1
|
Kudva YC, Raghinaru D, Lum JW, Graham TE, Liljenquist D, Spanakis EK, Pasquel FJ, Ahmann A, Ahn DT, Aleppo G, Blevins T, Kruger D, Brown SA, Levy CJ, Weinstock RS, Steenkamp DW, Spaic T, Hirsch IB, Broyles F, Rickels MR, Tsoukas MA, Raskin P, Hatipoglu B, Desjardins D, Terry AN, Singh LG, Davis GM, Schmid C, Kravarusic J, Coyne K, Casaubon L, Espinosa V, Jones JK, Estrada K, Afreen S, Levister C, O'Malley G, Liu SL, Marks S, Peleckis AJ, Pasqua MR, Tardio V, Kurek C, Luker RD, Churchill J, Tajrishi FZ, Dean A, Dennis B, Fronczyk E, Perez J, Mukhashen S, Dhillon J, Ipek A, Bzdick S, Atakov Castillo A, Driscoll M, Averkiou X, Dalton-Bakes CV, Moore A, Jordan LF, Lesniak A, Pinsker JE, Sasson-Katchalski R, Campos T, Spanbauer C, Kanapka L, Kollman C, Beck RW. A Randomized Trial of Automated Insulin Delivery in Type 2 Diabetes. N Engl J Med 2025; 392:1801-1812. [PMID: 40105270 DOI: 10.1056/nejmoa2415948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND Automated insulin delivery (AID) systems have been shown to be beneficial for patients with type 1 diabetes, but data are needed from randomized, controlled trials regarding their role in the management of insulin-treated type 2 diabetes. METHODS In this 13-week, multicenter trial, adults with insulin-treated type 2 diabetes were randomly assigned in a 2:1 ratio to receive AID or to continue their pretrial insulin-delivery method (control group); both groups received continuous glucose monitoring (CGM). The primary outcome was the glycated hemoglobin level at 13 weeks. RESULTS A total of 319 patients underwent randomization. Glycated hemoglobin levels decreased by 0.9 percentage points (from 8.2±1.4% at baseline to 7.3±0.9% at week 13) in the AID group and by 0.3 percentage points (from 8.1±1.2% to 7.7±1.1%) in the control group (mean adjusted difference, -0.6 percentage points; 95% confidence interval [CI], -0.8 to -0.4; P<0.001). The mean percentage of time that patients were in the target glucose range of 70 to 180 mg per deciliter increased from 48±24% to 64±16% in the AID group and from 51±21% to 52±21% in the control group (mean difference, 14 percentage points; 95% CI, 11 to 17; P<0.001). All other multiplicity-controlled CGM outcomes reflective of hyperglycemia that were measured were significantly better in the AID group than in the control group. The frequency of CGM-measured hypoglycemia was low in both groups. A severe hypoglycemia event occurred in one patient in the AID group. CONCLUSIONS In this 13-week, randomized, controlled trial involving adults with insulin-treated type 2 diabetes, AID was associated with a greater reduction in glycated hemoglobin levels than CGM alone. (Funded by Tandem Diabetes Care; 2IQP ClinicalTrials.gov number, NCT05785832.).
Collapse
Affiliation(s)
- Yogish C Kudva
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - John W Lum
- Jaeb Center for Health Research, Tampa, FL
| | | | | | - Elias K Spanakis
- Division of Endocrinology, Diabetes, and Nutrition, Baltimore VA Medical Center, Baltimore
| | - Francisco J Pasquel
- Division of Endocrinology, Emory University School of Medicine, Emory University, Atlanta
| | - Andrew Ahmann
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland
| | - David T Ahn
- Mary and Dick Allen Diabetes Center, Hoag Memorial Hospital Presbyterian, Newport Beach, CA
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago
| | | | - Davida Kruger
- Division of Endocrinology, Henry Ford Health System, Detroit
| | - Sue A Brown
- Division of Endocrinology, Center for Diabetes Technology, University of Virginia, Charlottesville
| | - Carol J Levy
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York
| | - Ruth S Weinstock
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | | | - Tamara Spaic
- Division of Endocrinology, St. Joseph's Health Care, Lawson Health Research Institute, London, ON, Canada
| | - Irl B Hirsch
- University of Washington School of Medicine, Seattle
| | | | - Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | | | - Philip Raskin
- UT Southwestern Medical Center, University of Texas, Southwestern, Dallas
| | | | - Donna Desjardins
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Lakshmi G Singh
- Division of Endocrinology, Diabetes, and Nutrition, Baltimore VA Medical Center, Baltimore
| | - Georgia M Davis
- Division of Endocrinology, Emory University School of Medicine, Emory University, Atlanta
| | - Caleb Schmid
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland
| | - Jelena Kravarusic
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago
| | - Kasey Coyne
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago
| | | | | | - Jaye K Jones
- Division of Endocrinology, Henry Ford Health System, Detroit
| | | | - Samina Afreen
- Division of Endocrinology, Center for Diabetes Technology, University of Virginia, Charlottesville
| | - Camilla Levister
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York
| | - Grenye O'Malley
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York
| | - Selina L Liu
- Division of Endocrinology, St. Joseph's Health Care, Lawson Health Research Institute, London, ON, Canada
| | | | - Amy J Peleckis
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | | | - Vanessa Tardio
- Research Institute of the McGill University Health Centre, Montreal
| | - Corey Kurek
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan D Luker
- Diabetes and Endocrine Treatment Specialists, Sandy, UT
| | - Jade Churchill
- Division of Endocrinology, Diabetes, and Nutrition, Baltimore VA Medical Center, Baltimore
| | - Farbod Z Tajrishi
- Division of Endocrinology, Emory University School of Medicine, Emory University, Atlanta
| | - Ariel Dean
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland
| | - Brittany Dennis
- Mary and Dick Allen Diabetes Center, Hoag Memorial Hospital Presbyterian, Newport Beach, CA
| | - Evelyn Fronczyk
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago
| | | | | | - Jasmeen Dhillon
- Division of Endocrinology, Center for Diabetes Technology, University of Virginia, Charlottesville
| | - Aslihan Ipek
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York
| | - Suzan Bzdick
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | | | - Marsha Driscoll
- Division of Endocrinology, St. Joseph's Health Care, Lawson Health Research Institute, London, ON, Canada
| | | | - Cornelia V Dalton-Bakes
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Adelyn Moore
- Research Institute of the McGill University Health Centre, Montreal
| | - Lin F Jordan
- UT Southwestern Medical Center, University of Texas, Southwestern, Dallas
| | - Amanda Lesniak
- University Hospitals Cleveland Medical Center, Cleveland
| | | | | | | | | | | | | | - Roy W Beck
- Jaeb Center for Health Research, Tampa, FL
| |
Collapse
|
2
|
Smith TA, Venkatesh N, Roem K, Lu JC, Netzer E, Medioli A, Szwec S, O'Neal DN, King BR, Smart CE. OptimAAPP, a smartphone insulin dose calculator for carbohydrate, fat, and protein: A cross-over, randomised controlled trial in adolescents and adults with type 1 diabetes using multiple daily injection therapy. Diabet Med 2025; 42:e15487. [PMID: 39654277 DOI: 10.1111/dme.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 03/23/2025]
Abstract
AIMS To (1) evaluate the efficacy of OptimAAPP, a smartphone insulin dose calculator for carbohydrate, fat, and protein in managing glycaemia compared with carbohydrate counting in adolescents and adults with type 1 diabetes using flexible multiple daily injection therapy (MDI, ≥4 injections/day) and (2) assess user acceptability of OptimAAPP. METHODS In this free-living trial, participants aged 12-50 years were randomised to use carbohydrate counting or OptimAAPP for meal insulin dose calculation for 3 months, then use the alternate method for 3 months. The primary outcome, time-in-range (3.9-10.0 mmol/L) was measured in weeks 3-4 of each arm using continuous glucose monitoring. The acceptability of OptimAAPP was assessed at end intervention using a purpose-designed questionnaire. RESULTS An intention-to-treat analysis of 41 participants, mean age 28 ± 12 years and HbA1c 56 ± 10 mmol/mol (7.3 ± 0.9%) found no significant difference in glycaemic outcomes when using OptimAAPP compared with carbohydrate counting including time-in-range (70.5 vs. 67.6%, p = 0.102), above range (24.5% vs. 28.0%, p = 0.068), below range (4.9% vs. 4.4%, p = 0.318), and coefficient of variation (32.2% vs. 33.3%, p = 0.136). There was no severe hypoglycaemia. Participants reported that OptimAAPP was easy to use (79%), and they were confident in giving the recommended doses (82%). Barriers to use were the small food database and the time associated with food entry. CONCLUSIONS In adolescents and adults using flexible MDI therapy, OptimAAPP use did not produce glycaemic outcomes that were significantly different from carbohydrate counting. Participant views of OptimAAPP indicate a high level of acceptability. Increasing the size of the food database will likely enhance the user experience.
Collapse
Affiliation(s)
- Tenele A Smith
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nisha Venkatesh
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Kerryn Roem
- Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Jean C Lu
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Emma Netzer
- Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Adrian Medioli
- College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
| | - Stuart Szwec
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - David N O'Neal
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Bruce R King
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Paediatric Endocrinology, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Carmel E Smart
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Paediatric Endocrinology, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
3
|
ElSayed NA, McCoy RG, Aleppo G, Balapattabi K, Beverly EA, Briggs Early K, Bruemmer D, Echouffo-Tcheugui JB, Ekhlaspour L, Garg R, Khunti K, Lal R, Lingvay I, Matfin G, Pandya N, Pekas EJ, Pilla SJ, Polsky S, Segal AR, Seley JJ, Stanton RC, Bannuru RR. 7. Diabetes Technology: Standards of Care in Diabetes-2025. Diabetes Care 2025; 48:S146-S166. [PMID: 39651978 PMCID: PMC11635043 DOI: 10.2337/dc25-s007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
4
|
Bojoga I, Ioacara S, Malinici E, Chiper V, Georgescu O, Sirbu AE, Fica S. Enhanced Metabolic Control in a Pediatric Population with Type 1 Diabetes Mellitus Using Hybrid Closed-Loop and Predictive Low-Glucose Suspend Insulin Pump Treatments. Pediatr Rep 2024; 16:1188-1199. [PMID: 39728741 DOI: 10.3390/pediatric16040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Insulin pumps coupled with continuous glucose monitoring sensors use algorithms to analyze real-time blood glucose levels. This allows for the suspension of insulin administration before hypoglycemic thresholds are reached or for adaptive tuning in hybrid closed-loop systems. This longitudinal retrospective study aims to analyze real-world glycemic outcomes in a pediatric population transitioning to such devices. METHODS We evaluated children with type 1 diabetes mellitus (T1D) admitted to the Pediatric Diabetes Department from a major University Hospital in Bucharest, Romania, who transitioned to hybrid closed-loop or predictive low-glucose suspend system from either non-automated insulin pumps or multiple daily injections. The primary outcome was assessing the change in glycated hemoglobin (HbA1c) after initiating these devices. Secondary outcomes analyzed changes in glucose metrics from the 90 days prior to the baseline and follow-up visit. RESULTS 51 children were included (58.8% girls), the mean age was 10.3 ± 3.7 years, and the mean follow-up duration was 13.2 ± 4.5 months. The analyzed parameters, such as HbA1c (6.9 ± 0.7% vs. 6.7 ± 0.6%, p = 0.023), time in range (69.3 ± 11.2% vs. 76 ± 9.9%, p < 0.001), time in tight range (47.4 ± 10.9% vs. 53.7 ± 10.7%, p < 0.001), time below range (5.6 ± 2.9% vs. 3.5 ± 1.9%, p < 0.001), time above range (25 ± 11.2% vs. 20.4 ± 9.4%, p = 0.001), and coefficient of variation (37.9 ± 4.8% vs. 35.6 ± 4.6%, p = 0.001), showed significant improvements. CONCLUSIONS The application of these sensor-integrated insulin pumps can significantly enhance metabolic control in pediatric populations, minimizing glycemic variations to mitigate complications and enrich the quality of life.
Collapse
Affiliation(s)
- Irina Bojoga
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Elias" University Emergency Hospital, 011461 Bucharest, Romania
| | - Sorin Ioacara
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Elias" University Emergency Hospital, 011461 Bucharest, Romania
| | - Elisabeta Malinici
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Elias" University Emergency Hospital, 011461 Bucharest, Romania
| | - Victor Chiper
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Elias" University Emergency Hospital, 011461 Bucharest, Romania
| | - Olivia Georgescu
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Elias" University Emergency Hospital, 011461 Bucharest, Romania
| | - Anca Elena Sirbu
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Elias" University Emergency Hospital, 011461 Bucharest, Romania
| | - Simona Fica
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Endocrinology, Diabetes Mellitus, Nutrition and Metabolic Disorders, "Elias" University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
5
|
Biester T, Berget C, Boughton C, Cudizio L, Ekhlaspour L, Hilliard ME, Reddy L, Sap Ngo Um S, Schoelwer M, Sherr JL, Dovc K. International Society for Pediatric and Adolescent Diabetes Clinical Practice Consensus Guidelines 2024: Diabetes Technologies - Insulin Delivery. Horm Res Paediatr 2024; 97:636-662. [PMID: 39657603 PMCID: PMC11854989 DOI: 10.1159/000543034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
The International Society for Pediatric and Adolescent Diabetes (ISPAD) guidelines represent a rich repository that serves as the only comprehensive set of clinical recommendations for children, adolescents, and young adults living with diabetes worldwide. This chapter builds on the 2022 ISPAD guidelines, and summarizes recent advances in the technology behind insulin administration, with special emphasis on insulin pump therapy, especially on glucose-responsive integrated technology that is feasible with the use of automated insulin delivery (AID) systems in children and adolescents. The International Society for Pediatric and Adolescent Diabetes (ISPAD) guidelines represent a rich repository that serves as the only comprehensive set of clinical recommendations for children, adolescents, and young adults living with diabetes worldwide. This chapter builds on the 2022 ISPAD guidelines, and summarizes recent advances in the technology behind insulin administration, with special emphasis on insulin pump therapy, especially on glucose-responsive integrated technology that is feasible with the use of automated insulin delivery (AID) systems in children and adolescents.
Collapse
Affiliation(s)
- Torben Biester
- AUF DER BULT, Hospital for Children and Adolescents, Hannover, Germany
| | - Cari Berget
- Barbara Davis Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Charlotte Boughton
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Laura Cudizio
- Department of Pediatrics, Division of Pediatric Endocrinology, Santa Casa of São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Laya Ekhlaspour
- Division of Endocrinology, Department of Pediatric, University of California San Francisco, San Francisco, CA, USA
| | - Marisa E. Hilliard
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Leenatha Reddy
- Department of Pediatrics Endocrinology, Rainbow Children’s Hospital, Hyderabad, India
| | - Suzanne Sap Ngo Um
- Department of Pediatrics, The University of Ebolowa, Mother and Child Center of the Chantal Biya Foundation, Yaounde, Cameroon
| | - Melissa Schoelwer
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L. Sherr
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Klemen Dovc
- Department of Endocrinology, Diabetes and Metabolic Diseases and University of Ljubljana Faculty of Medicine, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| |
Collapse
|
6
|
Iftikhar M, Saqib M, Qayyum SN, Asmat R, Mumtaz H, Rehan M, Ullah I, Ud-Din I, Noori S, Khan M, Rehman E, Ejaz Z. Artificial intelligence-driven transformations in diabetes care: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:5334-5342. [PMID: 39238969 PMCID: PMC11374247 DOI: 10.1097/ms9.0000000000002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Artificial intelligence (AI) has been applied in healthcare for diagnosis, treatments, disease management, and for studying underlying mechanisms and disease complications in diseases like diabetes and metabolic disorders. This review is a comprehensive overview of various applications of AI in the healthcare system for managing diabetes. A literature search was conducted on PubMed to locate studies integrating AI in the diagnosis, treatment, management and prevention of diabetes. As diabetes is now considered a pandemic now so employing AI and machine learning approaches can be applied to limit diabetes in areas with higher prevalence. Machine learning algorithms can visualize big datasets, and make predictions. AI-powered mobile apps and the closed-loop system automated glucose monitoring and insulin delivery can lower the burden on insulin. AI can help identify disease markers and potential risk factors as well. While promising, AI's integration in the medical field is still challenging due to privacy, data security, bias, and transparency. Overall, AI's potential can be harnessed for better patient outcomes through personalized treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad Rehan
- Al-Nafees Medical College and Hospital, Islamabad, Pakistan
| | | | | | - Samim Noori
- Nangarhar University, Faculty of Medicine, Nangarhar, Afghanistan
| | | | | | | |
Collapse
|
7
|
WANG YY, YING HM, TIAN F, QIAN XL, Zhou ZF. Three months use of Hybrid Closed Loop Systems improves glycated hemoglobin levels in adolescents and children with type 1 diabetes: A meta-analysis. PLoS One 2024; 19:e0308202. [PMID: 39133688 PMCID: PMC11318905 DOI: 10.1371/journal.pone.0308202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Longer outpatient studies have demonstrated that hybrid closed loop (HCL) use has led to a concomitant reduction in glycated hemoglobin(HbA1c) by 0.3%-0.7%. However, reports have also indicated that HbA1c levels are not declined in the long-term use of HCL. Therefore, we wonder that 3 months use of HCL could improve glycated hemoglobin levels in adolescents and children with T1D. METHODS Relevant studies were searched electronically in the Cochrane Library, PubMed, and Embase utilizing the key words "Pediatrics or Child or Adolescent", "Insulin Infusion Systems" and "Diabetes Mellitus" from inception to 17th March 2024 to evaluate the performance of HCL on HbA1c in adolescents, and children with T1D. RESULTS Nine studies involving 927 patients were identified. Three months use of HCL show a beneficial effect on HbA1c management (p <0.001) as compared to standard of care in adolescents and children with T1D, without evidence of heterogeneity between articles (I2 = 40%, p = 0.10). HCL did significantly increase the overall average percentage of hypoglycemic time between 70 and 180 mg/dL (TIR) (p <0.001; I2 = 51%). HCL did not show a beneficial effect on hypoglycemic time <70 mg/dL and <54 mg/dL (p >0.05). The overall percentage of hyperglycemic time was significantly decreased in HCL group compared to the control group when it was defined as >180 mg/dL (p <0.001; I2 = 83%), >250 mg/dL (p = 0.007, I2 = 86%) and >300 mg/dL (p = 0.005; I2 = 76%). The mean glucose level was significantly decreased by HCL (p <0.001; I2 = 58%), however, no significant difference was found in coefficient of variation of sensor glucose (p = 0.82; I2 = 71%) and daily insulin dose (p = 0.94; I2 <0.001) between the HCL group and the control group. CONCLUSIONS HCL had a beneficial effect on HbA1c management and TIR without increased hypoglycemic time as compared to standard of care in adolescents and children with T1D when therapy duration of HCL was not less than three months. TRIAL NUMBER AND REGISTRY URL CRD42022367493; https://www.crd.york.ac.uk/PROSPERO, Principal investigator: Zhen-feng Zhou, Date of registration: October 30, 2022.
Collapse
Affiliation(s)
- Yuan-yuan WANG
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Hui-min YING
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Fang TIAN
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Xiao-lu QIAN
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang Province, Hangzhou, China
| | - Zhen-feng Zhou
- Department of Anesthesiology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People’s Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| |
Collapse
|
8
|
Serafini MC, Rosales N, Garelli F. Auto adaptation of closed-loop insulin delivery system using continuous reward functions and incremental discretization. Comput Methods Biomech Biomed Engin 2024; 27:1375-1386. [PMID: 37545465 DOI: 10.1080/10255842.2023.2241945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Several closed or hybrid loop controllers for Blood Glucose (BG) regulation, which are also known as Artificial Pancreas (AP) Systems or Automated Insulin Delivery systems (AIDs), are in development worldwide. Most AIDs are designed and evaluated for short-term performance, with a particular emphasis on the post-meal period. However, if controllers are not adapted properly to account for variations in physiology that affect Insulin Sensitivity (IS), the AIDs may perform inadequately. In this work, the performance of two Reinforcement Learning (RL) agents trained under both piecewise and continuous reward functions is evaluated in-silico for long-term adaptation of a Fully Automated Insulin Delivery (fAID) system. An automatic adaptive discretization scheme that expands the state space as needed is also implemented to avoid disproportionate state space exploration. The proposed agents are evaluated for long-term adaptation of the Automatic Regulation of Glucose (ARG) algorithm, considering variations in IS. Results show that both RL agents have improved performance compared to a rule-based decision-making approach and the baseline controller for the majority of the adult population. Moreover, the use of a continuous shaped reward function proves to enhance the performance of the agents further than a piecewise one.
Collapse
Affiliation(s)
- Maria Cecilia Serafini
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Nicolas Rosales
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Fabricio Garelli
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
9
|
Wang YY, Ying HM, Tian F, Qian XL, Zhou ZF, Zhou CC. Automated insulin delivery in children with type 1 diabetes during physical activity: a meta-analysis. J Pediatr Endocrinol Metab 2024; 37:505-515. [PMID: 38700489 DOI: 10.1515/jpem-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the performance of the automated insulin delivery (AID) in adolescents, and children with type 1 diabetes (T1D) during physical activity. METHODS Relevant studies were searched electronically in the Cochrane Library, PubMed, and Embase utilizing the key words "Child", "Insulin Infusion Systems", and "Diabetes Mellitus" from inception to 17th March 2024 to evaluate the performance of the AID in adolescents, and children with T1D during physical activity. RESULTS Twelve studies involving 514 patients were identified. AID did not show a beneficial effect on duration of hypoglycemia<70 mg/dL during study period (p>0.05; I2=96 %) and during the physical activity (p>0.99). Percentage of sensor glucose values in TIR was higher in AID than the non-AID pumps during study period (p<0.001; I2=94 %). The duration of hyperglycemic time was significantly decreased in AID group compared to the non-AID pumps group during study period (p<0.05; I2>50 %). CONCLUSIONS AID improved TIR and decreased the duration of hyperglycemic time, but did not appear to have a significant beneficial effect on the already low post-exercise duration of hypoglycemia achievable by open loop or sensor-augmented pumps in adolescents and children with T1D during physical activity; further research is needed to confirm the beneficial effect of AID on duration of hypoglycemia.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Hui-Min Ying
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Fang Tian
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Xiao-Lu Qian
- Department of Endocrinology, 631689 Xixi Hospital of Hangzhou , Hangzhou, Zhejiang Province, P.R. China
| | - Zhen-Feng Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, P.R. China
| | - Chun-Cong Zhou
- Department of Urolithiasis and Anorectal Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, P.R. China
| |
Collapse
|
10
|
Eldib A, Dhaver S, Kibaa K, Atakov-Castillo A, Salah T, Al-Badri M, Khater A, McCarragher R, Elenani O, Toschi E, Hamdy O. Evaluation of hybrid closed-loop insulin delivery system in type 1 diabetes in real-world clinical practice: One-year observational study. World J Diabetes 2024; 15:455-462. [PMID: 38591074 PMCID: PMC10999042 DOI: 10.4239/wjd.v15.i3.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND In 2016, the Food and Drug Administration approved the first hybrid closed-loop (HCL) insulin delivery system for adults with type 1 diabetes (T1D). There is limited information on the impact of using HCL systems on patient-reported outcomes (PROs) in patients with T1D in real-world clinical practice. In this independent study, we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic's 670G HCL in real-world clinical practice. AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D. METHODS We evaluated 71 patients with T1D (mean age: 45.5 ± 12.1 years; 59% females; body weight: 83.8 ± 18.7 kg, body mass index: 28.7 ± 5.6 kg/m2, A1C: 7.6% ± 0.8%) who were treated with HCL at Joslin Clinic from 2017 to 2019. We measured A1C and percent of glucose time-in-range (%TIR) at baseline and 12 months. We measured percent time in auto mode (%TiAM) for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management. RESULTS At 12 mo, A1C decreased by 0.3% ± 0.1% (P = 0.001) and %TIR increased by 8.1% ± 2.5% (P = 0.002). The average %TiAM was only 64.3% ± 32.8% and was not associated with A1C, %TIR or PROs. PROs, provided at baseline and at the end of the study, showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9% (P < 0.001). Hypoglycemia fear survey/worry scale decreased significantly by 24.9% (P < 0.000); Problem Areas In Diabetes reduced significantly by -17.2% (P = 0.002). The emotional burden submodules of dietary diversity score reduced significantly by -44.7% (P = 0.001). Furthermore, analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes. WHO-5 showed no improvements in subject's wellbeing among participants after starting the 670G HCL system. Finally, analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality, sleep latency, or duration of sleep from baseline to 12 mo. CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C, %TIR, physical functioning, hypoglycemia fear, emotional distress, and emotional burden related to diabetes management. However, these changes were not associated with time in auto mode.
Collapse
Affiliation(s)
- Ahmed Eldib
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Shilton Dhaver
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
| | - Karim Kibaa
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Astrid Atakov-Castillo
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
| | - Tareq Salah
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Marwa Al-Badri
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Abdelrahman Khater
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Ryan McCarragher
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
| | - Omnia Elenani
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
| | - Elena Toschi
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Osama Hamdy
- Department of Clinical, Behavioral & Outcomes Research, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
11
|
Forlenza GP, Dai Z, Niu F, Shin JJ. Reducing Diabetes Burden in Medtronic's Automated Insulin Delivery Systems. Diabetes Technol Ther 2024; 26:7-16. [PMID: 38377321 DOI: 10.1089/dia.2023.0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background: The MiniMed™ 780G advanced hybrid closed-loop system (MM780G) builds on the basal automation and low-glucose protection features of the MiniMed™ 670G and 770G systems. While previous publications have focused on glycemic control improvements with MM780G, burden reduction has not been fully described. Methods: Data from two 3-month pivotal trials for the MM670G with Guardian™ Sensor 3 (GS3) (104 adults; 125 children) and MM780G with Guardian™ 4 Sensor (G4S) (67 adults;109 children) were compared. Real-world data (RWD) from United States users (N = 3851) transitioning from MM770G+GS3 to MM780G+G4S were also analyzed. Analyses included a new metric for diabetes management burden (i.e., pentagon composite metric), glycemic outcomes and system burden (e.g., closed-loop exits and fingersticks per day). Results: Diabetes burden metric (-22.8% and -28.5%), time in range (+3.1% [*P = 0.035] and +6.4% [P < 0.001]) and time below range (-1.8% [*P < 0.001] and -0.7% [*P < 0.001]) significantly improved, compared to MM670G for adult and pediatric participants, respectively. The pediatric mean sensor glucose (SG) reduced by -8.6 mg/dL (*P < 0.001), while the adults' saw no change. Closed-loop use significantly increased for both cohorts (+17.1% [*P < 0.001] and +20.5% [*P < 0.001]). Closed-loop exits were significantly reduced to about 1 per week (-0.5 [*P < 0.001] and -0.7 [*P < 0.001]); fingerstick tests were also reduced (-6.2 [*P < 0.001] and -6.9 [*P < 0.001]). Similar outcomes were observed from U.S. RWD. Conclusions: MiniMed™ 780G with G4S use was associated with significant reduction in diabetes management burden with fewer closed-loop exits, fingersticks and other interactions, and improvements in glycemic control when compared to the MiniMed™ 670G with GS3.
Collapse
Affiliation(s)
- Gregory P Forlenza
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zheng Dai
- Medtronic Diabetes, Northridge, California, USA
| | - Fang Niu
- Medtronic Diabetes, Northridge, California, USA
| | - John J Shin
- Medtronic Diabetes, Northridge, California, USA
| |
Collapse
|
12
|
Thrasher JR, Arrieta A, Niu F, Cameron KR, Cordero TL, Shin J, Rhinehart AS, Vigersky RA. Early Real-World Performance of the MiniMed™ 780G Advanced Hybrid Closed-Loop System and Recommended Settings Use in the United States. Diabetes Technol Ther 2024; 26:24-31. [PMID: 38377317 DOI: 10.1089/dia.2023.0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background: The MiniMed™ 780G system (MM780G) with Guardian™ 4 sensor includes a 100 mg/dL glucose target (GT) and automated insulin corrections up to every 5 min and was recently approved for use in the United States. In the present study, early real-world MM780G performance and the use of recommended system settings (100 mg/dL GT with an active insulin time of 2 h), by individuals with type 1 diabetes, were evaluated. Methods: CareLink™ personal data uploaded between the launch of the MM780G to August 22, 2023 were aggregated and underwent retrospective analysis (based on user consent) and if users had ≥10 days of continuous glucose monitoring (CGM) data. The 24-h day CGM metrics, including mean glucose, percentage of time spent in (%TIR), above (%TAR), and below (%TBR) target range (70-180 mg/dL), in addition to delivered insulin and closed-loop (CL) exits, were compared between an overall group (n = 7499) and individuals who used recommended settings (each, for >95% of the time). An analysis of the same metrics for MiniMed™ 770G system (MM770G) users (n = 3851) who upgraded to the MM780G was also conducted (paired t-test or Wilcoxon signed-rank test, P < 0.05 considered statistically significant). Results: For MM780G users, CGM use, and time in CL were >90% and all MM780G CGM metrics exceeded consensus-recommended goals. With recommended settings (22% of all users), mean %TIR and %TITR (70-140 mg/dL) were 81.4% and 56.4%, respectively. For individuals who upgraded from the MM770G, %TIR and %TITR increased from 73.2% to 78.3% and 45.8% to 52.6%, respectively, while %TAR reduced from 25.1% to 20.2% (P < 0.001, for all three). CL exits/week averaged <1, for all MM780G users. Conclusions: Early real-world MM780G use in the United States demonstrated a high percentage of time in range with low time above and below range. These outcomes are similar to those observed for real-world MM780G use in other countries.
Collapse
Affiliation(s)
- James R Thrasher
- Arkansas Diabetes and Endocrinology Center, Little Rock, Arkansas, USA
| | - Arcelia Arrieta
- Medtronic International Trading Sàrl, Tolochenaz, Switzerland
| | - Fang Niu
- Medtronic Diabetes, Northridge, California, USA
| | | | | | - John Shin
- Medtronic Diabetes, Northridge, California, USA
| | | | | |
Collapse
|
13
|
Considine EG, Sherr JL. Real-World Evidence of Automated Insulin Delivery System Use. Diabetes Technol Ther 2024; 26:53-65. [PMID: 38377315 PMCID: PMC10890954 DOI: 10.1089/dia.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Objective: Pivotal trials of automated insulin delivery (AID) closed-loop systems have demonstrated a consistent picture of glycemic benefit, supporting approval of multiple systems by the Food and Drug Administration or Conformité Européenne mark receipt. To assess how pivotal trial findings translate to commercial AID use, a systematic review of retrospective real-world studies was conducted. Methods: PubMed and EMBASE were searched for articles published after 2018 with more than five nonpregnant individuals with type 1 diabetes (T1D). Data were screened/extracted in duplicate for sample size, AID system, glycemic outcomes, and time in automation. Results: Of 80 studies identified, 20 met inclusion criteria representing 171,209 individuals. Time in target range 70-180 mg/dL (3.9-10.0 mmol/L) was the primary outcome in 65% of studies, with the majority of reports (71%) demonstrating a >10% change with AID use. Change in hemoglobin A1c (HbA1c) was reported in nine studies (range 0.1%-0.9%), whereas four reported changes in glucose management indicator (GMI) with a 0.1%-0.4% reduction noted. A decrease in HbA1c or GMI of >0.2% was achieved in two-thirds of the studies describing change in HbA1c and 80% of articles where GMI was described. Time below range <70 mg/dL (<3.9 mmol/L) was reported in 16 studies, with all but 1 study showing stable or reduced levels. Most systems had >90% time in automation. Conclusion: With larger and more diverse populations, and follow-up periods of longer duration (∼9 months vs. 3-6 months for pivotal trials), real-world retrospective analyses confirm pivotal trial findings. Given the glycemic benefits demonstrated, AID is rapidly becoming the standard of care for all people living with T1D. Individuals should be informed of these systems and differences between them, have access to and coverage for these technologies, and receive support as they integrate this mode of insulin delivery into their lives.
Collapse
Affiliation(s)
| | - Jennifer L. Sherr
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Vigersky RA, Shin J. The Myth of MARD ( Mean Absolute Relative Difference): Limitations of MARD in the Clinical Assessment of Continuous Glucose Monitoring Data. Diabetes Technol Ther 2024; 26:38-44. [PMID: 38377323 DOI: 10.1089/dia.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The mean absolute relative difference (MARD) is a numerical metric that has been adopted by the diabetes technology community as the main indicator that describes the accuracy of a glucose sensor at a single point in time. The appropriateness of this adoption is questionable because there is limited evidence that MARD has meaningful clinical relevance in the current era of sensor technology. The calculation may be simple, but evaluation of MARD can be very complex because it is substantially impacted by the design of the data collection in an accuracy study. Factors that can influence the overall MARD include participant demographics such as type of diabetes and age, site of sensor wear, and the percentage of collected values in each glycemic range during the study that is, in turn, a function of the study design. MARD is only one of several important statistical metrics such as bias and precision that are relevant to assessing accuracy of a sensor. Furthermore, these analytic metrics convey little information about the safety and effectiveness of sensor use with an automated insulin delivery system or a standalone device. There are no clinical studies in people with diabetes (PWD) proving that MARD can accurately differentiate between a safe and unsafe sensor or between a more and less clinically effective sensor. Moreover, there are alternatives to MARD that can do this in a clinically meaningful way, which include error grid analyses and clinical studies in PWD. This review attempts to demythologize the status of MARD for the diabetes community in an effort to shift the focus from MARD to using clinically relevant assessments.
Collapse
Affiliation(s)
- Robert A Vigersky
- Medical Affairs, Medtronic Diabetes, Biostatistics, Northridge, California, USA
| | - John Shin
- Medical Affairs, Medtronic Diabetes, Biostatistics, Northridge, California, USA
| |
Collapse
|
15
|
Schütz A, Rami-Merhar B, Schütz-Fuhrmann I, Blauensteiner N, Baumann P, Pöttler T, Mader JK. Retrospective Comparison of Commercially Available Automated Insulin Delivery With Open-Source Automated Insulin Delivery Systems in Type 1 Diabetes. J Diabetes Sci Technol 2024:19322968241230106. [PMID: 38366626 PMCID: PMC11571566 DOI: 10.1177/19322968241230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND Automated insulin delivery (AID) systems have shown to improve glycemic control in a range of populations and settings. At the start of this study, only one commercial AID system had entered the Austrian market (MiniMed 670G, Medtronic). However, there is an ever-growing community of people living with type 1 diabetes (PWT1D) using open-source (OS) AID systems. MATERIALS AND METHODS A total of 144 PWT1D who used either the MiniMed 670G (670G) or OS-AID systems routinely for a period of at least three to a maximum of six months, between February 18, 2020 and January 15, 2023, were retrospectively analyzed (116 670G aged from 2.6 to 71.8 years and 28 OS-AID aged from 3.4 to 53.5 years). The goal is to evaluate and compare the quality of glycemic control of commercially available AID and OS-AID systems and to present all data by an in-depth descriptive analysis of the population. No statistical tests were performed. RESULTS The PWT1D using OS-AID systems spent more time in range (TIR)70-180 mg/dL (81.7% vs 73.9%), less time above range (TAR)181-250 mg/dL (11.1% vs 19.6%), less TAR>250 mg/dL (2.5% vs 4.3%), and more time below range (TBR)54-69 mg/dL (2.2% vs 1.7%) than PWT1D using the 670G system. The TBR<54 mg/dL was comparable in both groups (0.3% vs 0.4%). In the OS-AID group, median glucose level and glycated hemoglobin (HbA1c) were lower than in the 670G system group (130 vs 150 mg/dL; 6.2% vs 7.0%). CONCLUSION In conclusion, both groups were able to achieve satisfactory glycemic outcomes independent of age, gender, and diabetes duration. However, the PWT1D using OS-AID systems attained an even better glycemic control with no clinical safety concerns.
Collapse
Affiliation(s)
- Anna Schütz
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Rami-Merhar
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ingrid Schütz-Fuhrmann
- Karl Landsteiner Institute, Endocrinology and Nephrology, Vienna, Austria
- Department of Endocrinology and Nephrology, Clinic Hietzing, Vienna Health Care Group, Vienna, Austria
| | - Nicole Blauensteiner
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Baumann
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tina Pöttler
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia K. Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Guerlich K, Patro-Golab B, Dworakowski P, Fraser AG, Kammermeier M, Melvin T, Koletzko B. Evidence from clinical trials on high-risk medical devices in children: a scoping review. Pediatr Res 2024; 95:615-624. [PMID: 37758865 PMCID: PMC10899114 DOI: 10.1038/s41390-023-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Meeting increased regulatory requirements for clinical evaluation of medical devices marketed in Europe in accordance with the Medical Device Regulation (EU 2017/745) is challenging, particularly for high-risk devices used in children. METHODS Within the CORE-MD project, we performed a scoping review on evidence from clinical trials investigating high-risk paediatric medical devices used in paediatric cardiology, diabetology, orthopaedics and surgery, in patients aged 0-21 years. We searched Medline and Embase from 1st January 2017 to 9th November 2022. RESULTS From 1692 records screened, 99 trials were included. Most were multicentre studies performed in North America and Europe that mainly had evaluated medical devices from the specialty of diabetology. Most had enrolled adolescents and 39% of trials included both children and adults. Randomized controlled trials accounted for 38% of the sample. Other frequently used designs were before-after studies (21%) and crossover trials (20%). Included trials were mainly small, with a sample size <100 participants in 64% of the studies. Most frequently assessed outcomes were efficacy and effectiveness as well as safety. CONCLUSION Within the assessed sample, clinical trials on high-risk medical devices in children were of various designs, often lacked a concurrent control group, and recruited few infants and young children. IMPACT In the assessed sample, clinical trials on high-risk medical devices in children were mainly small, with variable study designs (often without concurrent control), and they mostly enrolled adolescents. We provide a systematic summary of methodologies applied in clinical trials of medical devices in the paediatric population, reflecting obstacles in this research area that make it challenging to conduct adequately powered randomized controlled trials. In view of changing European regulations and related concerns about shortages of high-risk medical devices for children, our findings may assist competent authorities in setting realistic requirements for the evidence level to support device conformity certification.
Collapse
Affiliation(s)
- Kathrin Guerlich
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
- Child Health Foundation - Stiftung Kindergesundheit, c/o Dr. von Hauner Children's Hospital, Munich, Germany
| | - Bernadeta Patro-Golab
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | | | - Alan G Fraser
- Department of Cardiology, University Hospital of Wales, Cardiff, Wales, UK
| | - Michael Kammermeier
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | - Tom Melvin
- Department of Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Berthold Koletzko
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany.
- Child Health Foundation - Stiftung Kindergesundheit, c/o Dr. von Hauner Children's Hospital, Munich, Germany.
- European Academy of Paediatrics, Brussels, Belgium.
| |
Collapse
|
17
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 7. Diabetes Technology: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S126-S144. [PMID: 38078575 PMCID: PMC10725813 DOI: 10.2337/dc24-s007] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
18
|
Zimmer RT, Auth A, Schierbauer J, Haupt S, Wachsmuth N, Zimmermann P, Voit T, Battelino T, Sourij H, Moser O. (Hybrid) Closed-Loop Systems: From Announced to Unannounced Exercise. Diabetes Technol Ther 2023. [PMID: 38133645 DOI: 10.1089/dia.2023.0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Physical activity and exercise have many beneficial effects on general and type 1 diabetes (T1D) specific health and are recommended for individuals with T1D. Despite these health benefits, many people with T1D still avoid exercise since glycemic management during physical activity poses substantial glycemic and psychological challenges - which hold particularly true for unannounced exercise when using an AID system. Automated insulin delivery (AID) systems have demonstrated their efficacy in improving overall glycemia and in managing announced exercise in numerous studies. They are proven to increase time in range (70-180 mg/dL) and can especially counteract nocturnal hypoglycemia, even when evening exercise was performed. AID-systems consist of a pump administering insulin as well as a CGM sensor (plus transmitter), both communicating with a control algorithm integrated into a device (insulin pump, mobile phone/smart watch). Nevertheless, without manual pre-exercise adaptions, these systems still face a significant challenge around physical activity. Automatically adapting to the rapidly changing insulin requirements during unannounced exercise and physical activity is still the Achilles' heel of current AID systems. There is an urgent need for improving current AID-systems to safely and automatically maintain glucose management without causing derailments - so that going forward, exercise announcements will not be necessary in the future. Therefore, this narrative literature review aimed to discuss technological strategies to how current AID-systems can be improved in the future and become more proficient in overcoming the hurdle of unannounced exercise. For this purpose, the current state-of-the-art therapy recommendations for AID and exercise as well as novel research approaches are presented along with potential future solutions - in order to rectify their deficiencies in the endeavor to achieve fully automated AID-systems even around unannounced exercise.
Collapse
Affiliation(s)
- Rebecca Tanja Zimmer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Alexander Auth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Janis Schierbauer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Sandra Haupt
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Nadine Wachsmuth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Paul Zimmermann
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Thomas Voit
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Tadej Battelino
- University Children's Hospital, Ljubljana, Slovenia, Department of Endocrinology, Diabetes and Metabolism, Bohoriceva 20, Ljubljana, Slovenia, 1000
- Slovenia;
| | - Harald Sourij
- Medical University of Graz, 31475, Auenbruggerplatz 15, 8036 Graz, Graz, Austria, 8036;
| | - Othmar Moser
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Universitätsstraße 30, Bayreuth, Bayern, Germany, 95440;
| |
Collapse
|
19
|
Messer LH, Berget C, Centi S, Mcnair B, Forlenza GP. Evaluation of a New Clinical Tool to Enhance Clinical Care of Control-IQ Users. J Diabetes Sci Technol 2023; 17:1602-1609. [PMID: 35227129 PMCID: PMC10658699 DOI: 10.1177/19322968221081890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The purpose of this study was to develop and test a new Clinic Tool to assist health care professionals with clinical care of persons with diabetes using the Control-IQ system. METHODS A Clinic Tool was iteratively developed with input from diabetes clinicians, which outlined a systematic process for assessing data, reviewing insulin settings, providing education, and documenting the encounter. Diabetes clinicians were recruited to trial the Clinical Tool in up to five clinical encounters (in-person, telehealth, or telephone). Quantitative surveys and free-text responses, including a knowledge quiz and the System Usability Scale (SUS), were administered to determine clinician satisfaction, confidence, knowledge, and implications for practice. RESULTS Twenty-nine clinicians (43% endocrinologists, mean 10.7 years in practice) enrolled in the study and completed 89 encounters using the Control-IQ Clinic Tool. Participants spent an average of 10 minutes using the Tool and reported excellent SUS scores within the 90%-95% percentile for usability. Knowledge quiz scores increased in 42% of participants. Both familiarity with Control-IQ and confidence providing clinical care to Control-IQ users significantly improved (P = .009 and P < .001 respectively). Ninety percent of participants agreed that the Tool will change their clinical care going forward. CONCLUSION The Control-IQ Clinical Tool is highly usable and impacted clinical care delivery to Control-IQ users. Tools that serve to improve clinician confidence in delivery of care to diabetes device users should be expanded, leveraged, and studied to assess the impact on adherence and glycemic control for persons with diabetes.
Collapse
Affiliation(s)
- Laurel H. Messer
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cari Berget
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Centi
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bryan Mcnair
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Macon EL, Devore MH, Lin YK, Music MB, Wooten M, McMullen CA, Woodcox AM, Marksbury AR, Beckner Z, Patel BV, Schoeder LA, Iles AN, Fisher SJ. Current and future therapies to treat impaired awareness of hypoglycemia. Front Pharmacol 2023; 14:1271814. [PMID: 37942482 PMCID: PMC10628050 DOI: 10.3389/fphar.2023.1271814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
In order to achieve optimal glycemic control, intensive insulin regimes are needed for individuals with Type 1 Diabetes (T1D) and insulin-dependent Type 2 Diabetes (T2D). Unfortunately, intensive glycemic control often results in insulin-induced hypoglycemia. Moreover, recurrent episodes of hypoglycemia result in both the loss of the characteristic warning symptoms associated with hypoglycemia and an attenuated counterregulatory hormone responses. The blunting of warning symptoms is known as impaired awareness of hypoglycemia (IAH). Together, IAH and the loss of the hormonal response is termed hypoglycemia associated autonomic failure (HAAF). IAH is prevalent in up to 25% in people with T1D and up to 10% in people with T2D. IAH and HAAF increase the risk of severe hypoglycemia 6-fold and 25-fold, respectively. To reduce this risk for severe hypoglycemia, multiple different therapeutic approaches are being explored that could improve awareness of hypoglycemia. Current therapies to improve awareness of hypoglycemia include patient education and psychoeducation, the use of novel glycemic control technology, pancreas/islet transplantation, and drug therapy. This review examines both existing therapies and potential therapies that are in pre-clinical testing. Novel treatments that improve awareness of hypoglycemia, via improving the counterregulatory hormone responses or improving hypoglycemic symptom recognition, would also shed light on the possible neurological mechanisms that lead to the development of IAH. To reduce the risk of severe hypoglycemia in people with diabetes, elucidating the mechanism behind IAH, as well as developing targeted therapies is currently an unmet need for those that suffer from IAH.
Collapse
Affiliation(s)
- Erica L. Macon
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Micah H. Devore
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yu Kuei Lin
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan B. Music
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Mason Wooten
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Colleen A. McMullen
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrea M. Woodcox
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ashlee R. Marksbury
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Zachary Beckner
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bansi V. Patel
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Lily A. Schoeder
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ashley N. Iles
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Simon J. Fisher
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
21
|
Elbarbary NS, Ismail EAR. MiniMed 780G™ advanced hybrid closed-loop system performance in Egyptian patients with type 1 diabetes across different age groups: evidence from real-world users. Diabetol Metab Syndr 2023; 15:205. [PMID: 37845757 PMCID: PMC10580510 DOI: 10.1186/s13098-023-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Advanced hybrid closed loop (AHCL) system provides both automated basal rate and correction boluses to keep glycemic values in a target range. OBJECTIVES To evaluate the real-world performance of the MiniMed™ 780G system among different age groups of Egyptian patients with type 1diabetes. METHODS One-hundred seven AHCL system users aged from 3 to 71 years were enrolled. Data uploaded by patients were aggregated and analyzed. The mean glucose management indicator (GMI), percentage of time spent within glycemic ranges (TIR), time below range (TBR) and time above range (TAR) were determined. RESULTS Six months after initiating Auto Mode, patients spent a mean of 85.31 ± 22.04% of the time in Auto Mode (SmartGuard) and achieved a mean GMI of 6.95 ± 0.58% compared with 7.9 ± 2.1% before AHCL initiation (p < 0.001). TIR 70-180 mg/dL was increased post-AHCL initiation from 63.48 ± 10.14% to 81.54 ± 8.43% (p < 0.001) while TAR 180-250 mg/dL, TAR > 250 mg/dL, TBR < 70 mg/dL and TBR < 54 mg/dL were significantly decreased (p < 0.001). After initiating AHCL, TIR was greater in children and adults compared with adolescents (82.29 ± 7.22% and 83.86 ± 9.24% versus 78.4 ± 7.34%, respectively; p < 0.05). The total daily dose of insulin was increased in all age groups primarily due to increased system-initiated insulin delivery including auto correction boluses and basal insulin. CONCLUSIONS MiniMed™ 780G system users across different age groups achieved international consensus-recommended glycemic control with no serious adverse effects even in challenging age group as children and adolescents.
Collapse
Affiliation(s)
- Nancy Samir Elbarbary
- Department of Pediatrics, Faculty of medicine, Ain shams University, 25 Ahmed Fuad St. Saint Fatima, Cairo, 11361, Egypt.
| | | |
Collapse
|
22
|
Pei Y, Ke W, Lu J, Lin Y, Zhang Z, Peng Y, Bi Y, Li Y, Hou J, Zhang X, Chen X, Treminio Y, Lee SW, Shin J, Rhinehart AS, Vigersky RA, Mu Y. Safety Event Outcomes and Glycemic Control with a Hybrid Closed-Loop System Used by Chinese Adolescents and Adults with Type 1 Diabetes Mellitus. Diabetes Technol Ther 2023; 25:718-725. [PMID: 37578804 DOI: 10.1089/dia.2023.0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background: While evidence supports glycemic control benefits for individuals with type 1 diabetes mellitus (T1DM) using hybrid closed-loop (HCL) systems, HCL automated insulin delivery therapy in China has not been assessed. This study evaluated safety events and effectiveness during HCL system use by Chinese adolescents and adults with T1DM. Methods: Sixty-two participants (n = 12 adolescents with a mean ± standard deviation [SD] of 15.5 ± 1.1 years and n = 50 adults [mean ± SD of 37.6 ± 11.1 years]) with T1DM and baseline A1C of 7.1% ± 1.0% underwent a run-in period (∼2 weeks) using open-loop Manual Mode (sensor-augmented pump) insulin delivery with the MiniMed™ 770G system with the Guardian™ Sensor (3) glucose sensor, followed by a study period (4 weeks) with HCL Auto Mode enabled. Analyses compared continuous glucose monitoring data and insulin delivered during the run-in versus study period (Wilcoxon signed-rank test or t-test). Safety events included rates of severe hypoglycemia and diabetic ketoacidosis (DKA). Results: Compared to baseline run-in, overall Auto Mode use increased time in range (TIR, 70-180 mg/dL) from 75.3% to 80.9% (P < 0.001) and reduced time below range (TBR, <70 mg/dL) from 4.7% to 2.2% (P < 0.001). Subgroup analysis demonstrated that participants (n = 29) with baseline A1C <7.0% had TBR that reduced from 5.6% to 2.0%, while participants (n = 21) with baseline A1C ≥7.5% had time above range (TAR, >180 mg/dL) that reduced from 31.6% to 20.8%. Auto Mode use also increased the percentage achieving combined recommendations for time at sensor glucose ranges (i.e., TIR of >70%, TBR of <4% and TAR of <25%) from 24.2% at baseline to 77.4% at study end. Total daily insulin dose reduced from 42.8 ± 19.8 to 40.7 ± 18.9 U (P = 0.013). There were no severe hypoglycemic, DKA, or serious adverse events. Conclusions: Chinese adolescents and adults, some of whom met target A1C at baseline, safely achieved significantly improved glycemia with 1 month of MiniMed 770G system use when compared to open-loop insulin delivery. ClinicalTrials.gov ID: NCT04663295.
Collapse
Affiliation(s)
- Yu Pei
- Chinese PLA General Hospital, Beijing, China
| | - Weijian Ke
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- Nanjing Drum Tower Hospital, Nanjing, China
| | - Yi Lin
- Shanghai General Hospital, Shanghai, China
| | | | | | - Yan Bi
- Nanjing Drum Tower Hospital, Nanjing, China
| | - Yanbing Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | - John Shin
- Medtronic, Northridge, California, USA
| | | | | | - Yiming Mu
- Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Mingorance Delgado A, Lucas F. The Tandem Control-IQ advanced hybrid system improves glycemic control in children under 18 years of age with type 1 diabetes and night rest in caregivers. ENDOCRINOL DIAB NUTR 2023; 70 Suppl 3:27-35. [PMID: 37598004 DOI: 10.1016/j.endien.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 08/21/2023]
Abstract
OBJECTIVE To determine the impact of switching from the predictive low glucose suspend (PLGS) system to the advanced hybrid Tandem Control-IQ system on glucometrics and glycosylated haemoglobin (HbA1c) at one year. To assess the impact on the quality of life perceived by parents. METHOD Prospective study in 71 patients aged 6-18 years with type 1 diabetes (DM1), in treatment with PLGS, who switched to an advanced hybrid system. Glucometric data were collected before the change, at 4 and 8 weeks, and at one year of use; HbA1c before the change and after one year. The Diabetes Impact and Devices Satisfaction (DIDS) questionnaire was used at weeks 4 and 8. RESULTS An increase in time in range (TIR) was observed with a median of 76% (P<.001) at 4 weeks, which was maintained after one year (+8% in the total group). Overall, 73.24% of patients achieved a TIR above 70%. The subgroup with an initial TIR of less than 56% increased it by 14.4%. After one year there was a 0.3% reduction in HbA1c. Level 1 hypoglycaemia, level 1 and level 2 hyperglycaemia, mean glucose (GM) and coefficient of variation (CV) decreased. Auto mode stayed on 97% of the time and no dropouts occurred. Caregivers had a perception of better glycaemic control and less need to monitor blood glucose variations during the night. None of them would switch back to the previous system and they feel safe with the new system. CONCLUSIONS The Tandem Control-IQ advanced hybrid system was shown to be effective one year after its implementation with improvement in all glucometric parameters and HbA1c, as well as night-time rest in caregivers.
Collapse
Affiliation(s)
- Andrés Mingorance Delgado
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) - Diabetes y enfermedades metabólicas asociadas, Alicante, Spain; Unidad de Endocrinología y Diabetes Pediátrica, Servicio de Pediatría, Hospital General Universitario Dr. Balmis, Alicante, Spain.
| | - Fernando Lucas
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) - Diabetes y enfermedades metabólicas asociadas, Alicante, Spain; Unidad de Diabetes, Servicio de Endocrinología, Hospital General Universitario Dr. Balmis, Alicante, Spain
| |
Collapse
|
24
|
Shalit R, Minsky N, Laron-Hirsh M, Cohen O, Kurtz N, Roy A, Grosman B, Benedetti A, Tirosh A. Unannounced Meal Challenges Using an Advanced Hybrid Closed-Loop System. Diabetes Technol Ther 2023; 25:579-588. [PMID: 37335759 DOI: 10.1089/dia.2023.0139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Background: The advanced hybrid closed-loop (AHCL) algorithm combines automated basal rates and corrections yet requires meal announcement for optimal outcomes. We aimed to compare the performance of the MiniMed™ 780G AHCL algorithm with and without meal announcement. Methods: In a single-arm study involving 14 adults with type 1 diabetes, we evaluated the safety and efficacy of AHCL when meals were not announced. Participants stayed at a supervised environment for 5 days, during which the outcomes of not announcing meals (≤80 g of carbohydrate) were assessed. Next, participants entered a 90-day at-home "unannounced" phase, during which all meals (≤80 g of carbohydrate) were unannounced, followed by a 90-day at-home phase in which all meals were announced. Results: Time in range (TIR 70-180 mg/dL) was lower in the unannounced versus announced periods (67.5% ± 12.5% vs. 77.7% ± 9.5%; P < 0.01, respectively), with more time spent in hyperglycemia range 180-250 mg/dL (22.7% ± 7.7% vs. 15.7% ± 7.2%) and >250 mg/dL (7.9% ± 6.4% vs. 3.6% ± 2.7%), but less time in hypoglycemia range 54-70 mg/dL (1.6% ± 1% vs. 2.8% ± 1.8%) and <54 mg/dL (0.3% ± 0.4% vs. 0.7% ± 0.9%). Not announcing meals containing up to 60 g of carbohydrate did not lead to increase in postprandial extreme dysglycemia >250 mg/dL, and up to 20 g of unannounced carbohydrates did not significantly change the TIR 70-180 mg/dL compared with full announcement. Conclusion: The AHCL system is optimized for use with meal announcement. While not announcing meals of ≤80 g carbohydrates appears to be safe, it results in suboptimal postprandial glycemic control, especially with high-carbohydrate meals. Not announcing small meals (≤20 g carbohydrate) does not deteriorate glycemic control. Clinical Trial Registration number: NCT04479826.
Collapse
Affiliation(s)
- Roy Shalit
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Noga Minsky
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Maya Laron-Hirsh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ohad Cohen
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Medtronic, Northridge, California, USA
| | | | | | | | | | - Amir Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
25
|
Levy CJ, Raghinaru D, Kudva YC, Pandit K, Blevins T, Casaubon L, Desjardins D, Levister CM, O’Malley G, Reid C, Lum J, Kollman C, Beck RW. Beneficial Effects of Control-IQ Automated Insulin Delivery in Basal-Bolus and Basal-Only Insulin Users With Type 2 Diabetes. Clin Diabetes 2023; 42:116-124. [PMID: 38230336 PMCID: PMC10788662 DOI: 10.2337/cd23-0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The t:slim X2 insulin pump with Control-IQ technology (Control-IQ) advanced hybrid closed-loop automated insulin delivery system was evaluated in this prospective single-arm trial. Thirty adults with type 2 diabetes using the Control-IQ system showed substantial glycemic improvement with no increase in hypoglycemia. Mean time in range (70-180 mg/dL) improved 15%, representing an increase of 3.6 hours/day, and mean glucose decreased by 22 mg/dL.
Collapse
Affiliation(s)
- Carol J. Levy
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Yogish C. Kudva
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Keta Pandit
- Texas Diabetes and Endocrinology, Austin, TX
| | | | | | - Donna Desjardins
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Camilla M. Levister
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Grenye O’Malley
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Corey Reid
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - John Lum
- Jaeb Center for Health Research, Tampa, FL
| | | | | |
Collapse
|
26
|
Cambuli VM, Baroni MG. Intelligent Insulin vs. Artificial Intelligence for Type 1 Diabetes: Will the Real Winner Please Stand Up? Int J Mol Sci 2023; 24:13139. [PMID: 37685946 PMCID: PMC10488097 DOI: 10.3390/ijms241713139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Research in the treatment of type 1 diabetes has been addressed into two main areas: the development of "intelligent insulins" capable of auto-regulating their own levels according to glucose concentrations, or the exploitation of artificial intelligence (AI) and its learning capacity, to provide decision support systems to improve automated insulin therapy. This review aims to provide a synthetic overview of the current state of these two research areas, providing an outline of the latest development in the search for "intelligent insulins," and the results of new and promising advances in the use of artificial intelligence to regulate automated insulin infusion and glucose control. The future of insulin treatment in type 1 diabetes appears promising with AI, with research nearly reaching the possibility of finally having a "closed-loop" artificial pancreas.
Collapse
Affiliation(s)
- Valentina Maria Cambuli
- Diabetology and Metabolic Diseaseas, San Michele Hospital, ARNAS Giuseppe Brotzu, 09121 Cagliari, Italy;
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
27
|
Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, Sarma DK, Verma V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur J Cell Biol 2023; 102:151329. [PMID: 37295265 DOI: 10.1016/j.ejcb.2023.151329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of pancreatic β-cells, leading to insulin deficiency. Insulin replacement therapy is the current standard of care for T1D, but it has significant limitations. However, stem cell-based replacement therapy has the potential to restore β-cell function and achieve glycaemic control eradicating the necessity for drugs or injecting insulin externally. While significant progress has been made in preclinical studies, the clinical translation of stem cell therapy for T1D is still in its early stages. In continuation, further research is essentially required to determine the safety and efficacy of stem cell therapies and to develop strategies to prevent immune rejection of stem cell-derived β-cells. The current review highlights the current state of cellular therapies for T1D including, different types of stem cell therapies, gene therapy, immunotherapy, artificial pancreas, and cell encapsulation being investigated, and their potential for clinical translation.
Collapse
Affiliation(s)
- Akash Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Noor Afshan
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suraj Kumar Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sudhanshu Yadav
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
28
|
Alonso GT, Triolo TM, Akturk HK, Pauley ME, Sobczak M, Forlenza GP, Sakamoto C, Pyle L, Frohnert BI. Increased Technology Use Associated With Lower A1C in a Large Pediatric Clinical Population. Diabetes Care 2023; 46:1218-1222. [PMID: 37023293 PMCID: PMC10234743 DOI: 10.2337/dc22-2121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE While continuous glucose monitors (CGMs), insulin pumps, and hybrid closed-loop (HCL) systems each improve glycemic control in type 1 diabetes, it is unclear how the use of these technologies impacts real-world pediatric care. RESEARCH DESIGN AND METHODS We found 1,455 patients aged <22 years, with type 1 diabetes duration >3 months, and who had data from a single center in between both 2016-2017 (n = 2,827) and 2020-2021 (n = 2,731). Patients were grouped by multiple daily injections or insulin pump, with or without an HCL system, and using a blood glucose monitor or CGM. Glycemic control was compared using linear mixed-effects models adjusting for age, diabetes duration, and race/ethnicity. RESULTS CGM use increased from 32.9 to 75.3%, and HCL use increased from 0.3 to 27.9%. Overall A1C decreased from 8.9 to 8.6% (P < 0.0001). CONCLUSIONS Adoption of CGM and HCL was associated with decreased A1C, suggesting promotion of these technologies may yield glycemic benefits.
Collapse
Affiliation(s)
- G. Todd Alonso
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Taylor M. Triolo
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Halis Kaan Akturk
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Meghan E. Pauley
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Marisa Sobczak
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Gregory P. Forlenza
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Casey Sakamoto
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Laura Pyle
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Brigitte I. Frohnert
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
29
|
Peacock S, Frizelle I, Hussain S. A Systematic Review of Commercial Hybrid Closed-Loop Automated Insulin Delivery Systems. Diabetes Ther 2023; 14:839-855. [PMID: 37017916 PMCID: PMC10126177 DOI: 10.1007/s13300-023-01394-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION Several different forms of automated insulin delivery systems (AID systems) have recently been developed and are now licensed for type 1 diabetes (T1D). We undertook a systematic review of reported trials and real-world studies for commercial hybrid closed-loop (HCL) systems. METHODS Pivotal, phase III and real-world studies using commercial HCL systems that are currently approved for use in type 1 diabetes were reviewed with a devised protocol using the Medline database. RESULTS Fifty-nine studies were included in the systematic review (19 for 670G; 8 for 780G; 11 for Control-IQ; 14 for CamAPS FX; 4 for Diabeloop; and 3 for Omnipod 5). Twenty were real-world studies, and 39 were trials or sub-analyses. Twenty-three studies, including 17 additional studies, related to psychosocial outcomes and were analysed separately. CONCLUSIONS These studies highlighted that HCL systems improve time In range (TIR) and arouse minimal concerns around severe hypoglycaemia. HCL systems are an effective and safe option for improving diabetes care. Real-world comparisons between systems and their effects on psychological outcomes require further study.
Collapse
Affiliation(s)
- Sofia Peacock
- Department of Diabetes, School of Cardiovascular, Metabolic Medicine and Sciences, King's College London, London, UK
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Isolda Frizelle
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Sufyan Hussain
- Department of Diabetes, School of Cardiovascular, Metabolic Medicine and Sciences, King's College London, London, UK.
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
- Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK.
| |
Collapse
|
30
|
Beck RW, Kanapka LG, Breton MD, Brown SA, Wadwa RP, Buckingham BA, Kollman C, Kovatchev B. A Meta-Analysis of Randomized Trial Outcomes for the t:slim X2 Insulin Pump with Control-IQ Technology in Youth and Adults from Age 2 to 72. Diabetes Technol Ther 2023; 25:329-342. [PMID: 37067353 PMCID: PMC10171957 DOI: 10.1089/dia.2022.0558] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Objective: To evaluate the effect of hybrid-closed loop Control-IQ technology (Control-IQ) in randomized controlled trials (RCTs) in subgroups based on baseline characteristics such as race/ethnicity, socioeconomic status (SES), prestudy insulin delivery modality (pump or multiple daily injections), and baseline glycemic control. Methods: Data were pooled and analyzed from 3 RCTs comparing Control-IQ to a Control group using continuous glucose monitoring in 369 participants with type 1 diabetes (T1D) from age 2 to 72 years old. Results: Time in range 70-180 mg/dL (TIR) in the Control-IQ group (n = 256) increased from 57% ± 17% at baseline to 70% ± 11% during follow-up, and in the Control group (n = 113) was 56% ± 15% and 57% ± 14%, respectively (adjusted treatment group difference = 11.5%, 95% confidence interval +9.7% to +13.2%, P < 0.001), an increase of 2.8 h/day on average. Significant reductions in mean glucose, hyperglycemia metrics, hypoglycemic metrics, and HbA1c were also observed. A statistically similar beneficial treatment effect on time in range 70-180 mg/dL was observed across the full age range irrespective of race-ethnicity, household income, prestudy continuous glucose monitor use, or prestudy insulin delivery method. Participants with the highest baseline HbA1c levels showed the greatest improvements in TIR and HbA1c. Conclusion: This pooled analysis of Control-IQ RCTs demonstrates the beneficial effect of Control-IQ in T1D across a broad spectrum of participant characteristics, including racial-ethnic minority, lower SES, lack of prestudy insulin pump experience, and high HbA1c levels. The greatest benefit was observed in participants with the worst baseline glycemic control in whom the auto-bolus feature of the Control-IQ algorithm appears to have substantial impact. Since no subgroups were identified that did not benefit from Control-IQ, hybrid-closed loop technology should be strongly considered for all youth and adults with T1D. Clinical Trials Registry: clinicaltrials.gov; NCT03563313, NCT03844789, and NCT04796779.
Collapse
Affiliation(s)
- Roy W. Beck
- JAEB Center for Health Research, Tampa, Florida, USA
| | | | - Marc D. Breton
- University of Virginia Center for Diabetes Technology, Charlottesville, Virginia, USA
| | - Sue A. Brown
- University of Virginia Center for Diabetes Technology, Charlottesville, Virginia, USA
| | - R. Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bruce A. Buckingham
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Craig Kollman
- JAEB Center for Health Research, Tampa, Florida, USA
| | - Boris Kovatchev
- University of Virginia Center for Diabetes Technology, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Gómez AM, Henao D, Parra D, Kerguelen A, Jaramillo P, Gómez Y, Muñoz OM, Rondón M. Early and sustained increase in time in range 1 year after initiation of hybrid close loop therapy via telemedicine in type 1 diabetes patients. Acta Diabetol 2023; 60:943-949. [PMID: 37010594 PMCID: PMC10068726 DOI: 10.1007/s00592-023-02051-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/07/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND AND AIMS Evidence supports the efficacy and safety of the Hybrid Close loop (HCL) system in patients with type 1 diabetes (T1D). However, limited data are available on the long-term outcomes of patients on HCL with telemedicine follow-up. METHODS A prospective observational cohort study including T1D patients, who were upgrading to HCL system. Virtual training and follow-up were done through telemedicine. CGM data were analyzed to compare the baseline time in range (TIR), time below range (TBR), glycemic variability and auto mode (AM), with measurements performed at 3, 6 and 12 months. RESULTS 134 patients were included with baseline A1c 7.6% ± 1.1. 40.5% had a severe hypoglycemia event in the last year. Baseline TIR, measured two weeks after starting AM was 78.6 ± 9.94%. No changes were evident at three (Mean difference - 0.15;CI-2.47,2.17;p = 0.96), six (MD-1.09;CI-3.42,1.24;p = 0.12) and 12 months (MD-1.30;CI-3.64,1.04;p = 0.08). No significant changes were found in TBR or glycemic variability throughout the follow-up. Use of AM was 85.6 ± 17.5% and percentage of use of sensor was 88.75 ± 9.5% at 12 months. No severe hypoglycemic (SH) events were reported. CONCLUSIONS HCL systems allow to improve TIR, TBR and glycemic variability safely, early and sustained up to 1 year of follow-up in patients with T1D and high risk of hypoglycemia followed through telemedicine.
Collapse
Affiliation(s)
- Ana M. Gómez
- Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
- Hospital Universitario San Ignacio, Endocrinology Unit, Bogotá, Colombia
| | - Diana Henao
- Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
- Hospital Universitario San Ignacio, Endocrinology Unit, Bogotá, Colombia
| | - Darío Parra
- Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
- Hospital Universitario San Ignacio, Endocrinology Unit, Bogotá, Colombia
| | - Alfonso Kerguelen
- Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
- Hospital Universitario San Ignacio, Endocrinology Unit, Bogotá, Colombia
| | - Pablo Jaramillo
- Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
- Hospital Universitario San Ignacio, Endocrinology Unit, Bogotá, Colombia
| | - Yaline Gómez
- Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
- Hospital Universitario San Ignacio, Endocrinology Unit, Bogotá, Colombia
| | - Oscar Mauricio Muñoz
- Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
- Department of Internal Medicine, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Martin Rondón
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
32
|
Delvecchio M, Galati A, Maffeis C, Passanisi S, Bonfanti R, Franceschi R, Tornese G, Calzi E, Zanfardino A, Bracciolini GP, Piccinno E. A retrospective analysis of 24-month real-world glucose control for children and adolescents with type 1 diabetes using the MiniMed™ 670G insulin pump. Diabetes Obes Metab 2023; 25:1101-1105. [PMID: 36507706 DOI: 10.1111/dom.14934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Maurizio Delvecchio
- Metabolic Disease and Genetic Unit, "Giovanni XXIII" Children Hospital, AOU Policlinico di Bari, Bari, Italy
| | - Alessio Galati
- Metabolic Disease and Genetic Unit, "Giovanni XXIII" Children Hospital, AOU Policlinico di Bari, Bari, Italy
| | - Claudio Maffeis
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Riccardo Bonfanti
- Pediatric Diabetes, San Raffaele Scientific Hospital and Vita Salute San Raffaele University, Milan, Italy
| | | | - Gianluca Tornese
- Department of Pediatrics, Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Elena Calzi
- Pediatric Department, Maggiore Hospital of Crema, Crema, Italy
| | - Angela Zanfardino
- Regional Center for Pediatric Diabetes, Department of Pediatrics, University of the Study of Campania, Naples, Italy
| | | | - Elvira Piccinno
- Metabolic Disease and Genetic Unit, "Giovanni XXIII" Children Hospital, AOU Policlinico di Bari, Bari, Italy
| |
Collapse
|
33
|
Pemberton JS, Wilmot EG, Barnard-Kelly K, Leelarathna L, Oliver N, Randell T, Taplin CE, Choudhary P, Adolfsson P. CGM accuracy: Contrasting CE marking with the governmental controls of the USA (FDA) and Australia (TGA): A narrative review. Diabetes Obes Metab 2023; 25:916-939. [PMID: 36585365 DOI: 10.1111/dom.14962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
The National Institute for Clinical Excellence updated guidance for continuous glucose monitoring (CGM) in 2022, recommending that CGM be available to all people living with type 1 diabetes. Manufacturers can trade in the UK with Conformité Européenne (CE) marking without an initial national assessment. The regulatory process for CGM CE marking, in contrast to the Food and Drug Administration (FDA) and Australian Therapeutic Goods Administration (TGA) process, is described. Manufacturers operating in the UK provided clinical accuracy studies submitted for CE marking. Critical appraisal of the studies shows several CGM devices have CE marking for wide-ranging indications beyond available data, unlike FDA and TGA approval. The FDA and TGA use tighter controls, requiring comprehensive product-specific clinical data evaluation. In 2018, the FDA published the integrated CGM (iCGM) criteria permitting interoperability. Applying the iCGM criteria to clinical data provided by manufacturers trading in the UK identified several study protocols that minimized glucose variability, thereby improving CGM accuracy on all metrics. These results do not translate into real-life performance. Furthermore, for many CGM devices available in the UK, accuracy reported in the hypoglycaemic range is below iCGM standards, or measurement is absent. We offer a framework to evaluate CGM accuracy studies critically. The review concludes that FDA- and TGA-approved indications match the available clinical data, whereas CE marking indications can have discrepancies. The UK can bolster regulation with UK Conformity Assessed marking from January 2025. However, balanced regulation is needed to ensure innovation and timely technological access are not hindered.
Collapse
Affiliation(s)
- John S Pemberton
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham Women's, and Children's NHS Foundation Trust, Birmingham, UK
| | - Emma G Wilmot
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
- University of Nottingham, Nottingham, UK
| | | | - Lalantha Leelarathna
- Manchester Diabetes Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nick Oliver
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Craig E Taplin
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Pratik Choudhary
- Leicester Diabetes Center, University of Leicester, Leicester, UK
| | - Peter Adolfsson
- Department of Paediatrics, Kungsbacka Hospital; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Chico A, Navas de Solís S, Lainez M, Rius F, Cuesta M. Efficacy, Safety, and Satisfaction with the Accu-Chek Insight with Diabeloop Closed-Loop System in Subjects with Type 1 Diabetes: A Multicenter Real-World Study. Diabetes Technol Ther 2023; 25:242-249. [PMID: 36724301 DOI: 10.1089/dia.2022.0449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: To evaluate the efficacy, safety and satisfaction of the closed-loop system Accu-Chek® Insight with Diabeloop™ (DBLG1™) in adults with type 1 diabetes (T1D) in real-world conditions. Methods: Patients with T1D using DBLG1 for at least 3 months were included. Glucometric parameters were analyzed at baseline, 1, 2, and 3 months after starting DBLG1. HbA1c was measured before and at 3 months. Technical issues and acute complications were recorded and patients completed a satisfaction questionnaire. Results: Sixty-two patients were included (43 women; age 44.2 ± 11 years; diabetes duration 24.6 ± 12 years; 40 used flash and 22 continuous glucose monitoring (CGM); 45 were on insulin pump and 17 on multiple daily injections). A significant improvement was observed in the CGM-derived glucose metrics early in the first month: Time in range (%TIR) 70-180 mg/dL (54.86 ± 17 vs. 72.23 ± 10.11); time above range level 1 (%TAR1) 180-250 mg/dL (26.26 ± 13.3 vs. 19.48 ± 6.78), time above range level 2 (%TAR2) > 250 mg/dL (12.02 ± 13.09 vs. 6.14 ± 5.23), time below range level 1 (%TBR 1) 54-70 mg/dL (5.73 ± 11.5 vs. 1.67 ± 1.3), time below range level 2 (%TBR2) < 54 mg/dL (1.18 ± 1.97 vs.0.44 ± 0.49), %CV (38.66 ± 7.53 vs. 29.63 ± 3.74), median glucose (168.57 ± 36 mg/dL vs. 154.63 ± 17.55 mg/dL), and %GMI (7.37 ± 0.91 vs. 7.02 ± 0.42). Also, HbA1c decreased significantly (7.45% ± 1.05% vs. 6.95% ± 0.7%). No acute complications or serious adverse events occurred. Similar improvement was observed regardless of prior therapy or the glucose monitoring system used. Three patients discontinued DBLG1 and 21 experienced technical issues. Overall, patient satisfaction was high. Adjustments of the settings were modified in general in the direction of greater aggressiveness. Conclusions: A significant improvement in glycemic control without serious adverse events and a high degree of patient satisfaction were observed in this first real-world study evaluating the closed-loop system, Accu-Chek Insight with Diabeloop.
Collapse
Affiliation(s)
- Ana Chico
- Department of Endocrinology and Nutrition, Hospital Santa Creu i Sant Pau, Barcelona, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sol Navas de Solís
- Department of Endocrinology and Nutrition, Hospital Universitario y Politécnico La Fe, Unidad Mixta de Investigación Endocrinología, Nutrición y Dietoterapia, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Lainez
- Departament of Endocrinology and Nutrition, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | - Ferran Rius
- Department of Endocrinology and Nutrition, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | - Martín Cuesta
- Department of Endocrinology and Nutrition, Hospital Clinico Universitario San Carlos, Madrid, Spain
| |
Collapse
|
35
|
Almurashi AM, Rodriguez E, Garg SK. Emerging Diabetes Technologies: Continuous Glucose Monitors/Artificial Pancreases. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362851 PMCID: PMC10043869 DOI: 10.1007/s41745-022-00348-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 03/30/2023]
Abstract
Over the past decade there have been many advances in diabetes technologies, such as continuous glucose monitors (CGM s), insulin-delivery devices, and hybrid closed loop systems . Now most CGMs (Medtronic-Guardian, Dexcom-G6, and Abbott-Libre-2) have MARD values of < 10%, in contrast to two decades ago when the MARD used to be > 20%. In addition, the majority of the new CGMs do not require calibrations, and the latest CGMs last for 10-14 days. An implantable 6-months CGM by Eversense-3 is now approved in the USA and Europe. Recently, the FDA approved Libre 3 which provides real-time glucose values every minute. Even though it is approved as an iCGM it is not interoperable with automatic-insulin-delivery (AID) systems. The newer CGMs that are likely to be launched in the next few months in the USA include the 10-11 days Dexcom G7 (60% smaller than the existing G6), and the 7-days Medtronic Guardian 4. Most of the newer CGM have several features like automatic initialization, easy insertion, predictive alarms, and alerts. It has also been noticed that an arm insertion site might have better accuracy than abdomen or other sites, like the buttock for kids. Lag time between YSI and different sensors have been reported differently, sometimes it is down to 2-3 min; however, in many instances, it is still 15-20 min, especially when the rate of change of glucose is > 2 mg/min. We believe that in the next decade there will be a significant increase in the number of people who use CGM for their day-to-day diabetes care.
Collapse
Affiliation(s)
- Abdulhalim M. Almurashi
- Barbara Davis Center for Diabetes, University of Colorado Denver, 1775 Aurora Ct, Rm 1324, Aurora, CO 80045 USA
- Madinah Health Cluster, Madinah, Saudi Arabia
| | - Erika Rodriguez
- Barbara Davis Center for Diabetes, University of Colorado Denver, 1775 Aurora Ct, Rm 1324, Aurora, CO 80045 USA
| | - Satish K. Garg
- Barbara Davis Center for Diabetes, University of Colorado Denver, 1775 Aurora Ct, Rm 1324, Aurora, CO 80045 USA
| |
Collapse
|
36
|
Phillip M, Nimri R, Bergenstal RM, Barnard-Kelly K, Danne T, Hovorka R, Kovatchev BP, Messer LH, Parkin CG, Ambler-Osborn L, Amiel SA, Bally L, Beck RW, Biester S, Biester T, Blanchette JE, Bosi E, Boughton CK, Breton MD, Brown SA, Buckingham BA, Cai A, Carlson AL, Castle JR, Choudhary P, Close KL, Cobelli C, Criego AB, Davis E, de Beaufort C, de Bock MI, DeSalvo DJ, DeVries JH, Dovc K, Doyle FJ, Ekhlaspour L, Shvalb NF, Forlenza GP, Gallen G, Garg SK, Gershenoff DC, Gonder-Frederick LA, Haidar A, Hartnell S, Heinemann L, Heller S, Hirsch IB, Hood KK, Isaacs D, Klonoff DC, Kordonouri O, Kowalski A, Laffel L, Lawton J, Lal RA, Leelarathna L, Maahs DM, Murphy HR, Nørgaard K, O’Neal D, Oser S, Oser T, Renard E, Riddell MC, Rodbard D, Russell SJ, Schatz DA, Shah VN, Sherr JL, Simonson GD, Wadwa RP, Ward C, Weinzimer SA, Wilmot EG, Battelino T. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr Rev 2023; 44:254-280. [PMID: 36066457 PMCID: PMC9985411 DOI: 10.1210/endrev/bnac022] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Indexed: 02/06/2023]
Abstract
The significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers, and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past 6 years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage.
Collapse
Affiliation(s)
- Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
- Sacker Faculty of Medicine, Tel-Aviv University, 39040 Tel-Aviv, Israel
| | - Revital Nimri
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
- Sacker Faculty of Medicine, Tel-Aviv University, 39040 Tel-Aviv, Israel
| | - Richard M Bergenstal
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | | | - Thomas Danne
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Boris P Kovatchev
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Laurel H Messer
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Roy W Beck
- Jaeb Center for Health Research Foundation, Inc., Tampa, FL 33647, USA
| | - Sarah Biester
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Torben Biester
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Julia E Blanchette
- College of Nursing, University of Utah, Salt Lake City, UT 84112, USA
- Center for Diabetes and Obesity, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Hospital and San Raffaele Vita Salute University, Milan, Italy
| | - Charlotte K Boughton
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Marc D Breton
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Sue A Brown
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bruce A Buckingham
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA 94304, USA
| | - Albert Cai
- The diaTribe Foundation/Close Concerns, San Diego, CA 94117, USA
| | - Anders L Carlson
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Jessica R Castle
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pratik Choudhary
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Kelly L Close
- The diaTribe Foundation/Close Concerns, San Diego, CA 94117, USA
| | - Claudio Cobelli
- Department of Woman and Child’s Health, University of Padova, Padova, Italy
| | - Amy B Criego
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Elizabeth Davis
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Perth, Australia
| | - Carine de Beaufort
- Diabetes & Endocrine Care Clinique Pédiatrique DECCP/Centre Hospitalier Luxembourg, and Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch sur Alzette, GD Luxembourg/Department of Paediatrics, UZ-VUB, Brussels, Belgium
| | - Martin I de Bock
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Daniel J DeSalvo
- Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77598, USA
| | - J Hans DeVries
- Amsterdam UMC, University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children’s Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Laya Ekhlaspour
- Lucile Packard Children’s Hospital—Pediatric Endocrinology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Naama Fisch Shvalb
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
| | - Gregory P Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Satish K Garg
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana C Gershenoff
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Linda A Gonder-Frederick
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ahmad Haidar
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Sara Hartnell
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simon Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Irl B Hirsch
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Korey K Hood
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Diana Isaacs
- Cleveland Clinic, Endocrinology and Metabolism Institute, Cleveland, OH 44106, USA
| | - David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA 94010, USA
| | - Olga Kordonouri
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | | | - Lori Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Julia Lawton
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rayhan A Lal
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lalantha Leelarathna
- Manchester University Hospitals NHS Foundation Trust/University of Manchester, Manchester, UK
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA 94304, USA
| | - Helen R Murphy
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen and Department of Clinical Medicine, University of Copenhagen, Gentofte, Denmark
| | - David O’Neal
- Department of Medicine and Department of Endocrinology, St Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Sean Oser
- Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tamara Oser
- Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, and Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Michael C Riddell
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Canada
| | - David Rodbard
- Biomedical Informatics Consultants LLC, Potomac, MD, USA
| | - Steven J Russell
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL 02114, USA
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer L Sherr
- Department of Pediatrics, Yale University School of Medicine, Pediatric Endocrinology, New Haven, CT 06511, USA
| | - Gregg D Simonson
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - R Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Candice Ward
- Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Stuart A Weinzimer
- Department of Pediatrics, Yale University School of Medicine, Pediatric Endocrinology, New Haven, CT 06511, USA
| | - Emma G Wilmot
- Department of Diabetes & Endocrinology, University Hospitals of Derby and Burton NHS Trust, Derby, UK
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Nottingham, England, UK
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children’s Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Mameli C, Smylie GM, Galati A, Rapone B, Cardona-Hernandez R, Zuccotti G, Delvecchio M. Safety, metabolic and psychological outcomes of Medtronic MiniMed 670G in children, adolescents and young adults: a systematic review. Eur J Pediatr 2023; 182:1949-1963. [PMID: 36809498 PMCID: PMC9942055 DOI: 10.1007/s00431-023-04833-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
Hybrid closed loop (HCL) systems are the combination of a pump for insulin delivery and a glucose sensor for continuous glucose monitoring. These systems are managed by an algorithm, which delivers insulin on the basis of the interstitial glucose levels. The MiniMed™ 670G system was the first HCL system available for clinical purpose. In this paper, we reviewed the literature about metabolic and psychological outcomes in children, adolescents and young adults with type 1 diabetes treated with MiniMed™ 670G. Only 30 papers responded to the inclusion criteria and thus were considered. All the papers show that the system is safe and effective in managing glucose control. Metabolic outcomes are available up to 12 months of follow-up; longer study period are lacking. This HCL system may improve HbA1c up to 7.1% and time in range up to 73%. The time spent in hypoglycaemia is almost neglectable. Better improvement in blood glucose control is observed in patients with higher HbA1c at HCL system start and larger daily use of auto-mode functionality. Conclusion: The Medtronic MiniMed™ 670G is safe and well accepted, without any increase in the burden for patients. Some papers report an improvement in the psychological outcomes, but other papers do not confirm this finding. So far, it significantly improves the management of diabetes mellitus in children, adolescents and young adults. Proper training and support by the diabetes team are mandatory. Studies for a period longer than 1 year would be appreciated to better understand the potentiality of this system. What is Known: • The Medtronic MiniMedTM 670G is a hybrid closed loop system which combines a continuous glucose monitoring sensor with an insulin pump. • It has been the first hybrid closed loop system available for clinical purpose. Adequate training and patients support play a key role in diabetes management. What is New: • The Medtronic MiniMedTM 670G may improve HbA1c and CGM metrics up to 1-year of follow-up, but the improvement appears lower than advanced hybrid closed loop systems. This system is effective to prevent hypoglycaemia. • The psychosocial effects remain less understood in terms of improvement of psychosocial outcomes. The system has been considered to provide flexibility and independence by the patients and their caregivers. The workload required to use this system is perceived as a burden by the patients who decrease the use of auto-mode functionality over time.
Collapse
Affiliation(s)
- Chiara Mameli
- grid.4708.b0000 0004 1757 2822Department of Pediatrics, Buzzi Children’s Hospital, University of Milan, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Giulia Marie Smylie
- grid.4708.b0000 0004 1757 2822Department of Pediatrics, Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Alessio Galati
- Metabolic Disorders and Diabetes Unit, “Giovanni XXIII” Children’s Hospital, AOU Policlinico-Giovanni XXIII, Bari, Italy
| | - Biagio Rapone
- grid.7644.10000 0001 0120 3326Department of Interdisciplinary Medicine, University of Bari “Aldo Moro, 70121 Bari, Italy
| | - Roque Cardona-Hernandez
- grid.411160.30000 0001 0663 8628Division of Pediatric Endocrinology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Gianvincenzo Zuccotti
- grid.4708.b0000 0004 1757 2822Department of Pediatrics, Buzzi Children’s Hospital, University of Milan, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Maurizio Delvecchio
- Metabolic Disorders and Diabetes Unit, "Giovanni XXIII" Children's Hospital, AOU Policlinico-Giovanni XXIII, Bari, Italy.
| |
Collapse
|
38
|
Maahs DM, Prahalad P, Schweiger DŠ, Shalitin S. Diabetes Technology and Therapy in the Pediatric Age Group. Diabetes Technol Ther 2023; 25:S118-S145. [PMID: 36802194 DOI: 10.1089/dia.2023.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- David M Maahs
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Health Research and Policy (Epidemiology), Stanford University, Stanford, CA, USA
| | - Priya Prahalad
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Darja Šmigoc Schweiger
- University Medical Center-University Children's Hospital Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Shlomit Shalitin
- Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
The Advanced Diabetes Technologies for Reduction of the Frequency of Hypoglycemia and Minimizing the Occurrence of Severe Hypoglycemia in Children and Adolescents with Type 1 Diabetes. J Clin Med 2023; 12:jcm12030781. [PMID: 36769430 PMCID: PMC9917934 DOI: 10.3390/jcm12030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Hypoglycemia is an often-observed acute complication in the management of children and adolescents with type 1 diabetes. It causes inappropriate glycemic outcomes and may impair the quality of life in the patients. Severe hypoglycemia with cognitive impairment, such as a convulsion and coma, is a lethal condition and is associated with later-onset cognitive impairment and brain-structural abnormalities, especially in young children. Therefore, reducing the frequency of hypoglycemia and minimizing the occurrence of severe hypoglycemia are critical issues in the management of children and adolescents with type 1 diabetes. Advanced diabetes technologies, including continuous glucose monitoring and sensor-augmented insulin pumps with low-glucose suspension systems, can reduce the frequency of hypoglycemia and the occurrence of severe hypoglycemia without aggravating glycemic control. The hybrid closed-loop system, an automated insulin delivery system, must be the most promising means to achieve appropriate glycemic control with preventing severe hypoglycemia. The use of these advanced diabetes technologies could improve glycemic outcomes and the quality of life in children and adolescents with type 1 diabetes.
Collapse
|
40
|
Garg SK, Grunberger G, Weinstock R, Lawson ML, Hirsch IB, DiMeglio LA, Pop-Busui R, Philis-Tsimikas A, Kipnes M, Liljenquist DR, Brazg RL, Kudva YC, Buckingham BA, McGill JB, Carlson AL, Criego AB, Christiansen MP, Kaiserman KB, Griffin KJ, Forlenza GP, Bode BW, Slover RH, Keiter A, Ling C, Marinos B, Cordero TL, Shin J, Lee SW, Rhinehart AS, Vigersky RA. Improved Glycemia with Hybrid Closed-Loop Versus Continuous Subcutaneous Insulin Infusion Therapy: Results from a Randomized Controlled Trial. Diabetes Technol Ther 2023; 25:1-12. [PMID: 36472543 PMCID: PMC10081723 DOI: 10.1089/dia.2022.0421] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: To evaluate safety and effectiveness of MiniMed™ 670G hybrid closed loop (HCL) in comparison with continuous subcutaneous insulin infusion (CSII) therapy for 6 months in persons with type 1 diabetes (T1D). Methods: Adults (aged 18-80 years), adolescents, and children (aged 2-17 years) with T1D who were using CSII therapy were enrolled and randomized (1:1) to 6 months of HCL intervention (n = 151, mean age of 39.9 ± 19.8 years) or CSII without continuous glucose monitoring (n = 151, 35.7 ± 18.4 years). Primary effectiveness endpoints included change in A1C for Group 1 (baseline A1C >8.0%), from baseline to the end of study, and difference in the end of study percentage of time spent below 70 mg/dL (%TBR <70 mg/dL) for Group 2 (baseline A1C ≤8.0%), to show superiority of HCL intervention versus control. Secondary effectiveness endpoints were change in A1C and %TBR <70 mg/dL for Group 2 and Group 1, respectively, to show noninferiority of HCL intervention versus control. Primary safety endpoints were rates of severe hypoglycemia and diabetic ketoacidosis (DKA). Results: Change in A1C and difference in %TBR <70 mg/dL for the overall group were significantly improved, in favor of HCL intervention. In addition, a significant mean (95% confidence interval) change in A1C was observed for both Group 1 (-0.8% [-1.1% to -0.4%], P < 0.0001) and Group 2 (-0.3% [-0.5% to -0.1%], P < 0.0001), in favor of HCL intervention. The same was observed for difference in %TBR <70 mg/dL for Group 1 (-2.2% [-3.6% to -0.9%]) and Group 2 (-4.9% [-6.3% to -3.6%]) (P < 0.0001 for both). There was one DKA event during run-in and six severe hypoglycemic events: two during run-in and four during study (HCL: n = 0 and CSII: n = 4 [6.08 per 100 patient-years]). Conclusions: This RCT demonstrates that the MiniMed 670G HCL safely and significantly improved A1C and %TBR <70 mg/dL compared with CSII control in persons with T1D, irrespective of baseline A1C level.
Collapse
Affiliation(s)
- Satish K. Garg
- Barbara Davis Center for Diabetes, Aurora, Colorado, USA
| | | | | | | | | | - Linda A. DiMeglio
- Indiana University—Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Rodica Pop-Busui
- University of Michigan Health System—University Hospital, Ann Arbor, Michigan, USA
| | | | - Mark Kipnes
- Diabetes and Glandular Disease Clinic, San Antonio, Texas, USA
| | | | | | | | | | - Janet B. McGill
- Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Anders L. Carlson
- Park Nicollet International Diabetes Center, Minneapolis, Minnesota, USA
| | - Amy B. Criego
- Park Nicollet International Diabetes Center, Minneapolis, Minnesota, USA
| | | | | | - Kurt J. Griffin
- University of South Dakota—Sanford Research, Sioux Falls, South Dakota, USA
| | - Greg P. Forlenza
- Barbara Davis Center for Childhood Diabetes, Aurora, Colorado, USA
| | | | - Robert H. Slover
- Barbara Davis Center for Childhood Diabetes, Aurora, Colorado, USA
| | | | | | | | | | - John Shin
- Medtronic, Northridge, California, USA
| | | | | | | |
Collapse
|
41
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 7. Diabetes Technology: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S111-S127. [PMID: 36507635 PMCID: PMC9810474 DOI: 10.2337/dc23-s007] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
42
|
Seget S, Tekielak A, Rusak E, Jarosz-Chobot P. Commercial hybrid closed-loop systems available for a patient with type 1 diabetes in 2022. Pediatr Endocrinol Diabetes Metab 2023; 29:30-36. [PMID: 37218723 PMCID: PMC10226452 DOI: 10.5114/pedm.2023.126359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/27/2022] [Indexed: 05/24/2023]
Abstract
Technological advances offer the opportunity to improve glycemic control and reduce the risk of complications and burden of type 1 diabetes while improving patient quality of life. Closed-loop insulin delivery systems take the technology to a larger scale by integrating CGM systems with an insulin pump and an algorithm that automates insulin delivery (HCL systems). Several systems using hybrid closed loop technology are currently offered in the global marketplace: the MiniMed™ 670G and MiniMed™ 780G (SmartGuard™) system from Medtronic; the T slim x2 Control IQ from Tandem; the Omnipod5 automated mode (HypoProtect™)5 from Insulet; and the CamAPS FX DanaRS or Ypso pump. Insulet's Omnipod5 automated mode (HypoProtect™) is currently in clinical trials. As technology moves forward, advanced systems are being developed that include an elaborate algorithm with individualization of major target points, automated correction bolus functionality, and increased stability of the automated mode (Advanced Hybrid Closed-Loop - AHCL systems). The AHCL systems include: MiniMed™ 780G (SmartGuard™); Tandem's T slim x2 Control IQ; Insulet's Omnipod5-Automated mode (HypoProtect™); and CamAPS FX. The purpose of this paper is to present commercial devices using HCL and AHCL in 2022, also from a scientific point of view. It is an undeniable fact that "auto-mode" systems represent a new stage that can be confidently called a revolution in diabetology.
Collapse
Affiliation(s)
- Sebastian Seget
- Department of Children’s Diabetology, Medical University of Silesia, Katowice, Poland
| | - Anna Tekielak
- Students’ Scientific Association at the Department of Children’s Diabetology, Medical University of Silesia, Katowice, Poland
| | - Ewa Rusak
- Department of Children’s Diabetology, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
43
|
Abraham MB, Karges B, Dovc K, Naranjo D, Arbelaez AM, Mbogo J, Javelikar G, Jones TW, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2022: Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 2022; 23:1322-1340. [PMID: 36537534 PMCID: PMC10107518 DOI: 10.1111/pedi.13443] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mary B Abraham
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Naranjo
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Ana Maria Arbelaez
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joyce Mbogo
- Department of Pediatric and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Ganesh Javelikar
- Department of Endocrinology and Diabetes, Max Super Speciality Hospital, New Delhi, India
| | - Timothy W Jones
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Farid H Mahmud
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Piccini B, Pessina B, Casalini E, Lenzi L, Toni S. Long-term effectiveness of advanced hybrid closed loop in children and adolescents with type 1 diabetes. Pediatr Diabetes 2022; 23:1647-1655. [PMID: 36317539 DOI: 10.1111/pedi.13440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Advanced hybrid closed loop (AHCL) systems are the newest tool to improve metabolic control in type 1 diabetes (T1D). Long-term glycemic control of children and adolescents with T1D switching to MiniMed™ 780G in a real clinical setting was evaluated. METHODS Time in range (TIR) and in different glucose ranges, glycemic variability indexes, HbA1c and basal-bolus insulin distribution were evaluated in 44 subjects (mean age 14.2 ± 4.0 years, 22 males) during manual mode period, first 14 days (A14d) and first month after auto-mode activation (A1M), first 14 days after 3 months (A3M) and 6 months (A6M) in auto-mode. RESULTS Mean TIR at A14d was 76.3 ± 9.6% versus 69.3 ± 12.6% in manual mode (p < 0.001), and this improvement was maintained over 6 months. Subjects with TIR >70% and >80% in manual mode were 45% and 23%, respectively, and increased to 80% (p = 0.041) and 41% (p = 0.007) at A14d. Basal-bolus distribution changed in favor of bolus, and auto-correction boluses inversely correlated with TIR. HbA1c was 7.2 ± 0.7% (55 mmol/mol) at baseline and significantly improved after 3 months (6.7 ± 0.5%, 50 mmol/mol, p < 0.001) and 6 months (6.6 ± 0.5%, 49 mmol/mol, p < 0.001). TIR was higher in individuals >13 years at all time periods (p < 0.001). Glycemic target <120 mg/dl was associated with better TIR. CONCLUSIONS AHCL MiniMed™ 780G allowed rapid and sustained improvement of glycemic control in young T1D patients, reaching recommended TIR. Teenagers showed good technology adherence with optimal TIR, maintained better over time compared to younger children. Stricter settings were associated with better metabolic control, without increase in severe hypoglycemia occurrence.
Collapse
Affiliation(s)
- Barbara Piccini
- Diabetology Unit, Meyer University Children's Hospital, Florence, Italy
| | - Benedetta Pessina
- Department of Pediatrics, Meyer University Children's Hospital, University of Florence, Florence, Italy
| | - Emilio Casalini
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genoa, Italy
| | - Lorenzo Lenzi
- Diabetology Unit, Meyer University Children's Hospital, Florence, Italy
| | - Sonia Toni
- Diabetology Unit, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
45
|
Pauley ME, Tommerdahl KL, Snell-Bergeon JK, Forlenza GP. Continuous Glucose Monitor, Insulin Pump, and Automated Insulin Delivery Therapies for Type 1 Diabetes: An Update on Potential for Cardiovascular Benefits. Curr Cardiol Rep 2022; 24:2043-2056. [PMID: 36279036 PMCID: PMC9589770 DOI: 10.1007/s11886-022-01799-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW The incidence of type 1 diabetes (T1D) is rising in all age groups. T1D is associated with chronic microvascular and macrovascular complications but improving glycemic trends can delay the onset and slow the progression of these complications. Utilization of technological devices for diabetes management, such as continuous glucose monitors (CGM) and insulin pumps, is increasing, and these devices are associated with improvements in glycemic trends. Thus, device use may be associated with long-term prevention of T1D complications, yet few studies have investigated the direct impacts of devices on chronic complications in T1D. This review will describe common diabetes devices and combination systems, as well as review relationships between device use and cardiovascular outcomes in T1D. RECENT FINDINGS Findings from existing cohort and national registry studies suggest that pump use may aid in improving cardiovascular risk factors such as hypertension and dyslipidemia. Furthermore, pump users have been shown to have lower arterial stiffness and better measures of myocardial function. In registry and case-control longitudinal data, pump use has been associated with fewer cardiovascular events and reduction of cardiovascular disease (CVD) and all-cause mortality. CVD is the leading cause of morbidity and mortality in T1D. Consistent use of diabetes devices may protect against the development and progression of macrovascular complications such as CVD through improvement in glycemic trends. Existing literature is limited, but findings suggest that pump use may reduce acute cardiovascular risk factors as well as chronic cardiovascular complications and overall mortality in T1D.
Collapse
Affiliation(s)
- Meghan E Pauley
- Department of Pediatrics, Section of Pediatric Endocrinology, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Kalie L Tommerdahl
- Department of Pediatrics, Section of Pediatric Endocrinology, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Ludeman Family Center for Women's Health Research, University of Colorado School of Medicine, Aurora, CO, USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gregory P Forlenza
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
46
|
Sherr JL, Schoelwer M, Dos Santos TJ, Reddy L, Biester T, Galderisi A, van Dyk JC, Hilliard ME, Berget C, DiMeglio LA. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetes technologies: Insulin delivery. Pediatr Diabetes 2022; 23:1406-1431. [PMID: 36468192 DOI: 10.1111/pedi.13421] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jennifer L Sherr
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Melissa Schoelwer
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Leenatha Reddy
- Department of Pediatrics Endocrinology, Rainbow Children's Hospital, Hyderabad, India
| | - Torben Biester
- AUF DER BULT, Hospital for Children and Adolescents, Hannover, Germany
| | - Alfonso Galderisi
- Department of Woman and Child's Health, University of Padova, Padova, Italy
| | | | - Marisa E Hilliard
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Cari Berget
- Barbara Davis Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Messer LH, Buckingham BA, Cogen F, Daniels M, Forlenza G, Jafri RZ, Mauras N, Muir A, Wadwa RP, White PC, Russell SJ, Damiano ER, El-Khatib FH, Ruedy KJ, Balliro CA, Li Z, Marak MC, Calhoun P, Beck RW. Positive Impact of the Bionic Pancreas on Diabetes Control in Youth 6-17 Years Old with Type 1 Diabetes: A Multicenter Randomized Trial. Diabetes Technol Ther 2022; 24:712-725. [PMID: 36173237 PMCID: PMC9529304 DOI: 10.1089/dia.2022.0201.pub] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: To evaluate the insulin-only configuration of the iLet® bionic pancreas (BP) in youth 6-17 years old with type 1 diabetes (T1D). Research Design and Methods: In this multicenter, randomized, controlled trial, 165 youth with T1D (6-17 years old; baseline HbA1c 5.8%-12.2%; 35% using multiple daily injections, 36% using an insulin pump without automation, 4% using an insulin pump with low glucose suspend, and 25% using a hybrid closed-loop system before the study) were randomly assigned 2:1 to use BP (n = 112) with insulin aspart or insulin lispro (BP group) or to a control group (n = 53) using their personal standard care insulin delivery (SC group) plus real-time continuous glucose monitoring (CGM). The primary outcome was HbA1c at 13 weeks. Results: Mean HbA1c decreased from 8.1% ± 1.2% at baseline to 7.5% ± 0.7% at 13 weeks with BP versus 7.8% ± 1.1% at both baseline and 13 weeks with SC (adjusted difference = -0.5%, 95% CI -0.7% to -0.2%, P < 0.001). Participants with baseline HbA1c ≥9.0% (n = 34) decreased mean HbA1c from 9.7% ± 0.8% to 7.9% ± 0.6% after 13 weeks with BP compared with 9.7% ± 0.5% to 9.8% ± 0.8% with SC. Over 13 weeks, mean time in range (TIR) 70-180 mg/dL increased by 10% (2.4 h per day) and mean CGM glucose was reduced by 15 mg/dL with BP compared with SC (P < 0.001). Analyses of time >180 mg/dL, time >250 mg/dL, and standard deviation of CGM glucose favored BP (P < 0.001). Time <54 mg/dL was low at baseline (median 0.2%) and not significantly different between groups over 13 weeks (P = 0.24). A severe hypoglycemia event occurred in 3 (2.7%) participants in the BP group and in 1 (1.9%) in the SC group. Conclusions: In youth 6-17 years old with T1D, use of insulin-only configuration of BP improved HbA1c, TIR, and hyperglycemic metrics without increasing CGM-measured hypoglycemia compared with standard of care. Improvement in glycemic metrics was most pronounced in participants with high baseline HbA1c levels. Clinical Trial Registry: clinicaltrials.gov; NCT04200313.
Collapse
Affiliation(s)
- Laurel H. Messer
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Bruce A. Buckingham
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Palo Alto, California, USA
| | - Fran Cogen
- Department of Endocrinology and Diabetes, Children's National Medical Center, Washington, District of Columbia, USA
| | - Mark Daniels
- Endocrinology and Diabetes Division, Children's Hospital of Orange County, Orange, California, USA
| | - Greg Forlenza
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Rabab Z. Jafri
- Division of Pediatric Endocrinology and Diabetes, University of Texas Health Science Center, San Antonio, San Antonio, Texas, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes & Metabolism, Department of Pediatrics, Nemours Children's Health System, Jacksonville, Florida, USA
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - R. Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Perrin C. White
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steven J. Russell
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward R. Damiano
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Beta Bionics, Concord, Massachusetts, USA
| | - Firas H. El-Khatib
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Beta Bionics, Concord, Massachusetts, USA
| | | | - Courtney A. Balliro
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zoey Li
- JAEB Center for Health Research, Tampa, Florida, USA
| | | | - Peter Calhoun
- JAEB Center for Health Research, Tampa, Florida, USA
| | - Roy W. Beck
- JAEB Center for Health Research, Tampa, Florida, USA
| |
Collapse
|
49
|
Lynch J, Kanapka LG, Russell SJ, Damiano ER, El-Khatib FH, Ruedy KJ, Balliro C, Calhoun P, Beck RW. The Insulin-Only Bionic Pancreas Pivotal Trial Extension Study: A Multi-Center Single-Arm Evaluation of the Insulin-Only Configuration of the Bionic Pancreas in Adults and Youth with Type 1 Diabetes. Diabetes Technol Ther 2022; 24:726-736. [PMID: 36173238 PMCID: PMC9529297 DOI: 10.1089/dia.2022.0341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: To evaluate a transition from standard-of-care (SC) management of type 1 diabetes (any insulin delivery method including hybrid closed-loop systems plus real-time continuous glucose monitoring [CGM]) to use of the insulin-only configuration of the iLet® bionic pancreas (BP) in 90 adults and children (age 6-71 years). Research Design and Methods: After the SC group completed the randomized controlled trial (RCT) portion of the Insulin-Only BP Pivotal Trial, 90 of the 107 participants participated in a 13-week study using the BP. The key outcomes were change from baseline in HbA1c and CGM metrics after 13 weeks on the BP. Results: Using the BP, mean HbA1c decreased from 7.7% ± 1.0% (61 ± 10.9 mmol/mol) at baseline to 7.1% ± 0.6% (54 ± 6.6 mmol/mol) at 13 weeks (mean change -0.55% ± 0.72% [-6 ± 7.9 mmol/mol], P < 0.001), time in range 70-180 mg/dL increased by 12.0% ± 12.5% (from 53% ± 17% to 65% ± 9%, P < 0.001), and mean glucose decreased by -18 ± 23 mg/dL (from 182 ± 32 to 164 ± 15 mg/dL, P < 0.001). The higher the baseline HbA1c level, the greater the change in HbA1c. Results were similar in the adult (N = 42) and pediatric (N = 48) cohorts. Time <70 mg/dL decreased from baseline over the 13 weeks by -0.50% ± 1.86% (P = 0.02), and time <54 mg/dL was similar (change from baseline -0.08% ± 0.59%, P = 0.24). Two severe hypoglycemia events (in same participant) and one diabetic ketoacidosis event occurred. Conclusions: Glycemic control improved after adult and pediatric participants in the SC arm in the Insulin-Only BP Pivotal Trial transitioned to use of the BP. Improvement using the BP was of similar magnitude to that observed during the RCT. ClinicalTrials.gov number, NCT04200313.
Collapse
Affiliation(s)
- Jane Lynch
- Department of Pediatrics, University of Texas Health Sciences Center, San Antonio, San Antonio, Texas, USA
| | | | - Steven J. Russell
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward R. Damiano
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Beta Bionics, Concord, Massachusetts, USA
| | - Firas H. El-Khatib
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Beta Bionics, Concord, Massachusetts, USA
| | | | - Courtney Balliro
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peter Calhoun
- JAEB Center for Health Research, Tampa, Florida, USA
| | - Roy W. Beck
- JAEB Center for Health Research, Tampa, Florida, USA
| |
Collapse
|
50
|
Bombaci B, Passanisi S, Alibrandi A, D’Arrigo G, Patroniti S, Averna S, Salzano G, Lombardo F. One-Year Real-World Study on Comparison among Different Continuous Subcutaneous Insulin Infusion Devices for the Management of Pediatric Patients with Type 1 Diabetes: The Supremacy of Hybrid Closed-Loop Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610293. [PMID: 36011925 PMCID: PMC9408433 DOI: 10.3390/ijerph191610293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
Since their advent in daily clinical practice, continuous subcutaneous insulin infusion (CSII) systems have been increasingly improved, leading to a high percentage of both adult and pediatric patients with diabetes now using insulin pumps. Different types of CSII systems are currently available, which are characterized by different settings and technical features. This longitudinal observational study aims to evaluate real-word glycemic outcomes in children and adolescents with type 1 diabetes using three different CSII devices: hybrid closed-loop (HCL) systems, predictive low glucose (PLGS) systems, and non-automated insulin pumps. The secondary objective was to identify clinical variables that may significantly influence the achievement of therapeutic goals in our study cohort. One-hundred-and-one patients on CSII therapy attending our pediatric diabetes center were enrolled. When compared with the non-automated group, patients using HCL systems showed higher levels of time in target glucose range (p = 0.003) and lower glucose variability (p = 0.008). Similarly, we found significantly better glucose metrics in HCL users in comparison to PLGS patients (time in range p = 0.008; coefficient of variation p = 0.009; time above 250 mg/dL p = 0.007). Multiple linear regression models showed that HCL systems (time in range p < 0.001) and high daily percentage of glycemic sensor use (time in range p = 0.031) are predictors for good glycemic control. The introduction and increasing availability of novel technologies for diabetes represent a promising strategy to improve glycemic control and quality of life in pediatric patients with type 1 diabetes. Our real-world data confirm the superiority of HCL systems in terms of improvement of time spent in the target glucose range, prevention of hypoglycemia, and reduction of glycemic variability.
Collapse
Affiliation(s)
- Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Angela Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, 98124 Messina, Italy
| | - Giulia D’Arrigo
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Serena Patroniti
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Simona Averna
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| |
Collapse
|