1
|
Siddappa NB, Kashi VP, Venkatramanan M, Balasiddaiah A, Jayasuryan N, Mahadevan A, Desai A, Satish KS, Shankar SK, Ravi V, Ranga U. Gene expression analysis from human immunodeficiency virus type 1 subtype C promoter and construction of bicistronic reporter vectors. AIDS Res Hum Retroviruses 2007; 23:1268-78. [PMID: 17961115 DOI: 10.1089/aid.2006.0305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the cloning and sequence analysis of the long terminal repeat (LTR) of several primary HIV-1 subtype C strains of India. Phylogenetically, all the LTRs and the paired env sequences clustered with subtype C reference strains. The LTRs demonstrated extensive polymorphism in the transcription factor binding sites (TFBS) within the enhancer and the modulator regions. We generated reporter vectors under the control of a select subset of the subtype C LTRs. The reporter vectors are distinguished by the simultaneous expression of two independent reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescence protein (EGFP), in response to Tat. Expression of EGFP was facilitated by engineering an internal ribosome entry site (IRES) into the expression cassette. Although subtype C strains cause a large majority of the global infections, and important differences in the transcription factor binding sites have been identified in the subtype C promoter, few reporter vectors containing subtype C-LTR have been described. We analyzed gene expression from the C-LTR reporter vectors in different cell lines under diverse experimental conditions and compared it to the B-LTR reporter vector. The reporter vectors were responsive to Tat derived from diverse viral subtypes. Furthermore, a positive correlation was observed between the expression of the reporter genes and the viral structural protein p24 when the cells were infected with viral molecular clones. The LTR reporters we developed could be of significant use in the study of viral transactivation, in the evaluation of biological properties of viral subtypes, and in the screening for antiviral inhibitors.
Collapse
Affiliation(s)
- Nagadenahalli Byrareddy Siddappa
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Venkatesh Prasanna Kashi
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Mohanram Venkatramanan
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Center for Infectious Medicine, Karolinska Institutet, Department of Medicine Karolinska Huddinge, Stockholm, Sweden
| | - Anangi Balasiddaiah
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Susarla K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Udaykumar Ranga
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
2
|
Siddappa NB, Venkatramanan M, Venkatesh P, Janki MV, Jayasuryan N, Desai A, Ravi V, Ranga U. Transactivation and signaling functions of Tat are not correlated: biological and immunological characterization of HIV-1 subtype-C Tat protein. Retrovirology 2006; 3:53. [PMID: 16916472 PMCID: PMC1564039 DOI: 10.1186/1742-4690-3-53] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 08/18/2006] [Indexed: 12/04/2022] Open
Abstract
Background Of the diverse subtypes of Human Immunodeficiency Virus Type-1 (HIV-1), subtype-C strains cause a large majority of infections worldwide. The reasons for the global dominance of HIV-1 subtype-C infections are not completely understood. Tat, being critical for viral infectivity and pathogenesis, may differentially modulate pathogenic properties of the viral subtypes. Biochemical studies on Tat are hampered by the limitations of the current purification protocols. Tat purified using standard protocols often is competent for transactivation activity but defective for a variety of other biological functions. Keeping this limitation in view, we developed an efficient protein purification strategy for Tat. Results Tat proteins obtained using the novel strategy described here were free of contaminants and retained biological functions as evaluated in a range of assays including the induction of cytokines, upregulation of chemokine coreceptor, transactivation of the viral promoter and rescue of a Tat-defective virus. Given the highly unstable nature of Tat, we evaluated the effect of the storage conditions on the biological function of Tat following purification. Tat stored in a lyophilized form retained complete biological activity regardless of the storage temperature. To understand if variations in the primary structure of Tat could influence the secondary structure of the protein and consequently its biological functions, we determined the CD spectra of subtype-C and -B Tat proteins. We demonstrate that subtype-C Tat may have a relatively higher ordered structure and be less flexible than subtype-B Tat. We show that subtype-C Tat as a protein, but not as a DNA expression vector, was consistently inferior to subtype-B Tat in a variety of biological assays. Furthermore, using ELISA, we evaluated the anti-Tat antibody titers in a large number of primary clinical samples (n = 200) collected from all four southern Indian states. Our analysis of the Indian populations demonstrated that Tat is non-immunodominant and that a large variation exists in the antigen-specific antibody titers. Conclusion Our report not only describes a simple protein purification strategy for Tat but also demonstrates important structural and functional differences between subtype-B and -C Tat proteins. Furthermore, this is the first report of protein purification and characterization of subtype-C Tat.
Collapse
Affiliation(s)
- Nagadenahalli Byrareddy Siddappa
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Mohanram Venkatramanan
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Prasanna Venkatesh
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Udaykumar Ranga
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
3
|
Wilkinson DS, Ogden SK, Stratton SA, Piechan JL, Nguyen TT, Smulian GA, Barton MC. A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Mol Cell Biol 2005; 25:1200-12. [PMID: 15657445 PMCID: PMC544019 DOI: 10.1128/mcb.25.3.1200-1212.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We purified the oncoprotein SnoN and found that it functions as a corepressor of the tumor suppressor p53 in the regulation of the hepatic alpha-fetoprotein (AFP) tumor marker gene. p53 promotes SnoN and histone deacetylase interaction at an overlapping Smad binding, p53 regulatory element (SBE/p53RE) in AFP. Comparison of wild-type and p53-null mouse liver tissue by using chromatin immunoprecipitation (ChIP) reveals that the absence of p53 protein correlates with the disappearance of SnoN at the SBE/p53RE and loss of AFP developmental repression. Treatment of AFP-expressing hepatoma cells with transforming growth factor-beta1 (TGF-beta1) induced SnoN transcription and Smad2 activation, concomitant with AFP repression. ChIP assays show that TGF-beta1 stimulates p53, Smad4, P-Smad2 binding, and histone H3K9 deacetylation and methylation, at the SBE/p53RE. Depletion, by small interfering RNA, of SnoN and/or p53 in hepatoma cells disrupted repression of AFP transcription. These findings support a model of cooperativity between p53 and TGF-beta effectors in chromatin modification and transcription repression of an oncodevelopmental tumor marker gene.
Collapse
Affiliation(s)
- Deepti S Wilkinson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Long L, Spear BT. FoxA proteins regulate H19 endoderm enhancer E1 and exhibit developmental changes in enhancer binding in vivo. Mol Cell Biol 2004; 24:9601-9. [PMID: 15485926 PMCID: PMC522251 DOI: 10.1128/mcb.24.21.9601-9609.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple enhancers govern developmental and tissue-specific expression of the H19-Igf2 locus, but factors that bind these elements have not been identified. Using chromatin immunoprecipitation, we have found two FoxA binding sites in the H19 E1 enhancer. Mutating these sites diminishes E1 activity in hepatoma cells. Additional chromatin immunoprecipitations show that FoxA binds to E1 in fetal liver, where H19 is abundantly expressed, but that binding decreases in adult liver, where H19 is no longer transcribed, even though FoxA proteins are present at both times. FoxA proteins are induced when F9 embryonal carcinoma cells differentiate into visceral endoderm (VE) and parietal endoderm (PE). We show that FoxA binds E1 in VE cells, where H19 is expressed, but not in PE cells, where H19 is silent. This correlation between FoxA binding and H19 expression indicates a role for FoxA in regulating H19, including developmental activation in the yolk sac and liver and postnatal repression in the liver. This is the first demonstration of a tissue-specific factor involved in developmental control of H19 expression. These data also indicate that the presence of FoxA proteins is not sufficient for binding but that additional mechanisms must govern the accessibility of FoxA proteins to their cognate binding sites within the H19 E1 enhancer.
Collapse
Affiliation(s)
- Lingyun Long
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose St., Lexington, KY 40536-0298, USA
| | | |
Collapse
|
5
|
Long L, Davidson JN, Spear BT. Striking differences between the mouse and the human alpha-fetoprotein enhancers. Genomics 2004; 83:694-705. [PMID: 15028291 DOI: 10.1016/j.ygeno.2003.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 09/11/2003] [Indexed: 11/30/2022]
Abstract
The alpha-fetoprotein (AFP) gene is expressed abundantly in the fetal liver and transcriptionally repressed in the adult liver, but can be reactivated during liver regeneration and in liver tumors. Previous studies identified three enhancers, E1, E2, and E3, upstream of the mouse and rat Afp genes and a single enhancer upstream of the human gene. We have compared the sequences upstream of the rodent and primate AFP genes. Our analysis demonstrates that the previously identified human enhancer is the counterpart to mouse E2. This comparison also reveals that a functional primate counterpart to the rodent E1 is absent due to a deletion that removes the core region of this enhancer. Furthermore, our studies identify a novel human enhancer corresponding to rodent E3. Despite the overall similarity of E3 between human and mouse, we found differences in transcription factor binding sites between these species. A C/EBP binding site is conserved but two other motifs in rodent E3, one that binds orphan nuclear receptors and a second that binds FoxA proteins, are not conserved in humans. The human counterpart to the rodent FoxA site can bind COUP-TF factors. Despite the overall sequence similarity in E3 between mice and humans, the difference in factor binding sites in E3, as well as the absence of E1 in primates, indicates that different mechanisms regulate AFP transcription in these different species.
Collapse
Affiliation(s)
- Lingyun Long
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
6
|
Discovery of mammalian genes that participate in virus infection. BMC Cell Biol 2004; 5:41. [PMID: 15522117 PMCID: PMC534806 DOI: 10.1186/1471-2121-5-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 11/02/2004] [Indexed: 11/10/2022] Open
Abstract
Background Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. Results Candidate genes required for lytic reovirus infection were identified by tagged sequence mutagenesis, a process that permits rapid identification of genes disrupted by gene entrapment. One hundred fifty-one reovirus resistant clones were selected from cell libraries containing 2 × 105 independently disrupted genes, of which 111 contained mutations in previously characterized genes and functionally anonymous transcription units. Collectively, the genes associated with reovirus resistance differed from genes targeted by random gene entrapment in that known mutational hot spots were under represented, and a number of mutations appeared to cluster around specific cellular processes, including: IGF-II expression/signalling, vesicular transport/cytoskeletal trafficking and apoptosis. Notably, several of the genes have been directly implicated in the replication of reovirus and other viruses at different steps in the viral lifecycle. Conclusions Tagged sequence mutagenesis provides a rapid, genome-wide strategy to identify candidate cellular genes required for virus infection. The candidate genes provide a starting point for mechanistic studies of cellular processes that participate in the virus lifecycle and may provide targets for novel anti-viral therapies.
Collapse
|
7
|
Ramakrishna L, Anand KK, Mohankumar KM, Ranga U. Codon optimization of the tat antigen of human immunodeficiency virus type 1 generates strong immune responses in mice following genetic immunization. J Virol 2004; 78:9174-89. [PMID: 15308713 PMCID: PMC506957 DOI: 10.1128/jvi.78.17.9174-9189.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA vaccines have been successful in eliciting potent immune responses in mice. Their efficiency, however, is restricted in larger animals. One reason for the limited performance of the DNA vaccines is the lack of molecular strategies to enhance immune responses. Additionally, genes directly cloned from pathogenic organisms may not be efficiently translated in a heterologous host expression system as a consequence of codon bias. To evaluate the influence of codon optimization on the immune response, we elected to use the Tat antigens of human immunodeficiency virus type 1 (HIV-1) (subtype C) and HIV-2, as these viral antigens are poorly immunogenic in natural infection and in experimental immunization and they are functionally important in viral infectivity and pathogenesis. Substituting codons that are optimally used in the mammalian system, we synthetically assembled Tat genes and compared them with the wild-type counterparts in two different mouse strains. Codon-optimized Tat genes induced qualitatively and quantitatively superior immune responses as measured in a T-cell proliferation assay, enzyme-linked immunospot assay, and chromium release assay. Importantly, while the wild-type genes promoted a mixed Th1-Th2-type cytokine profile, the codon-optimized genes induced a predominantly Th1 profile. Using a pepscan strategy, we mapped an immunodominant T-helper epitope to the core and basic domains of HIV-1 Tat. We also identified cross-clade immune responses between HIV-1 subtype B and C Tat proteins mapped to this T-helper epitope. Developing molecular strategies to optimize the immunogenicity of DNA vaccines is critical for inducing strong immune responses, especially to antigens like Tat. Our identification of a highly conserved T-helper epitope in the first exon of HIV-1 Tat of subtype C and the demonstration of a cross-clade immune response between subtypes B and C are important for a more rational design of an HIV vaccine.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Amino Acid Sequence
- Animals
- Cell Division
- Codon/genetics
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Gene Products, tat/biosynthesis
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Genes, Viral/genetics
- Genetic Vectors/genetics
- HIV Antibodies/analysis
- HIV Antigens/biosynthesis
- HIV Antigens/chemistry
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/immunology
- Immunization
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Protein Biosynthesis
- T-Lymphocytes, Cytotoxic/immunology
- Th1 Cells/immunology
- Transcription, Genetic/genetics
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Lakshmi Ramakrishna
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | | | |
Collapse
|
8
|
Huang MC, Li KK, Spear BT. The mouse alpha-fetoprotein promoter is repressed in HepG2 hepatoma cells by hepatocyte nuclear factor-3 (FOXA). DNA Cell Biol 2002; 21:561-9. [PMID: 12215259 PMCID: PMC1563500 DOI: 10.1089/104454902320308933] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The mouse alpha-fetoprotein gene is expressed at high levels in the fetal liver and is transcriptionally silenced at birth. The repression is governed, at least in part, by the 250 base pair (bp) AFP promoter. We show here that the AFP promoter is dramatically repressed by HNF3 in HepG2 hepatoma cells. This repression is governed by the region between -205 and -150. Furthermore, this fragment can confer HNF3-mediated repression on a heterologous promoter. The repression is abolished by a mutation that is centered at -165. EMSA analyses using in vivo and in vitro synthesized proteins indicate that HNF3 proteins do not bind DNA from the -205 to -150 region. We propose that HNF3 represses AFP promoter activity through indirect mechanisms that modulate the binding or activity of a liver-enriched factor that interacts with the -165 region of the AFP promoter.
Collapse
Affiliation(s)
- Mei-Chuan Huang
- Department of Microbiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
9
|
Ogden SK, Lee KC, Wernke-Dollries K, Stratton SA, Aronow B, Barton MC. p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression. J Biol Chem 2001; 276:42057-62. [PMID: 11572852 DOI: 10.1074/jbc.c100381200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many of the functions ascribed to p53 tumor suppressor protein are mediated through transcription regulation. We have shown that p53 represses hepatic-specific alpha-fetoprotein (AFP) gene expression by direct interaction with a composite HNF-3/p53 DNA binding element. Using solid-phase, chromatin-assembled AFP DNA templates and analysis of chromatin structure and transcription in vitro, we find that p53 binds DNA and alters chromatin structure at the AFP core promoter to regulate transcription. Chromatin assembled in the presence of hepatoma extracts is activated for AFP transcription with an open, accessible core promoter structure. Distal (-850) binding of p53 during chromatin assembly, but not post-assembly, reverses transcription activation concomitant with promoter inaccessibility to restriction enzyme digestion. Inhibition of histone deacetylase activity by trichostatin-A (TSA) addition, prior to and during chromatin assembly, activated chromatin transcription in parallel with increased core promoter accessibility. Chromatin immunoprecipitation analyses showed increased H3 and H4 acetylated histones at the core promoter in the presence of TSA, while histone acetylation remained unchanged at the site of distal p53 binding. Our data reveal that p53 targets chromatin structure alteration at the core promoter, independently of effects on histone acetylation, to establish repressed AFP gene expression.
Collapse
Affiliation(s)
- S K Ogden
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati and Children's Hospital Research Foundation, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ogden SK, Lee KC, Barton MC. Hepatitis B viral transactivator HBx alleviates p53-mediated repression of alpha-fetoprotein gene expression. J Biol Chem 2000; 275:27806-14. [PMID: 10842185 DOI: 10.1074/jbc.m004449200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is associated with development of hepatocellular carcinoma (HCC). The exact mechanism by which chronic infection with HBV contributes to onset of HCC is unknown. However, previous studies have implicated the HBV transactivator protein, HBx, in progression of HCC through its ability to bind the human tumor suppressor protein, p53. In this study, we have examined the ability of HBx to modify p53 regulation of the HCC tumor marker gene, alpha-fetoprotein (AFP). By utilizing in vitro chromatin assembly of DNA templates prior to transcription analysis, we have demonstrated that HBx functionally disrupts p53-mediated repression of AFP transcription through protein-protein interaction. HBx modification of p53 gene regulation is both tissue-specific and dependent upon the p53 binding element. Our data suggest that the mechanism by which HBx alleviates p53 repression of AFP transcription is through an association with DNA-bound p53, resulting in a loss of p53 interaction with liver-specific transcriptional co-repressors.
Collapse
Affiliation(s)
- S K Ogden
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
11
|
Crowe AJ, Piechan JL, Sang L, Barton MC. S-Phase progression mediates activation of a silenced gene in synthetic nuclei. Mol Cell Biol 2000; 20:4169-80. [PMID: 10805758 PMCID: PMC85786 DOI: 10.1128/mcb.20.11.4169-4180.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant expression of developmentally silenced genes, characteristic of tumor cells and regenerating tissue, is highly correlated with increased cell proliferation. By modeling this process in vitro in synthetic nuclei, we find that DNA replication leads to deregulation of established developmental expression patterns. Chromatin assembly in the presence of adult mouse liver nuclear extract mediates developmental stage-specific silencing of the tumor marker gene alpha-fetoprotein (AFP). Replication of silenced AFP chromatin in synthetic nuclei depletes sequence-specific transcription repressors, thereby disrupting developmentally regulated repression. Hepatoma-derived factors can target partial derepression of AFP, but full transcription activation requires DNA replication. Thus, unscheduled entry into S phase directly mediates activation of a developmentally silenced gene by (i) depleting developmental stage-specific transcription repressors and (ii) facilitating binding of transactivators.
Collapse
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
12
|
Li Y, Glauert HP, Spear BT. Activation of nuclear factor-kappaB by the peroxisome proliferator ciprofibrate in H4IIEC3 rat hepatoma cells and its inhibition by the antioxidants N-acetylcysteine and vitamin E. Biochem Pharmacol 2000; 59:427-34. [PMID: 10644051 DOI: 10.1016/s0006-2952(99)00339-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferators are a class of hepatic carcinogens in rodents and are proposed to act in part by increasing reactive oxygen species such as hydrogen peroxide. We previously showed that treatment of rats with ciprofibrate, a peroxisome proliferator, results in increased hepatic nuclear factor-kappaB (NF-kappaB) DNA binding activity. In this study, we have examined the link between peroxisome proliferators and NF-kappaB activation in hepatoma cell lines to test whether increased nuclear NF-kappaB levels activate NF-kappaB-regulated genes and to determine the mechanism of NF-kappaB activation. Electrophoretic mobility shift assays demonstrated NF-kappaB induction by ciprofibrate in peroxisome proliferator-responsive H4IIEC3 rat hepatoma cells but not in peroxisome proliferator-insensitive HepG2 human hepatoma cell lines. In addition, we found that stably transfected NF-kappaB-regulated reporter genes were activated by ciprofibrate in H4IIEC3 cells. This reporter gene activation was blocked by the antioxidants N-acetylcysteine and vitamin E. These studies suggest that hepatocytes are at least partially responsible for peroxisome proliferator-mediated hepatic NF-kappaB activation, and support the possibility that this activation is dependent upon reactive oxygen species.
Collapse
Affiliation(s)
- Y Li
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
13
|
Li Y, Tharappel JC, Cooper S, Glenn M, Glauert HP, Spear BT. Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB. DNA Cell Biol 2000; 19:113-20. [PMID: 10701777 DOI: 10.1089/104454900314627] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Peroxisome proliferators are a class of hepatic carcinogens in rodents and have been proposed to act in part by increasing oxidative stress. Fatty acyl CoA oxidase (FAO), which is highly induced by peroxisome proliferators, is the hydrogen peroxide-generating enzyme of the peroxisomal beta-oxidation pathway. We previously showed that the treatment of rats and mice with the peroxisome proliferator ciprofibrate resulted in increased hepatic NF-kappaB activity and suggested that this effect may be secondary to the action of H2O-generating enzymes. To test this possibility directly, we have determined whether transient overexpression of FAO, in the absence of peroxisome proliferators, leads to NF-kappaB activation. Here, we show that FAO overexpression in Cos-1 cells, in the presence of an H2O-generating substrate, can activate a NF-kappaB regulated reporter gene. Electrophoretic mobility shift assays further demonstrated that FAO expression increases nuclear NF-kappaB DNA binding activity in a dose-dependent manner. The antioxidants vitamin E and catalase can inhibit this activation. These results indicate that FAO mediates, at least in part, peroxisome proliferator-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Y Li
- Graduate Center for Toxicology, University of Kentucky, Lexington, USA
| | | | | | | | | | | |
Collapse
|
14
|
Crowe AJ, Sang L, Li KK, Lee KC, Spear BT, Barton MC. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the alpha-fetoprotein gene. J Biol Chem 1999; 274:25113-20. [PMID: 10455192 DOI: 10.1074/jbc.274.35.25113] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The alpha-fetoprotein gene (AFP) is tightly regulated at the tissue-specific level, with expression confined to endoderm-derived cells. We have reconstituted AFP transcription on chromatin-assembled DNA templates in vitro. Our studies show that chromatin assembly is essential for hepatic-specific expression of the AFP gene. While nucleosome-free AFP DNA is robustly transcribed in vitro by both cervical (HeLa) and hepatocellular (HepG2) carcinoma extracts, the general transcription factors and transactivators present in HeLa extract cannot relieve chromatin-mediated repression of AFP. In contrast, preincubation with either HepG2 extract or HeLa extract supplemented with recombinant hepatocyte nuclear factor 3 alpha (HNF3alpha), a hepatic-enriched factor expressed very early during liver development, is sufficient to confer transcriptional activation on a chromatin-repressed AFP template. Transient transfection studies illustrate that HNF3alpha can activate AFP expression in a non-liver cellular environment, confirming a pivotal role for HNF3alpha in establishing hepatic-specific gene expression. Restriction enzyme accessibility assays reveal that HNF3alpha promotes the assembly of an open chromatin structure at the AFP promoter. Combined, these functional and structural data suggest that chromatin assembly establishes a barrier to block inappropriate expression of AFP in non-hepatic tissues and that tissue-specific factors, such as HNF3alpha, are required to alleviate the chromatin-mediated repression.
Collapse
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ding H, Benotmane AM, Suske G, Collen D, Belayew A. Functional interactions between Sp1 or Sp3 and the helicase-like transcription factor mediate basal expression from the human plasminogen activator inhibitor-1 gene. J Biol Chem 1999; 274:19573-80. [PMID: 10391891 DOI: 10.1074/jbc.274.28.19573] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basal expression of the human plasminogen activator inhibitor-1 (PAI-1) is mediated by a promoter element named B box that binds the helicase-like transcription factor (HLTF), homologous to SNF/SWI proteins. Electrophoretic mobility shift assays performed on a set of B box point mutants demonstrated two HLTF sites flanking and partially overlapping with a GT box binding Sp1 and Sp3. Mutations affecting either the Sp1/Sp3 or the two HLTF sites inhibited by 6- and 2.5-fold, respectively, transient expression in HeLa cells of a reporter gene fused to the PAI-1 promoter. In Sp1/Sp3-devoid insect cells, co-expression of PAI-1-lacZ with Sp1 or Sp3 led to a 14-26-fold induction while HLTF had no effect. Simultaneous presence of Sp1 or Sp3 and the short HLTF form (initiating at Met-123) provided an additional 2-3-fold synergistic activation suppressed by mutations that prevented HLTF binding. Moreover, a DNA-independent interaction between HLTFMet123 and Sp1/Sp3 was demonstrated by co-immunoprecipitation from HeLa cell extracts and glutathione S-transferase pull-down experiments. The interaction domains were mapped to the carboxyl-terminal region of each protein; deletion of the last 85 amino acids of HLTFMet123 abolished the synergy with Sp1. This is the first demonstration of a functional interaction between proteins of the Sp1 and SNF/SWI families.
Collapse
Affiliation(s)
- H Ding
- Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- A J Crowe
- Department of Molecular Genetics, University of Cincinnati Medical Center, Ohio 45267, USA
| | | |
Collapse
|
17
|
Lee KC, Crowe AJ, Barton MC. p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 1999; 19:1279-88. [PMID: 9891062 PMCID: PMC116057 DOI: 10.1128/mcb.19.2.1279] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 10/27/1998] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of the alpha-fetoprotein (AFP) gene is characteristic of a majority of hepatocellular carcinoma cases and serves as a diagnostic tumor-specific marker. By dissecting regulatory mechanisms through electromobility gel shift, transient-transfection, Western blot, and in vitro transcription analyses, we find that AFP gene expression is controlled in part by mutually exclusive binding of two trans-acting factors, p53 and hepatic nuclear factor 3 (HNF-3). HNF-3 protein activates while p53 represses AFP transcription through sequence-specific binding within the previously identified AFP developmental repressor domain. A single mutation within the DNA binding domain of p53 protein or a mutation of the p53 DNA binding element within the AFP developmental repressor eliminates p53-repressive effects in both transient-transfection and cell-free expression systems. Coexpression of p300 histone acetyltransferase, which has been shown to acetylate p53 and increase specific DNA binding, amplifies the p53-mediated repression. Western blot analysis of proteins present in developmentally staged, liver nuclear extracts reveal a one-to-one correlation between activation of p53 protein and repression of AFP during hepatic development. Induction of p53 in response to actinomycin D or hypoxic stress decreases AFP expression. Studies in fibroblast cells lacking HNF-3 further support a model for p53-mediated repression that is both passive through displacement of a tissue-specific activating factor and active in the presence of tissue-specific corepressors. This mechanism for p53-mediated repression of AFP gene expression may be active during hepatic differentiation and lost in the process of tumorigenesis.
Collapse
Affiliation(s)
- K C Lee
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
18
|
Ding H, Beckers MC, Plaisance S, Marynen P, Collen D, Belayew A. Characterization of a double homeodomain protein (DUX1) encoded by a cDNA homologous to 3.3 kb dispersed repeated elements. Hum Mol Genet 1998; 7:1681-94. [PMID: 9736770 DOI: 10.1093/hmg/7.11.1681] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Target genes for the helicase-like transcription factor (HLTF), a member of the SNF/SWI family, were immunoprecipitated from HeLa chromatin fragments with an anti-HLTF antibody. A 182 bp fragment ( HEFT1 ) presented 87% sequence identity with 3.3 kb dispersed repeats from the 4q35 D4Z4 locus linked to facioscapulohumeral muscular dystrophy (FSHD). The HEFT1 loci were, however, not genetically linked to FSHD. Transfection and in vitro binding studies identified within HEFT1 a promoter whose basal activity required a GC box activated by Sp1 or Sp3. A 4.4 kb homologous transcript was found mostly in human skeletal muscle and heart. A 1.2 kb cDNA fragment was cloned that encoded a 170 amino acid protein (DUX1) with two paired-type homeodomains. In vitro translated DUX1 specifically interacted in electrophoretic mobility shift assay (EMSA) with a P5 oligonucleotide (5'-GATCTGAGTCTAATTGAGAATTACTGTAC-3'). DUX1 co-expression activated up to 5-fold transient expression in insect cells of a minimal promoter-luciferase construct fused to P5. The presence of 20 kDa DUX1 in vivo in rhabdomyosarcoma TE671 cell extracts was shown by western blotting with a rabbit antiserum raised against a DUX1 peptide. This antiserum suppressed a TE671 protein-P5 complex in EMSA with identical migration as the in vitro translated DUX1-P5 complex. Genomic PCR experiments could not identify a gene fragment linking the HEFT1 and DUX1 sequences, which present one mismatch in their overlapping region. However, a similar gene was found in another 3.3 kb element comprising the HEFT1 promoter and a DUX1 -like open reading frame. In addition, homologous gene sequences were identified in 3.3 kb elements of the D4Z4/FSHD locus, considered until now 'junk' DNA.
Collapse
Affiliation(s)
- H Ding
- Centre for Molecular and Vascular Biology and Centre for Human Genetics, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Nilakantan V, Li Y, Spear BT, Glauert HP. Increased liver-specific expression of catalase in transgenic mice. Ann N Y Acad Sci 1996; 804:542-53. [PMID: 8993572 DOI: 10.1111/j.1749-6632.1996.tb18644.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- V Nilakantan
- Graduate Center for Toxicology, University of Kentucky, Lexington 40506, USA
| | | | | | | |
Collapse
|
20
|
Nilakantan V, Li Y, Glauert HP, Spear BT. Increased liver-specific catalase activity in transgenic mice. DNA Cell Biol 1996; 15:625-30. [PMID: 8769564 DOI: 10.1089/dna.1996.15.625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Catalase is the major peroxisomal H2O2-detoxifying enzyme and is thought to be critical in maintaining low H2O2 levels within a cell. It has been proposed that increased H2O2 levels may be involved in oxidative DNA damage and tumor promotion induced by peroxisome proliferators and other xenobiotics. To develop a mouse model system to address this issue, we have generated transgenic mice that exhibit a three- to four-fold increase in liver catalase levels. The activities of fatty acyl coenzyme A (CoA) oxidase and lauric acid hydroxylase were unchanged in transgenic mice, demonstrating that elevated catalase levels did not alter the activity of these other peroxisome proliferator-induced enzymes that produce active oxygen. These mice should help elucidate the role of H2O2 in cellular events mediated by peroxisome proliferators and other xenobiotics.
Collapse
Affiliation(s)
- V Nilakantan
- Graduate Center for Toxicology, University of Kentucky, Lexington 40506, USA
| | | | | | | |
Collapse
|