1
|
Moyne AL, Waite-Cusic J, Harris LJ. Water Application Method Influences Survival or Growth of Escherichia coli on Bulb Onions during Field Curing. J Food Prot 2022; 85:961-972. [PMID: 35333326 DOI: 10.4315/jfp-21-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The impact of water application method on bacterial survival at or after the final irrigation was evaluated in bulb onions during commercially relevant field drying (curing). A three-strain rifampin-resistant cocktail of Escherichia coli was introduced to onions via a single overhead spray application in two separate trials (5.22 [trial 1] or 2.40 [trial 2] log CFU per onion) 2 to 3 days after the final irrigation. Onions were lifted from the soil 8 days after spray inoculation and, in some cases, foliage was removed (topping); onions remained in the field for an additional ca. 2 weeks (total ca. 3 weeks of curing). E. coli populations declined on the onions in the first 4 h after spray inoculation. E. coli was recovered from 38 (48%) or 28 (35%) of 80 whole-onion enrichments at the end of curing in trials 1 or 2, respectively. Topping did not significantly impact the percentage of E. coli-positive onions detected at the end of curing. From 8 h to 21 days, E. coli populations on positive onions ranged from 1 CFU per onion to 7 log CFU per onion in both trials, representing a potential risk of E. coli growth with overhead application of contaminated water at the end of onion production. In trial 2, additional rows of onions were inoculated via a 22-cm subsurface or surface drip irrigation line (1.94 log CFU/mL for 2.5 h). E. coli was detected in 0 (subsurface) and 4 (surface) of 50 whole-onion enrichments 3 h after the initiation of drip irrigation. Positive onions were detected at days 1 (4 of 50) and 7 (1 of 50) with subsurface drip inoculation, and at days 1 (7 of 50), 7 (2 of 50), and 14 (2 of 50) with surface drip inoculation. E. coli was not detected in whole-onion enrichments at the end of curing when inoculated by subsurface (0 of 50) or surface (0 of 50) drip irrigation. Application of contaminated water through drip irrigation, when coupled with field curing, results in low rates of contamination of bulb onions at the time of harvest. HIGHLIGHTS
Collapse
Affiliation(s)
- Anne-Laure Moyne
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California 95616-5270.,Western Center for Food Safety, University of California, Davis, One Shields Avenue, Davis, California 95618
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Linda J Harris
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California 95616-5270.,Western Center for Food Safety, University of California, Davis, One Shields Avenue, Davis, California 95618
| |
Collapse
|
2
|
Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods 2021; 10:foods10092072. [PMID: 34574181 PMCID: PMC8468451 DOI: 10.3390/foods10092072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Microbial disease outbreaks related to fresh produce consumption, including leafy green vegetables, have increased in recent years. Where contamination occurs, pathogen persistence may represent a risk for consumers' health. This study analysed the survival of E. coli and L. innocua on lettuce plants watered with contaminated irrigation water via a single irrigation event and within stored irrigation water. Separate lettuce plants (Lactuca sativa var. capitata) were irrigated with water spiked with Log10 7 cfu/mL of each of the two strains and survival assessed via direct enumeration, enrichment and qPCR. In parallel, individual 20 L water microcosms were spiked with Log10 7 cfu/mL of the individual strains and sampled at similar time points. Both strains were observed to survive on lettuce plants up to 28 days after inoculation. Direct quantification by culture methods showed a Log10 4 decrease in the concentration of E. coli 14 days after inoculation, and a Log10 3 decrease in the concentration of L. innocua 10 days after inoculation. E. coli was detected in water samples up to 7 days after inoculation and L. innocua was detected up to 28 days by direct enumeration. Both strains were recovered from enriched samples up to 28 days after inoculation. These results demonstrate that E. coli and L. innocua strains are able to persist on lettuce after a single contamination event up until the plants reach a harvestable state. Furthermore, the persistence of E. coli and L. innocua in water for up to 28 days after inoculation illustrates the potential for multiple plant contamination events from stored irrigation water, emphasising the importance of ensuring that irrigation water is of a high quality.
Collapse
|
3
|
Gekenidis MT, Rigotti S, Hummerjohann J, Walsh F, Drissner D. Long-Term Persistence of blaCTX-M-15 in Soil and Lettuce after Introducing Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli via Manure or Water. Microorganisms 2020; 8:E1646. [PMID: 33114244 PMCID: PMC7690902 DOI: 10.3390/microorganisms8111646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/03/2023] Open
Abstract
The number of environmental antibiotic-resistant bacteria (ARB) has increased dramatically since the start of antibiotic mass production for broad bacterial infection treatment in 1944. Nowadays, ARB and their resistance-determining genes (ARGs) are readily detected in all environments, including the human food chain. A highly relevant food group in this context is fresh produce, frequent raw consumption of which facilitates direct transfer of ARB and ARGs to the consumer. Here, we investigate the persistence of an extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) pEK499 and its clinically most important ARG (blaCTX-M-15), after introduction via irrigation water or manure into a lettuce-growing system. Culturable ESBL-producing E. coli persisted longest in soil and when introduced via manure (until 9 weeks after introduction), while being undetectable on lettuce beyond day 7. In contrast, qPCR detection of blaCTX-M-15 was much more frequent: introduction via water significantly increased blaCTX-M-15 on lettuce until week 4, as opposed to manure, which affected the soil in the long-term (9 weeks) while leading to blaCTX-M-15 detection on lettuce until day 7 only. Our findings demonstrate long-term persistence of undesired ARB and ARG after their introduction via both irrigation and amendment. Such an understanding of the persistence kinetics of an ESBL-producing E. coli and plasmid-encoded blaCTX-M-15 aids the determination of critical actions in order to mitigate their transfer to the consumer.
Collapse
Affiliation(s)
| | - Serena Rigotti
- Microbiological Food Safety, Agroscope, 8820 Wädenswil, Switzerland;
| | - Jörg Hummerjohann
- Microbiological Food Safety, Agroscope, 3003 Liebefeld, Switzerland;
| | - Fiona Walsh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland;
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany;
| |
Collapse
|
4
|
Doan HK, Antequera-Gómez ML, Parikh AN, Leveau JHJ. Leaf Surface Topography Contributes to the Ability of Escherichia coli on Leafy Greens to Resist Removal by Washing, Escape Disinfection With Chlorine, and Disperse Through Splash. Front Microbiol 2020; 11:1485. [PMID: 32765440 PMCID: PMC7380079 DOI: 10.3389/fmicb.2020.01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
The attachment of foodborne pathogens to leaf surfaces is a complex process that involves multiple physical, chemical, and biological factors. Here, we report the results from a study designed to specifically determine the contribution of spinach leaf surface topography as it relates to leaf axis (abaxial and adaxial) and leaf age (15, 45, and 75 days old) to the ability of Escherichia coli to resist removal by surface wash, to avoid inactivation by chlorine, and to disperse through splash impact. We used fresh spinach leaves, as well as so-called "replicasts" of spinach leaf surfaces in the elastomer polydimethylsiloxane to show that leaf vein density correlated positively with the failure to recover E. coli from surfaces, not only using a simple water wash and rinse, but also a more stringent wash protocol involving a detergent. Such failure was more pronounced when E. coli was surface-incubated at 24°C compared to 4°C, and in the presence, rather than absence, of nutrients. Leaf venation also contributed to the ability of E. coli to survive a 50 ppm available chlorine wash and to laterally disperse by splash impact. Our findings suggest that the topographical properties of the leafy green surface, which vary by leaf age and axis, may need to be taken into consideration when developing prevention or intervention strategies to enhance the microbial safety of leafy greens.
Collapse
Affiliation(s)
- Hung K. Doan
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - María L. Antequera-Gómez
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Atul N. Parikh
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Materials Science and Engineering, University of California, Davis, Davis, CA, United States
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
van Overbeek LS, Wichers JH, van Amerongen A, van Roermund HJW, van der Zouwen P, Willemsen PTJ. Circulation of Shiga Toxin-Producing Escherichia coli Phylogenetic Group B1 Strains Between Calve Stable Manure and Pasture Land With Grazing Heifers. Front Microbiol 2020; 11:1355. [PMID: 32714297 PMCID: PMC7340143 DOI: 10.3389/fmicb.2020.01355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli strains carrying Shiga toxins 1 and 2 (stx1 and stx2), intimin (eae), and hemolysin (ehxA) production genes were found in grass shoot, rhizosphere soil, and stable manure samples from a small-scale cattle farm located at the center of Netherlands, using cultivation-dependent and -independent microbiological detection techniques. Pasture land with grazing heifers in the first year of sampling in 2014 and without grazing cattle in 2015 was physically separated from the stable that housed rose calves during both years. Manure from the stable was applied to pasture via injection into soil once per year in early spring. Among a variety of 35 phylogenetic distinctly related E. coli strains, one large group consisting of 21 closely resembling E. coli O150:H2 (18), O98:H21 (2), and O84:H2 (1) strains, all belonging to phylogenetic group B1 and carrying all screened virulence traits, was found present on grass shoots (10), rhizosphere soil (3), and stable manure (8) in 2014, but not anymore in 2015 when grazing heifers were absent. Presence and absence of these strains, obtained via enrichments, were confirmed via molecular detection using PCR-NALFIA in all ecosystems in both years. We propose that this group of Shiga toxin-producing E. coli phylogenetic group B1 strains was originally introduced via stable manure injection into the pasture. Upon grazing, these potential pathogens proliferated in the intestinal track systems of the heifers resulting in defecation with higher loads of the STEC strain onto the grass cover. The STEC strain was further smeared over the field via the hooves of the heifers resulting in augmentation of the potential pathogen in the pasture in 2014, whereas in 2015, in the absence of heifers, no augmentation occurred and only a more diverse group of potentially mild virulent E. coli phylogenetic group A and B1 strains, indigenous to pasture plants, remained present. Via this model, it was postulated that human pathogens can circulate between plants and farm animals, using the plant as an alternative ecosystem. These data indicate that grazed pasture must be considered as a potential carrier of human pathogenic E. coli strains and possibly also of other pathogens.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Jan H Wichers
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Aart van Amerongen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | | | | | - Peter T J Willemsen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| |
Collapse
|
6
|
Adhikari A, Parraga Estrada KJ, Chhetri VS, Janes M, Fontenot K, Beaulieu JC. Evaluation of ultraviolet (UV-C) light treatment for microbial inactivation in agricultural waters with different levels of turbidity. Food Sci Nutr 2020; 8:1237-1243. [PMID: 32148829 PMCID: PMC7020289 DOI: 10.1002/fsn3.1412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/18/2022] Open
Abstract
Produce growers using surface or well water to irrigate their crops may require an appropriate water treatment system in place to meet the water quality standard imposed by FSMA Produce Safety Rule. This study evaluated the potential of using ultraviolet (UV-C) treatment in reducing the microbial population in agricultural water. Waters with turbidity levels ranging from 10.93 to 23.32 Nephelometric Turbidity Units (NTU) were prepared by mixing pond water and well water. The waters were inoculated with a cocktail of generic Escherichia coli (ATCC 23716, 25922, and 11775) and then treated with UV-C light (20-60 mJ/cm2). All tested doses of the UV-C treatment reduced the E. coli levels significantly (p < .05) in the water samples with the turbidity levels up to 23.32 NTU. The decrease in the turbidity from 23.32 to 10.93 NTU increased the level of reduction by more than 2.15 log most probable number (MPN)/100 ml). UV-C treatment effectively reduces microbial load in agriculture water; however, turbidity of water may significantly affect the disinfection efficacy. The study also demonstrated that sprinkler system resulted in a higher level of contamination of cantaloupes compared with drip irrigation. The results indicated that UV-C treatment could be a promising strategy in reducing the produce safety risks associated with irrigation water.
Collapse
Affiliation(s)
- Achyut Adhikari
- School of Nutrition and Food SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| | | | - Vijay S. Chhetri
- School of Nutrition and Food SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Marlene Janes
- School of Nutrition and Food SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Kathryn Fontenot
- School of Plant, Environmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - John C. Beaulieu
- United States Department of AgricultureAgricultural Research ServiceNew OrleansLAUSA
| |
Collapse
|
7
|
Tyagi D, Kraft AL, Levadney Smith S, Roof SE, Sherwood JS, Wiedmann M, Bergholz TM. Pre-Harvest Survival and Post-Harvest Chlorine Tolerance of Enterohemorrhagic Escherichia coli on Lettuce. Toxins (Basel) 2019; 11:E675. [PMID: 31752303 PMCID: PMC6891304 DOI: 10.3390/toxins11110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
In the field, foodborne pathogens such as enterohemorrhagic Escherichia coli (EHEC) are capable of surviving on produce over time, yet little is known about how these pathogens adapt to this environment. To assess the impact of pre-harvest environmental conditions on EHEC survival, we quantified survival on romaine lettuce under two relative humidity (75% and 45%) and seasonal conditions (March and June). Greenhouse-grown lettuce was spray-inoculated with EHEC and placed in a growth chamber, mimicking conditions typical for June and March in Salinas Valley, California. Bacteria were enumerated on days 0, 1, 3, and 5 post-inoculation. Overall, we found that the effect of relative humidity on EHEC survival depended on the seasonal conditions. Under June seasonal conditions, higher relative humidity led to lower survival, and lower relative humidity led to greater survival, five days post-inoculation. Under March seasonal conditions, the impact of relative humidity on EHEC survival was minimal over the five days. The bacteria were also tested for their ability to survive a chlorine decontamination wash. Inoculated lettuce was incubated under the June 75% relative humidity conditions and then washed with a 50 ppm sodium hypochlorite solution (40 ppm free chlorine). When incubated under June seasonal conditions for three to five days, EHEC strains showed increased tolerance to chlorine (adj. p < 0.05) compared to chlorine tolerance upon inoculation onto lettuce. This indicated that longer incubation on lettuce led to greater EHEC survival upon exposure to chlorine. Subsequent transcriptome analysis identified the upregulation of osmotic and oxidative stress response genes by EHEC after three and five days of incubation on pre-harvest lettuce. Assessing the physiological changes in EHEC that occur during association with pre-harvest lettuce is important for understanding how changing tolerance to post-harvest control measures may occur.
Collapse
Affiliation(s)
- Deepti Tyagi
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Autumn L Kraft
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Sara Levadney Smith
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Sherry E Roof
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Julie S Sherwood
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Teresa M Bergholz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
8
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
9
|
Shaheen MNF, Elmahdy EM, Chawla-Sarkar M. Quantitative PCR-based identification of enteric viruses contaminating fresh produce and surface water used for irrigation in Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21619-21628. [PMID: 31129895 DOI: 10.1007/s11356-019-05435-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Fresh produce irrigated with surface water that may contain pathogens such as enteric viruses can lead to outbreaks of foodborne viral illnesses. In the current study, we performed real-time PCR (qPCR) to monitor the presence of enteric viruses such as human adenoviruses (HAdVs), hepatitis A virus (HAV), rotavirus group A (RVA), and norovirus GI (NoV GI) in surface water and fresh produce that were grown using this surface water in Egypt. Samples were collected on four occasions from different sites located in the Delta and in Greater Cairo, Egypt. Of the 32 water samples and 128 fresh produce samples, 27/32 (84.3%) and 99/128 (77.3%), respectively, were positive for at least one virus. HAdV (30/32) with a mean viral load = 1.5 × 107 genome copies/L (GC/L) was the most commonly detected virus in water, followed by RVA (16/32, with a mean viral load = 2.7 × 105 GC/L), HAV (11/32, with a mean viral load = 1.2 × 104 GC /L), and NoV GI (10/32, with a mean viral load = 3.5 × 103 GC/L). Additionally, HAdV (71/128, with a mean viral load = 9.8 × 105 GC/g) was also the most commonly detected virus in the fresh produce, followed by NoV GI (43/128, with a mean viral load = 4.5 × 103 GC/g), HAV (33/128, with a mean viral load = 6.4 × 103 GC/g), and RVA (25/128, with a mean viral load = 1.5 × 104 GC/g). Our results indicate that fresh produce may be contaminated with a wide range of enteric viruses, and these viruses may originate from virus-contaminated irrigation water. Moreover, this fresh produce may serve as a potential vector for the transmission of viral foodborne illnesses. These findings are important for future risk assessment analysis related to water/foodborne viruses. Graphical abstract . Please provide caption for Graphical AbstractGraphical abstract showing sample collection and processing.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Elmahdy M Elmahdy
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Scheme-XM, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Erickson MC, Liao JY, Payton AS, Cook PW, Ortega YR. Survival and internalization of Salmonella and Escherichia coli O157:H7 sprayed onto different cabbage cultivars during cultivation in growth chambers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3530-3537. [PMID: 30624787 DOI: 10.1002/jsfa.9573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cabbage may become contaminated with enteric pathogens during cultivation. Using multiple cabbage cultivars at two maturity stages (small plants or plants with small heads) in growth chamber studies, the fate (internalization or surface survival) of Salmonella and Escherichia coli O157:H7 (0157) were examined in conjunction with any potential relationships to the plant's antimicrobial content. RESULTS Internalized Salmonella was detected in cabbage within 24 h with prevalence ranging from 62% (16 of 26) for the 'Super Red 80' cultivar to 92% (24 of 26) for the 'Red Dynasty' cultivar. Surface survival of pathogens on small cabbage plants over nine days was significantly affected by cultivar with both pathogens surviving the most on the 'Farao' cultivar and Salmonella and O157 surviving the least on the 'Super Red 80' and 'Capture' cultivars, respectively (P < 0.05). Survival of O157 was slightly higher on cabbage heads for O157 than small plants suggesting that the maturity stage may affect this pathogen's fate. An inverse relationship existed between antimicrobial levels and the pathogen's surface survival on cabbage heads (P < 0.05). CONCLUSIONS The fate of pathogens varied with the cabbage cultivar in growth chamber studies highlighting the potential to explore cultivar in field studies to reduce the risk of microbiological contamination in this crop. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| | - Jye-Yin Liao
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| | - Alison S Payton
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| | - Peter W Cook
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| | - Ynes R Ortega
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| |
Collapse
|
11
|
Erickson MC, Liao JY, Payton AS, Cook PW, Bakker HCDEN, Bautista J, Díaz-Pérez JC. Survival of Salmonella enterica and Escherichia coli O157:H7 Sprayed onto the Foliage of Field-Grown Cabbage Plants. J Food Prot 2019; 82:479-485. [PMID: 30806554 DOI: 10.4315/0362-028x.jfp-18-326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To reduce the number of cabbage pathogen outbreaks, it is essential to understand the fate of enteric pathogens that contaminate plants in the field. To assist in that effort, two independent trials were conducted with a red cultivar (cv. Red Dynasty) and a green cultivar (cv. Bravo F1) of field-grown cabbage ( Brassica oleracea var. capitata). In the first trial, plants with small heads were sprayed with an inoculum containing both attenuated Salmonella enterica Typhimurium and Escherichia coli O157:H7 (5.0 log CFU/mL). Initial pathogen levels (ca. 3.9 log CFU per head), determined through plate count enumeration (limit of detection was 1.3 log CFU/g), dropped precipitously such that 2 days later, they could not be detected by enrichment culture in 22 to 35% of the heads. However, subsequent declines were at a slower rate; no differences were observed between red and green cabbage heads ( P > 0.05), and heads were still positive for the pathogens 22 days after being sprayed with the inoculum. As a result, the logistic model revealed that for every 2 days contaminated cabbage heads remained in the field, the probability of finding a positive sample decreased by a factor of 1.1 (95% confidence interval from 1.0 to 1.2, P = 0.0022) and 1.2 (95% confidence interval from 1.0 to 1.4, P ≤ 0.0001) for Salmonella and E. coli O157:H7, respectively. In the second trial occurring 2 weeks later, plants with medium red or green cabbage heads were sprayed with an inoculum at a dose of 3.5 log CFU/mL. A similar decay in prevalence over time occurred for green cabbage as in trial 1; however, pathogen decline in red cabbage was less in trial 2 than in trial 1. The extended persistence of pathogens in cabbage heads exhibited in both trials infers that harvest of contaminated cabbage destined for raw consumption is risky. Additional field studies are necessary to determine whether similar pathogen fates occur in other regions or climates and to clarify the effect of the maturity of red cabbage on pathogen inactivation.
Collapse
Affiliation(s)
- Marilyn C Erickson
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jye-Yin Liao
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Alison S Payton
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Peter W Cook
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Henk C DEN Bakker
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jesus Bautista
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| | - Juan Carlos Díaz-Pérez
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| |
Collapse
|
12
|
Cook KL, Givan EC, Mayton HM, Parekh RR, Taylor R, Walker SL. Using the agricultural environment to select better surrogates for foodborne pathogens associated with fresh produce. Int J Food Microbiol 2017; 262:80-88. [PMID: 28968533 DOI: 10.1016/j.ijfoodmicro.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/25/2017] [Accepted: 09/24/2017] [Indexed: 01/26/2023]
Abstract
Despite continuing efforts to reduce foodborne pathogen contamination of fresh produce, significant outbreaks continue to occur. Identification of appropriate surrogates for foodborne pathogens facilitates relevant research to identify reservoirs and amplifiers of these contaminants in production and processing environments. Therefore, the objective of this study was to identify environmental Escherichia coli isolates from manures (poultry, swine and dairy) and surface water sources with properties similar to those of the produce associated foodborne pathogens E. coli O157:H7 and Salmonella enterica serotype Typhimurium. The most similar environmental E. coli isolates were from poultry (n=3) and surface water (n=1) sources. The best environmental E. coli surrogates had cell surface characteristics (zeta potential, hydrophobicity and exopolysaccharide composition) that were similar (i.e., within 15%) to those of S. Typhimurium and/or formed biofilms more often when grown in low nutrient media prepared from lettuce lysates (24%) than when grown on high nutrient broth (7%). The rate of attachment of environmental isolates to lettuce leaves was also similar to that of S. Typhimurium. In contrast, E. coli O157:H7, a commonly used E. coli quality control strain and swine isolates behaved similarly; all were in the lowest 10% of isolates for biofilm formation and leaf attachment. These data suggest that the environment may provide a valuable resource for selection of surrogates for foodborne pathogens.
Collapse
Affiliation(s)
- Kimberly L Cook
- USDA-ARS, Food Animal Environmental Systems Research Unit, Bowling Green, KY, USA.
| | - Ethan C Givan
- Western Kentucky University, Department of Public Health, Bowling Green, KY, USA.
| | - Holly M Mayton
- University of California, Bourns College of Engineering, Riverside, CA, USA.
| | - Rohan R Parekh
- USDA-ARS, Food Animal Environmental Systems Research Unit, Bowling Green, KY, USA.
| | - Ritchie Taylor
- Western Kentucky University, Department of Public Health, Bowling Green, KY, USA.
| | - Sharon L Walker
- University of California, Bourns College of Engineering, Riverside, CA, USA.
| |
Collapse
|
13
|
Weller DL, Kovac J, Kent DJ, Roof S, Tokman JI, Mudrak E, Kowalcyk B, Oryang D, Aceituno A, Wiedmann M. Escherichia coli transfer from simulated wildlife feces to lettuce during foliar irrigation: A field study in the Northeastern United States. Food Microbiol 2017; 68:24-33. [PMID: 28800822 DOI: 10.1016/j.fm.2017.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022]
Abstract
Wildlife intrusion has been associated with pathogen contamination of produce. However, few studies have examined pathogen transfer from wildlife feces to pre-harvest produce. This study was performed to calculate transfer coefficients for Escherichia coli from simulated wildlife feces to field-grown lettuce during irrigation. Rabbit feces inoculated with a 3-strain cocktail of non-pathogenic E. coli were placed in a lettuce field 2.5-72 h before irrigation. Following irrigation, the E. coli concentration on the lettuce was determined. After exclusion of an outlier with high E. coli levels (Most Probable Number = 5.94*108), the average percent of E. coli in the feces that transferred to intact lettuce heads was 0.0267% (Standard Error [SE] = 0.0172). Log-linear regression showed that significantly more E. coli transferred to outer leaves compared to inner leaves (Effect = 1.3; 95% Confidence Interval = 0.4, 2.1). Additionally, the percent of E. coli that transferred from the feces to the lettuce decreased significantly with time after fecal placement, and as the distance between the lettuce and the feces, and the lettuce and the sprinklers increased. These findings provide key data that may be used in future quantitative risk assessments to identify potential intervention strategies for reducing food safety risks associated with fresh produce.
Collapse
Affiliation(s)
- Daniel L Weller
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Jasna Kovac
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - David J Kent
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Sherry Roof
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey I Tokman
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | - Erika Mudrak
- Cornell Statistical Consulting Unit, Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | | | - David Oryang
- U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740, USA
| | - Anna Aceituno
- RTI International, 3040 E Cornwallis Rd, Durham, NC 27709, USA
| | - Martin Wiedmann
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Debode J, De Tender C, Soltaninejad S, Van Malderghem C, Haegeman A, Van der Linden I, Cottyn B, Heyndrickx M, Maes M. Chitin Mixed in Potting Soil Alters Lettuce Growth, the Survival of Zoonotic Bacteria on the Leaves and Associated Rhizosphere Microbiology. Front Microbiol 2016; 7:565. [PMID: 27148242 PMCID: PMC4838818 DOI: 10.3389/fmicb.2016.00565] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves.
Collapse
Affiliation(s)
- Jane Debode
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | - Caroline De Tender
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | - Saman Soltaninejad
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
- Technology and Food Science Unit, Institute for Agricultural and Fisheries ResearchMelle, Belgium
| | - Cinzia Van Malderghem
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | - Annelies Haegeman
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | - Inge Van der Linden
- Technology and Food Science Unit, Institute for Agricultural and Fisheries ResearchMelle, Belgium
- Department of Food Safety and Food Quality, Ghent UniversityGhent, Belgium
| | - Bart Cottyn
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Institute for Agricultural and Fisheries ResearchMelle, Belgium
- Department of Pathology, Bacteriology, and Poultry Diseases, Faculty of Veterinary Sciences, Ghent UniversityMerelbeke, Belgium
| | - Martine Maes
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMerelbeke, Belgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhent, Belgium
| |
Collapse
|
15
|
|
16
|
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7457-77. [PMID: 26151764 PMCID: PMC4515668 DOI: 10.3390/ijerph120707457] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.
Collapse
|
17
|
Weller D, Wiedmann M, Strawn LK. Irrigation Is Significantly Associated with an Increased Prevalence of Listeria monocytogenes in Produce Production Environments in New York State. J Food Prot 2015; 78:1132-41. [PMID: 26038903 DOI: 10.4315/0362-028x.jfp-14-584] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Environmental (i.e., meteorological and landscape) factors and management practices can affect the prevalence of foodborne pathogens in produce production environments. This study was conducted to determine the prevalence of Listeria monocytogenes, Listeria species (including L. monocytogenes), Salmonella, and Shiga toxin-producing Escherichia coli (STEC) in produce production environments and to identify environmental factors and management practices associated with their isolation. Ten produce farms in New York State were sampled during a 6-week period in 2010, and 124 georeferenced samples (80 terrestrial, 33 water, and 11 fecal) were collected. L. monocytogenes, Listeria spp., Salmonella, and STEC were detected in 16, 44, 4, and 5% of terrestrial samples, 30, 58, 12, and 3% of water samples, and 45, 45, 27, and 9% of fecal samples, respectively. Environmental factors and management practices were evaluated for their association with terrestrial samples positive for L. monocytogenes or other Listeria species by univariate logistic regression; analysis was not conducted for Salmonella or STEC because the number of samples positive for these pathogens was low. Although univariate analysis identified associations between isolation of L. monocytogenes or Listeria spp. from terrestrial samples and various water-related factors (e.g., proximity to wetlands and precipitation), multivariate analysis revealed that only irrigation within 3 days of sample collection was significantly associated with isolation of L. monocytogenes (odds ratio = 39) and Listeria spp. (odds ratio = 5) from terrestrial samples. These findings suggest that intervention at the irrigation level may reduce the risk of produce contamination.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science, Cornell University, 354 Stocking Hall, Ithaca, New York 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, 354 Stocking Hall, Ithaca, New York 14853, USA
| | - Laura K Strawn
- Department of Food Science, Cornell University, 354 Stocking Hall, Ithaca, New York 14853, USA; Department of Food Science and Technology, Eastern Shore Agriculture Research and Extension Center, Virginia Polytechnic Institute and State University, 33446 Research Drive, Painter, VA 23420, USA.
| |
Collapse
|
18
|
Jacxsens L, Ibañez IC, Gómez-López VM, Fernandes JA, Allende A, Uyttendaele M, Huybrechts I. Belgian and Spanish consumption data and consumer handling practices for fresh fruits and vegetables useful for further microbiological and chemical exposure assessment. J Food Prot 2015; 78:784-95. [PMID: 25836406 DOI: 10.4315/0362-028x.jfp-14-376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A consumer survey was organized in Spain and Belgium to obtain consumption data and to gain insight into consumer handling practices for fresh vegetables consumed raw or minimally processed (i.e., heads of leafy greens, bell peppers, tomatoes, fresh herbs, and precut and packed leafy greens) and fruits to be consumed without peeling (i.e., apples, grapes, strawberries, raspberries, other berries, fresh juices, and precut mixed fruit). This information can be used for microbiological and/or chemical food safety research. After extensive cleanup of rough databases for missing and extreme values and age correction, information from 583 respondents from Spain and 1,605 respondents from Belgium (18 to 65 years of age) was retained. Daily intake (grams per day) was calculated taking into account frequency and seasonality of consumption, and distributions were obtained that can be used in quantitative risk assessment for chemical hazards with chronic effects on human health. Data also were recalculated to obtain discrete distributions of consumption per portion and the corresponding frequency of consumption, which can be used in acute microbiological risk assessment or outbreak investigations. The ranked median daily consumption of fruits and vegetables was similar in Spain and Belgium: apple > strawberry > grapes > strawberries and raspberries; and tomatoes > leafy greens > bell peppers > fresh herbs. However, vegetable consumption was higher (in terms of both portion and frequency of consumption) in Spain than in Belgium, whereas the opposite was found for fruit consumption. Regarding consumer handling practices related to storage time and method, Belgian consumers less frequently stored their fresh produce in a refrigerator and did so for shorter times compared with Spanish consumers. Washing practices for lettuce heads and packed leafy greens also were different. The survey revealed differences between these two countries in consumption and consumer handling practices, which can have an impact on outcomes of future microbiological or chemical risk assessment studies.
Collapse
Affiliation(s)
- L Jacxsens
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - I Castro Ibañez
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia E-30100, Spain
| | - V M Gómez-López
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia E-30100, Spain; Cátedra Alimentos para la Salud, Departamento de Tecnología de la Alimentación y Nutrición, Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Spain
| | - J Araujo Fernandes
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - A Allende
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia E-30100, Spain
| | - M Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - I Huybrechts
- Department of Public Health, Faculty of Medicine and Health Science, Ghent University, De Pintelaan 185 blok A-2, B-9000 Ghent, Belgium; Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
19
|
Garcia BCB, Dimasupil MAZ, Vital PG, Widmer KW, Rivera WL. Fecal contamination in irrigation water and microbial quality of vegetable primary production in urban farms of Metro Manila, Philippines. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:734-743. [PMID: 26273758 DOI: 10.1080/03601234.2015.1048107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microbial contamination of fresh produce can present a severe risk to public health. By conducting a rigorous survey of irrigation waters, the impacts of fecal contamination on the quality of produce could be assessed. In this study, surface waters were observed to be contaminated with Escherichia coli, Salmonella spp., and somatic coliphages. Culture methods show that out of 373 irrigation water, soil, and vegetable samples collected for a 1-year period, 232 (62.20%) were found positive for E. coli, 213 (57.26%) for somatic coliphages, and 2 (0.53%) for Salmonella spp. Out of 190 water samples, 167 (87.9%) were found to have E.coli, 174 (91.6%) have somatic coliphages, and 1 (0.5%) with Salmonella spp. In soil samples, 36 of 91 (39.6%) have E. coli, 31 (34.0%) have somatic coliphages, and none with Salmonella spp. Lastly, out of 92 vegetable samples, 29 (31.5%), 8 (8.7%), and 1 (1.1%) were found to have E. coli, somatic coliphages, and Salmonella spp., respectively. Molecular analysis confirmed the presence of bacterial contaminants. Seasonal weather conditions were noted to have an effect on the presence and number of these fecal indicator organisms. The observed data suggest that contaminated irrigation water may greatly affect the quality of fresh produce from these agricultural operations.
Collapse
Affiliation(s)
- Bea Clarise B Garcia
- a Natural Sciences Research Institute, University of the Philippines , Diliman , Quezon City , Philippines
| | | | | | | | | |
Collapse
|
20
|
Jung Y, Jang H, Matthews KR. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microb Biotechnol 2014; 7:517-27. [PMID: 25251466 PMCID: PMC4265071 DOI: 10.1111/1751-7915.12178] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022] Open
Abstract
The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based 'best practices'. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate 'best practices' are used by sprout growers.
Collapse
Affiliation(s)
- Yangjin Jung
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| | - Hyein Jang
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| |
Collapse
|
21
|
Van Der Linden I, Cottyn B, Uyttendaele M, Berkvens N, Vlaemynck G, Heyndrickx M, Maes M. Enteric pathogen survival varies substantially in irrigation water from Belgian lettuce producers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:10105-24. [PMID: 25268508 PMCID: PMC4210970 DOI: 10.3390/ijerph111010105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/02/2022]
Abstract
It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen's survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen's fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and an important impact on the fitness of the pathogens to sustain and even grow on the leaf surface.
Collapse
Affiliation(s)
- Inge Van Der Linden
- Crop Protection-Plant Sciences Unit-Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium.
| | - Bart Cottyn
- Crop Protection-Plant Sciences Unit-Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium.
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Nick Berkvens
- Crop Protection-Plant Sciences Unit-Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium.
| | - Geertrui Vlaemynck
- Food Safety-Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium.
| | - Marc Heyndrickx
- Food Safety-Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium.
| | - Martine Maes
- Crop Protection-Plant Sciences Unit-Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium.
| |
Collapse
|
22
|
Scientific Opinion on the risk posed by pathogens in food of non‐animal origin. Part 2 (Salmonella and Norovirus in leafy greens eaten raw as salads). EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|