1
|
Kamala K, Ganapathy D, Sivaperumal P. Advancements in Cancer Therapy: Mycoviruses and Their Oncolytic Potential. Cell Biochem Biophys 2024:10.1007/s12013-024-01608-y. [PMID: 39535660 DOI: 10.1007/s12013-024-01608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Recent advancements in cancer research focus on reducing treatment side effects while enhancing efficacy against medication resistance and tumor antigen detection. Genetic therapies utilizing microbes like bacteria, fungi, and viruses have garnered attention, with mycoviruses emerging as promising candidates. Particularly, the smallest fungal virus, Myco-phage, exhibits oncolytic properties by lysing cancer cells in the mouth, oral cavity, head, and neck without adverse effects. Genetically Modified Myco-phage (GmMP) adapts quickly to target cancer cells through cell membrane damage, inducing apoptosis and dendritic cell activation. Additionally, GmMP inhibits angiogenesis and modulates immune responses via CAR cells and immune checkpoints, potentially transforming cancer treatment paradigms with enhanced specificity and efficacy.
Collapse
Affiliation(s)
- Kannan Kamala
- Marine Microbial Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
- Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Pitchiah Sivaperumal
- Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 602105, India.
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Carvalho JLC, Dadachova E. Radioimmunotherapy for the treatment of infectious diseases: a comprehensive update. Expert Rev Anti Infect Ther 2023; 21:365-374. [PMID: 36815406 DOI: 10.1080/14787210.2023.2184345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Corona Virus Disease of 2019 (COVID-19) pandemic has renewed interest in monoclonal antibodies for treating infectious diseases. During last two decades experimental data has been accumulated showing the potential of radioimmunotherapy (RIT) of infectious diseases. In addition, COVID-19 pandemic has created a novel landscape for opportunistic fungal infections in post-COVID-19 patients resulting from severe immune suppression. AREAS COVERED We analyze recent results on targeting "pan-antigens" shared by fungal pathogens in mouse models and in healthy dogs; on developing RIT of prosthetic joint infections (PJI); examine RIT as potential human immunodeficiency virus (HIV) cure strategy and analyze its mechanisms and safety. Literature review was performed using PubMed and Google Scholar and includes relevant articles from 2000 to 2022. EXPERT OPINION Some of the RIT of infection applications can, hopefully, be moved into the clinic earlier than others after preclinical development: (1) RIT of opportunistic fungal infections might contribute to saving lives as current antifungal drugs do not work in severely immunocompromised patients; (2) RIT of patients with PJI. Success of RIT in these patients will allow to expand the application of RIT to other similarly vulnerable patients' populations such as cancer patients with weakened immune system and organ transplant recipients.
Collapse
|
4
|
van Dijk B, Hooning van Duyvenbode JFF, de Vor L, Nurmohamed FRHA, Lam MGEH, Poot AJ, Ramakers RM, Koustoulidou S, Beekman FJ, van Strijp J, Rooijakkers SHM, Dadachova E, Vogely HC, Weinans H, van der Wal BCH. Evaluating the Targeting of a Staphylococcus-aureus-Infected Implant with a Radiolabeled Antibody In Vivo. Int J Mol Sci 2023; 24:ijms24054374. [PMID: 36901805 PMCID: PMC10002501 DOI: 10.3390/ijms24054374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. We introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide evidence of the specificity and biodistribution of S.-aureus-targeting antibodies in a mouse implant infection model. The monoclonal antibody 4497-IgG1 targeting wall teichoic acid in S. aureus was labeled with indium-111 using CHX-A"-DTPA as a chelator. Single Photon Emission Computed Tomography/computed tomographyscans were performed at 24, 72 and 120 h after administration of the 111In-4497 mAb in Balb/cAnNCrl mice with a subcutaneous implant that was pre-colonized with S. aureus biofilm. The biodistribution of this labelled antibody over various organs was visualized and quantified using SPECT/CT imaging, and was compared to the uptake at the target tissue with the implanted infection. Uptake of the 111In-4497 mAbs at the infected implant gradually increased from 8.34 %ID/cm3 at 24 h to 9.22 %ID/cm3 at 120 h. Uptake at the heart/blood pool decreased over time from 11.60 to 7.58 %ID/cm3, whereas the uptake in the other organs decreased from 7.26 to less than 4.66 %ID/cm3 at 120 h. The effective half-life of 111In-4497 mAbs was determined to be 59 h. In conclusion, 111In-4497 mAbs were found to specifically detect S. aureus and its biofilm with excellent and prolonged accumulation at the site of the colonized implant. Therefore, it has the potential to serve as a drug delivery system for the diagnostic and bactericidal treatment of biofilm.
Collapse
Affiliation(s)
- Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-88-75-569-71
| | | | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Alex J. Poot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ruud M. Ramakers
- MILabs B.V., 3584 CX Utrecht, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, 2628 CD Delft, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Sofia Koustoulidou
- MILabs B.V., 3584 CX Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Freek J. Beekman
- MILabs B.V., 3584 CX Utrecht, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, 2628 CD Delft, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Jos van Strijp
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - H. Charles Vogely
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of BioMechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Bart C. H. van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Ankrah AO, Lawal IO, Dierckx RAJO, Sathekge MM, Glaudemans AWJM. Imaging of Invasive Fungal Infections- The Role of PET/CT. Semin Nucl Med 2023; 53:57-69. [PMID: 35933165 DOI: 10.1053/j.semnuclmed.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
Over the last decades, the population at risk for invasive fungal disease (IFD) has increased because of medical therapy advances and diseases compromising patients' immune systems. The high morbidity and mortality associated with invasive fungal disease in the immunocompromised present the challenge of early diagnosis of the IFD and the need to closely monitor the infection during treatment. The definitive diagnosis of invasive fungal disease based on culture or histopathological methods often has reduced diagnostic accuracy in the immunocompromised and may be very invasive. Less invasive and indirect evidence of the fungal infection by serology and imaging has been used for the early diagnosis of fungal infection before definitive results are available or when the definitive methods of diagnosis are suboptimal. Imaging in invasive fungal disease is a non-invasive biomarker that helps in the early diagnosis of invasive fungal disease but helps follow-up the infection during treatment. Different imaging modalities are used in the workup to evaluate fungal disease. The different imaging modalities have advantages and disadvantages at different sites in the body and may complement each other in the management of IFD. Positron emission tomography integrated with computed tomography with [18F]Fluorodeoxyglucose (FDG PET/CT) has helped manage IFD. The combined functional data from PET and anatomical data from the CT from almost the whole body allows noninvasive evaluation of IFD and provides a semiquantitative means of assessing therapy. FDG PET/CT adds value to anatomic-based only imaging modalities. The nonspecificity of FDG uptake has led to the evaluation of other tracers in the assessment of IFD. However, these are mainly still at the preclinical level and are yet to be translated to humans. FDG PET/CT remains the most widely evaluated radionuclide-based imaging modality in IFD management. The limitations of FDG PET/CT must be well understood, and more extensive prospective studies in uniform populations are needed to validate its role in the management of IFD that can be international guidelines.
Collapse
Affiliation(s)
- Alfred O Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA, Ghana; Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands.
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Rudi A J O Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Andor W J M Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| |
Collapse
|
6
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
7
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Emerging Preclinical and Clinical Applications of Theranostics for Nononcological Disorders. PET Clin 2021; 16:429-440. [PMID: 34053586 DOI: 10.1016/j.cpet.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies in nuclear medicine have shed light on molecular imaging and therapeutic approaches for oncological and nononcological conditions. Using the same radiopharmaceuticals for diagnosis and therapeutics of malignancies, the theranostics approach, has improved clinical management of patients. Theranostic approaches for nononcological conditions are recognized as emerging topics of research. This review focuses on preclinical and clinical studies of nononcological disorders that include theranostic strategies. Theranostic approaches are demonstrated as possible in the clinical management of infections and inflammations. There is an emerging need for randomized trials to specify the factors affecting validity and efficacy of theranostic approaches in nononcological diseases.
Collapse
|
9
|
Ankrah AO, Sathekge MM, Dierckx RAJO, Glaudemans AWJM. Radionuclide Imaging of Fungal Infections and Correlation with the Host Defense Response. J Fungi (Basel) 2021; 7:jof7060407. [PMID: 34067410 PMCID: PMC8224611 DOI: 10.3390/jof7060407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
The human response to invading fungi includes a series of events that detect, kill, or clear the fungi. If the metabolic host response is unable to eliminate the fungi, an infection ensues. Some of the host response’s metabolic events to fungi can be imaged with molecules labelled with radionuclides. Several important clinical applications have been found with radiolabelled biomolecules of inflammation. 18F-fluorodeoxyglucose is the tracer that has been most widely investigated in the host defence of fungi. This tracer has added value in the early detection of infection, in staging and visualising dissemination of infection, and in monitoring antifungal treatment. Radiolabelled antimicrobial peptides showed promising results, but large prospective studies in fungal infection are lacking. Other tracers have also been used in imaging events of the host response, such as the migration of white blood cells at sites of infection, nutritional immunity in iron metabolism, and radiolabelled monoclonal antibodies. Many tracers are still at the preclinical stage. Some tracers require further studies before translation into clinical use. The application of therapeutic radionuclides offers a very promising clinical application of these tracers in managing drug-resistant fungi.
Collapse
Affiliation(s)
- Alfred O. Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA-222 7974, Ghana;
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Rudi A. J. O. Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
10
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics. Pharmaceutics 2020; 12:E1247. [PMID: 33371500 PMCID: PMC7767508 DOI: 10.3390/pharmaceutics12121247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence and global spread of COVID-19, an infectious disease caused by the novel coronavirus SARS-CoV-2, has resulted in a continuing pandemic threat to global health. Nuclear medicine techniques can be used for functional imaging of (patho)physiological processes at the cellular or molecular level and for treatment approaches based on targeted delivery of therapeutic radionuclides. Ongoing development of radiolabeling methods has significantly improved the accessibility of radiopharmaceuticals for in vivo molecular imaging or targeted radionuclide therapy, but their use for biosafety threats such as SARS-CoV-2 is restricted by the contagious nature of these agents. Here, we highlight several potential uses of nuclear medicine in the context of SARS-CoV-2 and COVID-19, many of which could also be performed in laboratories without dedicated containment measures. In addition, we provide a broad overview of experimental or repurposed SARS-CoV-2-targeting drugs and describe how radiolabeled analogs of these compounds could facilitate antiviral drug development and translation to the clinic, reduce the incidence of late-stage failures and possibly provide the basis for radionuclide-based treatment strategies. Based on the continuing threat by emerging coronaviruses and other pathogens, it is anticipated that these applications of nuclear medicine will become a more important part of future antiviral drug development and treatment.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Boris D. Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
11
|
Sadraeian M, Bahou C, da Cruz EF, Janini LMR, Sobhie Diaz R, Boyle RW, Chudasama V, Eduardo Gontijo Guimarães F. Photoimmunotherapy Using Cationic and Anionic Photosensitizer-Antibody Conjugates against HIV Env-Expressing Cells. Int J Mol Sci 2020; 21:E9151. [PMID: 33271741 PMCID: PMC7730620 DOI: 10.3390/ijms21239151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Different therapeutic strategies have been investigated to target and eliminate HIV-1-infected cells by using armed antibodies specific to viral proteins, with varying degrees of success. Herein, we propose a new strategy by combining photodynamic therapy (PDT) with HIV Env-targeted immunotherapy, and refer to it as HIV photoimmunotherapy (PIT). A human anti-gp41 antibody (7B2) was conjugated to two photosensitizers (PSs) with different charges through different linking strategies; "Click" conjugation by using an azide-bearing porphyrin attached via a disulfide bridge linker with a drug-to-antibody ratio (DAR) of exactly 4, and "Lysine" conjugation by using phthalocyanine IRDye 700DX dye with average DARs of 2.1, 3.0 and 4.4. These photo-immunoconjugates (PICs) were compared via biochemical and immunological characterizations regarding the dosimetry, solubility, and cell targeting. Photo-induced cytotoxicity of the PICs were compared using assays for apoptosis, reactive oxygen species (ROS), photo-cytotoxicity, and confocal microscopy. Targeted phototoxicity seems to be primarily dependent on the binding of PS-antibody to the HIV antigen on the cell membrane, whilst being independent of the PS type. This is the first report of the application of PIT for HIV immunotherapy by killing HIV Env-expressing cells.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil;
| | - Calise Bahou
- Department of Chemistry, University College London, London WC1H 0AJ, UK;
| | - Edgar Ferreira da Cruz
- Laboratório de Retrovirologia, Disciplina de Microbiologia, Departamento de Microbiologia Imunologia Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04039-032, Brazil; (E.F.d.C.); (L.M.R.J.); (R.S.D.)
| | - Luíz Mário Ramos Janini
- Laboratório de Retrovirologia, Disciplina de Microbiologia, Departamento de Microbiologia Imunologia Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04039-032, Brazil; (E.F.d.C.); (L.M.R.J.); (R.S.D.)
| | - Ricardo Sobhie Diaz
- Laboratório de Retrovirologia, Disciplina de Microbiologia, Departamento de Microbiologia Imunologia Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04039-032, Brazil; (E.F.d.C.); (L.M.R.J.); (R.S.D.)
| | - Ross W. Boyle
- Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - Vijay Chudasama
- Department of Chemistry, University College London, London WC1H 0AJ, UK;
| | | |
Collapse
|
12
|
Safety Evaluation of an Alpha-Emitter Bismuth-213 Labeled Antibody to (1→3)-β-Glucan in Healthy Dogs as a Prelude for a Trial in Companion Dogs with Invasive Fungal Infections. Molecules 2020; 25:molecules25163604. [PMID: 32784359 PMCID: PMC7465188 DOI: 10.3390/molecules25163604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background: With the limited options available for therapy to treat invasive fungal infections (IFI), radioimmunotherapy (RIT) can potentially offer an effective alternative treatment. Microorganism-specific monoclonal antibodies have shown promising results in the experimental treatment of fungal, bacterial, and viral infections, including our recent and encouraging results from treating mice infected with Blastomyces dermatitidis with 213Bi-labeled antibody 400-2 to (1→3)-β-glucan. In this work, we performed a safety study of 213Bi-400-2 antibody in healthy dogs as a prelude for a clinical trial in companion dogs with acquired invasive fungal infections and later on in human patients with IFI. Methods: Three female beagle dogs (≈6.1 kg body weight) were treated intravenously with 155.3, 142.5, or 133.2 MBq of 213Bi-400-2 given as three subfractions over an 8 h period. RBC, WBC, platelet, and blood serum biochemistry parameters were measured periodically for 6 months post injection. Results: No significant acute or long-term side effects were observed after RIT injections; only a few parameters were mildly and transiently outside reference change value limits, and a transient atypical morphology was observed in the circulating lymphocyte population of two dogs. Conclusions: These results demonstrate the safety of systemic 213Bi-400-2 administration in dogs and provide encouragement to pursue evaluation of RIT of IFI in companion dogs.
Collapse
|
13
|
van Dijk B, Lemans JVC, Hoogendoorn RM, Dadachova E, de Klerk JMH, Vogely HC, Weinans H, Lam MGEH, van der Wal BCH. Treating infections with ionizing radiation: a historical perspective and emerging techniques. Antimicrob Resist Infect Control 2020; 9:121. [PMID: 32736656 PMCID: PMC7393726 DOI: 10.1186/s13756-020-00775-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023] Open
Abstract
Background Widespread use and misuse of antibiotics have led to a dramatic increase in the emergence of antibiotic resistant bacteria, while the discovery and development of new antibiotics is declining. This has made certain implant-associated infections such as periprosthetic joint infections, where a biofilm is formed, very difficult to treat. Alternative treatment modalities are needed to treat these types of infections in the future. One candidate that has been used extensively in the past, is the use of ionizing radiation. This review aims to provide a historical overview and future perspective of radiation therapy in infectious diseases with a focus on orthopedic infections. Methods A systematic search strategy was designed to select studies that used radiation as treatment for bacterial or fungal infections. A total of 216 potentially relevant full-text publications were independently reviewed, of which 182 focused on external radiation and 34 on internal radiation. Due to the large number of studies, several topics were chosen. The main advantages, disadvantages, limitations, and implications of radiation treatment for infections were discussed. Results In the pre-antibiotic era, high mortality rates were seen in different infections such as pneumonia, gas gangrene and otitis media. In some cases, external radiation therapy decreased the mortality significantly but long-term follow-up of the patients was often not performed so long term radiation effects, as well as potential increased risk of malignancies could not be investigated. Internal radiation using alpha and beta emitting radionuclides show great promise in treating fungal and bacterial infections when combined with selective targeting through antibodies, thus minimizing possible collateral damage to healthy tissue. Conclusion The novel prospects of radiation treatment strategies against planktonic and biofilm-related microbial infections seem feasible and are worth investigating further. However, potential risks involving radiation treatment must be considered in each individual patient.
Collapse
Affiliation(s)
- B van Dijk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - J V C Lemans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R M Hoogendoorn
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - J M H de Klerk
- Department of Nuclear Medicine, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - H C Vogely
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Weinans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomechanical engineering, TU Delft, Delft, The Netherlands
| | - M G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B C H van der Wal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Guerra Liberal FDC, O'Sullivan JM, McMahon SJ, Prise KM. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother Radiopharm 2020; 35:404-417. [PMID: 32552031 DOI: 10.1089/cbr.2020.3576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
α-Emitting radionuclides have been approved for cancer treatment since 2013, with increasing degrees of success. Despite this clinical utility, little is known regarding the mechanisms of action of α particles in this setting, and accurate assessments of the dosimetry underpinning their effectiveness are lacking. However, targeted alpha therapy (TAT) is gaining more attention as new targets, synthetic chemistry approaches, and α particle emitters are identified, constructed, developed, and realized. From a radiobiological perspective, α particles are more effective at killing cells compared to low linear energy transfer radiation. Also, from these direct effects, it is now evident from preclinical and clinical data that α emitters are capable of both producing effects in nonirradiated bystander cells and stimulating the immune system, extending the biological effects of TAT beyond the range of α particles. The short range of α particles makes them a potent tool to irradiate single-cell lesions or treat solid tumors by minimizing unwanted irradiation of normal tissue surrounding the cancer cells, assuming a high specificity of the radiopharmaceutical and good stability of its chemical bonds. Clinical approval of 223RaCl2 in 2013 was a major milestone in the widespread application of TAT as a safe and effective strategy for cancer treatment. In addition, 225Ac-prostate specific membrane antigen treatment benefit in metastatic castrate-resistant prostate cancer patients, refractory to standard therapies, is another game-changing piece in the short history of TAT clinical application. Clinical applications of TAT are growing with different radionuclides and combination therapies, and in different clinical settings. Despite the remarkable advances in TAT dosimetry and imaging, it has not yet been used to its full potential. Labeled 227Th and 225Ac appear to be promising candidates and could represent the next generation of agents able to extend patient survival in several clinical scenarios.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Faculdade de Ciências e Tenclonogia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joe M O'Sullivan
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.,Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Stephen J McMahon
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
van Dijk B, Allen KJH, Helal M, Vogely HC, Lam MGEH, de Klerk JMH, Weinans H, van der Wal BCH, Dadachova E. Radioimmunotherapy of methicillin-resistant Staphylococcus aureus in planktonic state and biofilms. PLoS One 2020; 15:e0233086. [PMID: 32407350 PMCID: PMC7224548 DOI: 10.1371/journal.pone.0233086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Implant associated infections such as periprosthetic joint infections are difficult to treat as the bacteria form a biofilm on the prosthetic material. This biofilm complicates surgical and antibiotic treatment. With rising antibiotic resistance, alternative treatment options are needed to treat these infections in the future. The aim of this article is to provide proof-of-principle data required for further development of radioimmunotherapy for non-invasive treatment of implant associated infections. Methods Planktonic cells and biofilms of Methicillin-resistant staphylococcus aureus are grown and treated with radioimmunotherapy. The monoclonal antibodies used, target wall teichoic acids that are cell and biofilm specific. Three different radionuclides in different doses were used. Viability and metabolic activity of the bacterial cells and biofilms were measured by CFU dilution and XTT reduction. Results Alpha-RIT with Bismuth-213 showed significant and dose dependent killing in both planktonic MRSA and biofilm. When planktonic bacteria were treated with 370 kBq of 213Bi-RIT 99% of the bacteria were killed. Complete killing of the bacteria in the biofilm was seen at 185 kBq. Beta-RIT with Lutetium-177 and Actinium-225 showed little to no significant killing. Conclusion Our results demonstrate the ability of specific antibodies loaded with an alpha-emitter Bismuth-213 to selectively kill staphylococcus aureus cells in vitro in both planktonic and biofilm state. RIT could therefore be a potentially alternative treatment modality against planktonic and biofilm-related microbial infections.
Collapse
Affiliation(s)
- B. van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K. J. H. Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - M. Helal
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - H. C. Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. M. H. de Klerk
- Department of Nuclear Medicine, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical engineering, TU Delft, Delft, The Netherlands
| | - B. C. H. van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
16
|
Atomic Nanogenerators in Targeted Alpha Therapies: Curie's Legacy in Modern Cancer Management. Pharmaceuticals (Basel) 2020; 13:ph13040076. [PMID: 32340103 PMCID: PMC7243103 DOI: 10.3390/ph13040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Atomic in vivo nanogenerators such as actinium-225, thorium-227, and radium-223 are of increasing interest and importance in the treatment of patients with metastatic cancer diseases. This is due to their peculiar physical, chemical, and biological characteristics, leading to astonishing responses in otherwise resistant patients. Nevertheless, there are still a few obstacles and hurdles to be overcome that hamper the broader utilization in the clinical setting. Next to the limited supply and relatively high costs, the in vivo complex stability and the fate of the recoiling daughter radionuclides are substantial problems that need to be solved. In radiobiology, the mechanisms underlying treatment efficiency, possible resistance mechanisms, and late side effect occurrence are still far from being understood and need to be unraveled. In this review, the current knowledge on the scientific and clinical background of targeted alpha therapies is summarized. Furthermore, open issues and novel approaches with a focus on the future perspective are discussed. Once these are unraveled, targeted alpha therapies with atomic in vivo nanogenerators can be tailored to suit the needs of each patient when applying careful risk stratification and combination therapies. They have the potential to become one of the major treatment pillars in modern cancer management.
Collapse
|
17
|
Helal M, Allen KJH, van Dijk B, Nosanchuk JD, Snead E, Dadachova E. Radioimmunotherapy of Blastomycosis in a Mouse Model With a (1→3)-β-Glucans Targeting Antibody. Front Microbiol 2020; 11:147. [PMID: 32117166 PMCID: PMC7019017 DOI: 10.3389/fmicb.2020.00147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections (IFI) cause devastating morbidity and mortality, with the number of IFIs more than tripling since 1979. Our laboratories were the first to demonstrate that radiolabeled microorganism-specific monoclonal antibodies are highly effective for treatment of experimental fungal, bacterial and viral infections. Later we proposed to utilize surface expressed pan-antigens shared by major IFI-causing pathogens such as beta-glucans as RIT targets. Here we evaluated in vivo RIT targeting beta-glucan in Blastomyces dermatitidis which causes serious infections in immunocompromised and immunocompetent individuals and in companion dogs. B. dermatitidis cells were treated with the 400-2 antibody to (1→3)-β-glucans radiolabeled with the beta-emitter 177Lutetium (177Lu) and alpha-emitter 213Bismuth (213Bi) and the efficacy of cell kill was determined by colony forming units (CFUs). To determine the antigen-specific localization of the 400-2 antibody in vivo, C57BL6 mice were infected intratracheally with 2 × 105B. dermatitidis cells and given 111In-400-2 antibody 24 h later. To evaluate the killing of B. dermatitidis cells with RIT, intratracheally infected mice were treated with 150 μCi 213Bi-400-2 and their lungs analyzed for CFUs 96 h post-infection. 213Bi-400-2 proved to be more effective in killing B. dermatitidis cells in vitro than 177Lu-400-2. Three times more 111In-400-2 accumulated in the lungs of infected mice, than in the non-infected ones. 213Bi-400-2 lowered the fungal burden in the lungs of infected mice more than 2 logs in comparison with non-treated infected controls. In conclusion, our results demonstrate the ability of an anti-(1-3)-beta-D-glucan antibody armed with an alpha-emitter 213Bi to selectively kill B. dermatitidis cells in vitro and in vivo. These first in vivo results of the effectiveness of RIT targeting pan-antigens on fungal pathogens warrant further investigation.
Collapse
Affiliation(s)
- Muath Helal
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kevin J H Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Elisabeth Snead
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Howell K, Matuszak M, Maitz CA, Eisaman SH, Padilla L, Brown SL, Joiner MC, Dominello MM, Burmeister J. Three Discipline Collaborative Radiation Therapy (3DCRT) special debate: In the future, at least 20% of NIH funding for radiotherapy research should be allocated to non-oncologic applications. J Appl Clin Med Phys 2019; 21:7-13. [PMID: 31573150 PMCID: PMC7020985 DOI: 10.1002/acm2.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Krisha Howell
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Martha Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Maitz
- Veterinary Health Center, University of Missouri, Columbia, MO, USA
| | - Subarna H Eisaman
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Laura Padilla
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Michael C Joiner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael M Dominello
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Burmeister
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Gershenson Radiation Oncology Center, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
19
|
Future Vistas in Alpha Therapy of Infectious Diseases. J Med Imaging Radiat Sci 2019; 50:S49-S52. [PMID: 31427256 PMCID: PMC7104931 DOI: 10.1016/j.jmir.2019.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
|