1
|
Weeratunga P, Harman RM, Jager MC, Van de Walle GR. Footprint-free induced pluripotent stem cells can be successfully differentiated into mesenchymal stromal cells in the feline model. Stem Cell Res Ther 2025; 16:195. [PMID: 40254569 PMCID: PMC12010622 DOI: 10.1186/s13287-025-04325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) can propagate indefinitely and give rise to every other cell type, rendering them invaluable for disease modelling, drug development research, and usage in regenerative medicine. While feline iPSCs have been described, there are currently no reports on generating genome integration (footprint)-free iPSCs from domestic cats. Therefore, the objective of this study was to generate feline iPSCs from fetal fibroblasts using non-integrative Sendai virus (SeV) vectors carrying human transcription factors. Moreover, these iPSCs were differentiated into mesenchymal stromal cells (MSCs), which can be used as an alternative to tissue-derived MSCs. METHODS Feline fetal fibroblasts were transduced with CytoTune-iPS 2.0 Sendai Reprogramming vectors at recommended multiplicity of infections (MOI) and cultured for about 6 days. At 7 days post transduction cells were dissociated, replated on inactivated feeder cells and maintained in iPSC medium for 28 days with daily medium change. Emerging iPSC colonies were mechanically passaged and transferred to fresh feeder cells and further passaged every 6-8 days. Four feline iPSC lines were generated, with two selected for further in-depth characterization. Feline iPSCs were then differentiated into MSCs using a serial plating strategy and an inhibitor of the transforming growth factor-β (TGF-β) type I receptor. RESULTS Feline iPSCs exhibited characteristic colony morphology, high nuclear-to-cytoplasmic ratio, positive alkaline phosphatase activity, and expressed feline OCT4, SOX2, and Nanog homeobox (NANOG) stem cell markers. Expression of SeV-derived transgenes decreased during passaging to be eventually lost from the host cells and feline iPSCs could be stably maintained for over 35 passages. Feline iPSCs differentiated into embryoid bodies in vitro and did not form fully differentiated teratomas; instead, they generated in vivo masses containing mesodermal tissue derivatives when injected into immunodeficient mice. Feline iPSC-derived MSCs were plastic adherent, displayed MSC-like morphology, expressed MSC-specific surface markers, and differentiated into cells from the mesodermal lineage in vitro. RNA deep sequencing identified 1,189 differentially expressed genes in feline iPSC-derived MSCs compared to feline iPSCs. CONCLUSION We demonstrated the generation of footprint-free iPSCs from domestic cats and their directed differentiation potential towards MSCs. These SeV-derived feline iPSCs and iPSC-derived MSCs will provide valuable models to study feline diseases and explore novel therapeutic strategies and can serve as translational models for human health, leading to increased knowledge on disease pathogenesis and improved therapeutic interventions.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA
| | - Mason C Jager
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
- Department of Veterinary Pathobiology, The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Sahoo SS, Khiami M, Wlodarski MW. Inducible pluripotent stem cell models to study bone marrow failure and MDS predisposition syndromes. Exp Hematol 2025; 143:104669. [PMID: 39491640 DOI: 10.1016/j.exphem.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as powerful tools for in vitro modeling of bone marrow failure (BMF) syndromes and hereditary conditions predisposing to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). This review synthesizes recent advances in iPSC-based disease modeling for various inherited BMF/MDS disorders, including Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia syndrome, Shwachman-Diamond syndrome, and severe congenital neutropenia as well as GATA2, RUNX1, ETV6, ANKRD26, SAMD9, SAMD9L, and ADH5/ALDH2 syndromes. Although the majority of these iPSC lines are derived from patient cells, some are generated by introducing patient-specific mutations into healthy iPSC backgrounds, offering complementary approaches to disease modeling. The review highlights the ability of iPSCs to recapitulate key disease phenotypes, such as impaired hematopoietic differentiation, telomere dysfunction, and defects in DNA repair or ribosome biogenesis. We discuss how these models have enhanced our understanding of disease pathomechanisms, hematopoietic defects, and potential therapeutic approaches. Challenges in generating and maintaining disease-specific iPSCs are examined, particularly for disorders involving DNA repair. We emphasize the necessity of creating isogenic controls to elucidate genotype-phenotype relationships. Furthermore, we address limitations of current iPSC models, including genetic variability among iPSC clones derived from the same patient, and difficulties in achieving robust engraftment of iPSC-derived hematopoietic progenitor cells in mouse transplantation models. The review also explores future directions, including the potential of iPSC models for drug discovery and personalized medicine approaches. This review underscores the significance of iPSC technology in advancing our understanding of inherited hematopoietic disorders and its potential to inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Majd Khiami
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
3
|
Rajalekshmi R, Agrawal DK. Synergistic potential of stem cells and microfluidics in regenerative medicine. Mol Cell Biochem 2025; 480:1481-1493. [PMID: 39285093 PMCID: PMC11842489 DOI: 10.1007/s11010-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/27/2024] [Indexed: 02/21/2025]
Abstract
Regenerative medicine has immense potential to revolutionize healthcare by using regenerative capabilities of stem cells. Microfluidics, a cutting-edge technology, offers precise control over cellular microenvironments. The integration of these two fields provides a deep understanding of stem cell behavior and enables the development of advanced therapeutic strategies. This critical review explores the use of microfluidic systems to culture and differentiate stem cells with precision. We examined the use of microfluidic platforms for controlled nutrient supply, mechanical stimuli, and real-time monitoring, providing an unprecedented level of detail in studying cellular responses. The convergence of stem cells and microfluidics holds immense promise for tissue repair, regeneration, and personalized medicine. It offers a unique opportunity to revolutionize the approach to regenerative medicine, facilitating the development of advanced therapeutic strategies and enhancing healthcare outcomes.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
4
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Liu X, Wang X, Wu X, Zhan S, Yang Y, Jiang C. Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy. Stem Cell Res Ther 2025; 16:29. [PMID: 39876014 PMCID: PMC11776311 DOI: 10.1186/s13287-025-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions. Recently, airway basal stem cells (BSCs) have emerged as a novel therapeutic strategy in pulmonary regenerative medicine because of their substantial potential in repairing lung structure and function. Airway BSCs, which are strongly capable of self-renewal and multi-lineage differentiation, can effectively attenuate airway epithelial injury caused by environmental factors or genetic disorders, such as cystic fibrosis. This review comprehensively explores the efficacy and action mechanisms of airway BSCs across various lung disease models and describes potential strategies for inducing pluripotent stem cells to differentiate into pulmonary epithelial lineages on the basis of the original research findings. Additionally, the review also discusses the technical and biological challenges in translating these research findings into clinical applications and offers prospective views on future research directions, therefore broadening the landscape of pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Wang
- Department of Emergency, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wu
- Department of Pulmonary and Critical Care Medicine, Bazhong Enyang District People's Hospital, Bazhong, China
| | - Shuhua Zhan
- Department of Pulmonary and Critical Care Medicine, Aba Tibetan and Qiang Autonomous Prefecture People's Hospital, Maerkang, China
| | - Yan Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Caiyu Jiang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Wang J, Chen X, Li R, Wang S, Geng Z, Shi Z, Jing Y, Xu K, Wei Y, Wang G, He C, Dong S, Liu G, Hou Z, Xia Z, Wang X, Ye Z, Zhou F, Bai L, Tan H, Su J. Standardization and consensus in the development and application of bone organoids. Theranostics 2025; 15:682-706. [PMID: 39744680 PMCID: PMC11671374 DOI: 10.7150/thno.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Organoids, self-organized structures derived from stem cells cultured in a specific three-dimensional (3D) in vitro microenvironment, have emerged as innovative platforms that closely mimic in vivo cellular behavior, tissue architecture, and organ function. Bone organoids, a frontier in organoid research, can replicate the complex structures and functional characteristics of bone tissue. Recent advancements have led to the successful development of bone organoids, including models of callus, woven bone, cartilage, trabecular bone, and bone marrow. These organoids are widely utilized in establishing bone-related disease models, bone injury repair, and drug screening. However, significant discrepancies remain between current bone organoids and human skeletal tissues in terms of morphology and functionality, limiting their ability to accurately model human bone physiology and pathology. To address these challenges and promote standardization in the construction, evaluation, and application of bone organoids, we have convened experts and research teams with substantial expertise in the field. By integrating existing research findings, this consortium aims to establish a consensus to guide future research and application of bone organoids.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zhongmin Shi
- Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chongru He
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Guohui Liu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Zhidao Xia
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Hongbo Tan
- Department of Orthopedics, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, 650032, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Zahoor N, Arif A, Shuaib M, Jin K, Li B, Li Z, Pei X, Zhu X, Zuo Q, Niu Y, Song J, Chen G. Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture. Vet Sci 2024; 11:666. [PMID: 39729006 DOI: 10.3390/vetsci11120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...].
Collapse
Affiliation(s)
- Nousheen Zahoor
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Pei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
9
|
Dionne O, Sabatié S, Fortin F, Corbin F, Laurent B. Efficient generation of human induced pluripotent stem cells from urine samples of patients with Fragile X syndrome. Front Cell Dev Biol 2024; 12:1489190. [PMID: 39650724 PMCID: PMC11621072 DOI: 10.3389/fcell.2024.1489190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are a valuable tool for studying human development and diseases. iPSCs can be generated by reprogramming from any somatic cells, however establishing primary cell cultures can involve invasive procedures (e.g., skin biopsy) and be labor-intensive. In this paper, we describe an efficient, reliable, and non-invasive method for cultivating primary urine-derived cells (UDCs) and efficiently reprogram them into iPSCs using a feeder-free and non-integrative system. This approach has several advantages: (i) UDCs collection and culture are non-invasive, straightforward, and do not require medical personnel; (ii) reprogramming UDCs using commercially available Sendai viruses is highly efficient and reliable; and (iii) iPSCs generated from UDCs demonstrate strong differentiation potential. To showcase the effectiveness of this method, we generated iPSC lines from UDCs of three control individuals and three patients with Fragile X syndrome.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Salomé Sabatié
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fléchère Fortin
- Medical Genetics division, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Elia N, Prinelli F, Peli V, Conti S, Barilani M, Mei C, Castaldi S, Lazzari L. Public attitudes toward the use of human induced pluripotent stem cells: insights from an Italian adult population. Front Public Health 2024; 12:1491257. [PMID: 39568604 PMCID: PMC11576450 DOI: 10.3389/fpubh.2024.1491257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Human induced pluripotent stem cells (hiPSCs), derived from reprogrammed adult somatic cells, hold significant promise for disease modelling, personalized medicine, drug discovery, and regenerative therapies. Public awareness and understanding of hiPSCs are crucial for advancing research in this field. However, limited data exists on the general population's knowledge and attitudes toward their use. Methods This study aimed to assess the awareness and perceptions of hiPSCs among Italian adults through a web-based survey conducted via the EUSurvey platform, using a snowball sampling approach. The survey included demographic information and mandatory questions on knowledge, awareness, and concerns regarding hiPSC technology, with responses collected on a 3-point scale. Statistical analysis was performed using chi-squared tests, with significance set at p ≤ 0.05. Results Out of 1874 respondents, the majority were aged 18-35 years (40.5%), female (63.4%), and university-educated (67.2%). Among those familiar with hiPSCs (54.1%, n = 1,201), 95.3% expressed willingness to donate blood samples for hiPSC generation to treat individuals with incurable diseases. Concerns about current research and therapeutic applications were low (less than 20%), but nearly half of the respondents were hesitant or opposed to the use of hiPSCs in animal experiments and their commercialization by pharmaceutical companies. Increased skepticism was observed in older, less educated, religious individuals, and those who were not blood donors. Overall, the Italian public shows strong support for hiPSC-based therapies, though reservations exist around specific ethical and economic issues. Discussion These findings underscore the importance of addressing public concerns through targeted educational campaigns, not only in Italy but globally, to foster a more informed and supportive environment for advancing stem cell research and its clinical applications worldwide. Similar studies have been conducted in Japan, the United States, and Sweden, but there remains a need for all countries to engage with their citizens to better understand how stem cell research is perceived locally. Such engagement is crucial for guiding international strategies in personalized medicine and regenerative therapies, ensuring that emerging technologies are met with both ethical integrity and public trust.
Collapse
Affiliation(s)
- Noemi Elia
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Prinelli
- Epidemiology and Public Health Unit, Institute of Biomedical Technologies - National Research Council, Segrate (MI), Italy
| | - Valeria Peli
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Conti
- Epidemiology and Public Health Unit, Institute of Biomedical Technologies - National Research Council, Segrate (MI), Italy
| | - Mario Barilani
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Mei
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvana Castaldi
- Quality Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
11
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024; 189:57-72. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
12
|
Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, Alqahtani T, Shmrany HA, Kumer A, Dhara B. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies. Int J Surg 2024; 110:6432-6455. [PMID: 38963728 PMCID: PMC11487032 DOI: 10.1097/js9.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unraveling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides a significant understanding of iPSC-derived cell therapy's status that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Aarati Budar
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shruti Bagchi Ghosh
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation. Hebersham, NSW, Australia
| |
Collapse
|
13
|
Ghasemzadeh N, Pourrajab F, Dehghani Firoozabadi A, Rahnama M. Liposome-Mediated MicroRNA Delivery: An Additional Layer of Gene Network Regulation and Nuclear Reprogramming. IRANIAN BIOMEDICAL JOURNAL 2024; 28:245-54. [PMID: 39891467 PMCID: PMC11829158 DOI: 10.61186/ibj.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/29/2024] [Indexed: 02/10/2025]
Abstract
Background Developing miRNA-mediated cell engineering introduces a novel technology for cell reprogramming and generating patient-specific tissues for therapeutic use, facilitating basic research on human adult stem cells. Furthermore, optimizing a reprogramming method without transduction minimizes the risk of tumorigenesis, especially for reprogrammed cells. This study aimed to explore the use of liposomes as vehicles for delivering miRNAs to cells, focusing on their role in regulating gene networks and facilitating nuclear reprogramming. Methods This study utilized cationic liposomal nanoparticles preserved under different conditions to introduce miRNAs into hMSCs. Using qPCR, the effective induction of pluripotency factors (OCT4, SOX2, and NANOG) was examined. Results Results indicated that miR-302a and miR-34a regulate pluripotency by interacting with key transcription factors, including OCT4, SOX2, and NANOG. Notably, the expression pattern of OCT4 showed that lipoplexes containing miR-302a increased the expression of this gene, while in the case of miR-34a, it decreased. Additionally, the study found that pluripotency precursors can be induced by delivering liposomal microRNA (LP-miRs). Conclusion LP-miRs, as small-molecule therapeutics, can influence reprogramming/engineering and the conversion of cells into other lineages. These findings have significant implications for our understanding of the mechanisms underlying the regulation of pluripotency and may have potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Navid Ghasemzadeh
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Pourrajab
- Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Dehghani Firoozabadi
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Rahnama
- Department of Applied Cell Science, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Farboud SP, Fathi E, Valipour B, Farahzadi R. Toward the latest advancements in cardiac regeneration using induced pluripotent stem cells (iPSCs) technology: approaches and challenges. J Transl Med 2024; 22:783. [PMID: 39175068 PMCID: PMC11342568 DOI: 10.1186/s12967-024-05499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.
Collapse
Affiliation(s)
- Seyedeh Parya Farboud
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Arora Y, Priya, Kumar M, Kumar D. Current approaches in CRISPR-Cas system for metabolic disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:1-19. [PMID: 39824577 DOI: 10.1016/bs.pmbts.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches. With cutting-edge options for genetic correction and cellular regeneration, the combination of CRISPR-Cas technology with stem cell therapy has opened new avenues for the treatment of metabolic illnesses. The integration of stem cell therapy and CRISPR-Cas technology is an important advance in the treatment of metabolic diseases, which are difficult to treat because of their intricate genetic foundations. This chapter addresses the most recent developments in the application of stem cell therapy and CRISPR-Cas systems to treat a variety of metabolic disorders, providing fresh hope for effective and maybe curative therapies. This chapter examines techniques and developments that have been made recently to address a variety of metabolic disorders using CRISPR-Cas systems. Our chapter focuses on the foundational workings of CRISPR-Cas technology and its potential uses in gene editing, gene knockout, and activation/repression-based gene modification.
Collapse
Affiliation(s)
- Yajushii Arora
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Priya
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Manishankar Kumar
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India.
| |
Collapse
|
16
|
Kim D, Lee MJ, Arai Y, Ahn J, Lee GW, Lee SH. Ultrasound-triggered three dimensional hyaluronic acid hydrogel promotes in vitro and in vivo reprogramming into induced pluripotent stem cells. Bioact Mater 2024; 38:331-345. [PMID: 38764447 PMCID: PMC11101682 DOI: 10.1016/j.bioactmat.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.
Collapse
Affiliation(s)
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gun Woo Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
17
|
Zhang B, Gao S, Liu S, Gong X, Wu J, Zhang Y, Ma L, Sheng L. Regenerative mechanisms of stem cells and their clinical applications for degenerative eye diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:42. [PMID: 40224196 PMCID: PMC11992415 DOI: 10.4103/jrms.jrms_358_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2025]
Abstract
There are different types of treatment for eye diseases. Although the majority of eye diseases are curable with primary treatments and surgery, some of degenerative eye damages need regeneration that is not gained by conventional procedures. Stem cells, such as mesenchymal stem cells, human embryonic stem cell-derived retinal pigmented epithelium, and inducible pluripotent stem cells, are now considered one of the most important and safe methods for regeneration of various damaged tissues or organs. However, how will stem cell therapy contribute to regeneration and overcome degenerative eye diseases? This review discusses the regenerative mechanisms, clinical applications, and advantages of different types of stem cells for restoring degenerative eye diseases.
Collapse
Affiliation(s)
- Baodong Zhang
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Shusong Gao
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Shibo Liu
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Xuewu Gong
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Wu
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Zhang
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Li Ma
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lijie Sheng
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
18
|
Seah I, Goh D, Banerjee A, Su X. Modeling inherited retinal diseases using human induced pluripotent stem cell derived photoreceptor cells and retinal pigment epithelial cells. Front Med (Lausanne) 2024; 11:1328474. [PMID: 39011458 PMCID: PMC11246861 DOI: 10.3389/fmed.2024.1328474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Since the discovery of induced pluripotent stem cell (iPSC) technology, there have been many attempts to create cellular models of inherited retinal diseases (IRDs) for investigation of pathogenic processes to facilitate target discovery and validation activities. Consistency remains key in determining the utility of these findings. Despite the importance of consistency, quality control metrics are still not widely used. In this review, a toolkit for harnessing iPSC technology to generate photoreceptor, retinal pigment epithelial cell, and organoid disease models is provided. Considerations while developing iPSC-derived IRD models such as iPSC origin, reprogramming methods, quality control metrics, control strategies, and differentiation protocols are discussed. Various iPSC IRD models are dissected and the scientific hurdles of iPSC-based disease modeling are discussed to provide an overview of current methods and future directions in this field.
Collapse
Affiliation(s)
- Ivan Seah
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Debbie Goh
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
| | - Animesh Banerjee
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinyi Su
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| |
Collapse
|
19
|
García-López M, Jiménez-Vicente L, González-Jabardo R, Dorado H, Gómez-Manjón I, Martín MÁ, Ayuso C, Arenas J, Gallardo ME. Creation of an Isogenic Human iPSC-Based RGC Model of Dominant Optic Atrophy Harboring the Pathogenic Variant c.1861C>T (p.Gln621Ter) in the OPA1 Gene. Int J Mol Sci 2024; 25:7240. [PMID: 39000346 PMCID: PMC11242102 DOI: 10.3390/ijms25137240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a rare progressive disease mainly caused by mutations in OPA1, a nuclear gene encoding for a mitochondrial protein that plays an essential role in mitochondrial dynamics, cell survival, oxidative phosphorylation, and mtDNA maintenance. ADOA is characterized by the degeneration of retinal ganglion cells (RGCs). This causes visual loss, which can lead to legal blindness in many cases. Nowadays, there is no effective treatment for ADOA. In this article, we have established an isogenic human RGC model for ADOA using iPSC technology and the genome editing tool CRISPR/Cas9 from a previously generated iPSC line of an ADOA plus patient harboring the pathogenic variant NM_015560.3: c.1861C>T (p.Gln621Ter) in heterozygosis in OPA1. To this end, a protocol based on supplementing the iPSC culture media with several small molecules and defined factors trying to mimic embryonic development has been employed. Subsequently, the created model was validated, confirming the presence of a defect of intergenomic communication, impaired mitochondrial respiration, and an increase in apoptosis and ROS generation. Finally, we propose the analysis of OPA1 expression by qPCR as an easy read-out method to carry out future drug screening studies using the created RGC model. In summary, this model provides a useful platform for further investigation of the underlying pathophysiological mechanisms of ADOA plus and for testing compounds with potential pharmacological action.
Collapse
Affiliation(s)
- Marta García-López
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Lydia Jiménez-Vicente
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Raquel González-Jabardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Helena Dorado
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Irene Gómez-Manjón
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Martín
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
20
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
21
|
Thanaskody K, Natashah FN, Nordin F, Kamarul Zaman WSW, Tye GJ. Designing molecules: directing stem cell differentiation. Front Bioeng Biotechnol 2024; 12:1396405. [PMID: 38803845 PMCID: PMC11129639 DOI: 10.3389/fbioe.2024.1396405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fajriyah Nur Natashah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
22
|
Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol 2024; 15:1389697. [PMID: 38784908 PMCID: PMC11111935 DOI: 10.3389/fneur.2024.1389697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated condition that persistently harms the central nervous system. While existing treatments can slow its course, a cure remains elusive. Stem cell therapy has gained attention as a promising approach, offering new perspectives with its regenerative and immunomodulatory properties. This article reviews the application of stem cells in MS, encompassing various stem cell types, therapeutic potential mechanisms, preclinical explorations, clinical research advancements, safety profiles of clinical applications, as well as limitations and challenges, aiming to provide new insights into the treatment research for MS.
Collapse
Affiliation(s)
- Lei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Tianye Lan
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hanying Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang Peng
- Hunan Provincial People's Hospital, Changsha, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
23
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Yang D, Jeong Y, Ortinau L, Solidum J, Park D. Mx1 -labeled pulp progenitor cells are main contributors to postnatal odontoblasts and pulp cells in murine molars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586156. [PMID: 38585950 PMCID: PMC10996506 DOI: 10.1101/2024.03.21.586156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regeneration of dentin and odontoblasts from dental pulp stem cells (DPSCs) is essential for permanent tooth maintenance. However, the in vivo identity and role of endogenous DPSCs in reparative dentinogenesis are elusive. Here, using pulp single-cell analysis before and after molar eruption, we revealed that endogenous DPSCs are enriched in Cxcl12- GFP + coronal papilla-like cells with Mx1- Cre labeling. These Mx1 + Cxcl12- GFP + cells are long-term repopulating cells that contribute to the majority of pulp cells and new odontoblasts after eruption. Upon molar injury, Mx1 + DPSCs localize into the injury site and differentiate into new odontoblasts, forming scleraxis -GFP + and osteocalcin -GFP + dentinal tubules and reparative dentin. Single-cell and FACS analysis showed that Mx1 + Cxcl12- GFP + DPSCs are the most primitive cells with stem cell marker expression and odontoblast differentiation. Taken together, our findings demonstrate that Mx1 labels postnatal DSPCs, which are the main source of pulp cells and new odontoblasts with reparative dentinogenesis in vivo .
Collapse
|
25
|
Liu AY. Prostate cancer research: tools, cell types, and molecular targets. Front Oncol 2024; 14:1321694. [PMID: 38595814 PMCID: PMC11002103 DOI: 10.3389/fonc.2024.1321694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Multiple cancer cell types are found in prostate tumors. They are either luminal-like adenocarcinoma or less luminal-like and more stem-like non-adenocarcinoma and small cell carcinoma. These types are lineage related through differentiation. Loss of cancer differentiation from luminal-like to stem-like is mediated by the activation of stem cell transcription factors (scTF) such as LIN28A, NANOG, POU5F1 and SOX2. scTF expression leads to down-regulation of β2-microglobulin (B2M). Thus, cancer cells can change from the scT F ˜ B 2 M hi phenotype of differentiated to that of scT F ˙ B 2 M lo of dedifferentiated in the disease course. In development, epithelial cell differentiation is induced by stromal signaling and cell contact. One of the stromal factors specific to prostate encodes proenkephalin (PENK). PENK can down-regulate scTF and up-regulate B2M in stem-like small cell carcinoma LuCaP 145.1 cells indicative of exit from the stem state and differentiation. In fact, prostate cancer cells can be made to undergo dedifferentiation or reprogramming by scTF transfection and then to differentiate by PENK transfection. Therapies need to be designed for treating the different cancer cell types. Extracellular anterior gradient 2 (eAGR2) is an adenocarcinoma antigen associated with cancer differentiation that can be targeted by antibodies to lyse tumor cells with immune system components. eAGR2 is specific to cancer as normal cells express only the intracellular form (iAGR2). For AGR2-negative stem-like cancer cells, factors like PENK that can target scTF could be effective in differentiation therapy.
Collapse
Affiliation(s)
- Alvin Y. Liu
- Department of Urology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Pereira B, Correia FP, Alves IA, Costa M, Gameiro M, Martins AP, Saraiva JA. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev 2024; 95:102204. [PMID: 38272265 DOI: 10.1016/j.arr.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The pursuit for the fountain of youth has long been a fascination amongst scientists and humanity. Ageing is broadly characterized by a cellular decline with increased susceptibility to age-related diseases, being intimately associated with epigenetic modifications. Recently, reprogramming-induced rejuvenation strategies have begun to greatly alter longevity research not only to tackle age-related defects but also to possibly reverse the cellular ageing process. Hence, in this review, we highlight the major epigenetic changes during ageing and the state-of-art of the current emerging epigenetic reprogramming strategies leveraging on transcription factors. Notably, partial reprogramming enables the resetting of the ageing clock without erasing cellular identity. Promising chemical-based rejuvenation strategies harnessing small molecules, including DNA methyltransferase and histone deacetylase inhibitors are also discussed. Moreover, in parallel to longevity interventions, the foundations of epigenetic clocks for accurate ageing assessment and evaluation of reprogramming approaches are briefly presented. Going further, with such scientific breakthroughs, we are witnessing a rise in the longevity biotech industry aiming to extend the health span and ideally achieve human rejuvenation one day. In this context, we overview the main scenarios proposed for the future of the socio-economic and ethical challenges associated with such an emerging field. Ultimately, this review aims to inspire future research on interventions that promote healthy ageing for all.
Collapse
Affiliation(s)
- Beatriz Pereira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Inês A Alves
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Costa
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Gameiro
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
27
|
Whitworth CP, Polacheck WJ. Vascular organs-on-chip made with patient-derived endothelial cells: technologies to transform drug discovery and disease modeling. Expert Opin Drug Discov 2024; 19:339-351. [PMID: 38117223 PMCID: PMC10922379 DOI: 10.1080/17460441.2023.2294947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Vascular diseases impart a tremendous burden on healthcare systems in the United States and across the world. Efforts to improve therapeutic interventions are hindered by limitations of current experimental models. The integration of patient-derived cells with organ-on-chip (OoC) technology is a promising avenue for preclinical drug screening that improves upon traditional cell culture and animal models. AREAS COVERED The authors review induced pluripotent stem cells (iPSC) and blood outgrowth endothelial cells (BOEC) as two sources for patient-derived endothelial cells (EC). They summarize several studies that leverage patient-derived EC and OoC for precision disease modeling of the vasculature, with a focus on applications for drug discovery. They also highlight the utility of patient-derived EC in other translational endeavors, including ex vivo organogenesis and multi-organ-chip integration. EXPERT OPINION Precision disease modeling continues to mature in the academic space, but end-use by pharmaceutical companies is currently limited. To fully realize their transformative potential, OoC systems must balance their complexity with their ability to integrate with the highly standardized and high-throughput experimentation required for drug discovery and development.
Collapse
Affiliation(s)
- Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
28
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
29
|
Liu DH, Tseng HC, Lee MS, Chiou GY, Wang CT, Lin YY, Lai WY, Liu YH, Wang CY, Lee CY, Kao CL, Chen CF, Chien Y. Overcoming the challenges of scalable iPSC generation in translation medicine. J Chin Med Assoc 2024; 87:163-170. [PMID: 38132887 DOI: 10.1097/jcma.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The potential of induced pluripotent stem cells (iPSCs) in revolutionizing regenerative medicine cannot be overstated. iPSCs offer a profound opportunity for therapies involving cell replacement, disease modeling, and cell transplantation. However, the widespread application of iPSC cellular therapy faces hurdles, including the imperative to regulate iPSC differentiation rigorously and the inherent genetic disparities among individuals. To address these challenges, the concept of iPSC super donors emerges, holding exceptional genetic attributes and advantageous traits. These super donors serve as a wellspring of standardized, high-quality cell sources, mitigating inter-individual variations and augmenting the efficacy of therapy. METHODS In pursuit of this goal, our study embarked on the establishment of iPSC cell lines specifically sourced from donors possessing the HLA type (A33:03-B58:01-DRB1*03:01). The reprogramming process was meticulously executed, resulting in the successful generation of iPSC lines from these carefully selected donors. Subsequently, an extensive characterization was conducted to comprehensively understand the features and attributes of these iPSC lines. RESULTS The outcomes of our research were highly promising. The reprogramming efforts culminated in the generation of iPSC lines from donors with the specified HLA type. These iPSC lines displayed a range of distinctive characteristics that were thoroughly examined and documented. This successful generation of iPSC lines from super donors possessing advantageous genetic traits represents a significant stride towards the realization of their potential in therapeutic applications. CONCLUSION In summary, our study marks a crucial milestone in the realm of regenerative medicine. The establishment of iPSC lines from super donors with specific HLA types signifies a paradigm shift in addressing challenges related to iPSC cellular therapy. The standardized and high-quality cell sources derived from these super donors hold immense potential for various therapeutic applications. As we move forward, these findings provide a solid foundation for further research and development, ultimately propelling the field of regenerative medicine toward new horizons of efficacy and accessibility.
Collapse
Affiliation(s)
- Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Huan-Chin Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Meng-Shiue Lee
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Chin-Tien Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chen-Yi Lee
- Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh Chien
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
30
|
Akbaribazm M. Exploring the Regenerative Potential of Stem Cells for Treating Eye Diseases: A Review of the New Findings. OBM GENETICS 2024; 08:1-14. [DOI: 10.21926/obm.genet.2401212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The escalating prevalence of vision loss due to eye diseases has instigated a quest for innovative therapies, given that conventional approaches often fall short in repairing and regenerating damaged eye tissues, particularly the retina. Stem cell-based interventions have emerged as a promising avenue, with numerous studies in animal models and human trials exploring their potential to enhance visual acuity. Beyond addressing conditions like age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies demonstrate efficacy in treating genetic disorders such as retinitis pigmentosa (RP). In severe eye damage necessitating regeneration, stem cells play a pivotal role, leveraging their regenerative capabilities. Noteworthy is the transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), showcasing promising results in preclinical models and clinical studies, leading to improved retinal function without severe side effects. Mesenchymal stem cells (MSCs) have successfully treated optic neuropathy, RP, DR, and glaucoma, yielding positive clinical outcomes. The safety of adult stem cells, particularly MSCs derived from adipose tissue or bone marrow, has been firmly established. This review highlights significant advancements in utilizing human ESC-derived retinal pigmented epithelium and iPSCs for treating eye injuries. While cell-based therapy is relatively nascent, with numerous clinical trials pending review, stem cells' regenerative potential and clinical applications in addressing eye diseases offer substantial promise. This study aims to comprehensively examine the applications of stem cells in the context of eye diseases and their potential role in regenerative medicine.
Collapse
|
31
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
32
|
Nath SC, Menendez L, Friedrich Ben-Nun I. Overcoming the Variability of iPSCs in the Manufacturing of Cell-Based Therapies. Int J Mol Sci 2023; 24:16929. [PMID: 38069252 PMCID: PMC10706975 DOI: 10.3390/ijms242316929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Various factors are known to contribute to the diversity of human induced pluripotent stem cells (hiPSCs). Among these are the donor's genetic background and family history, the somatic cell source, the iPSC reprogramming method, and the culture system of choice. Moreover, variability is seen even in iPSC clones, generated in a single reprogramming event, where the donor, somatic cell type, and reprogramming platform are the same. The diversity seen in iPSC lines often translates to epigenetic differences, as well as to differences in the expansion rate, iPSC line culture robustness, and their ability to differentiate into specific cell types. As such, the diversity of iPSCs presents a hurdle to standardizing iPSC-based cell therapy manufacturing. In this review, we will expand on the various factors that impact iPSC diversity and the strategies and tools that could be taken by the industry to overcome the differences amongst various iPSC lines, therefore enabling robust and reproducible iPSC-based cell therapy manufacturing processes.
Collapse
Affiliation(s)
- Suman C. Nath
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | - Laura Menendez
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | | |
Collapse
|
33
|
Niemis W, Peterson SR, Javier C, Nguyen A, Subiah S, Palmer RHC. On the utilization of the induced pluripotent stem cell (iPSC) model to study substance use disorders: A scoping review protocol. PLoS One 2023; 18:e0292238. [PMID: 37824561 PMCID: PMC10569547 DOI: 10.1371/journal.pone.0292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Induced pluripotent stem cells (iPSCs) are cells derived from somatic cells via reprogramming techniques. The iPSC approach has been increasingly used in neuropsychiatric research in the last decade. Though substance use disorders (SUDs) are a commonly occurring psychiatric disorder, the application of iPSC model in addiction research has been limited. No comprehensive review has been reported. We conducted a scoping review to collate existing evidence on the iPSC technologies applied to SUD research. We aim to identify current knowledge gaps and limitations in order to advance the use of iPSCs in the SUD field. METHODS AND ANALYSIS We employed a scoping review using the methodological framework first created by Arksey and O'Malley and further updated by Levac et al. and the Joanna Briggs Institute (JBI). We adopted the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Protocols (PRISMA-P) to report items for the protocol. We searched evidence from four electronic databases: PubMed®, Embase®, Web of Science™, and Scopus®. Primary research, systematic reviews, and meta-analyses were included and limited to studies published in English, at the time from 2007 to March 2022. This is an "ongoing" scoping review. Searched studies will be independently screened, selected, and extracted by two reviewers. Disagreement will be solved by the third reviewer and discussion. Extracted data will be analyzed in descriptive and quantitative approaches, then summarized and presented in appropriate formats. Results will be reported following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline and disseminated through a peer-reviewed publication and conference presentations. CONCLUSION To our best knowledge, this is the first comprehensive scoping review of iPSC methods specifically applied to a broad range of addictive drugs/substances that lead to SUDs or misuse behavior. REGISTRATION This protocol is registered on Zenodo repository (https://zenodo.org/) with doi:10.5281/zenodo.7915252.
Collapse
Affiliation(s)
- Wasiri Niemis
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Shenita R. Peterson
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, United States of America
| | - Chrisabella Javier
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Amy Nguyen
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Sanchi Subiah
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
34
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
35
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
36
|
Nosrati H, Nosrati M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel) 2023; 8:442. [PMID: 37754193 PMCID: PMC10526210 DOI: 10.3390/biomimetics8050442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The field of regenerative medicine is constantly advancing and aims to repair, regenerate, or substitute impaired or unhealthy tissues and organs using cutting-edge approaches such as stem cell-based therapies, gene therapy, and tissue engineering. Nevertheless, incorporating artificial intelligence (AI) technologies has opened new doors for research in this field. AI refers to the ability of machines to perform tasks that typically require human intelligence in ways such as learning the patterns in the data and applying that to the new data without being explicitly programmed. AI has the potential to improve and accelerate various aspects of regenerative medicine research and development, particularly, although not exclusively, when complex patterns are involved. This review paper provides an overview of AI in the context of regenerative medicine, discusses its potential applications with a focus on personalized medicine, and highlights the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Hamed Nosrati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Masoud Nosrati
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
37
|
Aguirre M, Escobar M, Forero Amézquita S, Cubillos D, Rincón C, Vanegas P, Tarazona MP, Atuesta Escobar S, Blanco JC, Celis LG. Application of the Yamanaka Transcription Factors Oct4, Sox2, Klf4, and c-Myc from the Laboratory to the Clinic. Genes (Basel) 2023; 14:1697. [PMID: 37761837 PMCID: PMC10531188 DOI: 10.3390/genes14091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
The transcription factors Oct4, Sox2, Klf4, and c-Myc enable the reprogramming of somatic cells into induced pluripotent cells. Reprogramming generates newly differentiated cells for potential therapies in cancer, neurodegenerative diseases, and rejuvenation processes. In cancer therapies, these transcription factors lead to a reduction in the size and aggressiveness of certain tumors, such as sarcomas, and in neurodegenerative diseases, they enable the production of dopaminergic cells in Parkinson's disease, the replacement of affected neuronal cells in olivopontocerebellar atrophy, and the regeneration of the optic nerve. However, there are limitations, such as an increased risk of cancer development when using Klf4 and c-Myc and the occurrence of abnormal dyskinesias in the medium term, possibly generated by the uncontrolled growth of differentiated dopaminergic cells and the impairment of the survival of the new cells. Therefore, the Yamanaka transcription factors have shown therapeutic potential through cell reprogramming for some carcinomas, neurodegenerative diseases, and rejuvenation. However, the limitations found in the studies require further investigation before the use of these transcription factors in humans.
Collapse
Affiliation(s)
- Marisol Aguirre
- Department of Genetics, Fundación Valle del Lili, Cali 760026, Colombia;
- Faculty of Medicine, Universidad Icesi, Cali 760031, Colombia
| | - Manuela Escobar
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | | | - David Cubillos
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Camilo Rincón
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Paula Vanegas
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - María Paula Tarazona
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Sofía Atuesta Escobar
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Juan Camilo Blanco
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Luis Gustavo Celis
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| |
Collapse
|
38
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
39
|
Singh PV, Singh PV, Anjankar A. Harnessing the Therapeutic Potential of Stem Cells in the Management of Chronic Obstructive Pulmonary Disease: A Comprehensive Review. Cureus 2023; 15:e44498. [PMID: 37711945 PMCID: PMC10497883 DOI: 10.7759/cureus.44498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory condition with limited treatment options. Stem cell therapy has emerged as a promising approach for COPD management due to its regenerative and immunomodulatory properties. This review article aims to comprehensively explore the therapeutic potential of stem cells in COPD management. The introduction provides background on COPD, highlighting its impact on health and the need for novel therapies. The different types of stem cells relevant to COPD, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, are described along with their properties and characteristics. The pathogenesis of COPD is discussed, emphasizing the key mechanisms involved in disease development and progression. Subsequently, the role of stem cells in tissue repair, regeneration, and immunomodulation is examined, highlighting their ability to address specific pathological processes in COPD. Mechanisms of action, such as paracrine signaling, immunomodulation, anti-inflammatory effects, and tissue regeneration, are explored. The interaction between stem cells and the host environment, which promotes lung repair, is also discussed. Challenges in stem cell therapy for COPD, including optimal cell sources, delivery methods, safety, and efficacy, are identified. Regulatory considerations and the importance of standardization are emphasized. Potential strategies for optimizing the therapeutic potential of stem cells in COPD management, such as combination therapies and preconditioning techniques, are outlined. Emerging trends and future directions are highlighted, including advanced cell engineering and patient-specific induced pluripotent stem cells. In conclusion, stem cell therapy holds significant promise for COPD management, addressing the limitations of current treatments. Continued research and development are necessary to overcome challenges, optimize therapies, and realize stem cells' full potential in improving the lives of patients with COPD.
Collapse
Affiliation(s)
- Parth V Singh
- Internal Medicine, Indira Gandhi Government Medical College, Nagpur, IND
| | - Prateesh V Singh
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
40
|
Tang X, Xu R, Wang Y, Chen K, Cui S. TERC haploid cell reprogramming: a novel therapeutic strategy for aplastic anemia. Mol Med 2023; 29:94. [PMID: 37424004 DOI: 10.1186/s10020-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
The telomerase RNA component (TERC) gene plays an important role in telomerase-dependent extension and maintenance of the telomeres. In the event of TERC haploinsufficiency, telomere length is often affected; this, in turn, can result in the development of progeria-related diseases such as aplastic anemia (AA) and congenital keratosis. Cell reprogramming can reverse the differentiation process and can, therefore, transform cells into pluripotent stem cells with stronger differentiation and self-renewal abilities; further, cell reprograming can also extend the telomere length of these cells, which may be crucial in the diagnosis and treatment of telomere depletion diseases such as AA. In this study, we summarized the effects of TERC haploid cell reprogramming on telomere length and the correlation between this alteration and the pathogenesis of AA; by investigating the role of cell reprogramming in AA, we aimed to identify novel diagnostic indicators and therapeutic strategies for patients with AA.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Kaiqing Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
41
|
Hejrati N, Wong R, Khazaei M, Fehlings MG. How can clinical safety and efficacy concerns in stem cell therapy for spinal cord injury be overcome? Expert Opin Biol Ther 2023; 23:883-899. [PMID: 37545020 DOI: 10.1080/14712598.2023.2245321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) can lead to severe neurological dysfunction. Despite scientific and medical advances, clinically effective regenerative therapies including stem cells are lacking for SCI. AREAS COVERED This paper discusses translational challenges related to the safe, effective use of stem cells for SCI, with a focus on mesenchymal stem cells (MSCs), neural stem cells (NSCs), Schwann cells (SCs), olfactory ensheathing cells (OECs), oligodendrocyte precursor cells (OPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). We discuss approaches to enhance the efficacy of cell-based strategies by i) addressing patient heterogeneity and enhancing patient selection; ii) selecting cell type, cell source, cell developmental stage, and delivery technique; iii) enhancing graft integration and mitigating immune-mediated graft rejection; and iv) ensuring availability of cells. Additionally, we review strategies to optimize outcomes including combinatorial use of rehabilitation and discuss ways to mitigate potential risks of tumor formation associated with stem cell-based strategies. EXPERT OPINION Basic science research will drive translational advances to develop stem cell-based therapies for SCI. Genetic, serological, and imaging biomarkers may enable individualization of cell-based treatments. Moreover, combinatorial strategies will be required to enhance graft survival, migration and functional integration, to enable precision-based intervention.
Collapse
Affiliation(s)
- Nader Hejrati
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery & Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Raymond Wong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Kao CY, Mills JA, Burke CJ, Morse B, Marques BF. Role of Cytokines and Growth Factors in the Manufacturing of iPSC-Derived Allogeneic Cell Therapy Products. BIOLOGY 2023; 12:biology12050677. [PMID: 37237491 DOI: 10.3390/biology12050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Cytokines and other growth factors are essential for cell expansion, health, function, and immune stimulation. Stem cells have the additional reliance on these factors to direct differentiation to the appropriate terminal cell type. Successful manufacturing of allogeneic cell therapies from induced pluripotent stem cells (iPSCs) requires close attention to the selection and control of cytokines and factors used throughout the manufacturing process, as well as after administration to the patient. This paper employs iPSC-derived natural killer cell/T cell therapeutics to illustrate the use of cytokines, growth factors, and transcription factors at different stages of the manufacturing process, ranging from the generation of iPSCs to controlling of iPSC differentiation into immune-effector cells through the support of cell therapy after patient administration.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Carl J Burke
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Barry Morse
- Research and Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Bruno F Marques
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
44
|
Karami Z, Moradi S, Eidi A, Soleimani M, Jafarian A. Induced pluripotent stem cells: Generation methods and a new perspective in COVID-19 research. Front Cell Dev Biol 2023; 10:1050856. [PMID: 36733338 PMCID: PMC9887183 DOI: 10.3389/fcell.2022.1050856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) exhibit an unlimited ability to self-renew and produce various differentiated cell types, thereby creating high hopes for both scientists and patients as a great tool for basic research as well as for regenerative medicine purposes. The availability and safety of iPSCs for therapeutic purposes require safe and highly efficient methods for production of these cells. Different methods have been used to produce iPSCs, each of which has advantages and disadvantages. Studying these methods would be very helpful in developing an easy, safe, and efficient method for the generation of iPSCs. Since iPSCs can be generated from somatic cells, they can be considered as valuable cellular resources available for important research needs and various therapeutic purposes. Coronavirus disease 2019 (COVID-19) is a disease that has endangered numerous human lives worldwide and currently has no definitive cure. Therefore, researchers have been rigorously studying and examining all aspects of COVID-19 and potential treatment modalities and various drugs in order to enable the treatment, control, and prevention of COVID-19. iPSCs have become one of the most attractive and promising tools in this field by providing the ability to study COVID-19 and the effectiveness of drugs on this disease outside the human body. In this study, we discuss the different methods of generation of iPSCs as well as their respective advantages and disadvantages. We also present recent applications of iPSCs in the study and treatment of COVID-19.
Collapse
Affiliation(s)
- Zahra Karami
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sharif Moradi
- 2Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Akram Eidi
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soleimani
- 3Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,4Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Jafarian
- 5Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Arefeh Jafarian,
| |
Collapse
|
45
|
Payal N, Sharma L, Sharma A, Hobanii YH, Hakami MA, Ali N, Rashid S, Sachdeva M, Gulati M, Yadav S, Chigurupati S, Singh A, Khan H, Behl T. Understanding the Therapeutic Approaches for Neuroprotection. Curr Pharm Des 2023; 29:3368-3384. [PMID: 38151849 DOI: 10.2174/0113816128275761231103102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/07/2023] [Indexed: 12/29/2023]
Abstract
The term "neurodegenerative disorders" refers to a group of illnesses in which deterioration of nerve structure and function is a prominent feature. Cognitive capacities such as memory and decision-making deteriorate as a result of neuronal damage. The primary difficulty that remains is safeguarding neurons since they do not proliferate or regenerate spontaneously and are therefore not substituted by the body after they have been damaged. Millions of individuals throughout the world suffer from neurodegenerative diseases. Various pathways lead to neurodegeneration, including endoplasmic reticulum stress, calcium ion overload, mitochondrial dysfunction, reactive oxygen species generation, and apoptosis. Although different treatments and therapies are available for neuroprotection after a brain injury or damage, the obstacles are inextricably connected. Several studies have revealed the pathogenic effects of hypothermia, different breathed gases, stem cell treatments, mitochondrial transplantation, multi-pharmacological therapy, and other therapies that have improved neurological recovery and survival outcomes after brain damage. The present review highlights the use of therapeutic approaches that can be targeted to develop and understand significant therapies for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Nazrana Payal
- Department of Pharmacy, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Yahya Hosan Hobanii
- Department of Pharmacy, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monika Sachdeva
- Department of Pharmacy, Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Abhiav Singh
- Department of Pharmacy, Indian Council of Medical Research, New Delhi, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tapan Behl
- Department of Pharmacy, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| |
Collapse
|
46
|
Lohrasbi F, Ghasemi-Kasman M, Soghli N, Ghazvini S, Vaziri Z, Abdi S, Darban YM. The Journey of iPSC-derived OPCs in Demyelinating Disorders: From In vitro Generation to In vivo Transplantation. Curr Neuropharmacol 2023; 21:1980-1991. [PMID: 36825702 PMCID: PMC10514531 DOI: 10.2174/1570159x21666230220150010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 02/22/2023] Open
Abstract
Loss of myelination is common among neurological diseases. It causes significant disability, even death, if it is not treated instantly. Different mechanisms involve the pathophysiology of demyelinating diseases, such as genetic background, infectious, and autoimmune inflammation. Recently, regenerative medicine and stem cell therapy have shown to be promising for the treatment of demyelinating disorders. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs), can differentiate into oligodendrocyte progenitor cells (OPCs), which may convert to oligodendrocytes (OLs) and recover myelination. IPSCs provide an endless source for OPCs generation. However, the restricted capacity of proliferation, differentiation, migration, and myelination of iPSC-derived OPCs is a notable gap for future studies. In this article, we have first reviewed stem cell therapy in demyelinating diseases. Secondly, methods of different protocols have been discussed among in vitro and in vivo studies on iPSC-derived OPCs to contrast OPCs' transplantation efficacy. Lastly, we have reviewed the results of iPSCs-derived OLs production in each demyelination model.
Collapse
Affiliation(s)
- Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Science, Babol, Iran
| | - Negar Soghli
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sobhan Ghazvini
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sadaf Abdi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | |
Collapse
|
47
|
Identification of marker genes to monitor residual iPSCs in iPSC-derived products. Cytotherapy 2023; 25:59-67. [PMID: 36319564 DOI: 10.1016/j.jcyt.2022.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Engineered tissues and cell therapies based on human induced pluripotent stem cells (iPSCs) represent a promising approach for novel medicines. However, iPSC-derived cells and tissues may contain residual undifferentiated iPSCs that could lead to teratoma formation after implantation into patients. As a consequence, highly sensitive and specific methods for detecting residual undifferentiated iPSCs are indispensable for safety evaluations of iPSC-based therapies. The present study provides an approach for identifying potential marker genes for iPSC impurities in iPSC-derived cells using RNA sequencing data from iPSCs and various differentiated cell types. METHODS Identifying iPSC marker genes for each cell type individually provided a larger and more specific set of potential marker genes than considering all cell types in the analysis. Thus, the authors focused on identifying markers for iPSC impurities in iPSC-derived cardiomyocytes (iCMs) and validated the selected genes by reverse transcription quantitative polymerase chain reaction. The sensitivity of the candidate genes was determined by spiking different amounts of iPSCs into iCMs and their performance was compared with the previously suggested marker lin-28 homolog A (LIN28A). RESULTS Embryonic stem cell-related gene (ESRG), long intergenic non-protein coding RNA 678 (LINC00678), CaM kinase-like vesicle-associated (CAMKV), indoleamine 2,3-dioxygenase 1 (IDO1), chondromodulin (CNMD), LINE1-type transposase domain containing 1 (L1DT1), LIN28A, lymphocyte-specific protein tyrosine kinase (LCK), vertebrae development-associated (VRTN) and zinc finger and SCAN domain containing 10 (ZSCAN10) detected contaminant iPSCs among iCMs with a limit of detection that ranged from 0.001% to 0.1% depending on the gene and iCM batch used. CONCLUSIONS Using the example of iCMs, the authors provide a strategy for identifying a set of highly specific and sensitive markers that can be used for quality assessment of iPSC-derived products.
Collapse
|
48
|
Mohd Satar A, Othman FA, Tan SC. Biomaterial application strategies to enhance stem cell-based therapy for ischemic stroke. World J Stem Cells 2022; 14:851-867. [PMID: 36619694 PMCID: PMC9813837 DOI: 10.4252/wjsc.v14.i12.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ischemic stroke is a condition in which an occluded blood vessel interrupts blood flow to the brain and causes irreversible neuronal cell death. Transplantation of regenerative stem cells has been proposed as a novel therapy to restore damaged neural circuitry after ischemic stroke attack. However, limitations such as low cell survival rates after transplantation remain significant challenges to stem cell-based therapy for ischemic stroke in the clinical setting. In order to enhance the therapeutic efficacy of transplanted stem cells, several biomaterials have been developed to provide a supportable cellular microenvironment or functional modification on the stem cells to optimize their reparative roles in injured tissues or organs. AIM To discuss state-of-the-art functional biomaterials that could enhance the therapeutic potential of stem cell-based treatment for ischemic stroke and provide detailed insights into the mechanisms underlying these biomaterial approaches. METHODS The PubMed, Science Direct and Scopus literature databases were searched using the keywords of "biomaterial" and "ischemic stroke". All topically-relevant articles were then screened to identify those with focused relevance to in vivo, in vitro and clinical studies related to "stem cells" OR "progenitor cells" OR "undifferentiated cells" published in English during the years of 2011 to 2022. The systematic search was conducted up to September 30, 2022. RESULTS A total of 19 articles matched all the inclusion criteria. The data contained within this collection of papers comprehensively represented 19 types of biomaterials applied on seven different types of stem/progenitor cells, namely mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, neural progenitor cells, endothelial progenitor cells, neuroepithelial progenitor cells, and neuroblasts. The potential major benefits gained from the application of biomaterials in stem cell-based therapy were noted as induction of structural and functional modifications, increased stem cell retention rate in the hostile ischemic microenvironment, and promoting the secretion of important cytokines for reparative mechanisms. CONCLUSION Biomaterials have a relatively high potential for enhancing stem cell therapy. Nonetheless, there is a scarcity of evidence from human clinical studies for the efficacy of this bioengineered cell therapy, highlighting that it is still too early to draw a definitive conclusion on efficacy and safety for patient usage. Future in-depth clinical investigations are necessary to realize translation of this therapy into a more conscientious and judicious evidence-based therapy for clinical application.
Collapse
Affiliation(s)
- Asmaa' Mohd Satar
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farah Amna Othman
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| |
Collapse
|
49
|
Abbey D. Chemical journey of somatic cells to pluripotency. CELL REGENERATION 2022; 11:27. [PMID: 35918563 PMCID: PMC9346013 DOI: 10.1186/s13619-022-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractReprogramming somatic cells to pluripotent stem cells has revolutionized the biomedical field by providing enormous hopes and opportunities for the regeneration of tissues and organs for transplantation. Using a small molecule cocktail of epigenetic modifiers and cell signalling inhibitors, a chemical-based easy and controllable technique for converting human somatic cells into chemically induced pluripotent stem cells was recently reported (Guan, Nature 605:325–31, 2022). This novel approach offers well-defined, safe, simple, easy, and clinical-grade manufacturing strategies for modifying the fate of human cells required for regenerative therapeutics.
Collapse
|
50
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|