1
|
Cuperus T, Wit B, Castelijn G, Hengeveld P, Opsteegh M, van der Giessen J, Harmanus C, van Prehn J, Kuijper EJ, Smits WK. Clostridioides difficile in calves, cattle and humans from Dutch dairy farms: Predominance of PCR ribotype 695 (clade 5, sequence type 11) in cattle. One Health 2024; 18:100739. [PMID: 38707933 PMCID: PMC11067380 DOI: 10.1016/j.onehlt.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
Background Clostridioides difficile is a leading cause of infectious diarrhea in both humans and livestock. In particular, C. difficile strains belonging to sequence type (ST) 11 are common enteropathogens. The aim of this study was to determine the presence and genetic relatedness of C. difficile types in dairy cattle and calves. Method Dutch dairy farms were visited between February and December 2021. Feces was collected from adult dairy cattle and calves of two age categories (<4 weeks and 4 weeks-4 months). Fecal samples were also requested from dairy farmers, family members and employees. Fecal samples were cultured in an enrichment medium for 10-15 days and subcultured on solid media for capillary PCR ribotyping and whole genome sequencing. Results C. difficile was detected on 31 out of 157 (19.8%) dairy farms. The highest prevalence was found in calves <4 weeks (17.5%). None of the 99 human samples collected were positive. Thirty-seven cultured isolates belonged to 11 different PCR ribotypes (RT) of which RT695 (56.8%) and RT078/126 (16.2%) were most abundant. In the database of the Netherlands National Expertise Centre for C. difficile infections (CDI, >10.000 patient isolates), RT695 was found in only two patients with hospital-onset CDI, diagnosed in 2020 and 2021. Sequence analysis of 21C. difficile RT695 from cattle revealed that all isolates belonged to clade 5, ST11 and contained genes encoding toxin A, toxin B and binary toxin. RT695 strains carried antimicrobial resistance genes typically found in clade 5C. difficile. Groups of genetically related RT695 isolates were found between dairy farms, whereas identical strains were only present in individual farms. Conclusions C. difficile was found in ∼20% of dairy farms with a predominance of the relatively unknown RT695. Isolates of RT695 belonged to the same clade and sequence type as RT078/126, which is recognized as an important zoonotic type.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ben Wit
- Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Greetje Castelijn
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, the Netherlands
| | - Paul Hengeveld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marieke Opsteegh
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joke van der Giessen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Céline Harmanus
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Joffrey van Prehn
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, the Netherlands
- National Expertise Centre for Clostridiodes difficile infections at Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Centre (LUMC), Leiden, the Netherlands and Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ed J. Kuijper
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, the Netherlands
- National Expertise Centre for Clostridiodes difficile infections at Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Centre (LUMC), Leiden, the Netherlands and Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wiep Klaas Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, the Netherlands
- National Expertise Centre for Clostridiodes difficile infections at Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Centre (LUMC), Leiden, the Netherlands and Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
2
|
Lawrence J, Barrow P, Foster N. Porcine Monocyte DNA Traps Formed during Infection with Pathogenic Clostridioides difficile Strains. Pathogens 2024; 13:228. [PMID: 38535571 PMCID: PMC10975479 DOI: 10.3390/pathogens13030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 02/11/2025] Open
Abstract
Clostridioides (Clostridium) difficile is an enteric pathogen of several mammalian species including man, frequently involving nosocomial resurgence, following oral administration of broad-spectrum antibiotics, but also with human-to-human infection occurring, and neonatal pigs with zoonotic transmission. To date, the immune response to C. difficile has mostly focused on neutrophils and cytokine/chemokines, particularly in human infection. The neonatal pig is now recognized as a valuable model for human infection. We show that porcine monocytes respond to C. difficile differently compared with many other bacterial infections. Infection of porcine monocytes with human C. difficile strains CD630 (Ribotype 078) or R20291 (Ribotype 027) for 3 or 24 h post-infection (pi) resulted in a lack of oxidative burst or nitrite ion production when compared to uninfected controls (p > 0.05). The survival dynamics of both CD630 and R20291 in monocytes were similar with intracellular bacterial numbers being similar at 3 h pi and 24 h pi (p > 0.05). However, we show that porcine monocytes entrap C. difficile via extracellular DNA traps. This process began as early as 3 h pi, and at 24 h pi the nuclei appeared to be depleted of DNA, although extracellular DNA was associated with the cell membrane. Our preliminary study also suggests that entrapment of C. difficile by extracellular DNA may occur via a process of monocyte etosis.
Collapse
Affiliation(s)
- Jade Lawrence
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK;
| | - Neil Foster
- Department of Veterinary and Animal Science, SRUC Aberdeen, Craibstone Campus, Aberdeen AB21 9YA, UK
| |
Collapse
|
3
|
Cautivo-Reyes K, Knight DR, Bowie D, Moreira-Grez B, Whiteley AS, Riley TV. Biogeographic distribution and molecular epidemiology of Clostridioides ( Clostridium) difficile in Western Australian soils. Appl Environ Microbiol 2023; 89:e0037923. [PMID: 37823643 PMCID: PMC10617432 DOI: 10.1128/aem.00379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
Clostridioides (Clostridium) difficile is a leading cause of infectious diarrhea in humans and production animals and can be found in a variety of environmental sources. The prevalence and diversity of multi-locus sequence type clade 5 strains of C. difficile in Australian production animals suggest Australia might be the ancestral home of this lineage of One Health importance. To better understand the role of the environment in the colonization of humans and animals in Australia, it is important to investigate these endemic sources. This study describes the prevalence, molecular epidemiology, and biogeographic distribution of C. difficile in soils of Western Australia. A total of 321 soil samples from remote geographical locations across the eight health regions of Western Australia were screened for C. difficile and isolates characterized by PCR ribotyping and toxin gene profiling. C. difficile was isolated from 31.15% of samples, with the highest prevalence in the Perth Metropolitan Health Region (49.25%, n = 33/67). Overall, 52 different strains [PCR ribotypes (RTs)] were identified, with 14 being novel, and 38% (38/100) of isolates being toxigenic, the most common of which was RT014/020. Five unique novel isolates showed characteristics similar to C. difficile clade 5. This is the first study of C. difficile isolated from soils in Australia. The high prevalence and heterogeneity of C. difficile strains recovered suggest that soils play a role in the survival and environmental dissemination of this organism, and potentially its transmission among native wildlife and production animals, and in community and hospital settings.IMPORTANCEClostridium difficile is a pathogen of One Health importance. To better understand the role of the environment in human and animal colonization/infection, it is critical that autochthonous reservoirs/sources of C. difficile be investigated. This is the first study of C. difficile isolated from soils of Western Australia (WA). Here, the ecology of C. difficile in WA is described by examining the geographic distribution, molecular epidemiology, and diversity of C. difficile isolated from soils across WA.
Collapse
Affiliation(s)
- Karla Cautivo-Reyes
- Biosecurity and One Health Research Center, Harry Butler Institute, Murdoch University, Western Australia, Australia
| | - Daniel R. Knight
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Center, Western Australia, Australia
| | - Deborah Bowie
- School of Agriculture and Environment Science, The University of Western Australia, Western Australia, Australia
| | - Benjamin Moreira-Grez
- School of Agriculture and Environment Science, The University of Western Australia, Western Australia, Australia
| | | | - Thomas V. Riley
- Biosecurity and One Health Research Center, Harry Butler Institute, Murdoch University, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Center, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
4
|
Spigaglia P, Barbanti F, Faccini S, Vescovi M, Criscuolo EM, Ceruti R, Gaspano C, Rosignoli C. Clostridioides difficile in Pigs and Dairy Cattle in Northern Italy: Prevalence, Characterization and Comparison between Animal and Human Strains. Microorganisms 2023; 11:1738. [PMID: 37512910 PMCID: PMC10383565 DOI: 10.3390/microorganisms11071738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
It has been observed that novel strains of Clostridioides difficile can rapidly emerge and move between animal and human hosts. The aim of this study was to investigate the prevalence of C. difficile in pigs and dairy cattle in northern Italy and to characterize and compare C. difficile animal strains with those from patients from the same geographical area. The C. difficile strains were isolated from animals from farms and slaughterhouses (cross-sectional studies) and from neonatal animals with enteric disorders in routine diagnostic investigations (passive surveillance). Samples positive for C. difficile were found in 87% of the pig farms and in 40% of the cattle farms involved in the cross-sectional studies, with a 20% prevalence among suckling piglets and 6.7% prevalence in neonatal calves, with no significant difference between animals with and without diarrheal symptoms. The prevalence of C. difficile in older animal categories was significantly lower. This result suggests that young age is an important risk factor for C. difficile colonization. In cross-sectional studies at slaughterhouses, in both the heavy pigs and dairy cows examined, only 2% of the intestinal content samples were positive for C. difficile and no contamination was found on the surface of the carcasses. Considering passive surveillance, the prevalence rates of positive samples were 29% in piglets and 1.4% in calves. Overall, 267 strains of animal origin and 97 from humans were collected. In total, 39 ribotypes (RTs) were identified, with RT 078 and RT 018 being predominant among animals and humans, respectively. Several RTs overlapped between animals and patients. In particular, RT 569 was identified as an emergent type in our country. Resistance to erythromycin and moxifloxacin was widely diffused among C. difficile strains, regardless of origin. This study supports C. difficile as a pathogen of one-health importance and highlights the need for a collaborative approach between physicians and veterinarians to control and prevent infections that are able to cross species and geographical barriers.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Fabrizio Barbanti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | - Mariella Vescovi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | | | - Rossella Ceruti
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Clara Gaspano
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Carlo Rosignoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| |
Collapse
|
5
|
Borji S, Kadivarian S, Dashtbin S, Kooti S, Abiri R, Motamedi H, Moradi J, Rostamian M, Alvandi A. Global prevalence of Clostridioides difficile in 17,148 food samples from 2009 to 2019: a systematic review and meta-analysis. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:36. [PMID: 37072805 PMCID: PMC10114346 DOI: 10.1186/s41043-023-00369-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Clostridioides (Clostridium) difficile is an important infectious pathogen, which causes mild-to-severe gastrointestinal infections by creating resistant spores and producing toxins. Spores contaminated foods might be one of the most significant transmission ways of C. difficile-associated infections. This systematic review and meta-analysis study were conducted to investigate the prevalence of C. difficile in food. METHODS Articles that published the prevalence of C. difficile in food in PubMed, Web of Science, and Scopus databases were retrieved using selected keywords between January 2009 and December 2019. Finally, 17,148 food samples from 60 studies from 20 countries were evaluated. RESULTS The overall prevalence of C. difficile in various foods was 6.3%. The highest and lowest levels of C. difficile contamination were detected to seafood (10.3%) and side dishes (0.8%), respectively. The prevalence of C. difficile was 4% in cooked food, 6.2% in cooked chicken and 10% in cooked seafood. CONCLUSIONS There is still little known concerning the food-borne impact of C. difficile, but the reported contamination might pose a public health risk. Therefore, to improve the food safety and prevent contamination with C. difficile spores, it is necessary to observe hygienic issues during foods preparation, cooking and transfer.
Collapse
Affiliation(s)
- Soroush Borji
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Kooti
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Postal Code: 6714415333, Iran.
| | - Amirhooshang Alvandi
- Department of Microbiology, School of Medicine, Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Postal Code: 6714415333, Iran.
| |
Collapse
|
6
|
Cull C, Singu VK, Cull BJ, Lechtenberg KF, Amachawadi RG, Schutz JS, Bryan KA. Efficacy of Two Probiotic Products Fed Daily to Reduce Clostridium perfringens-Based Adverse Health and Performance Effects in Dairy Calves. Antibiotics (Basel) 2022; 11:1513. [PMID: 36358168 PMCID: PMC9686916 DOI: 10.3390/antibiotics11111513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Clostridium perfringens is a spore-forming, anaerobic bacterium which produces toxins and exoenzymes that cause disease in calves, especially necro-hemorrhagic enteritis-associated diarrhea often resulting in death. Clostridium infections are currently being treated with antibiotics, but even with the prudent administration of antibiotics, there are significant rates of recurrence. Probiotics, an alternative to antibiotics, are commonly employed to prevent clostridial infections. The objectives of our study were to demonstrate that two commercially available products, when used as daily, direct-fed microbials, are effective in reducing adverse effects of an experimentally induced C. perfringens infection in dairy calves. We conducted a single site efficacy study with masking using a randomized design comprising 10 calves allocated to 3 treatment groups (probiotic 1, probiotic 2, and control). The procedures such as general health scores, body weight, blood samples, and fecal sample collections were done followed by experimental challenge of calves with C. perfringens. Daily feeding of L. animalis LA51 and P. freudenreichii PF24 without or with Bacillus lichenformis CH200 and Bacillus subtilis CH201, before, during and after an oral challenge of C. perfringens significantly reduced the incidence and severity of diarrhea while improving general impression and appearance scores of calves. Most notably, survival of calves in the two probiotic-fed groups was significantly higher than for control calves and further substantiates the potential economic and health benefits of feeding effective probiotics.
Collapse
Affiliation(s)
- Charley Cull
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Vijay K. Singu
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Brooke J. Cull
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Kelly F. Lechtenberg
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
7
|
Zlender T, Golob Z, Rupnik M. Low Clostridioides difficile positivity rate in wild animal shelter in Slovenia. Anaerobe 2022; 77:102643. [PMID: 36113734 DOI: 10.1016/j.anaerobe.2022.102643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Here we review literature on Clostridioides difficile in captive wild animals and describe results from a single wild animal shelter in Slovenia. C. difficile was found in four out of 22 samples from animals of 15 different species (mammals n = 3; birds n = 12). Isolates were cultured only from bird samples and typed as RT 078, 002, 014 and additional unknown type. All three known ribotypes are commonly shared between humans and/or animals and environment.
Collapse
Affiliation(s)
- Tanja Zlender
- National Laboratory for Health, Environment and Food, NLZOH, Maribor, Slovenia
| | - Zlatko Golob
- The Wildlife Sanctuary Golob, d. o. o., Muta, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, NLZOH, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Maribor, Slovenia.
| |
Collapse
|
8
|
Clostridioides difficile in Food-Producing Animals in Romania: First Study on the Prevalence and Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11091194. [PMID: 36139973 PMCID: PMC9495095 DOI: 10.3390/antibiotics11091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
At present, the epidemiology of the gastrointestinal disease caused by Clostridioides difficile (C. difficile) is starting to be slowly elucidated internationally, although information about the bacteria in the food supply chain is insufficient and, in many countries, even absent. The study was conducted in order to investigate the prevalence of C. difficile isolated from animal feces, as well as to determine the antimicrobial susceptibility of such isolates. The presence of antibiotic resistance determinants has also been evaluated. Overall, a total of 24 (12.5%) C. difficile isolates were recovered (out of the 192 samples collected), the highest percentage of positive isolates being detected in the fecal samples collected from piglets (25%). The majority of the isolates recovered in the current study proved to be toxigenic. Moreover, all C. difficile isolates were susceptible to vancomycin, although a large proportion of the porcine isolates (50%) were resistant to levofloxacin. The tetW and erm(B) genes have also been identified in the porcine isolates. In conclusion, this is the first analysis of the prevalence of C. difficile in food-producing animals in Romania, and it adds further evidence about the possible role of animals as a source of resistant C. difficile strains and a reservoir of antimicrobial resistance determinants.
Collapse
|
9
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
10
|
Redding LE, Tu V, Abbas A, Alvarez M, Zackular JP, Gu C, Bushman FD, Kelly DJ, Barnhart D, Lee JJ, Bittinger KL. Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations. Anaerobe 2022; 74:102539. [PMID: 35217150 PMCID: PMC9359814 DOI: 10.1016/j.anaerobe.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Objectives: Carriage of Clostridioides difficile by different species of animals has led to speculation that animals could represent a reservoir of this pathogen for human infections. The objective of this study was to compare C. difficile isolates from humans, dogs, and cattle from a restricted geographic area. Methods: C. difficile isolates from 36 dogs and 15 dairy calves underwent whole genome sequencing, and phenotypic assays assessing growth and virulence were performed. Genomes of animal-derived isolates were compared to 29 genomes of isolates from a pediatric population as well as 44 reference genomes. Results: Growth rates and relative cytotoxicity of isolates were significantly higher and lower, respectively, in bovine-derived isolates compared to pediatric- and canine-derived isolates. Analysis of core genes showed clustering by host species, though in a few cases, human strains co-clustered with canine or bovine strains, suggesting possible interspecies transmission. Geographic differences (e.g., farm, litter) were small compared to differences between species. In an analysis of accessory genes, the total number of genes in each genome varied between host species, with 6.7% of functional orthologs differentially present/absent between host species and bovine-derived strains having the lowest number of genes. Canine-derived isolates were most likely to be non-toxigenic and more likely to carry phages. A targeted study of episomes identified in local pediatric strains showed sharing of a methicillin-resistance plasmid with dogs, and historic sharing of a wide range of episomes across hosts. Bovine-derived isolates harbored the widest variety of antibiotic-resistance genes, followed by canine Conclusions: While C. difficile isolates mostly clustered by host species, occasional co-clustering of canine and pediatric-derived isolates suggests the possibility of interspecies transmission. The presence of a pool of resistance genes in animal-derived isolates with the potential to appear in humans given sufficient pressure from antibiotic use warrants concern.
Collapse
Affiliation(s)
- L E Redding
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA.
| | - V Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| | - A Abbas
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Alvarez
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - C Gu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - F D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D J Kelly
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA
| | - D Barnhart
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA
| | - J J Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| | - K L Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Hain‐Saunders N, Knight DR, Bruce M, Riley TV. Clostridioides difficile
infection and One Health: An Equine Perspective. Environ Microbiol 2022; 24:985-997. [PMID: 35001483 PMCID: PMC9304292 DOI: 10.1111/1462-2920.15898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Clostridioides (Clostridium) difficile presents a significant health risk to humans and animals. The complexity of the bacterial–host interaction affecting pathogenesis and disease development creates an ongoing challenge for epidemiological studies, control strategies and prevention planning. The recent emergence of human disease caused by strains of C. difficile found in animals adds to mounting evidence that C. difficile infection (CDI) may be a zoonosis. In equine populations, C. difficile is a known cause of diarrhoea and gastrointestinal inflammation, with considerable mortality and morbidity. This has a significant impact on both the well‐being of the animal and, in the case of performance and production animals, it may have an adverse economic impact on relevant industries. While C. difficile is regularly isolated from horses, many questions remain regarding the impact of asymptomatic carriage as well as optimization of diagnosis, testing and treatment. This review provides an overview of our understanding of equine CDI while also identifying knowledge gaps and the need for a holistic One Health approach to a complicated issue.
Collapse
Affiliation(s)
- Natasza Hain‐Saunders
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
| | - Daniel R. Knight
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
- School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre Nedlands 6009 WA Australia
| | - Mieghan Bruce
- School of Veterinary Medicine, Centre for Biosecurity and One Health Murdoch University Murdoch Western Australia Australia
| | - Thomas V. Riley
- Biosecurity and One Health Research Centre, Harry Butler Institute Murdoch University Murdoch Western Australia Australia
- School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre Nedlands 6009 WA Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre Nedlands Western Australia Australia
| |
Collapse
|
12
|
Tsai CS, Hung YP, Lee JC, Syue LS, Hsueh PR, Ko WC. Clostridioides difficile infection: an emerging zoonosis? Expert Rev Anti Infect Ther 2021; 19:1543-1552. [PMID: 34383624 DOI: 10.1080/14787210.2021.1967746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Clostridioides difficile (C. difficile) infection (CDI) is the most common cause of antibiotic-associated diarrhea and one of the common infections in healthcare facilities. In recent decades, there has been an emerging threat of community-acquired CDI (CA-CDI). Environmental transmission of C. difficile in the community setting has become a major concern, and animals are an important reservoir for C. difficile causing human diseases. AREAS COVERED In this article, the molecular epidemiology of C. difficile in animals and recent evidences of zoonotic transfer to humans are reviewed based on an electronic search in the databases of PubMed and Google Scholar. EXPERT OPINION C. difficile can be found in stool from diarrheal dogs and cats; therefore, household pets could be a potential source. C. difficile will threaten human health because hypervirulent C. difficile ribotype 078 strains have been found in retail chickens, pig farms, and slaughterhouses. Risk factors for fecal C. difficile carriage in animals include young age, dietary changes, and antibiotic abuse in domestic animals. With the advent of whole genome sequencing techniques, there will be more solid evidence indicating zoonotic transfer of C. difficile from animals to humans.
Collapse
Affiliation(s)
- Chin-Shiang Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals (Basel) 2021; 11:ani11020515. [PMID: 33669325 PMCID: PMC7920295 DOI: 10.3390/ani11020515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Clostridioides difficile is a leading cause of nosocomial and community-acquired diarrhoea in men. The infection most commonly occurs in people who have recently been treated with antibiotics. Indistinguishable C. difficile strains have been isolated from livestock and humans, which has shed light on a possible zoonotic origin of this infection. This study aimed to assess the prevalence and risk factors of C. difficile in calves bred in dairy and beef cattle farms of the Umbria, central Italy. We estimated a 19.8% prevalence of farms positive for C. difficile. The C. difficile isolates from calves were potentially toxigenic and resistant to antibiotics, including lincosamides, quinolones, vancomycin and linezolid. Isolates belonging to ribotype RT-126, which is also commonly reported in humans, showed the highest number of resistance to the antimicrobials tested. Furthermore, we observed an almost sixfold increased risk for C. difficile on farms where penicillins had been prescribed. This, together with the detection of toxigenic and antibiotic-resistant isolates, strongly suggests the need for a reduction of antibiotic use in cattle. Abstract The emergence of Clostridioides difficile as the main agent of antibiotic-associated diarrhoea has raised concerns about its potential zoonotic role in different animal species. The use of antimicrobials is a major risk factor for C. difficile infection. Here, we provide data on C. difficile infection in dairy and beef calves in Umbria, a region in central Italy. This cross-sectional study focuses on prevalence, risk factors, ribotypes, toxinotypes and antimicrobial resistance profiles of circulating ribotypes. A prevalence of 19.8% (CI95%, 12–27.6%) positive farms was estimated, and the prescription of penicillins on the farms was associated with C. difficile detection (OR = 5.58). Eleven different ribotypes were found, including the ST11 sublineages RT-126 and -078, which are also commonly reported in humans. Thirteen isolates out of 17 showed resistance to at least one of clindamycin, moxifloxacin, linezolid and vancomycin. Among them, multiple-drug resistance was observed in two isolates, belonging to RT-126. Furthermore, RT-126 isolates were positive for tetracycline resistance determinants, confirming that tetracycline resistance is widespread among ST11 isolates from cattle. The administration of penicillins increased the risk of C. difficile in calves: this, together with the recovery of multi-resistant strains, strongly suggests the need for minimising antibiotic misuse on cattle farms.
Collapse
|
14
|
Clostridium difficile and One Health. Clin Microbiol Infect 2020; 26:857-863. [DOI: 10.1016/j.cmi.2019.10.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
|
15
|
Osuna-Mascaró C, Doña J, Johnson KP, Esteban R, de Rojas M. Complete Mitochondrial Genomes and Bacterial Metagenomic Data From Two Species of Parasitic Avian Nasal-Mites (Rhinonyssidae: Mesostigmata). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Otter A, Uzal FA. Clostridial diseases in farm animals: 1. Enterotoxaemias and other alimentary tract infections. IN PRACTICE 2020. [DOI: 10.1136/inp.m1462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Usui M. One Health approach to Clostridioides difficile in Japan. J Infect Chemother 2020; 26:643-650. [PMID: 32334949 DOI: 10.1016/j.jiac.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Clostridioides difficile infections (CDIs) are predominantly a healthcare-associated illness in developed countries, with the majority of cases being elderly and hospitalize patients who used antibiotic therapy. Recently, the incidence of community-associated CDIs (CA-CDIs) in younger patients without a previous history of hospitalization or antibiotic treatment has been increasing globally. C. difficile is sometimes found in the intestine of many animals, such as pigs, calves, and dogs. Food products such as retail meat products and vegetables sometimes contain C. difficile. C. difficile has also been isolated from several environments such as compost manure, rivers, and soils. Yet, direct transmission of C. difficile from animals, food products, and environments to humans has not been proven, although these strains have similar molecular characteristics. Therefore, it has been suggested that there is a relationship between CA-CDIs and C. difficile from animals, food products, and the environment. To clarify the importance of the presence of C. difficile in several sources, characterization of C. difficile in these sources is required. However, the epidemiology of C. difficile in animals, food products, and the environment is not well studied in Japan. This review summarizes recent trends of CDIs and compares the molecular characteristics of C. difficile in Japanese animals, food products, and the environment. The prevalence trends of C. difficile in Japan are similar to those in the rest of the world. Therefore, I recommend using a One Health approach to CDI surveillance, monitoring, and control.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido, 069-8501, Japan.
| |
Collapse
|
18
|
Abbas A, Zackular JP. Microbe-microbe interactions during Clostridioides difficile infection. Curr Opin Microbiol 2020; 53:19-25. [PMID: 32088581 DOI: 10.1016/j.mib.2020.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is the leading cause of hospital-acquired gastrointestinal infections and a major public health burden in the United States. C. difficile infection causes a spectrum of disease from mild diarrhea to severe complications such as pseudomembranous colitis, toxic megacolon and death. This broad range of disease is only partially explained by bacterial genetic factors, host genetics, comorbidities and previous drug exposures. Another important factor is the gut microbiome, the disruption of which results in a loss of colonization resistance to C. difficile. Here, we review how gut microbiota and their metabolites impact C. difficile virulence and influence disease.
Collapse
Affiliation(s)
- Arwa Abbas
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Clostridioides (Clostridium) Difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms 2019; 7:microorganisms7120667. [PMID: 31835413 PMCID: PMC6955671 DOI: 10.3390/microorganisms7120667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridioides (Clostridium) difficile is ubiquitous in the environment and is also considered as a bacterium of great importance in diarrhea-associated disease for humans and different animal species. Food animals and household pets are frequently found positive for toxigenic C. difficile without exposing clinical signs of infection. Humans and animals share common C. difficile ribotypes (RTs) suggesting potential zoonotic transmission. However, the role of animals for the development of human infection due to C. difficile remains unclear. One major public health issue is the existence of asymptomatic animals that carry and shed the bacterium to the environment, and infect individuals or populations, directly or through the food chain. C. difficile ribotype 078 is frequently isolated from food animals and household pets as well as from their environment. Nevertheless, direct evidence for the transmission of this particular ribotype from animals to humans has never been established. This review will summarize the current available data on epidemiology, clinical presentations, risk factors and laboratory diagnosis of C. difficile infection in food animals and household pets, outline potential prevention and control strategies, and also describe the current evidence towards a zoonotic potential of C. difficile infection.
Collapse
|
20
|
Putsathit P, Neela VK, Joseph NMS, Ooi PT, Ngamwongsatit B, Knight DR, Riley TV. Molecular epidemiology of Clostridium difficile isolated from piglets. Vet Microbiol 2019; 237:108408. [PMID: 31585650 DOI: 10.1016/j.vetmic.2019.108408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
Collapse
Affiliation(s)
- Papanin Putsathit
- Edith Cowan University, School of Medical and Health Sciences, Joondalup, Western Australia, Australia
| | - Vasantha K Neela
- Universiti Putra Malaysia, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Serdang, Malaysia
| | - Narcisse M S Joseph
- Universiti Putra Malaysia, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Serdang, Malaysia
| | - Peck Toung Ooi
- Universiti Putra Malaysia, Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Serdang, Malaysia
| | | | - Daniel R Knight
- Murdoch University, Medical, Molecular and Forensic Sciences, Murdoch, Western Australia, Australia
| | - Thomas V Riley
- Edith Cowan University, School of Medical and Health Sciences, Joondalup, Western Australia, Australia; Murdoch University, Medical, Molecular and Forensic Sciences, Murdoch, Western Australia, Australia; PathWest Laboratory Medicine, Nedlands, Western Australia, Australia.
| |
Collapse
|
21
|
Berry ASF, Kelly BJ, Barnhart D, Kelly DJ, Beiting DP, Baldassano RN, Redding LE. Gut microbiota features associated with Clostridioides difficile colonization in puppies. PLoS One 2019; 14:e0215497. [PMID: 31469837 PMCID: PMC6716646 DOI: 10.1371/journal.pone.0215497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
In people, colonization with Clostridioides difficile, the leading cause of antibiotic-associated diarrhea, has been shown to be associated with distinct gut microbial features, including reduced bacterial community diversity and depletion of key taxa. In dogs, the gut microbiota features that define C. difficile colonization are less well understood. We sought to define the gut microbiota features associated with C. difficile colonization in puppies, a population where the prevalence of C. difficile has been shown to be elevated, and to define the effect of puppy age and litter upon these features and C. difficile risk. We collected fecal samples from weaned (n = 27) and unweaned (n = 74) puppies from 13 litters and analyzed the effects of colonization status, age and litter on microbial diversity using linear mixed effects models. Colonization with C. difficile was significantly associated with younger age, and colonized puppies had significantly decreased bacterial community diversity and differentially abundant taxa compared to non-colonized puppies, even when adjusting for age. C. difficile colonization remained associated with decreased bacterial community diversity, but the association did not reach statistical significance in a mixed effects model incorporating litter as a random effect. Even though litter explained a greater proportion (67%) of the variability in microbial diversity than colonization status, we nevertheless observed heterogeneity in gut microbial community diversity and colonization status within more than half of the litters, suggesting that the gut microbiota contributes to colonization resistance against C. difficile. The colonization of puppies with C. difficile has important implications for the potential zoonotic transfer of this organism to people. The identified associations point to mechanisms by which C. difficile colonization may be reduced.
Collapse
Affiliation(s)
- Alexander S. F. Berry
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brendan J. Kelly
- Divisions of Infectious Diseases and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Denise Barnhart
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
| | - Donna J. Kelly
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert N. Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Laurel E. Redding
- Department of Clinical Sciences, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rodriguez C, Bouchafa L, Soumillion K, Ngyuvula E, Taminiau B, Van Broeck J, Delmée M, Daube G. Seasonality of Clostridium difficile in the natural environment. Transbound Emerg Dis 2019; 66:2440-2449. [PMID: 31338965 DOI: 10.1111/tbed.13301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is considered the leading cause of antibiotic-associated disease worldwide. In the past decade, a large number of studies have focused on identifying the main sources of contamination in order to elucidate the complete life cycle of the infection. Hospitals, animals and retail foods have been considered as potential vectors. However, the prevalence of C. difficile in these types of samples was found to be rather low, suggesting that other contamination routes must exist. This study explores the presence of C. difficile in the natural environment and the seasonal dynamics of the bacterium. C. difficile was isolated from a total of 45 samples out of 112 collected (40.2%) on 56 sampling points. A total of 17 points were positive only during the winter sampling (30.4%), 10 were positive only during the summer sampling (17.9%) and 9 sampling points (16.1%) were positive in both summer sampling and winter sampling. Spore counts in soil samples ranged between 50 and 250 cfu/g for 24.4% of the positive samples, with the highest concentrations detected in samples collected in the forest during winter campaign (200-250 cfu/g). A total of 17 different PCR ribotypes were identified, and 15 of them had the genes coding for toxins A and B. Most of those ribotypes had not previously been found or had been isolated only sporadically (<1% of samples) from hospitals in Belgium. Regarding antimicrobial susceptibility, most of the resistant strains were found during the summer campaign. These findings bear out that C. difficile is present in the natural environment, where the bacterium undergoes seasonal variations.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Lamia Bouchafa
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Kate Soumillion
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Eleonore Ngyuvula
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Johan Van Broeck
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Michel Delmée
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
23
|
High prevalence of Clostridium difficile in soil, mulch and lawn samples from the grounds of Western Australian hospitals. Anaerobe 2019; 60:102065. [PMID: 31260739 DOI: 10.1016/j.anaerobe.2019.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
Despite being considered a major hospital-associated pathogen for many years, Clostridium difficile has been isolated increasingly from people without hospital contact. In this study, we investigated the prevalence of C. difficile in the immediate outdoor environment of several hospitals in Perth, Western Australia, to provide further insight into potential sources of community-acquired C. difficile infection. Over 6 months, a total of 159 samples consisting of soil, mulch, lawn and sand were collected from outdoor surroundings of four different old (age>50 years) and new (age<10 years) hospitals. Samples were cultured in a C. difficile selective enrichment broth. Toxin gene profiling using PCR, and PCR ribotyping, was performed on all C. difficile recovered. C. difficile was isolated from 96 of the 159 samples (60.4%). Of the 112 isolates, 33 (29.5%) were toxigenic and 49 (43.8%) were identified as novel strains. Ribotypes (RTs) 014/020 (14.3%) and 010 (13.4%) constituted the highest proportion of isolates. Interestingly, RT 017, a strain endemic to the Asia-Pacific region (but not Australia), was found in a newly laid lawn. This study adds to existing knowledge of potential sources of C. difficile in Western Australia. More research is required to determine the route of transmission of C. difficile from community sources into the hospital.
Collapse
|
24
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
25
|
Toward rational selection criteria for selection of probiotics in pigs. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:83-112. [PMID: 31128749 DOI: 10.1016/bs.aambs.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An accurate understanding of properties of probiotics is a prerequisite for selecting probiotic organisms for use in swine production. This review aims to review selection criteria for probiotic organism in swine. The systematically investigated ecological history rather than the source of isolates should be regarded as the natural origin of probiotic strains, which helps to correct the inconsistencies arising from incorrect identification of the source. Moreover, in vivo studies are suggested as follow-up assessment to validate the characteristics of probiotic predicted by in vitro experiments. In addition, the intended probiotic effect depends on the age of the animal and disease prevention in young animals may require different probiotic strains when compared to growth promotion in older animals. With adequate selection criteria, the inclusion of probiotic in feed supplementation is a promising way to exert positive effects on sows, newborns, weanling animals and grower-finisher pigs. Both host-adapted probiotics and nomadic probiotics can be applied for pathogen inhibition but host adapted organisms appear to have a different mode of action. Host-adapted probiotic strains are likely to be associated with exclusive colonization while the nomadic or environmental strain exert better immune stimulating functions. Strains with potent enzymatic activity are fitter for grower pigs favoring feed digestion and enhancing growth performance.
Collapse
|
26
|
Zhang LJ, Yang L, Gu XX, Chen PX, Fu JL, Jiang HX. The first isolation of Clostridium difficile RT078/ST11 from pigs in China. PLoS One 2019; 14:e0212965. [PMID: 30807599 PMCID: PMC6391006 DOI: 10.1371/journal.pone.0212965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/12/2019] [Indexed: 01/17/2023] Open
Abstract
We investigated the molecular characteristics and antimicrobial susceptibility of Clostridium difficile isolated from animals in China. We obtained 538 rectal swabs from pigs, chickens and ducks in 5 provinces during 2015 and 2016. C. difficile isolates were characterized by detection of toxin genes, multilocus sequence typing and ribotyping. And antimicrobial susceptibility testing was performed using the agar dilution method. Out of 538 samples, 44 (8.2%) were C. difficile positive with high prevalence in pigs (n = 31). Among these, 39 (88.6%) were toxigenic including 14 (31.8%) that were A+B+CDT+ and 13 (29.5%) A+B+. The remaining 12 (27.3%) were A-B+. We identified 7 ST types and 6 PCR ribotypes. The most predominant type was ST11/RT078 with toxin profile A+B+CDT+ and all were isolated from piglets with diarrhea. ST109 isolates possessed two different toxigenic profiles (A-B-CDT- and A-B+CDT-) and although it was not the most prevalent sequence type, but it was widely distributed between chickens, ducks and pigs in the 5 provinces. All C. difficile isolates were fully susceptible to vancomycin, metronidazole, fidaxomicin, amoxicillin/clavulanate and meropenem but retained resistance to 4 or 5 of the remaining antibiotics, especially cefotaxime, tetracycline, ciprofloxacin, cefoxitin. The RT078/ST11 isolates were simultaneously resistant to cefotaxime, tetracycline, cefoxitin, ciprofloxacin and imipenem. This is the first report of the molecular epidemiology of C. difficile isolated from food animals in China. We identified the epidemic strain RT078/ST11 as the predominate isolate among the animals we screened in our study.
Collapse
Affiliation(s)
- Li-Juan Zhang
- National Risk Assessment laboratory for antimicrobial resistance of animal original bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
| | - Ling Yang
- National Risk Assessment laboratory for antimicrobial resistance of animal original bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
| | - Xi-Xi Gu
- National Risk Assessment laboratory for antimicrobial resistance of animal original bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
| | - Pin-Xian Chen
- National Risk Assessment laboratory for antimicrobial resistance of animal original bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
| | - Jia-Li Fu
- National Risk Assessment laboratory for antimicrobial resistance of animal original bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
| | - Hong-Xia Jiang
- National Risk Assessment laboratory for antimicrobial resistance of animal original bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China
| |
Collapse
|
27
|
Oliveira Júnior CA, Silva ROS, Lage AP, Coura FM, Ramos CP, Alfieri AA, Guedes RMC, Lobato FCF. Non-toxigenic strain of Clostridioides difficile Z31 reduces the occurrence of C. difficile infection (CDI) in one-day-old piglets on a commercial pig farm. Vet Microbiol 2019; 231:1-6. [PMID: 30955794 DOI: 10.1016/j.vetmic.2019.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023]
Abstract
Neonatal porcine diarrhea (NPD) is a current problem on pig farms and is caused by several enteropathogens. Among them, Clostridioides difficile stands out due to its importance in piglets and zoonotic potential. A non-toxigenic strain of C. difficile (NTCD), named Z31, was previously tested in hamster and piglet experimental models as a strategy to prevent C. difficile infection (CDI). To evaluate the capacity of the strain Z31 to prevent CDI and NPD in one-day-old piglets on a commercial farm, 90 piglets from 16 litters received 1 × 106 spores of Z31 while 84 animals from the same litters served as controls. Animals were clinically evaluated, and fecal samples were collected 24 h after administration and submitted to A/B toxin detection and isolation of C. difficile. Stool samples were also submitted to rotavirus, Escherichia coli, and Clostridium perfringens detection. Administration of Z31 reduced the incidence of CDI in treated animals (7.8%) when compared to the control group (25.0%; P = 0.003). In animals that developed CDI, the intensity of diarrhea was lower in those that received Z31 than in the control group. Neonatal porcine diarrhea was reduced in treated animals when compared to untreated animals (P < 0.001). The present study suggests that Z31 can potentially be used to prevent CDI in piglets on commercial farms.
Collapse
Affiliation(s)
- C A Oliveira Júnior
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - R O S Silva
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil.
| | - A P Lage
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - F M Coura
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - C P Ramos
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - A A Alfieri
- Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, Londrina, PR, CEP 86.057-970, Brazil
| | - R M C Guedes
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - F C F Lobato
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| |
Collapse
|
28
|
Evaluation of growth and sporulation of a non-toxigenic strain of Clostridioides difficile (Z31) and its shelf viability. Braz J Microbiol 2019; 50:263-269. [PMID: 30637658 DOI: 10.1007/s42770-018-0023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/07/2018] [Indexed: 10/27/2022] Open
Abstract
The oral administration of non-toxigenic strains of Clostridioides difficile (NTCD) is currently showing promising results for the prevention of Clostridioides difficile infection (CDI) in humans and animals, and is being considered as a possible commercial product to be used in the near future. The aim of this work was to evaluate five culture media for the growth and sporulation of one NTCD (Z31) and evaluate the viability of a lyophilized spore solution of NTCD Z31 stored at 4 °C or at 25 °C for 2 years. Reinforced clostridial medium (RCM) and brain heart infusion broth (BHI) provided the highest production of NTCD Z31 spores. In the first 6 months of the storage of the lyophilized solution, a reduction in spore count of approximately 0.3 Log10 CFU/mL was observed; however, no further significant reduction in spore count was observed up to 24 months. No difference in spore concentration was found between the two storage temperatures from 6 to 24 months of storage. The present work showed BHI and RCM to be the best choices for the growth and sporulation of NTCD Z31 and suggested that the spores of NTCD Z31 are stable for up to 2 years under both temperature conditions.
Collapse
|
29
|
Clostridium difficile in Asia: Opportunities for One Health Management. Trop Med Infect Dis 2018; 4:tropicalmed4010007. [PMID: 30597880 PMCID: PMC6473466 DOI: 10.3390/tropicalmed4010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a ubiquitous spore-forming bacterium which causes toxin-mediated diarrhoea and colitis in people whose gut microflora has been depleted by antimicrobial use, so it is a predominantly healthcare-associated disease. However, there are many One Health implications to C. difficile, given high colonisation rates in food production animals, contamination of outdoor environments by use of contaminated animal manure, increasing incidence of community-associated C. difficile infection (CDI), and demonstration of clonal groups of C. difficile shared between human clinical cases and food animals. In Asia, the epidemiology of CDI is not well understood given poor testing practices in many countries. The growing middle-class populations of Asia are presenting increasing demands for meat, thus production farming, particularly of pigs, chicken and cattle, is rapidly expanding in Asian countries. Few reports on C. difficile colonisation among production animals in Asia exist, but those that do show high prevalence rates, and possible importation of European strains of C. difficile like ribotype 078. This review summarises our current understanding of the One Health aspects of the epidemiology of CDI in Asia.
Collapse
|
30
|
Oliveira Júnior CA, Silva ROS, Cruz DSG, Pires IH, Guedes RMC, Faria Lobato FC. The non-toxigenic strain of Clostridioides difficile Z31 can prevent infection by C. difficile in experimental model piglets. Anaerobe 2018; 55:24-28. [PMID: 30292822 DOI: 10.1016/j.anaerobe.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022]
Abstract
One of the main challenges associated with Clostridioides difficile infection (CDI) in humans and domestic animals is the lack of an effective preventive strategy. One strategy with promising results is the oral administration of non-toxigenic strains of C. difficile (NTCD). Recently, Z31, a NTCD strain isolated from a healthy dog, showed promising results to prevent CDI in hamsters. Thus, the present study aimed to evaluate the capacity of Z31 to prevent CDI in piglets using an experimental model. Twenty neonatal piglets were randomly distributed in three groups: G1 - 106 spores of Z31 followed by 107 spores of a toxigenic C. difficile strain (n = 7), G2 (positive control) - 107 spores of a toxigenic C. difficile strain (n = 7), and G3 (negative control) - no biological inoculum (n = 6). All animals were kept in individual insulators and observed for 60 h. Data regarding clinical signs, macro and microscopic lesions, toxigenic culture of C. difficile, and detection of A/B toxins in the feces were evaluated. All evaluated parameters were significantly lower in animals that received Z31 compared to the positive control. Thus, oral administration of Z31 was able to prevent CDI in piglets in an experimental model.
Collapse
Affiliation(s)
- Carlos Augusto Oliveira Júnior
- Veterinary School. Federal University of Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, 31.270-901, Belo Horizonte, MG, Brazil
| | - Rodrigo Otávio Silveira Silva
- Veterinary School. Federal University of Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Diogo Soares Gonçalves Cruz
- Veterinary School. Federal University of Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, 31.270-901, Belo Horizonte, MG, Brazil
| | - Isadora Honorato Pires
- Veterinary School. Federal University of Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, 31.270-901, Belo Horizonte, MG, Brazil
| | - Roberto Maurício Carvalho Guedes
- Veterinary School. Federal University of Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, 31.270-901, Belo Horizonte, MG, Brazil
| | - Francisco Carlos Faria Lobato
- Veterinary School. Federal University of Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
31
|
Grześkowiak ŁM, Pieper R, Huynh HA, Cutting SM, Vahjen W, Zentek J. Impact of early-life events on the susceptibility to Clostridium difficile colonisation and infection in the offspring of the pig. Gut Microbes 2018; 10:251-259. [PMID: 30252612 PMCID: PMC6546313 DOI: 10.1080/19490976.2018.1518554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile has been documented as a major cause of uncontrolled outbreaks of enteritis in neonatal pigs and antibiotic-associated infections in clinical settings. It belongs to the natural cohort of early colonisers of the gastrointestinal tract of pigs and can be detected in faeces up to two weeks post-partum. In older pigs, it often remains under the detection limit. Most neonatal pigs show no clinical signs of disease although C. difficile and its toxins can be detected at high levels in faeces. Increased mortality rates associated with C. difficile on pig farms are, so far, considered "spontaneous" and the predisposing factors are mostly not defined. The infection caused by C. difficile is multifactorial and it is likely that the repertoire of maternal factors, host physiology, the individually developing gut microbiota, co-infections and environmental stress define the conditions for disease development. In this addendum to our recently published work on CDI in neonatal piglets, we discuss the "early-life events" that influence C. difficile spread and infection in neonatal piglets.
Collapse
Affiliation(s)
- Łukasz M. Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany,CONTACT Łukasz M. Grześkowiak
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Hong A. Huynh
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Simon M. Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection. Front Microbiol 2018; 9:2080. [PMID: 30233548 PMCID: PMC6134020 DOI: 10.3389/fmicb.2018.02080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.
Collapse
Affiliation(s)
- Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Joshua Kochanowsky
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Michael Mallozzi
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Chelsea Adamson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Andrew Clark
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rebecca McQuade
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Ross Calvin Monasky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Bryan Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
33
|
Rothenburger JL, Himsworth CG, Nemeth NM, Pearl DL, Jardine CM. Environmental Factors Associated with the Carriage of Bacterial Pathogens in Norway Rats. ECOHEALTH 2018; 15:82-95. [PMID: 29427247 DOI: 10.1007/s10393-018-1313-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Worldwide, Norway rats (Rattus norvegicus) carry a number of zoonotic pathogens. Many studies have identified rat-level risk factors for pathogen carriage. The objective of this study was to examine associations between abundance, microenvironmental and weather features and Clostridium difficile, antimicrobial-resistant (AMR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) carriage in urban rats. We assessed city blocks for rat abundance and 48 microenvironmental variables during a trap-removal study, then constructed 32 time-lagged temperature and precipitation variables and fitted multivariable logistic regression models. The odds of C. difficile positivity were significantly lower when mean maximum temperatures were high (≥ 12.89°C) approximately 3 months before rat capture. Alley pavement condition was significantly associated with AMR E. coli. Rats captured when precipitation was low (< 49.40 mm) in the 15 days before capture and those from blocks that contained food gardens and institutions had increased odds of testing positive for MRSA. Different factors were associated with each pathogen, which may reflect varying pathogen ecology including exposure and environmental survival. This study adds to the understanding of how the microenvironment and weather impacts the epidemiology and ecology of zoonotic pathogens in urban ecosystems, which may be useful for surveillance and control activities.
Collapse
Affiliation(s)
- Jamie L Rothenburger
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Chelsea G Himsworth
- School of Population and Public Health, University of British Columbia, 2206 E Mall, Vancouver, BC, V6T 1Z9, Canada
- Animal Health Centre, BC Ministry of Agriculture, 1767 Angus Campbell Road, Abbotsford, BC, V3G 2M3, Canada
- Canadian Wildlife Health Cooperative, 1767 Angus Campbell Road, Abbotsford, BC, V3G 2M3, Canada
| | - Nicole M Nemeth
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
34
|
New C, A. U, Premarathne J, Thung T, Lee E, Chang W, Loo Y, Kwan S, Tan C, Kuan C, R. S. Microbiological food safety in Malaysia from the academician’s perspective. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.6.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Abstract
Clostridium difficile infections (CDIs) have emerged as one of the principal threats to the health of hospitalized and immunocompromised patients. The importance of C difficile colonization is increasingly recognized not only as a source for false-positive clinical testing but also as a source of new infections within hospitals and other health care environments. In the last five years, several new treatment strategies that capitalize on the increasing understanding of the altered microbiome and host defenses in patients with CDI have completed clinical trials, including fecal microbiota transplantation. This article highlights the changing epidemiology, laboratory diagnostics, pathogenesis, and treatment of CDI.
Collapse
|
36
|
Abstract
Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG), a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies. The spore-forming bacterium Clostridium difficile is a leading cause of health care-associated infections. While a subset of antibiotics can treat C. difficile infections (CDIs), the primary determinant of CDI disease susceptibility is prior antibiotic exposure, since it reduces the colonization resistance conferred by a diverse microflora. Thus, therapies that minimize perturbations to the gut microbiome should be more effective at reducing CDIs and their recurrence, the main source of disease complications. Given that spore germination is essential for C. difficile to initiate infection and that C. difficile uses a unique pathway to initiate germination, methods that inhibit distinct elements of germination could selectively prevent C. difficile disease recurrence. Here, we identify GerG as a C. difficile-specific protein that controls the incorporation of germinant signaling proteins into spores. Since gerG mutant spores exhibit germination defects and are less responsive to germinant, GerG may represent a promising target for developing therapeutics against CDI.
Collapse
|
37
|
Abstract
Clostridium difficile has re-emerged as a major hospital-acquired infection since 2001. Despite development of polymerase chain reaction-based testing, no single clinical diagnostic test has emerged with sufficient sensitivity, specificity, and turnaround time to be entirely reliable for disease diagnosis. The importance of C difficile acquired outside the hospital environment remains an unknown factor and awaits further epidemiologic investigation. This article discusses the changing epidemiology, clinical presentation, and pathogenesis of C difficile infection and highlights the ongoing challenges of laboratory diagnosis, treatment, and disease relapse.
Collapse
|