologous zona binding assay. The LPO levels were lower (p < 0.05) in 5 and 10 μM Humanin supplemented group. The MMP and DNA integrity were higher (p < 0.05) in 5 μM group than other groups. F-pattern was higher (p < 0.05) and B-pattern was lower (p < 0.05) in 5 and 10 μM Humanin supplemented groups. Lower apoptotic and higher viable spermatozoa (p < 0.05) were observed in 5 μM Humanin group. The mean number of spermatozoa bound to zona pellucida was higher (p < 0.05) in 5 μM Humanin treated group than the control group. The study established the presence of Humanin in buffalo spermatozoa and seminal plasma for very first time and concluded that Humanin supplementation at 5 μM concentration improves the freezability and in vitro fertility of buffalo spermatozoa.
Collapse
Affiliation(s)
- Rahul Katiyar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Subrata Kumar Ghosh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - M Karikalan
- Centre for Wildlife, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Abhishek Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Megha Pande
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Amare Ishetu Gemeda
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Rupali Rautela
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - S K Dhara
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - S K Bhure
- Division of Veterinary Biochemistry, ICAR-Indian Veterinary Research Institute, Bengaluru Campus, India
| | - Neeraj Srivastava
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - M K Patra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Huidrom Lakshmi Devi
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Mahak Singh
- ICAR Research Complex for N.E.H.Region, Nagaland Centre, Medziphema, Nagaland, 797106, India
| |
Collapse
|
47
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
48
|
Shufaro Y. The ongoing challenge of optimizing sperm cryopreservation. Andrology 2022; 10:1121-1122. [PMID: 35980310 DOI: 10.1111/andr.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/10/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Yoel Shufaro
- Infertility and IVF Unit, Beilinson Hospital, Rabin Medical Center, Petach-Tikva and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Arciero V, Ammar O, Maggi M, Vignozzi L, Muratori M, Dabizzi S. Vapour fast freezing with low semen volumes can highly improve motility and viability or DNA quality of cryopreserved human spermatozoa. Andrology 2022; 10:1123-1133. [PMID: 35712876 PMCID: PMC9544568 DOI: 10.1111/andr.13208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/02/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To challenge a vapour fast freezing (VFF) cryopreservation procedure (conventional VFF) with several vitrification protocols and VFF conducted with small semen volumes (10 μl, microVFF), in order to implement a procedure for sperm banking in subjects with small sperm number. MATERIALS AND METHODS Conventional VFF was conducted with test yolk buffer (TYB) as freezing medium and 500 μl straws as carriers. MicroVFF was conducted with TYB and using tips or cell sleepers as carriers. Vitrification was performed with TYB or SpermFreeze as freezing medium and with microspheres and tips as carriers. The effect of different procedures on progressive and total motility, viability, oxidative stress and DNA fragmentation of spermatozoa (sDF) was determined. Fresh and thawed samples, the latter after adequate washing/centrifuging, were evaluated. In some experiments, motility and viability recovery was determined in thawed samples, omitting the washing/centrifuging step. RESULTS All the cryopreservation procedures blunted sperm motility and viability and induced increase of oxidative stress and sDF. However, VFF better preserved sperm motility and viability and less induced oxidative stress and sDF than vitrification, independently from the freezing medium and the carriers used in the latter. MicroVFF with cell sleepers resulted in a percentage increase of 57.58 ± 63.63%, 48.82 ± 74.96% and 24.55 ± 39.20% of, respectively, progressive and total motility and viability compared to the conventional VFF. Further, when tips were used, microVFF resulted in a percentage decrease of 15.77 ± 20.77% of sDF with respect to conventional VFF. Finally, omission of washing/centrifuging in post thawed samples, resulted in a much lower negative effect on motility and viability. DISCUSSION AND CONCLUSION VFF, and in particular microVFF, better prevents sperm cryodamage than vitrification. Washing/centrifuging step after sample thawing seems to be responsible for a relevant fraction of damage to sperm motility and viability. Overall, our results are promising for developing a novel strategy of sperm banking in subjects with small sperm number, where low semen volumes are mandatory.
Collapse
Affiliation(s)
- Valentina Arciero
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Oumaima Ammar
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Department of Andrology, Women's Endocrinology and Gender Incongruence UnitCareggi HospitalItaly
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Sara Dabizzi
- Department of Andrology, Women's Endocrinology and Gender Incongruence UnitCareggi HospitalItaly
| |
Collapse
|
50
|
Glycine Improved Cryopreserved Spermatozoa Quality in Achai Bull. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8282387. [PMID: 35968237 PMCID: PMC9371871 DOI: 10.1155/2022/8282387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Achai is a small size cattle breed, resilient to harsh and cold environment. Cryopreservation of Achai bull semen may help to improve its genetics and preserve the germplasm. Reactive oxygen species (ROS) affects the structural and functional integrity of the spermatozoa. During freezing and thawing processes, the ROS make changes in the spermatozoa quality parameters and reduce total antioxidant capacity (T-AOC) of semen that is considered as marker of oxidative stress. This study was designed to determine the effect of glycine along with vitamin E on post-thawed spermatozoa quality and total antioxidant capacity in Achai cattle. The semen collection was done twice a week from four mature fertile Achai cattle bulls (n = 4). The glycine was utilized as 0 mM, 5 mM, 10 mM, 15 mM, and 20 mM along with vitamin E @ 2.3 mM added constantly in each concentration. The control group contained all extenders except glycine. The results revealed that post-thawed spermatozoa motility was found significantly higher (P < 0.05) at 10 mM as compared to 5 mM, 15 mM, and 20 mM. Compared with control group, glycine concentration at 10 mM and other concentrations increased progressive and fast motility (%), curvilinear, straight line, and average path velocity (μm/s). Moreover, beat cross frequency (Hz) was higher (P < 0.05), and post-thaw viability (%), plasma membrane integrity, and mitochondrial membrane potential were significantly higher (P < 0.05) at 10 mM of glycine concentration in comparison to control and other glycine concentrations. Besides, acrosome integrity (%) and DNA integrity (%) as well as post-thawed T-AOC were also significantly higher (P < 0.05) at 10 mM of glycine concentration as compared to other glycine concentrations and control group. It is concluded that 10 mM of glycine along with vitamin E @ 2.3 mM improved cryopreserved semen quality of Achai bull.
Collapse
|