1
|
Samiminemati A, Shahzaib M, Moriello C, Alessio N, Aprile D, Squillaro T, Di Bernardo G, Galderisi U. Mesenchymal Stromal Cell (MSC) Isolation and Induction of Acute and Replicative Senescence. Methods Mol Biol 2024. [PMID: 39714585 DOI: 10.1007/7651_2024_580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance. Initially identified in bone marrow, MSCs have since been found in multiple tissues, including muscle, adipose tissue, and dental pulp, and are characterized by specific surface markers and differentiation abilities.Aging induces cellular senescence, an irreversible growth arrest linked to various stressors, which has significant implications for regenerative medicine. While initially viewed as a protective mechanism against tumorigenesis, the accumulation of senescent cells, particularly in MSCs, leads to age-related diseases through the senescence-associated secretory phenotype (SASP). The onset of senescence in MSCs diminishes their therapeutic potential and contributes to homeostatic imbalance. Key drivers of MSC senescence include genetic damage, noncoding RNA, and mitochondrial dysfunction, among others.This study outlines the principal methodologies for the isolation and characterization of MSCs, alongside techniques to induce acute senescence via hydrogen peroxide or irradiation, as well as replicative senescence, to investigate senescence-related changes in vitro. Understanding the mechanisms of MSC senescence will provide critical insights into the molecular pathways of aging and pave way for advancements in cellular therapies targeting age-related diseases.
Collapse
Affiliation(s)
- Afshin Samiminemati
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Mohd Shahzaib
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Claudia Moriello
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Domenico Aprile
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Tiziana Squillaro
- Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
- Sbarro Health Research Organization, Temple University, Philadelphia, PA, USA
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
- Sbarro Health Research Organization, Temple University, Philadelphia, PA, USA.
- Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey.
| |
Collapse
|
2
|
Velikova T, Dekova T, Miteva DG. Controversies regarding transplantation of mesenchymal stem cells. World J Transplant 2024; 14:90554. [PMID: 38947963 PMCID: PMC11212595 DOI: 10.5500/wjt.v14.i2.90554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tantalized regenerative medicine with their therapeutic potential, yet a cloud of controversies looms over their clinical transplantation. This comprehensive review navigates the intricate landscape of MSC controversies, drawing upon 15 years of clinical experience and research. We delve into the fundamental properties of MSCs, exploring their unique immunomodulatory capabilities and surface markers. The heart of our inquiry lies in the controversial applications of MSC transplantation, including the perennial debate between autologous and allogeneic sources, concerns about efficacy, and lingering safety apprehensions. Moreover, we unravel the enigmatic mechanisms surrounding MSC transplantation, such as homing, integration, and the delicate balance between differentiation and paracrine effects. We also assess the current status of clinical trials and the ever-evolving regulatory landscape. As we peer into the future, we examine emerging trends, envisioning personalized medicine and innovative delivery methods. Our review provides a balanced and informed perspective on the controversies, offering readers a clear understanding of the complexities, challenges, and potential solutions in MSC transplantation.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tereza Dekova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | |
Collapse
|
3
|
Saba E, Sandhu MA, Pelagalli A. Canine Mesenchymal Stromal Cell Exosomes: State-of-the-Art Characterization, Functional Analysis and Applications in Various Diseases. Vet Sci 2024; 11:187. [PMID: 38787159 PMCID: PMC11126113 DOI: 10.3390/vetsci11050187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Canine mesenchymal stromal cells (MSCs) possess the capacity to differentiate into a variety of cell types and secrete a wide range of bioactive molecules in the form of soluble and membrane-bound exosomes. Extracellular vesicles/exosomes are nano-sized vesicles that carry proteins, lipids, and nucleic acids and can modulate recipient cell response in various ways. The process of exosome formation is a physiological interaction between cells. With a significant increase in basic research over the last two decades, there has been a tremendous expansion in research in MSC exosomes and their potential applications in canine disease models. The characterization of exosomes has demonstrated considerable variations in terms of source, culture conditions of MSCs, and the inclusion of fetal bovine serum or platelet lysate in the cell cultures. Furthermore, the amalgamation of exosomes with various nano-materials has become a novel approach to the fabrication of nano-exosomes. The fabrication of exosomes necessitates the elimination of extrinsic proteins, thus enhancing their potential therapeutic uses in a variety of disease models, including spinal cord injury, osteoarthritis, and inflammatory bowel disease. This review summarizes current knowledge on the characteristics, biological functions, and clinical relevance of canine MSC exosomes and their potential use in human and canine research. As discussed, exosomes have the ability to control lethal vertebrate diseases by administration directly at the injury site or through specific drug delivery mechanisms.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| |
Collapse
|
4
|
Wang C, Wang X, Cheng H, Fang J. MiR-22-3p facilitates bone marrow mesenchymal stem cell osteogenesis and fracture healing through the SOSTDC1-PI3K/AKT pathway. Int J Exp Pathol 2024; 105:52-63. [PMID: 38152045 PMCID: PMC10951417 DOI: 10.1111/iep.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Bone fractures are the most common form of musculoskeletal trauma worldwide. Numerous microRNAs (miRNAs) have been suggested to be participants in regulating bone-related diseases. Recent studies revealed the regulatory role of miR-22-3p in osteogenic differentiation, but its role in fracture healing has not been investigated previously. Here, a rat femoral fracture model was established, Bone marrow mesenchymal stem cells (BMSCs) were isolated to detect the specific function and underlying mechanisms of miR-22-3p. MiR-22-3p and sclerostin domain-containing 1 (SOSTDC1) expression was determined by RT-qPCR and immunohistochemistry staining. The levels of proteins associated with osteogenic differentiation were assessed by western blotting. Flow cytometry was conducted to identify the isolated rat BMSCs. Alizarin red staining, alkaline phosphatase staining and Oil Red O staining were used to evaluate the osteogenic and adipogenic differentiation of rat BMSCs. The interaction between miR-22-3p and SOSTDC1 was verified using a luciferase reporter assay. Haematoxylin and Eosin (H&E) staining of the bone tissues was performed to analyse the effect of miR-22-3p on histopathological changes in vivo. MiR-22-3p was downregulated in the callus tissues of rat femoral fracture, while the expression of SOSTDC1 was upregulated. The isolated rat BMSCs had the capacity for both osteogenic and adipogenic differentiation. The differentiation capacity of BMSCs into osteoblasts was increased by miR-22-3p overexpression. MiR-22-3p activated the PI3K/AKT pathway by targeting SOSTDC1. SOSTDC1 overexpression and PI3K/AKT signalling inhibitor LY294002 abolished the enhancing effect of miR-22-3p overexpression on the osteogenesis of BMSCs. Thus MiR-22-3p facilitated the femoral fracture healing in rats. MiR-22-3p overexpression promoted fracture healing via the activation of PI3K/AKT pathway by targeting SOSTDC1.
Collapse
Affiliation(s)
- Chunqiu Wang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xinguo Wang
- Department of OrthopedicsZhenjiang 359 HospitalZhenjiangChina
| | - Hui Cheng
- Department of OrthopedicsZhenjiang 359 HospitalZhenjiangChina
| | - Jiahu Fang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
Kohsar AH, Yousefi MJ, Hali H. The Effects of Different Regenerative Treatments after Tooth Avulsion. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Zeynaloo E, Stone LD, Dikici E, Ricordi C, Deo SK, Bachas LG, Daunert S, Lanzoni G. Delivery of therapeutic agents and cells to pancreatic islets: Towards a new era in the treatment of diabetes. Mol Aspects Med 2022; 83:101063. [PMID: 34961627 PMCID: PMC11328325 DOI: 10.1016/j.mam.2021.101063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic islet cells, and in particular insulin-producing beta cells, are centrally involved in the pathogenesis of diabetes mellitus. These cells are of paramount importance for the endocrine control of glycemia and glucose metabolism. In Type 1 Diabetes, islet beta cells are lost due to an autoimmune attack. In Type 2 Diabetes, beta cells become dysfunctional and insufficient to counterbalance insulin resistance in peripheral tissues. Therapeutic agents have been developed to support the function of islet cells, as well as to inhibit deleterious immune responses and inflammation. Most of these agents have undesired effects due to systemic administration and off-target effects. Typically, only a small fraction of therapeutic agent reaches the desired niche in the pancreas. Because islets and their beta cells are scattered throughout the pancreas, access to the niche is limited. Targeted delivery to pancreatic islets could dramatically improve the therapeutic effect, lower the dose requirements, and lower the side effects of agents administered systemically. Targeted delivery is especially relevant for those therapeutics for which the manufacturing is difficult and costly, such as cells, exosomes, and microvesicles. Along with therapeutic agents, imaging reagents intended to quantify the beta cell mass could benefit from targeted delivery. Several methods have been developed to improve the delivery of agents to pancreatic islets. Intra-arterial administration in the pancreatic artery is a promising surgical approach, but it has inherent risks. Targeted delivery strategies have been developed based on ligands for cell surface molecules specific to islet cells or inflamed vascular endothelial cells. Delivery methods range from nanocarriers and vectors to deliver pharmacological agents to viral and non-viral vectors for the delivery of genetic constructs. Several strategies demonstrated enhanced therapeutic effects in diabetes with lower amounts of therapeutic agents and lower off-target side effects. Microvesicles, exosomes, polymer-based vectors, and nanocarriers are gaining popularity for targeted delivery. Notably, liposomes, lipid-assisted nanocarriers, and cationic polymers can be bioengineered to be immune-evasive, and their advantages to transport cargos into target cells make them appealing for pancreatic islet-targeted delivery. Viral vectors have become prominent tools for targeted gene delivery. In this review, we discuss the latest strategies for targeted delivery of therapeutic agents and imaging reagents to pancreatic islet cells.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Chemistry, University of Miami, FL, USA.
| | - Logan D Stone
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA; Clinical and Translational Science Institute, University of Miami, Miami, FL, USA
| | - Giacomo Lanzoni
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
Ge X, Shi K, Hou J, Fu Y, Xiao H, Chi F, Xu J, Cai F, Bai C. Galectin-1 secreted by bone marrow-derived mesenchymal stem cells mediates anti-inflammatory responses in acute airway disease. Exp Cell Res 2021; 407:112788. [PMID: 34418459 DOI: 10.1016/j.yexcr.2021.112788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
The hallmarks of allergic airway disease (AAD) include infiltration of inflammatory cells into the bronchoalveolar space. Bone marrow derived mesenchymal stem cells (BMSCs) show anti-inflammatory properties in AAD. In addition, galectin-1 (Gal-1) is a lectin significantly upregulated upon inflammation and is also known to mediate potential anti-inflammatory responses. We hypothesized that BMSCs regulated inflammatory responses by secretion of Gal-1 during AAD pathogenesis. BMSCs were isolated from murine femurs and tibiae and adoptively transferred into an ovalbumin-induced AAD mouse model. Knockdown of Gal-1 in BMSCs was performed using shRNA. Flow cytometry, ELISAs, and immunohistology were performed to analyze inflammatory responses in mice, and a Transwell system was used to establish an in vitro co-culture system of lung epithelial cells (MLE-12) and BMSCs. Administration of BMSCs significantly upregulated Gal-1 expression upon inflammation and decreased infiltration of inflammatory cells and secretion of proinflammatory cytokines in vivo. In addition, we showed that this function was mediated by reduced activation of the MAPK p38 signaling pathway. Similar observations were found using an in vitro lipopolysaccharide-induced model when MLE-12 cells were co-cultured with BMSCs. Gal-1 secretion by BMSCs alleviated inflammatory responses observed in AAD and hence provides a promising therapeutic alternative to AAD patients insensitive to conventional drug treatments.
Collapse
Affiliation(s)
- Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China.
| | - Kehua Shi
- Department of Respiratory Medicine, Shanghai Hospital of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, 750004, China
| | - Youhui Fu
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Hua Xiao
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Feng Chi
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Jing Xu
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Feng Cai
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
8
|
Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int 2021; 2021:9919361. [PMID: 34539793 PMCID: PMC8443361 DOI: 10.1155/2021/9919361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton's jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Jamie Mollentze
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Nohawica M, Errachid A, Wyganowska-Swiatkowska M. Adipose-PAS interactions in the context of its localised bio-engineering potential (Review). Biomed Rep 2021; 15:70. [PMID: 34276988 PMCID: PMC8278035 DOI: 10.3892/br.2021.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
Adipocytes are a known source of stem cells. They are easy to harvest, and are a suitable candidate for autogenous grafts. Adipose derived stem cells (ADSCs) have multiple target tissues which they can differentiate into, including bone and cartilage. In adipose tissue, ADSCs are able to differentiate, as well as providing energy and a supply of cytokines/hormones to manage the hypoxic and lipid/hormone saturated adipose environment. The plasminogen activation system (PAS) controls the majority of proteolytic activities in both adipose and wound healing environments, allowing for rapid cellular migration and tissue remodelling. While the primary activation pathway for PAS occurs through the urokinase plasminogen activator (uPA), which is highly expressed by endothelial cells, its function is not limited to enabling revascularisation. Proteolytic activity is dependent on protease activation, localisation, recycling mechanisms and substrate availability. uPA and uPA activated plasminogen allows pluripotent cells to arrive to new local environments and fulfil the niche demands. However, overstimulation, the acquisition of a migratory phenotype and constant protein turnover can be unconducive to the formation of structured hard and soft tissues. To maintain a suitable healing pattern, the proteolytic activity stimulated by uPA is modulated by plasminogen activator inhibitor 1. Depending on the physiological settings, different parts of the remodelling mechanism are activated with varying results. Utilising the differences within each microenvironment to recreate a desired niche is a valid therapeutic bio-engineering approach. By controlling the rate of protein turnover combined with a receptive stem cell lineage, such as ADSC, a novel avenue on the therapeutic opportunities may be identified, which can overcome limitations, such as scarcity of stem cells, low angiogenic potential or poor host tissue adaptation.
Collapse
Affiliation(s)
- Michal Nohawica
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| | - Abdelmounaim Errachid
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
- Earth and Life Institute, University Catholique of Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Marzena Wyganowska-Swiatkowska
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| |
Collapse
|
10
|
Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13:983. [PMID: 34209671 PMCID: PMC8309012 DOI: 10.3390/pharmaceutics13070983] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.
Collapse
Affiliation(s)
| | - Anabela Moreira
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| | - Achim Weber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| |
Collapse
|
11
|
IDO and CD40 May Be Key Molecules for Immunomodulatory Capacity of the Primed Tonsil-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22115772. [PMID: 34071285 PMCID: PMC8198434 DOI: 10.3390/ijms22115772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Tonsil-derived mesenchymal stem cells (T-MSCs) were reported to have suppressive effect on T cells, yet much remains unknown about the underlying mechanisms supporting this effect. We investigated the underlying mechanism of the immunomodulatory effect of T-MSCs on immune cell proliferation and cytokine production. Methods: We isolated T-MSCs from human palatine tonsil and evaluated the immunomodulatory capacity using RT-PCR, ELISA, and flow cytometry. Additionally, we assessed the expression of various soluble factors and several costimulatory molecules to detect the priming effect on T-MSCs. Results: T-MSCs significantly inhibited the immune cell proliferation and cytokine expression (TNF-α and IFN-γ) in the direct co-culture, but there was no suppressive effect in indirect co-culture. Additionally, we detected a remarkably higher expression of indoleamine 2,3-dioxygenase (IDO) in the primed T-MSCs having co-expression CD40. Moreover, immune cells or CD4+ T cells showed lower TNF-α, IFN-γ, and IL-4 expression when the primed T-MSC were added; whereas those findings were reversed when the inhibitor for IDO (not IL-4) or CD40 were added. Furthermore, T-bet and GATA3 levels were significantly decreased in the co-cultures of the primed T-MSCs and CD4+ T cells; whereas those findings were reversed when we added the neutralizing anti-CD40 antibody. Conclusions: Primed T-MSCs expressing IDO and CD40 may have immunomodulatory capacity via Th1-mediated and Th2-mediated immune response.
Collapse
|
12
|
Akita N, Narita Y, Yamawaki-Ogata A, Usui A, Komori K. Therapeutic effect of allogeneic bone marrow-derived mesenchymal stromal cells on aortic aneurysms. Cell Tissue Res 2021; 383:781-793. [PMID: 33146827 DOI: 10.1007/s00441-020-03295-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/14/2020] [Indexed: 01/14/2023]
Abstract
We previously reported the effectiveness of autologous mesenchymal stromal cells (MSCs) for the treatment of aortic aneurysm (AA), mediated mainly by these cells' anti-inflammatory properties. In this study, we investigate whether the therapeutic effects of allogeneic MSCs on AA are the same as those of autologous MSCs. To examine the immune response to allogeneic MSCs, C57BL/6 lymphocytes were co-cultured with BALB/c MSCs for 5 days in vitro. Apolipoprotein E-deficient C57BL/6 mice with AA induced by angiotensin II were randomly divided into three groups defined by the following intravenous injections: (i) 0.2 ml of saline (n = 10, group S) as a control, (ii) 1 × 106 autologous MSCs (isolated from C57BL/6, n = 10, group Au) and (iii) 1 × 106 allogeneic MSCs (isolated from BALB/c, n = 10, group Al). Two weeks after injection, aortic diameters were measured, along with enzymatic activities of MMP-2 and MMP-9 and cytokine concentrations in AAs. Neither allogenic (BALB/c) MSCs nor autologous (C57BL/6) MSCs accelerated the proliferation of lymphocytes obtained from C57BL/6. Compared with group S, groups Au and Al had significantly shorter aortic diameters (group S vs Au vs Al; 2.29 vs 1.40 vs 1.36 mm, respectively, p < 0.01), reduced MMP-2 and MMP-9 activities, downregulated IL-6 and MCP-1 and upregulated expression of IGF-1 and TIMP-2. There were no differences in these results between groups Au and Al. Thus, our study suggests that treatment with allogeneic MSCs improves chronic inflammation and reduced aortic dilatation. These effects were equivalent to those of autologous MSCs in established mouse models of AA.
Collapse
Affiliation(s)
- Naohiro Akita
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kimihiro Komori
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Macchia PE, Nettore IC, Franchini F, Santana-Viera L, Ungaro P. Epigenetic regulation of adipogenesis by histone-modifying enzymes. Epigenomics 2021; 13:235-251. [PMID: 33502245 DOI: 10.2217/epi-2020-0304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many studies investigating the transcriptional control of adipogenesis have been published so far; recently the research is focusing on the role of epigenetic mechanisms in regulating the process of adipocyte development. Histone-modifying enzymes and the histone tails post-transcriptional modifications catalyzed by them, are fundamentally involved in the epigenetic regulation of adipogenesis. In our review, we will discuss recent advances in epigenomic regulation of adipogenesis with a focus on histone-modifying enzymes implicated in the various phases of adipocytes differentiation process from mesenchymal stem cells to mature adipocytes. Understanding adipogenesis, may provide new ways to treat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Paolo E Macchia
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy
| | - Immacolata C Nettore
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy
| | - Fabiana Franchini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy
| | - Laura Santana-Viera
- National Research Council - Institute for Experimental Endocrinology & Oncology 'Gaetano Salvatore', 80145 Napoli, Italy
| | - Paola Ungaro
- National Research Council - Institute for Experimental Endocrinology & Oncology 'Gaetano Salvatore', 80145 Napoli, Italy
| |
Collapse
|
14
|
Mangin G, Kubis N. Cell Therapy for Ischemic Stroke: How to Turn a Promising Preclinical Research into a Successful Clinical Story. Stem Cell Rev Rep 2020; 15:176-193. [PMID: 30443706 DOI: 10.1007/s12015-018-9864-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major public health issue with limited treatment. The pharmacologically or mechanically removing of the clot is accessible to less than 10% of the patients. Stem cell therapy is a promising alternative strategy since it increases the therapeutic time window but many issues remain unsolved. To avoid a new dramatic failure when translating experimental data on the bedside, this review aims to highlight the indispensable checkpoints to make a successful clinical trial based on the current preclinical literature. The large panel of progenitors/ stem cells at the researcher's disposal is to be used wisely, regarding the type of cells, the source of cells, the route of delivery, the time window, since it will directly affect the outcome. Mechanisms are still incompletely understood, although recent studies have focused on the inflammation modulation of most cells types.
Collapse
Affiliation(s)
| | - Nathalie Kubis
- INSERM U965, F-75475, Paris, France. .,Sorbonne Paris Cité, Université Paris Diderot, F-75475, Paris, France. .,Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2 rue Ambroise Paré, F-75475, Paris, France.
| |
Collapse
|
15
|
Xie H, Liu M, Jin Y, Lin H, Zhang Y, Zheng S. miR-1323 suppresses bone mesenchymal stromal cell osteogenesis and fracture healing via inhibiting BMP4/SMAD4 signaling. J Orthop Surg Res 2020; 15:237. [PMID: 32600409 PMCID: PMC7322887 DOI: 10.1186/s13018-020-01685-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Atrophic non-union fractures show no radiological evidence of callus formation within 3 months of fracture. microRNA dysregulation may underlie the dysfunctional osteogenesis in atrophic non-union fractures. Here, we aimed to analyze miR-1323 expression in human atrophic non-union fractures and examine miR-1323’s underlying mechanism of action in human mesenchymal stromal cells. Methods Human atrophic non-union and standard healing fracture specimens were examined using H&E and Alcian Blue staining, immunohistochemistry, qRT-PCR, immunoblotting, and ALP activity assays. The effects of miR-1323 mimics or inhibition on BMP4, SMAD4, osteogenesis-related proteins, ALP activity, and bone mineralization were analyzed in human mesenchymal stromal cells. Luciferase reporter assays were utilized to assay miR-1323’s binding to the 3'UTRs of BMP4 and SMAD4. The effects of miR-1323, BMP4, and SMAD4 were analyzed by siRNA and overexpression vectors. A rat femur fracture model was established to analyze the in vivo effects of antagomiR-1323 treatment. Results miR-1323 was upregulated in human atrophic non-union fractures. Atrophic non-union was associated with downregulation of BMP4 and SMAD4 as well as the osteogenic markers ALP, collagen I, and RUNX2. In vitro, miR-1323 suppressed BMP4 and SMAD4 expression by binding to the 3'UTRs of BMP4 and SMAD4. Moreover, miR-1323’s inhibition of BMP4 and SMAD4 inhibited mesenchymal stromal cell osteogenic differentiation via modulating the nuclear translocation of the transcriptional co-activator TAZ. In vivo, antagomiR-1323 therapy facilitated the healing of fractures in a rat model of femoral fracture. Conclusions This evidence supports the miR-1323/BMP4 and miR-1323/SMAD4 axes as novel therapeutic targets for atrophic non-union fractures.
Collapse
Affiliation(s)
- Hui Xie
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Ming Liu
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Yaofeng Jin
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Haiqing Lin
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Yushan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Song Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China.
| |
Collapse
|
16
|
Nucci MP, Filgueiras IS, Ferreira JM, de Oliveira FA, Nucci LP, Mamani JB, Rego GNA, Gamarra LF. Stem cell homing, tracking and therapeutic efficiency evaluation for stroke treatment using nanoparticles: A systematic review. World J Stem Cells 2020; 12:381-405. [PMID: 32547686 PMCID: PMC7280869 DOI: 10.4252/wjsc.v12.i5.381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke is the second leading cause of death worldwide. There is a real need to develop treatment strategies for reducing neurological deficits in stroke survivors, and stem cell (SC) therapeutics appear to be a promising alternative for stroke therapy that can be used in combination with approved thrombolytic or thrombectomy approaches. However, the efficacy of SC therapy depends on the SC homing ability and engraftment into the injury site over a long period of time. Nonetheless, tracking SCs from their niche to the target tissues is a complex process.
AIM To evaluate SC migration homing, tracking and therapeutic efficacy in the treatment of stroke using nanoparticles
METHODS A systematic literature search was performed to identify articles published prior to November 2019 that were indexed in PubMed and Scopus. The following inclusion criteria were used: (1) Studies that used in vivo models of stroke or ischemic brain lesions; (2) Studies of SCs labeled with some type of contrast agent for cell migration detection; and (3) Studies that involved in vivo cellular homing and tracking analysis.
RESULTS A total of 82 articles were identified by indexing in Scopus and PubMed. After the inclusion criteria were applied, 35 studies were selected, and the articles were assessed for eligibility; ultimately, only 25 studies were included. Most of the selected studies used SCs from human and mouse bone marrow labeled with magnetic nanoparticles alone or combined with fluorophore dyes. These cells were administered in the stroke model (to treat middle cerebral artery occlusion in 74% of studies and for photothrombotic induction in 26% of studies). Fifty-three percent of studies used xenogeneic grafts for cell therapy, and the migration homing and tracking evaluation was performed by magnetic resonance imaging as well as other techniques, such as near-infrared fluorescence imaging (12%) or bioluminescence assays (12%).
CONCLUSION Our systematic review provided an up-to-date evaluation of SC migration homing and the efficacy of cellular therapy for stroke treatment in terms of functional and structural improvements in the late stage.
Collapse
Affiliation(s)
- Mariana Penteado Nucci
- LIM44, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05529-060, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lin CC, Chang WHS, Cheng TM, Chiu LH, Wang YH, Lin CAJ, Ho YS, Zuo CS, Wang YM, Lai WFT. Two new, near-infrared, fluorescent probes as potential tools for imaging bone repair. Sci Rep 2020; 10:2580. [PMID: 32054952 PMCID: PMC7018698 DOI: 10.1038/s41598-020-59522-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/14/2020] [Indexed: 11/30/2022] Open
Abstract
A precise imaging technique to evaluate osteogenesis, osteodifferentiation, and osseointegration following peri-implant surgery is in high clinical demand. Herein, we report the generation of two new, near-infrared (NIR) fluorescent probes for use in the molecular imaging of bone repair. The first probe aims to monitor the in vitro differentiation of human mesenchymal stem cells (MSCs) into osteoblasts. A NIR fluorochrome was conjugated to a cyclic peptide that binds to integrin α5β1, a factor that promotes osteogenesis in MSCs and therefore functioned as an osteoblast-specific marker. The second probe aims to monitor osteogenesis, and was generated by conjugating the drug pamidronate to a NIR fluorescent gold nanocluster. Pamidronate specifically binds to hydroxyapatite (HA), a mineral present in bone that is produced by osteoblasts, and therefore provides a functional marker for new bone formation. Our results show that both probes bind to their specific targets in vitro-differentiated osteoblasts, and not to undifferentiated MSCs, and emit NIR fluorescence for functional detection. This in vitro work demonstrates the ability of these probes to bind to active osteoblasts and their mineral deposits and highlight their potential utility as clinical tools for the imaging of the osseointegration process at the molecular level.
Collapse
Affiliation(s)
- Chien-Chou Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsai-Mu Cheng
- Ph.D. Program for Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsuan Chiu
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Research and Department of Dentistry, Taipei Medical University/Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Yen-Hsun Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-An J Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun S Zuo
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.
| | - Wen-Fu Thomas Lai
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Institute of Graduate Clinical Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Research and Department of Dentistry, Taipei Medical University/Shuang-Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
18
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
19
|
Long H, Zhu Y, Lin Z, Wan J, Cheng L, Zeng M, Tang Y, Zhao R. miR-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development. Cell Death Dis 2019; 10:470. [PMID: 31209205 PMCID: PMC6572824 DOI: 10.1038/s41419-019-1693-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
The osteogenic differentiation of human bone mesenchymal stromal cells (BMSCs) has been considered as a central issue in fracture healing. Wnt signaling could promote BMSC osteogenic differentiation through inhibiting PPARγ. During atrophic nonunion, Wnt signaling-related factors, WNT5A and FZD3 proteins, were significantly reduced, along with downregulation of Runx2, ALP, and Collagen I and upregulation of PPARγ. Here, we performed a microarray analysis to identify differentially expressed miRNAs in atrophic nonunion tissues that were associated with Wnt signaling through targeting related factors. Of upregulated miRNAs, miR-381 overexpression could significantly inhibit the osteogenic differentiation in primary human BMSCs while increase in PPARγ protein level. Through binding to the 3'UTR of WNT5A and FZD3, miR-381 modulated the osteogenic differentiation via regulating β-catenin nucleus translocation. Moreover, PPARγ, an essential transcription factor inhibiting osteogenic differentiation, could bind to the promoter region of miR-381 to activate its expression. Taken together, PPARγ-induced miR-381 upregulation inhibits the osteogenic differentiation in human BMSCs through miR-381 downstream targets, WNT5A and FZD3, and β-catenin nucleus translocation in Wnt signaling. The in vivo study also proved that inhibition of miR-381 promoted the fracture healing. Our finding may provide a novel direction for atrophic nonunion treatment.
Collapse
Affiliation(s)
- Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liang Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yifu Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruibo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
20
|
Jafar H, Abuarqoub D, Ababneh N, Hasan M, Al-Sotari S, Aslam N, Kailani M, Ammoush M, Shraideh Z, Awidi A. hPL promotes osteogenic differentiation of stem cells in 3D scaffolds. PLoS One 2019; 14:e0215667. [PMID: 31063489 PMCID: PMC6504042 DOI: 10.1371/journal.pone.0215667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
Human platelet lysate (hPL) has been considered as the preferred supplement for the xeno-free stem cell culture for many years. However, the biological effect of hPL on the proliferation and differentiation of dental stem cells combined with the use of medical grade synthetic biomaterial is still under investigation. Thus, the optimal scaffold composition, cell type and specific growth conditions, yet need to be formulated. In this study, we aimed to investigate the regenerative potential of dental stem cells seeded on synthetic scaffolds and maintained in osteogenic media supplemented with either hPL or xeno-derived fetal bovine serum (FBS). Two types of dental stem cells were isolated from human impacted third molars and intact teeth; stem cells of apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). Cells were expanded in cell culture media supplemented with either hPL or FBS. Consequently, proliferative capacity, immunophenotypic characteristics and multilineage differentiation potential of the derived cells were evaluated on monolayer culture (2D) and on synthetic scaffolds fabricated from poly ’lactic-co-glycolic’ acid (PLGA) (3D). The functionality of the induced cells was examined by measuring the concentration of osteogenic markers ALP, OCN and OPN at different time points. Our results indicate that the isolated dental stem cells showed similar mesenchymal characteristics when cultured on hPL or FBS-containing culture media. Scanning electron microscopy (SEM) and H&E staining revealed the proper adherence of the derived cells on the 3D scaffold cultures. Moreover, the increase in the concentration of osteogenic markers proved that hPL was able to produce functional osteoblasts in both culture conditions (2D and 3D), in a way similar to FBS culture. These results reveal that hPL provides a suitable substitute to the animal-derived serum, for the growth and functionality of both SCAP and PDLSCs. Thus the use of hPL, in combination with PLGA scaffolds, can be useful in future clinical trials for dental regeneration.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nidaa Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Maram Hasan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mohammed Kailani
- Department of Chemistry, School of Sciences, The University of Jordan, Amman, Jordan
| | - Mohammed Ammoush
- Dental Department, King Hussein Medical Center (KHMC), Royal Medical Service, Amman, Jordan
| | - Ziad Shraideh
- Department of Biological Sciences, School of Sciences, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
- * E-mail:
| |
Collapse
|
21
|
Fu N, Meng Z, Jiao T, Luo X, Tang Z, Zhu B, Sui L, Cai X. P34HB electrospun fibres promote bone regeneration in vivo. Cell Prolif 2019; 52:e12601. [PMID: 30896076 PMCID: PMC6536444 DOI: 10.1111/cpr.12601] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Bone tissue engineering was introduced in 1995 and provides a new way to reconstruct bone and repair bone defects. However, the design and fabrication of suitable bionic bone scaffolds are still challenging, and the ideal scaffolds in bone tissue engineering should have a three-dimensional porous network, good biocompatibility, excellent biodegradability and so on. The purpose of our research was to investigate whether a bioplasticpoly3-hydroxybutyrate4-hydroxybutyrate (P34HB) electrospun fibre scaffold is conducive to the repair of bone defects, and whether it is a potential scaffold for bone tissue engineering. MATERIALS AND METHODS The P34HB electrospun fibre scaffolds were prepared by electrospinning technology, and the surface morphology, hydrophilicity, mechanical properties and cytological behaviour of the scaffolds were tested. Furthermore, a calvarial defect model was created in rats, and through layer-by-layer paper-stacking technology, the P34HB electrospun fibre scaffolds were implanted into the calvarial defect area and their effect on bone repair was evaluated. RESULTS The results showed that the P34HB electrospun fibre scaffolds are interwoven with several fibres and have good porosity, physical properties and chemical properties and can promote cell adhesion and proliferation with no cytotoxicity in vitro. In addition, the P34HB electrospun fibre scaffolds can promote the repair of calvarial defects in vivo. CONCLUSIONS These results demonstrated that the P34HB electrospun fibre scaffold has a three-dimensional porous network with good biocompatibility, excellent biosafety and ability for bone regeneration and repair; thus, the P34HB electrospun fibre scaffold is a potential scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Na Fu
- School of Stomatology, Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Zhaosong Meng
- School of Stomatology, Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Tiejun Jiao
- School of Stomatology, Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xiaoding Luo
- School of Stomatology, Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Zisheng Tang
- Department of EndodonticsShanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Department of Forensic Genetics, School of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| | - Lei Sui
- School of Stomatology, Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
22
|
Abstract
The need to search for new, alternative treatments for various diseases has prompted scientists and physicians to focus their attention on regenerative medicine and broadly understood cell therapies. Currently, stem cells are being investigated for their potentially widespread use in therapies for many untreatable diseases. Nowadays modern treatment strategies willingly use mesenchymal stem cells (MSCs) derived from different sources. Researchers are increasingly aware of the nature of MSCs and new possibilities for their use. Due to their properties, especially their ability to self-regenerate, differentiate into several cell lineages and participate in immunomodulation, MSCs have become a promising tool in developing modern and efficient future treatment strategies. The great potential and availability of MSCs allow for their various clinical applications in the treatment of many incurable diseases. In addition to their many advantages and benefits, there are still questions about the use of MSCs. What are the mechanisms of action of MSCs? How do they reach their destination? Is the clinical use of MSCs safe? These are the main questions that arise regarding MSCs when they are considered as therapeutic tools. The diversity of MSCs, their different clinical applications, and their many traits that have not yet been thoroughly investigated are sources of discussions and controversial opinions about these cells. Here, we reviewed the current knowledge about MSCs in terms of their therapeutic potential, clinical effects and safety in clinical applications.
Collapse
Affiliation(s)
- Aleksandra Musiał-Wysocka
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland.,Both the authors contributed equally in this article
| | - Marta Kot
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland.,Both the authors contributed equally in this article
| | - Marcin Majka
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
23
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
24
|
Aliabouzar M, Zhang GL, Sarkar K. Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications. Biomed Mater 2018; 13:055013. [DOI: 10.1088/1748-605x/aad417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Becker C, Laeufer T, Arikkat J, Jakse G. TGFβ-1 and epithelial-mesenchymal interactions promote smooth muscle gene expression in bone marrow stromal cells: Possible application in therapies for urological defects. Int J Artif Organs 2018; 31:951-9. [DOI: 10.1177/039139880803101105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose For regenerative and cellular therapies of the urinary tract system, autologous bladder smooth muscle cells (SMCs) have several limitations, including constricted in vitro proliferation capacity and, more importantly, inability to be used in malignant conditions. The use of in vitro (pre-)differentiated multipotential adult progenitor cells may help to overcome the shortcomings associated with primary cells. Methods By mimicking environmental conditions of the bladder wall, we investigated in vitro effects of growth factor applications and epithelial-mesenchymal interactions on smooth muscle gene expression and on the morphological appearance of adherent bone marrow stromal cells (BMSCs). Results Transcription growth factor beta-1 (TGFβ-1) upregulated the transcription of myogenic gene desmin and smooth muscle actin-γ2 in cultured BMSCs. Stimulatory effects were significantly increased by coculture with urothelial cells. Prolonged stimulation times and epigenetic modifications further enhanced transcription levels, indicating a dose-response relationship. Immunocytochemical staining of in vitro-differentiated BMSCs revealed expression of myogenic protein α-smooth muscle actin and desmin, and changes in morphological appearance from a fusiform convex shape to a laminar flattened shape with filamentous inclusions similar to the appearance of bladder SMCs. In contrast to the TGFβ-1 action, application of vascular endothelial growth factor (VEGF) did not affect the cells. Conclusions The combined application of TGFβ-1 and epithelial-mesenchymal interactions promoted in vitro outgrowth of cells with a smooth muscle-like phenotype from a selected adherent murine bone marrow-derived cell population.
Collapse
Affiliation(s)
- C. Becker
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| | - T. Laeufer
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| | - J. Arikkat
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| | - G. Jakse
- Department of Urology, University Hospital and Medical Faculty, RWTH Aachen University, Aachen - Germany
| |
Collapse
|
26
|
Aliabouzar M, Lee SJ, Zhou X, Zhang GL, Sarkar K. Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells. Biotechnol Bioeng 2017; 115:495-506. [DOI: 10.1002/bit.26480] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Mitra Aliabouzar
- Department of Mechanical and Aerospace Engineering; The George Washington University; Washington DC
| | - Se-jun Lee
- Department of Mechanical and Aerospace Engineering; The George Washington University; Washington DC
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering; The George Washington University; Washington DC
| | - Grace Lijjie Zhang
- Department of Mechanical and Aerospace Engineering; The George Washington University; Washington DC
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering; The George Washington University; Washington DC
| |
Collapse
|
27
|
Núñez-Toldrà R, Martínez-Sarrà E, Gil-Recio C, Carrasco MÁ, Al Madhoun A, Montori S, Atari M. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation. BMC Cell Biol 2017; 18:21. [PMID: 28427322 PMCID: PMC5399345 DOI: 10.1186/s12860-017-0137-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Biomaterials are widely used to regenerate or substitute bone tissue. In order to evaluate their potential use for clinical applications, these need to be tested and evaluated in vitro with cell culture models. Frequently, immortalized osteoblastic cell lines are used in these studies. However, their uncontrolled proliferation rate, phenotypic changes or aberrations in mitotic processes limits their use in long-term investigations. Recently, we described a new pluripotent-like subpopulation of dental pulp stem cells derived from the third molars (DPPSC) that shows genetic stability and shares some pluripotent characteristics with embryonic stem cells. In this study we aim to describe the use of DPPSC to test biomaterials, since we believe that the biomaterial cues will be more critical in order to enhance the differentiation of pluripotent stem cells. METHODS The capacity of DPPSC to differentiate into osteogenic lineage was compared with human sarcoma osteogenic cell line (SAOS-2). Collagen and titanium were used to assess the cell behavior in commonly used biomaterials. The analyses were performed by flow cytometry, alkaline phosphatase and mineralization stains, RT-PCR, immunohistochemistry, scanning electron microscopy, Western blot and enzymatic activity. Moreover, the genetic stability was evaluated and compared before and after differentiation by short-comparative genomic hybridization (sCGH). RESULTS DPPSC showed excellent differentiation into osteogenic lineages expressing bone-related markers similar to SAOS-2. When cells were cultured on biomaterials, DPPSC showed higher initial adhesion levels. Nevertheless, their osteogenic differentiation showed similar trend among both cell types. Interestingly, only DPPSC maintained a normal chromosomal dosage before and after differentiation on 2D monolayer and on biomaterials. CONCLUSIONS Taken together, these results promote the use of DPPSC as a new pluripotent-like cell model to evaluate the biocompatibility and the differentiation capacity of biomaterials used in bone regeneration.
Collapse
Affiliation(s)
- Raquel Núñez-Toldrà
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Barcelona, Spain
| | - Ester Martínez-Sarrà
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Barcelona, Spain
| | - Carlos Gil-Recio
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Barcelona, Spain
| | | | | | - Sheyla Montori
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Barcelona, Spain
| | - Maher Atari
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain.
- Chair of Regenerative Implantology MIS-UIC, Barcelona, Spain.
- Surgery and Oral Implantology Department, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
28
|
Won S, Huh YH, Cho LR, Lee HS, Byon ES, Park CJ. Cellular Response of Human Bone Marrow Derived Mesenchymal Stem Cells to Titanium Surfaces Implanted with Calcium and Magnesium Ions. Tissue Eng Regen Med 2017; 14:123-131. [PMID: 30603469 PMCID: PMC6171587 DOI: 10.1007/s13770-017-0028-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/15/2016] [Indexed: 01/14/2023] Open
Abstract
Surface characteristics and cellular response to titanium surfaces that had been implanted with calcium and magnesium ions using plasma immersion ion implantation and deposition (PIIID) were evaluated. Three different titanium surfaces were analyzed: a resorbable blast media (RBM) surface (blasted with hydroxyapatite grit), a calcium ion-implanted surface, and a magnesium ion-implanted surface. The surface characteristics were investigated by scanning electron microscopy (SEM), surface roughness testing, X-ray diffraction (XRD), and Auger electron spectroscopy (AES). Human bone marrow derived mesenchymal stem cells were cultured on the 3 different surfaces. Initial cell attachment was evaluated by SEM, and cell proliferation was determined using MTT assay. Real-time polymerase chain reaction (PCR) was used to quantify osteoblastic gene expression (i.e., genes encoding RUNX2, type I collagen, alkaline phosphatase, and osteocalcin). Surface analysis did not reveal any changes in surface topography after ion implantation. AES revealed that magnesium ions were present in deeper layers than calcium ions. The calcium ion- and magnesium ion-implanted surfaces showed greater initial cell attachment. Investigation of cell proliferation revealed no significant difference among the groups. After 6 days of cultivation, the expression of RUNX2 was higher in the magnesium ion-implanted surface and the expression of osteocalcin was lower in the calcium ion-implanted surface. In conclusion, ion implantation using the PIIID technique changed the surface chemistry without changing the topography. Calcium ion- and magnesium ion-implanted surfaces showed greater initial cellular attachment.
Collapse
Affiliation(s)
- Sun Won
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Jukheongil 7, Gangneung, Gangwon-do 26403 Republic of Korea
| | - Yoon-Hyuk Huh
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Jukheongil 7, Gangneung, Gangwon-do 26403 Republic of Korea
| | - Lee-Ra Cho
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Jukheongil 7, Gangneung, Gangwon-do 26403 Republic of Korea
| | - Hee-Su Lee
- Department of Anatomy and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangwon-do, 26403 Republic of Korea
| | - Eung-Sun Byon
- Materials Processing Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam 51508 Republic of Korea
| | - Chan-Jin Park
- Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Jukheongil 7, Gangneung, Gangwon-do 26403 Republic of Korea
| |
Collapse
|
29
|
Schomann T, Mezzanotte L, Lourens IALM, de Groot JCMJ, Frijns JHM, Huisman MA. Lentiviral transduction and subsequent loading with nanoparticles do not affect cell viability and proliferation in hair-follicle-bulge-derived stem cells in vitro. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:550-560. [PMID: 27976505 DOI: 10.1002/cmmi.1717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/12/2016] [Accepted: 10/08/2016] [Indexed: 11/07/2022]
Abstract
The application of stem cells in the treatment of various degenerative diseases is highly promising. However, cell-based therapy could be limited by the problem of low viability of grafted cells and uncertainty about their fate. The combination of molecular imaging and contrast-enhanced MRI may give more insight into the survival and behavior of grafted stem cells. We explore hair-follicle-bulge-derived stem cells (HFBSCs) as a potential candidate for autologous cell-based therapy. HFBSCs are transduced with a lentiviral construct with genes coding for bioluminescent (Luc2) and fluorescent (copGFP) reporter proteins, and subsequently loaded with magnetic nanoparticles to enable MRI visualization. Thus, we investigate for the first time if lentiviral transduction and cellular loading with nanoparticles have a cytotoxic effect upon these stem cells. Transduction efficiency, proliferation rate, cell viability and reporter protein co-expression during long-term culture of transduced HFBSCs were studied using fluorescence and bioluminescence microscopy. In addition, the effect of TMSR50 nanoparticles on proliferation and viability was investigated using the MTS assay and bioluminescence microscopy. The amount of TMSR50-loaded HFBSCs needed to reach signal threshold for MRI was assessed using an agarose phantom. Transduction with the Luc2-copGFP construct did not influence senescence, proliferation, doubling time, and differentiation of the HFBSCs. CopGFP expression was visible immediately after transduction and persisted for at least 15 passages, concomitantly with Luc2 expression. Cellular loading with TMSR50 nanoparticles did not affect cell viability and proliferation. The results imply that combined MRI and bioluminescence imaging may enable in vivo localization and long-term monitoring of grafted viable HFBSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timo Schomann
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of Radiology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Ierry-Ann-Lym M Lourens
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - John C M J de Groot
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Johan H M Frijns
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Margriet A Huisman
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
30
|
Aliabouzar M, Zhang LG, Sarkar K. Lipid Coated Microbubbles and Low Intensity Pulsed Ultrasound Enhance Chondrogenesis of Human Mesenchymal Stem Cells in 3D Printed Scaffolds. Sci Rep 2016; 6:37728. [PMID: 27883051 PMCID: PMC5121887 DOI: 10.1038/srep37728] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
Lipid-coated microbubbles are used to enhance ultrasound imaging and drug delivery. Here we apply these microbubbles along with low intensity pulsed ultrasound (LIPUS) for the first time to enhance proliferation and chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in a 3D printed poly-(ethylene glycol)-diacrylate (PEG-DA) hydrogel scaffold. The hMSC proliferation increased up to 40% after 5 days of culture in the presence of 0.5% (v/v) microbubbles and LIPUS in contrast to 18% with LIPUS alone. We systematically varied the acoustic excitation parameters-excitation intensity, frequency and duty cycle-to find 30 mW/cm2, 1.5 MHz and 20% duty cycle to be optimal for hMSC proliferation. A 3-week chondrogenic differentiation results demonstrated that combining LIPUS with microbubbles enhanced glycosaminoglycan (GAG) production by 17% (5% with LIPUS alone), and type II collagen production by 78% (44% by LIPUS alone). Therefore, integrating LIPUS and microbubbles appears to be a promising strategy for enhanced hMSC growth and chondrogenic differentiation, which are critical components for cartilage regeneration. The results offer possibilities of novel applications of microbubbles, already clinically approved for contrast enhanced ultrasound imaging, in tissue engineering.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
31
|
Trubiani O, Orsini G, Caputi S, Piatelli A. Adult Mesenchymal Stem Cells in Dental Research: A New Approach for Tissue Engineering. Int J Immunopathol Pharmacol 2016; 19:451-60. [PMID: 17026831 DOI: 10.1177/039463200601900301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many adult tissues contain a population of stem cells that have the ability to regenerate after trauma, disease or aging. Recently, there has been great interest in mesenchymal stem cells and their roles in maintaining the physiological structure of tissues. The studies on stem cells are thought to be very important and, in fact, it has been shown that this cell population can be expanded ex vivo to regenerate tissues not only of the mesenchymal lineage, such as intervertebral disc cartilage, bone and tooth-associated tissues, but also other types of tissues. Several studies have focused on the identification of odontogenic progenitors from oral tissues, and it has been shown that the mesenchymal stem cells obtained from periodontal ligament and dental pulp could have similar morphological and phenotypical features of the bone marrow mesenchymal cells. In fact a population of homogeneous human mesenchymal stem cells derived from periodontal ligament and dental pulp, and proliferating in culture with a well-spread morphology, can be recovered and characterized. Since these cells are considered as candidates for regenerative medicine, the knowledge of the cell differentiation mechanisms is imperative for the development of predictable techniques in implant dentistry, oral surgery and maxillo-facial reconstruction. Thus, future research efforts might be focused on the potential use of this cell population in tissue engineering. Further studies will be carried out to elucidate the molecular mechanisms involved in their maintenance and differentiation in vitro and in vivo.
Collapse
Affiliation(s)
- O Trubiani
- Department of Stomatology and Oral Science, Ce.SI. Foundation G. d'Annunzio, Chieti, Italy
| | | | | | | |
Collapse
|
32
|
Toxic Epidermal Necrolysis in Recessive Dystrophic Epidermolysis Bullosa following Bone Marrow Transplantation. J Pediatr 2016; 173:242-4. [PMID: 26976809 PMCID: PMC5322426 DOI: 10.1016/j.jpeds.2016.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/12/2016] [Accepted: 02/10/2016] [Indexed: 01/21/2023]
Abstract
A 3-year-old child with recessive dystrophic epidermolysis bullosa treated with bone marrow transplantation subsequently developed body-wide epidermal detachment distinct from his epidermolysis bullosa. Toxic epidermal necrolysis was diagnosed by examination and skin biopsy. Although graft-vs-host disease was considered, he had no features of this diagnosis by laboratory studies or skin biopsy, and he improved without addition of further immune suppressants. Throughout the episode, the patient was maintained on cyclosporine A, a component of his transplant regimen, and also a reported therapy for toxic epidermal necrolysis. He had full recovery. Re-epithelialization occurred in a unique folliculocentric pattern, which we postulate was related to the patient's mesenchymal stem cell infusion, received as an adjunct to his marrow transplantation.
Collapse
|
33
|
Samsonraj RM, Rai B, Sathiyanathan P, Puan KJ, Rötzschke O, Hui JH, Raghunath M, Stanton LW, Nurcombe V, Cool SM. Establishing criteria for human mesenchymal stem cell potency. Stem Cells 2016; 33:1878-91. [PMID: 25752682 PMCID: PMC5363381 DOI: 10.1002/stem.1982] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/08/2015] [Indexed: 12/15/2022]
Abstract
This study sought to identify critical determinants of mesenchymal stem cell (MSC) potency using in vitro and in vivo attributes of cells isolated from the bone marrow of age‐ and sex‐matched donors. Adherence to plastic was not indicative of potency, yet capacity for long‐term expansion in vitro varied considerably between donors, allowing the grouping of MSCs from the donors into either those with high‐growth capacity or low‐growth capacity. Using this grouping strategy, high‐growth capacity MSCs were smaller in size, had greater colony‐forming efficiency, and had longer telomeres. Cell‐surface biomarker analysis revealed that the International Society for Cellular Therapy (ISCT) criteria did not distinguish between high‐growth capacity and low‐growth capacity MSCs, whereas STRO‐1 and platelet‐derived growth factor receptor alpha were preferentially expressed on high‐growth capacity MSCs. These cells also had the highest mean expression of the mRNA transcripts TWIST‐1 and DERMO‐1. Irrespective of these differences, both groups of donor MSCs produced similar levels of key growth factors and cytokines involved in tissue regeneration and were capable of multilineage differentiation. However, high‐growth capacity MSCs produced approximately double the volume of mineralized tissue compared to low‐growth capacity MSCs when assessed for ectopic bone‐forming ability. The additional phenotypic criteria presented in this study when combined with the existing ISCT minimum criteria and working proposal will permit an improved assessment of MSC potency and provide a basis for establishing the quality of MSCs prior to their therapeutic application. Stem Cells2015;33:1878–1891
Collapse
Affiliation(s)
| | - Bina Rai
- Glycotherapeutics Group.,Sciences, Singapore University of Technology and Design, 8 Somapah Road, Singapore
| | - Padmapriya Sathiyanathan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), A*STAR, Singapore
| | | | - James H Hui
- Department of Orthopedic Surgery, National University of Singapore, Singapore
| | - Michael Raghunath
- Advanced Wound Care Laboratory, Institute of Medical Biology, A*STAR, Singapore.,Department of Biomedical Engineering.,Department of Biochemistry.,NUS Tissue Engineering Programme
| | - Lawrence W Stanton
- Department of Biological Sciences, National University of Singapore, Singapore.,Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Simon M Cool
- Glycotherapeutics Group.,Department of Orthopedic Surgery, National University of Singapore, Singapore
| |
Collapse
|
34
|
Grajales L, Lach LE, Janisch P, Geenen DL, García J. Temporal expression of calcium channel subunits in satellite cells and bone marrow mesenchymal cells. Stem Cell Rev Rep 2016; 11:408-22. [PMID: 25277766 DOI: 10.1007/s12015-014-9566-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) can be differentiated into myocytes, as well as adipocytes, chondrocytes, and osteocytes in culture. Calcium channels mediate excitation-contraction coupling and are essential for the function of muscle. However, little is known about the expression of calcium channel subunits and calcium handling in stem cells. We examined whether the expression of calcium channel subunits in MSC is similar to that of skeletal muscle satellite cells and if their levels of expression are modified after treatment with bone morphogenetic protein-4 (BMP4). We found that during myogenic differentiation, MSC first express the α2δ1 subunit and the cardiac channel subunit Cav1.2. In contrast to the α2δ1 subunit levels, the Cav1.2 subunit decreases rapidly with time. The skeletal channel subunit Cav1.1 is detected at day 3 but its expression increases considerably, resembling more closely the expression of the subunits in satellite cells. Treatment of MSC with BMP4 caused a significant increase in expression of Cav1.2, a delay in expression of Cav1.1, and a reduction in the duration of calcium transients when extracellular calcium was removed. Calcium currents and transients followed a pattern related to the expression of the cardiac (Cav1.2) or skeletal (Cav1.1) α1subunits. These results indicate that differentiation of untreated MSC resembles differentiation of skeletal muscle and that BMP4 reduces skeletal muscle calcium channel expression and promotes the expression of cardiac calcium channels during myogenic differentiation.
Collapse
Affiliation(s)
- Liliana Grajales
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Ave, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
35
|
Chen X, Wang J, Chen Y, Cai H, Yang X, Zhu X, Fan Y, Zhang X. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J Mater Chem B 2016; 4:2280-2289. [DOI: 10.1039/c6tb00349d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BCP ceramics mediated MSC's integrin expression to realize “outside-in signaling” transduction and then activated MAPK signaling to induce osteogenesis.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ying Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
36
|
Su X, Ling Y, Liu C, Meng F, Cao J, Zhang L, Zhou H, Liu Z, Zhang Y. Isolation, Culture, Differentiation, and Nuclear Reprogramming of Mongolian Sheep Fetal Bone Marrow-Derived Mesenchymal Stem Cells. Cell Reprogram 2015; 17:288-96. [PMID: 26086202 DOI: 10.1089/cell.2014.0109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have characterized the differentiation potentiality and the developmental potential of cloned embryos of fetal bone marrow mesenchymal stem cells (BMSCs) isolated from Mongolian sheep. BMSCs were harvested by centrifuging after the explants method and the mononuclear cells obtained were cultured. The isolated BMSCs were uniform, with a fibroblast-like spindle or stellate appearance, and we confirmed expression of OCT4, SOX2, and NANOG genes at passage 3 (P3) by RT-PCR. We measured the growth of the passage 1, 5, and 10 cultures and found exponential growth with a population doubling time of 29.7±0.05 h. We cultured the P3 BMSCs in vitro under inductive environments and were able to induce them to undergo neurogenesis and form cardiomyocytes and adipocytes. Donor cells at passages 3-4 were used for nuclear transfer (NT). We found the BMSCs could be expanded in vitro and used as nuclear donors for somatic cell nuclear transfer (SCNT). Thus, BMSCs are an attractive cell type for large-animal autologous studies and will be valuable material for somatic cell cloning and future transgenic research.
Collapse
Affiliation(s)
- Xiaohu Su
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Yu Ling
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Chunxia Liu
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Fanhua Meng
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Junwei Cao
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Li Zhang
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Huanmin Zhou
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Zongzheng Liu
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| | - Yanru Zhang
- 1 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018, China .,2 Key Laboratory of Biological Manufacturing of Inner Mongolia Autonomous Region , Hohhot 010018, China
| |
Collapse
|
37
|
Abstract
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.
Collapse
|
38
|
Ha BC, Jung J, Kwak BK. Susceptibility-weighted imaging for stem cell visualization in a rat photothrombotic cerebral infarction model. Acta Radiol 2015; 56:219-27. [PMID: 24574360 DOI: 10.1177/0284185114525605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In cell therapy, magnetic resonance imaging (MRI) has been used to visualize superparamagnetic iron oxide (SPIO)-labeled stem cells homing to a lesion. Improving traceability is to utilize the sequence that maximizes sensitivity to the susceptibility effect of SPIO. PURPOSE To explore the best method by comparing the MRI sequences to visualize mesenchymal stem cells (MSCs) labeled with SPIO. MATERIAL AND METHODS Human bone marrow (hBM)-derived MSCs were labeled by internalization of SPIO nanoparticles. In vitro MRI was performed for the SPIO-labeled hBM-MSCs in tubes with T2-weighted (T2W), T2*-weighted (T2*W), and susceptibility-weighted images (SWI). Contrast-to-noise ratio (CNR) and volumes of dark signal of SPIO-labeled hBM-MSCs were obtained on images of each sequence. Photothrombotic cerebral infarction (PTCI) was induced in eight rats, and 2.5 × 10(5) SPIO-labeled hBM-MSCs were infused through the tail vein on the third day. In vivo MRI of the rat brain was performed using a 3.0 T MRI on the first, third, seventh, and 14th days. CNRspio was obtained on T2W imaging, T2*W imaging, and SWI. The dark signals were compared with the SPIO-positive cells of Prussian blue staining. RESULTS In vitro MRI of 5 × 10(5) SPIO-labeled hBM-MSCs showed the CNR and volume of dark signal to be 63, 517 mm(3) in SWI, 41, 228 mm(3) in T2*W imaging, and 56, 41 mm(3) in T2W imaging, respectively. In vivo MRI showed a dark signal surrounding the high signal intensity of PTCI. Pathologically, the dark signals were matched with SPIO-labeled hBM-MSC in the corresponding rat. The dark signal was most prominent in SWI, then T2*W imaging, and finally in T2W imaging (P <0.05). In SWI, other causes of dark signals were matched with the veins and the choroid plexuses on histopathology. CONCLUSION SWI can visualize SPIO-labeled hBM-MSCs more sensitively, earlier, and with larger size and greater contrast than T2W imaging and T2*W imaging.
Collapse
Affiliation(s)
- Bon Chul Ha
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jisung Jung
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Byung Kook Kwak
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
39
|
Porada CD, Rodman C, Ignacio G, Atala A, Almeida-Porada G. Hemophilia A: an ideal disease to correct in utero. Front Pharmacol 2014; 5:276. [PMID: 25566073 PMCID: PMC4263089 DOI: 10.3389/fphar.2014.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/27/2014] [Indexed: 01/13/2023] Open
Abstract
Hemophilia A (HA) is the most frequent inheritable defect of the coagulation proteins. The current standard of care for patients with HA is prophylactic factor infusion, which is comprised of regular (2-3 times per week) intravenous infusions of recombinant or plasma-derived FVIII to maintain hemostasis. While this treatment has greatly increased the quality of life and lengthened the life expectancy for many HA patients, its high cost, the need for lifelong infusions, and the fact that it is unavailable to roughly 75% of the world's HA patients make this type of treatment far from ideal. In addition, this lifesaving therapy suffers from a high risk of treatment failure due to immune response to the infused FVIII. There is thus a need for novel treatments, such as those using stem cells and/or gene therapy, which have the potential to mediate long-term correction or permanent cure following a single intervention. In the present review, we discuss the clinical feasibility and unique advantages that an in utero approach to treating HA could offer, placing special emphasis on a new sheep model of HA we have developed and on the use of mesenchymal stromal cells (MSC) as cellular vehicles for delivering the FVIII gene.
Collapse
Affiliation(s)
| | | | | | | | - Graça Almeida-Porada
- Regenerative Medicine, Wake Forest Institute for Regenerative MedicineWinston-Salem, NC, USA
| |
Collapse
|
40
|
Comparison of surface markers between human and rabbit mesenchymal stem cells. PLoS One 2014; 9:e111390. [PMID: 25380245 PMCID: PMC4224397 DOI: 10.1371/journal.pone.0111390] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 10/02/2014] [Indexed: 01/25/2023] Open
Abstract
This study investigated whether there are marked differences in surface markers between rabbit and human mesenchymal stem cells (MSCs). Murine and rabbit MSCs have been reported to be CD90-negative. Rat MSCs have been reported to be CD71-negative. Our previous study also shows that rabbit MSCs are CD29-negative. However, human MSCs are generally considered to be CD29-, CD71-, and CD90-positive. Therefore, the surface markers of human MSCs might differ from those of other species. Rabbit bone marrow MSCs were obtained that had a multi-differentiation potential. The phenotype of these cells was studied using flow cytometry antibodies for 25 rabbit surface markers, namely, CD13, CD14, CD29, CD31, CD34, CD44, CD45, CD49d, CD49f, CD51, CD54, CD59, CD71, CD73, CD90, CD105, CD106, CD133, CD166, MHC I, MHC II, α-smooth muscle actin (α-SMA), cytokeratin, desmin, and vimentin. The phenotype of commercially available human MSCs was similarly studied using antibodies for human surface markers. CD14, CD31, CD34, CD45, CD49d, CD49f, CD51, CD54, CD71, CD106, CD133, MHC II, and cytokeratin were absent from both rabbit and human MSCs, while CD44, α-SMA, and vimentin were present on both cell lines. CD13, CD29, CD59, CD73, CD90, CD105, CD166, and MHC I were present on human MSCs, but not on rabbit MSCs. However, desmin was present on rabbit MSCs, but not on human MSCs. In total, the surface expression of nine markers differed between human and rabbit MSCs, whereas the surface expression of 16 markers was the same in the two cell lines.
Collapse
|
41
|
Li Y, Xing W, He YZ, Chen S, Rhodes SD, Yuan J, Zhou Y, Shi J, Bai J, Zhang FK, Yuan WP, Cheng T, Xu MJ, Yang FC. Interleukin 8/KC enhances G-CSF induced hematopoietic stem/progenitor cell mobilization in Fancg deficient mice. Stem Cell Investig 2014; 1:19. [PMID: 27358865 DOI: 10.3978/j.issn.2306-9759.2014.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by a progressive bone marrow aplasia, chromosomal instability, and acquisition of malignancies. Successful hematopoietic cell transplantation (HCT) for FA patients is challenging due to hypersensitivity to DNA alkylating agents and irradiation of FA patients. Early mobilization of autologous stem cells from the bone marrow has been thought to be ideal prior to the onset of bone marrow failure, which often occurs during childhood. However, the markedly decreased response of FA hematopoietic stem cells to granulocyte colony-stimulating factor (G-CSF) is circumventive of this autologous HCT approach. To-date, the mechanism for defective stem cell mobilization in G-CSF treated FA patients remains unclear. METHODS Fancg heterozygous (Fancg (+/-)) mice utilized in these studies. Student's t-test and one-way ANOVA were used to evaluate statistical differences between WT and Fancg (-/-) cells. Statistical significance was defined as P values less than 0.05. RESULTS Fancg deficient (Fancg (-/-)) mesenchymal stem/progenitor cells (MSPCs) produce significant lower levels of KC, an interleukin-8 (IL-8) related chemoattractant protein in rodents, as compared to wild type cells. Combinatorial administration of KC and G-CSF significantly increased the mobilization of hematopoietic stem/progenitor cells (HSPCs) in Fancg (-/-) mice. CONCLUSIONS In summary, our results suggest that KC/IL-8 could be proved useful in the synergistic mobilization of FA HSPCs in combination with G-CSF.
Collapse
Affiliation(s)
- Yan Li
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wen Xing
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong-Zheng He
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shi Chen
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D Rhodes
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jin Yuan
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuan Zhou
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Shi
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Bai
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Feng-Kui Zhang
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wei-Ping Yuan
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tao Cheng
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ming-Jiang Xu
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Feng-Chun Yang
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
42
|
Yu Y, Park YS, Kim HS, Kim HY, Jin YM, Jung SC, Ryu KH, Jo I. Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: role for CCN1 in replicative senescence-associated increase in osteogenic differentiation. J Anat 2014; 225:510-8. [PMID: 25155898 DOI: 10.1111/joa.12229] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/14/2022] Open
Abstract
Although mesenchymal stem cells (MSC) isolated from bone marrow and adipose tissues are known to be subjected to in vitro culture-related alterations in their stem cell properties, such data have not been reported in human tonsil-derived MSC (T-MSC). Here, we investigated the culture-related changes of phenotypes, the senescence, and the differentiation potential of T-MSC. T-MSC were serially passaged by a standard protocol, and their characteristics were assessed, including MSC-specific surface antigen profiles, the senescence, and the differentiation potentials into adipocytes, chondrocytes and osteocytes. Up to at least passage 15, we found no alterations in either MSC-specific surface marker, CD14, CD34, CD45, CD73 and CD90, or the mRNA expression of embryonic stem cell gene markers, Nanog, Oct4-A and Sox-2. However, the expression of CD146, recently identified another MSC marker, dramatically decreased with increasing passages from ~ 23% at passage 3 to ~ 1% at passage 15. The average doubling time increased significantly from ~ 38 h at passage 10 to ~ 46 h at passage 15. From passage 10, the cell size increased slightly and SA-β-gal staining was evident. Both Alizarin Red S staining and osteocalcin expression showed that the osteogenic differentiation potential increased up to passage 10 and decreased thereafter. However, the adipogenic and chondrogenic differentiation potential decreased passage-dependently from the start, as evidenced by staining of Oil Red O and Alcian Blue, respectively. Consistent with a passage-dependent osteogenic differentiation, the expression of CCN1, an angiogenic protein known to be related to both senescence and osteogenesis, also increased up to passage 10. Furthermore, ectopic expression of small interfering RNA against CCN1 at passage 10 significantly reversed Alizarin Red S staining and osteocalcin expression. Altogether, our study demonstrates the characterization of long-term in vitro cultured T-MSC and that CCN1 may be involved in mediating a passage-dependent increase in osteogenic potential of T-MSC.
Collapse
Affiliation(s)
- Yeonsil Yu
- Department of Molecular Medicine, School of Medicine, and Global Top 5 Research Program, Ewha Womans University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li J, Ariunbold U, Suhaimi N, Sunn N, Guo J, McMahon JA, McMahon AP, Little M. Collecting duct-derived cells display mesenchymal stem cell properties and retain selective in vitro and in vivo epithelial capacity. J Am Soc Nephrol 2014; 26:81-94. [PMID: 24904087 DOI: 10.1681/asn.2013050517] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We previously described a mesenchymal stem cell (MSC)-like population within the adult mouse kidney that displays long-term colony-forming efficiency, clonogenicity, immunosuppression, and panmesodermal potential. Although phenotypically similar to bone marrow (BM)-MSCs, kidney MSC-like cells display a distinct expression profile. FACS sorting from Hoxb7/enhanced green fluorescent protein (GFP) mice identified the collecting duct as a source of kidney MSC-like cells, with these cells undergoing an epithelial-to-mesenchymal transition to form clonogenic, long-term, self-renewing MSC-like cells. Notably, after extensive passage, kidney MSC-like cells selectively integrated into the aquaporin 2-positive medullary collecting duct when microinjected into the kidneys of neonatal mice. No epithelial integration was observed after injection of BM-MSCs. Indeed, kidney MSC-like cells retained a capacity to form epithelial structures in vitro and in vivo, and conditioned media from these cells supported epithelial repair in vitro. To investigate the origin of kidney MSC-like cells, we further examined Hoxb7(+) fractions within the kidney across postnatal development, identifying a neonatal interstitial GFP(lo) (Hoxb7(lo)) population displaying an expression profile intermediate between epithelium and interstitium. Temporal analyses with Wnt4(GCE/+):R26(tdTomato/+) mice revealed evidence for the intercalation of a Wnt4-expressing interstitial population into the neonatal collecting duct, suggesting that such intercalation may represent a normal developmental mechanism giving rise to a distinct collecting duct subpopulation. These results extend previous observations of papillary stem cell activity and collecting duct plasticity and imply a role for such cells in collecting duct formation and, possibly, repair.
Collapse
Affiliation(s)
- Joan Li
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Usukhbayar Ariunbold
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Norseha Suhaimi
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Nana Sunn
- Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia; and
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Melissa Little
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia;
| |
Collapse
|
44
|
Ghasemzadeh-Hasankolaei M, Sedighi-Gilani MA, Eslaminejad MB. Induction of Ram Bone Marrow Mesenchymal Stem Cells into Germ Cell Lineage using Transforming Growth Factor-β Superfamily Growth Factors. Reprod Domest Anim 2014; 49:588-598. [DOI: 10.1111/rda.12327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/06/2014] [Indexed: 01/07/2023]
Affiliation(s)
- M Ghasemzadeh-Hasankolaei
- Fatemeh-Zahra Infertility and Reproductive Health Research Center; Babol University of Medical Sciences; Babol Iran
| | - MA Sedighi-Gilani
- Department of Andrology at Reproductive Biomedicine Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR; Tehran Iran
| | - MB Eslaminejad
- Department of Stem Cells and Developmental Biology at Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR; Tehran Iran
| |
Collapse
|
45
|
Dieudonne FX, Sévère N, Biosse-Duplan M, Weng JJ, Su Y, Marie PJ. Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity. Stem Cells 2014; 31:1340-9. [PMID: 23533197 DOI: 10.1002/stem.1380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/28/2013] [Indexed: 02/02/2023]
Abstract
The identification of the molecular mechanisms controlling the degradation of regulatory proteins in mesenchymal stromal cells (MSC) may provide clues to promote MSC osteogenic differentiation and bone regeneration. Ubiquitin ligase-dependent degradation of proteins is an important process governing cell fate. In this study, we investigated the role of the E3 ubiquitin ligase c-Cbl in MSC osteoblast differentiation and identified the mechanisms involved in this effect. Using distinct shRNA targeting c-Cbl, we showed that c-Cbl silencing promotes osteoblast differentiation in murine and human MSC, as demonstrated by increased alkaline phosphatase activity, expression of phenotypic osteoblast marker genes (RUNX2, ALP, type 1 collagen), and matrix mineralization in vitro. Coimmunoprecipitation analyses showed that c-Cbl interacts with the transcription factor STAT5, and that STAT5 forms a complex with RUNX2, a master transcription factor controlling osteoblastogenesis. Silencing c-Cbl decreased c-Cbl-mediated STAT5 ubiquitination, increased STAT5 protein level and phosphorylation, and enhanced STAT5 and RUNX2 transcriptional activity. The expression of insulin like growth factor-1 (IGF-1), a target gene of STAT5, was increased by c-Cbl silencing in MSC and in bone marrow stromal cells isolated from c-Cbl deficient mice, suggesting that IGF-1 contributes to osteoblast differentiation induced by c-Cbl silencing in MSC. Consistent with these findings, pharmacological inhibition of STAT5 activity, or neutralization of IGF-1 activity, abrogated the positive effect of c-Cbl knockdown on MSC osteogenic differentiation. Taken together, the data provide a novel functional mechanism by which the ubiquitin ligase c-Cbl regulates the osteoblastic differentiation program in mesenchymal cells by controlling Cbl-mediated STAT5 degradation and activity.
Collapse
|
46
|
Pereira-Junior OCM, Rahal SC, Lima-Neto JF, Landim-Alvarenga FDC, Monteiro FOB. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells. Acta Cir Bras 2014; 28:353-60. [PMID: 23702937 DOI: 10.1590/s0102-86502013000500006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/18/2013] [Indexed: 02/13/2023] Open
Abstract
PURPOSE To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC) intending bone tissue engineering. METHODS MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.
Collapse
|
47
|
Byun JS, Kwak BK, Kim JK, Jung J, Ha BC, Park S. Engraftment of human mesenchymal stem cells in a rat photothrombotic cerebral infarction model : comparison of intra-arterial and intravenous infusion using MRI and histological analysis. J Korean Neurosurg Soc 2013; 54:467-76. [PMID: 24527188 PMCID: PMC3921273 DOI: 10.3340/jkns.2013.54.6.467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/17/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023] Open
Abstract
Objective This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. Methods Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), T2* weighted image (T2*WI), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. Results Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by T2*WI and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. Conclusion In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain.
Collapse
Affiliation(s)
- Jun Soo Byun
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byung Kook Kwak
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Kyun Kim
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jisung Jung
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Bon Chul Ha
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Serah Park
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Miyaki LAM, Sibov TT, Pavon LF, Mamani JB, Gamarra LF. Study of internalization and viability of multimodal nanoparticles for labeling of human umbilical cord mesenchymal stem cells. EINSTEIN-SAO PAULO 2013; 10:189-96. [PMID: 23052454 DOI: 10.1590/s1679-45082012000200012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10µg Fe/mL and 100µg Fe/mL. METHODS We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. RESULTS The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which were shown as blue granules co-localized in fluorescent clusters, thus characterizing magnetic and fluorescent properties of multimodal magnetic nanoparticles-Rhodamine B. CONCLUSION The stability of multimodal magnetic nanoparticles-Rhodamine B found in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium assured intracellular mesenchymal stem cells labeling. This cell labeling did not affect viability of labeled mesenchymal stem cells since they continued to proliferate for five days.
Collapse
|
49
|
Pethig R. Dielectrophoresis: an assessment of its potential to aid the research and practice of drug discovery and delivery. Adv Drug Deliv Rev 2013; 65:1589-99. [PMID: 24056182 DOI: 10.1016/j.addr.2013.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/08/2013] [Accepted: 09/11/2013] [Indexed: 02/06/2023]
Abstract
Dielectrophoresis (DEP) is an electrokinetic technique with proven ability to discriminate and selectively manipulate cells based on their phenotype and physiological state, without the need for biological tags and markers. The DEP response of a cell is predominantly determined by the physico-chemical properties of the plasma membrane, subtle changes of which can be detected from two so-called 'cross-over' frequencies, f(xo1) and f(xo2). Membrane capacitance and structural changes can be monitored by measurement of f(xo1) at sub-megahertz frequencies, and current indications suggest that f(xo2), located above 100 MHz, is sensitive to changes of trans-membrane ion fluxes. DEP lends itself to integration in microfluidic devices and can also operate at the nanoscale to manipulate nanoparticles. Apart from measurements of f(xo1) and f(xo2), other examples where DEP could contribute to drug discovery and delivery include its ability to: enrich stem cells according to their differentiation potential, and to engineer artificial cell structures and nano-structures.
Collapse
Affiliation(s)
- Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JF, UK
| |
Collapse
|
50
|
Delalat B, Pourfathollah AA, Soleimani M, Mozdarani H, Ghaemi SR, Movassaghpour AA, Kaviani S. Isolation andex vivoexpansion of human umbilical cord blood-derived CD34+stem cells and their cotransplantation with or without mesenchymal stem cells. Hematology 2013; 14:125-32. [DOI: 10.1179/102453309x402250] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Bahman Delalat
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Masoud Soleimani
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical GeneticSchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Soraya Rasi Ghaemi
- Department of Anatomical SciencesSchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Ali Akbar Movassaghpour
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Saeed Kaviani
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| |
Collapse
|