1
|
Sievers T, Blumenberg JA, Hölzel CS. Invited review: Antimicrobial resistance genes in milk-A 10-year systematic review and critical comment. J Dairy Sci 2025; 108:4508-4543. [PMID: 39647632 DOI: 10.3168/jds.2024-25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
The occurrence of antibiotic resistance genes (ARG) in milk is eagerly discussed as a public health risk, and frequently investigated. Here, we perform a systematic review on the abundance of antimicrobial resistance genes in milk from primary production over a 10-year period. We aim to provide a comprehensive dataset on known and emerging antimicrobial resistance genes in major mastitis pathogens, occurring worldwide in milk at primary production, and to critically discuss the relevance and constraints of these findings. We searched PubMed for peer-reviewed studies published between 2012 and 2022 that fit fixed combinations of key words and did not meet exclusion criteria such as "mixed with other sources." For synthesis, data on occurrence was extracted from studies and supplements. To address plausibility issues, we performed an National Center of Biotechnology Information Basic Local Alignment Search Tool (BLAST) search. Our search revealed 2,222 publications in total. Of them, 500 studies were eligible for full-text reads and 306 publications were included in data compilation. An overwhelming majority of studies dealt with mecA in Staphylococcus aureus, followed by extended-spectrum β-lactamase-encoding genes such as blaCTXM in Escherichia coli, while other mastitis pathogens, such as Streptococcus spp., were scarcely investigated. In most cases, <5% of milk samples were positive for major pathogens bearing the antimicrobial resistance gene of interest. However, huge study-to-study differences were found between regions, but also on a national level. For instance, the estimate prevalence of Escherichia coli-borne blaCTXM in mastitis milk samples ranged from 0.0% to 55%, with a median value of 7.3%, but in healthy individuals and bulk milk, the prevalence ranged from 0.0% to 20.0%, with a median value of 0.8%. Several studies reported antimicrobial resistance genes for the very first time in a species, but did not stand up to scrutiny. As an example, frequent detection of blaTEM-genes in streptococci is most likely attributed to contamination of molecular reagents, as reported elsewhere. Despite the large amount of data, there is a need for more quality control, more representative sampling of milk, more quantitative research, and deeper insights into bacterial genomics, to identify relevant or emerging antimicrobial resistance genes in milk. Considering a low percentage of contaminated milk samples, unknown ARG concentrations, and an unproven role in human disease, the risk attributed to ARG in milk seems to be exaggerated by far. However, the risk of ARG selection on farm, resulting in low treatment success in cattle, is a real one and should be met by prudent use of antibiotics.
Collapse
Affiliation(s)
- Theresa Sievers
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, 24098 Kiel, Germany
| | - Julia A Blumenberg
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, 24098 Kiel, Germany.
| | - Christina S Hölzel
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, 24098 Kiel, Germany
| |
Collapse
|
2
|
Hernandez A, Lee J, Kang H. Navigating the Interconnected Web of Health: A Comprehensive Review of the One Health Paradigm and Its Implications for Disease Management. Yonsei Med J 2025; 66:203-210. [PMID: 40134079 PMCID: PMC11955393 DOI: 10.3349/ymj.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 03/27/2025] Open
Abstract
Disease outbreaks pose serious threats to humans, as highlighted by the recent pandemic, underscoring the need for an institutionalized multi-sectoral approach like One Health, encompassing human, animal, and environmental health. One Health has demonstrated efficacy in addressing emerging issues such as antimicrobial resistance and zoonotic disease spillover. While integrating the human-animal sector has yielded positive outcomes, the majority of zoonotic spillovers originate from wildlife, emphasizing the crucial role of environmental surveillance within global One Health systems. Additionally, climate change intensifies the frequency and emergence of infectious diseases and spillover events. Tackling the complexity and interconnectedness of health challenges necessitates integrated solutions that incorporate broader structural factors, aiding in the prevention, detection, and mitigation of disease outbreaks. Embracing One Health through multi-sectoral preparedness can effectively confront the escalating threats of pandemics and other emerging diseases.
Collapse
Affiliation(s)
- Andrea Hernandez
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
- Climate and Environmental Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea.
| |
Collapse
|
3
|
Rana ML, Ullah MA, Hoque MN, Hassan J, Siddique MP, Rahman MT. Preliminary survey of biofilm forming, antibiotic resistant Escherichia coli in fishes from land based aquaculture systems and open water bodies in Bangladesh. Sci Rep 2025; 15:7811. [PMID: 40050626 PMCID: PMC11885838 DOI: 10.1038/s41598-024-80536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/19/2024] [Indexed: 03/09/2025] Open
Abstract
The emergence and spread of multidrug-resistant pathogens, such as Escherichia coli, present major global public health challenges. This study aimed to investigate the prevalence, antibiotic resistance patterns, biofilm production, and the presence of antibiotic resistance genes (ARGs) and biofilm-forming genes in E. coli isolated from fish in open-body water (wild) sources and land-based aquaculture (cultured) systems in Mymensingh, Bangladesh. We collected 130 fish (Koi: Anabas testudineus and Shing: Heteropneustes fossilis) among which 70 were from wild sources and 60 from cultured systems. We screened 116 probable E. coli isolates through selective culture, Gram-staining, and biochemical tests. Using malB gene-specific PCR, we confirmed 87 isolates (67.0%) as E. coli. Cultured fish had a higher prevalence (70.0%) compared to wild fish (64.0%). Biofilm formation was detected in 20.0% E. coli by Congo red agar tests. However, crystal violet assays revealed that 70.0% of E. coli from cultured fish produced biofilm, compared to 20.0% from wild fish, with 7.0% of cultured fish isolates showing strong biofilm production. Antibiotic resistance profiling showed that 100.0% E. coli isolates were resistant to ampicillin and ceftazidime, beta-lactamase-producing antibiotics. Resistance patterns varied by source, with nearly 97.0% of E. coli from cultured fish being multidrug-resistant (MDR), compared to 60.0% in wild fish. E. coli from cultured fish were identified as potential reservoirs of ARGs such as blaTEM (83.0%), blaSHV (81.0%), blaCTX (78.57%), and the biofilm forming gene fimC (100.0%). Significant associations were observed for blaTEM (p = 0.033), blaSHV (p = 0.038), and fimC (p = 0.005). These findings highlight the need for monitoring β-lactamase-resistant and biofilm-forming E. coli in both wild and cultured fish in Bangladesh due to their potential threat to public health and animal populations.
Collapse
Affiliation(s)
- Md Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Sciences, Agricultural University, 2202, Mymensingh, Bangladesh
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Md Ashek Ullah
- Department of Microbiology and Hygiene, Faculty of Veterinary Sciences, Agricultural University, 2202, Mymensingh, Bangladesh
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, 1706, Gazipur, Bangladesh
| | - Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Sciences, Agricultural University, 2202, Mymensingh, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Faculty of Veterinary Sciences, Agricultural University, 2202, Mymensingh, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Sciences, Agricultural University, 2202, Mymensingh, Bangladesh.
| |
Collapse
|
4
|
Kiskó G, Bajramović B, Elzhraa F, Erdei-Tombor P, Dobó V, Mohácsi-Farkas C, Taczman-Brückner A, Belák Á. The Invisible Threat of Antibiotic Resistance in Food. Antibiotics (Basel) 2025; 14:250. [PMID: 40149061 PMCID: PMC11939317 DOI: 10.3390/antibiotics14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Belma Bajramović
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Fatma Elzhraa
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Patrícia Erdei-Tombor
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Viktória Dobó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| |
Collapse
|
5
|
Pramanik PK, Hoque MN, Rana ML, Islam MS, Ullah MA, Neloy FH, Ramasamy S, Schreinemachers P, Oliva R, Rahman MT. Prevalence and antibiotic resistance of Escherichia coli in urban and peri-urban garden ecosystems in Bangladesh. PLoS One 2025; 20:e0315938. [PMID: 39913417 PMCID: PMC11801607 DOI: 10.1371/journal.pone.0315938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/03/2024] [Indexed: 02/09/2025] Open
Abstract
In the past decade, there has been a notable rise in foodborne outbreaks, prominently featuring Escherichia coli as a primary pathogen. This bacterium, known for its prevalence in foodborne illnesses and as a reservoir of antimicrobial resistance, was isolated from raw vegetables, soil, and water samples collected from rooftop and surface gardens in urban (Dhaka North City Corporation; DNCC and Dhaka South City Corporation; DSCC) and peri-urban (Gazipur City Corporation; GCC) areas of Bangladesh. In this study, 145 samples including vegetables (n = 88), water (n = 27) and soils (n = 30) from DNCC (n = 85), DSCC (n = 30), and GCC (n = 30) were analyzed to assess the prevalence of E. coli using culture, biochemical tests, and PCR targeting the malB gene. E. coli was detected in 85 samples, indicating an overall prevalence of 58.62% (95% CI: 50.48-66.31). In urban areas (DNCC and DSCC), the prevalence rates were 44.70% and 80.0%, respectively, with surface gardens showing higher contamination rates (70.83%) than rooftop gardens (46.57%). In the peri-urban GCC, overall prevalence of E. coli was 76.7%, with rooftop gardens more contaminated (93.33%) than surface gardens (60.0%). Antibiogram profiling of 54 randomly selected isolates revealed 100% resistance to ampicillin, with varying resistance to ciprofloxacin (25.92%), tetracycline (14.81%), cotrimoxazole (14.81%), imipenem (9.25%), and fosfomycin (1.0%). Notably, all isolates were susceptible to ceftazidime, gentamicin, chloramphenicol, nitrofurantoin, and cefotaxime. Multidrug resistance (MDR) was found in 14.81% of isolates. The blaTEM gene was present in 81.48% of the isolates, while the tetA gene was detected in 3.70%. These findings underscore the urgent global health concern posed by the significant presence of E. coli in fresh vegetables, highlighting the need for improved safety measures and monitoring to prevent the spread of antimicrobial resistance through the food chain.
Collapse
Affiliation(s)
- Pritom Kumar Pramanik
- Faculty of Veterinary Science, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. Nazmul Hoque
- Department of Gynecology, Molecular Biology and Bioinformatics Laboratory, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Liton Rana
- Faculty of Veterinary Science, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Saiful Islam
- Faculty of Veterinary Science, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ashek Ullah
- Faculty of Veterinary Science, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Fahim Haque Neloy
- Faculty of Veterinary Science, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | | | - Md. Tanvir Rahman
- Faculty of Veterinary Science, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
6
|
Zeynudin A, Degefa T, Belay T, Mumicha JB, Husen A, Yasin J, Abamecha A, Wieser A, Abayneh M. Detections of antimicrobial resistance phenotypes and extended-spectrum beta-lactamase (ESBL)- producing Salmonella spps and Escherichia coli O157:H7 in raw vegetables and fruits from open markets in Jimma town, Ethiopia and evaluation of hygiene and handling practices of vendors. ONE HEALTH OUTLOOK 2025; 7:2. [PMID: 39891306 PMCID: PMC11786451 DOI: 10.1186/s42522-024-00125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/05/2024] [Indexed: 02/03/2025]
Abstract
OBJECTIVES Despite of the health benefits of consumption of fresh vegetables and fruits, this product could be associated with food-borne bacterial pathogens, including infections with antibiotic-resistant strains especially in developing countries due to limited in knowledge, and hygienic practices. This study was conducted to provide evidence data on the rates of Salmonella spp. and E. coli O157:H7 contamination, the antimicrobial resistance profile, and extended-spectrum β-lactamase (ESBL)-producing strains in fresh vegetables and fruits sold in open-air markets at Jimma town, southwest Ethiopia. In addition, this study provided data on the hygiene and handling practices of vendors, which can help as impute to improve food safety and safeguard public health. A total of 242 salad samples were collected from three different kebeles and examined for the presence of Salmonella spp. and E. coli O157:H7 in the microbiology laboratory of Jimma University by using conventional microbiological techniques. RESULTS Out of 242 samples tested, 12.8% (31/242) were contaminated with Salmonella spp. and E. coli O157. Of these, Salmonella spp. was detected in 10.7% (26/242) of the tested samples, whereas Escherichia coli O157:H7 was found in 2.1% (5/242) of samples. Fifty-three-point-8% of Salmonella spp. were resistant to ampicillin, 42.3% to co-trimoxazole, 46.2% to tetracycline, and 26.9% resistance was observed against each of ceftriaxone and cefotaxime. 40% of E. coli O157:H7 isolates were resistant against ampicillin, amoxicillin-clavulanic acid, and co-trimoxazole. Only one isolate was resistant to ceftriaxone and cefotaxime, and no resistance was observed against ceftazidime, gentamicin, ciprofloxacin, chloramphenicol, and meropenem. Four Salmonella spp. and one E. coli O157:H7 isolate with a total of 5/31 (16.1%) isolates were confirmed as the ESBL producers. Multidrug resistance (MDR) was detected in 23.1% of Salmonella and 20.0% of E. coli O157:H7. Hygienic and handling practices of vendors were poor, which could contribute to contamination of vegetables and fruits in the area. CONCLUSIONS Contamination of fresh salad vegetables with pathogenic bacteria could be a food safety concern in the study area. Hence, this finding suggests the need for attention by the concerned bodies to prevent the emergence and transmission of food-borne pathogens and antimicrobial-resistant strains through these food items in the study area.
Collapse
Affiliation(s)
- Ahmed Zeynudin
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tariku Belay
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | | | - Abdusemed Husen
- Department of Oncology, Institute of Health, Jimma University, Jimma, Ethiopia
| | | | - Abdulhakim Abamecha
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig- Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Bacteriology, Max von Pettenkofer-Institute (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Mengistu Abayneh
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| |
Collapse
|
7
|
Ahmad Zahra M, Niaj Murshidi G, Das Moon U, Sultana S, Haque FKM. Seasonal Analysis of Pathogenic Escherichia coli Contamination in Vegetables, Washing Water, and Vendor Hygiene: Virulence Group Classification and Antibiotic Resistance. Food Sci Nutr 2025; 13:e4723. [PMID: 39867836 PMCID: PMC11758462 DOI: 10.1002/fsn3.4723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
This study, conducted between June 2022 and March 2023 in Dhaka, examined Escherichia coli prevalence in 874 samples from vegetables, vegetable wash water, and hand swabs from vendors during summer and winter. Of the total samples, 782 (89.50%) tested positive for E. coli , with 95.52% of samples in summer and 80.87% in winter. While overall E. coli prevalence showed no significant seasonal difference, pathotype prevalence was significantly higher in summer across all sample types, except for the CVD432 gene. E. coli isolated from spring onions had the highest prevalence of E. coli O157:H7 (19.23%) and the stx1 gene (30.76%), while capsicum isolates showed the highest prevalence of stx2 (40.00%), eaeA (20.00%), ipaH (35.00%), and eltB (20.00%) genes. In winter, coriander had the highest E. coli O157:H7 (14.28%), and cucumber isolates had the highest stx1 (19.04%) gene. Isolates from tomato and capsicum recorded elevated stx2 levels (16.00%). Carrot isolates exhibited the highest eaeA prevalence (11.42%), coriander isolates had the highest ipaH occurrence (14.28%), and tomato isolates had the highest eltB levels (16.00%). A significant seasonal difference was observed in only the stx1 gene, which was higher in summer for all vegetables. Antibiotic susceptibility testing of 1206 isolates revealed widespread resistance, particularly to ampicillin and erythromycin. Significant seasonal differences in resistance were noted in vegetable samples, but not in water and hand swab samples. Multidrug resistance was highest in isolates from spring onions (56.60% in summer) and carrots (71.87% in winter), with extensively drug-resistant isolates highest in mint (2.17% in summer) and carrots (6.25% in winter).
Collapse
Affiliation(s)
- Maftuha Ahmad Zahra
- Microbiology Program, Department of Mathematics and Natural SciencesBRAC UniversityDhakaBangladesh
| | - Golam Niaj Murshidi
- Microbiology Program, Department of Mathematics and Natural SciencesBRAC UniversityDhakaBangladesh
| | - Unmilita Das Moon
- Microbiology Program, Department of Mathematics and Natural SciencesBRAC UniversityDhakaBangladesh
| | - Sumaiya Sultana
- Microbiology Program, Department of Mathematics and Natural SciencesBRAC UniversityDhakaBangladesh
| | | |
Collapse
|
8
|
Prack McCormick B, Knecht CA, Sokolowski AC, Palladino PM, Rojas DE, Cristos DS, Rivera HJ, Gonçalves Vila Cova C, De Grazia J, Rodriguez HA, Tittonell P, Centrón D, Barrios MB. Fate of fluoroquinolones associated with antimicrobial resistance in circular periurban agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176874. [PMID: 39414035 DOI: 10.1016/j.scitotenv.2024.176874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Animal antibiotic use contributes to antimicrobial resistance (AMR) in humans. While animal manure benefits soil fertility, it also acts as hotspot for antibiotic residues, antibiotic-resistant bacteria, and their genes. Amending soils with poultry litter is recognized as "magic" among horticulture farmers and it remains a common practice globally. However, this poses a risk especially in countries where prophylactic use of antibiotics is allowed. In Argentina, fluoroquinolones are used in this way besides being listed as essential medicines and classified as "watch" by the World Health Organization. Antibiotic selective pressure can favour AMR in the environment but the fate of antibiotic residues and AMR dissemination from these practices remains poorly understood. Our research addresses this gap with a biological model tracing fluoroquinolones from poultry to soil to lettuce and tracking anthropogenic AMR with the proposed biomarker genes sul1 and intI1. Fresh poultry litter was stored for six months before application in a horticulture field experiment. The experiment included control and manured plots where lettuce was cultivated till harvest. Enrofloxacin concentration was 7.3 μg/kg in fresh poultry litter, while its metabolite ciprofloxacin was 39.22 μg/kg after storage. Although no fluoroquinolones were detected in soils, lettuce from manured plots contained enrofloxacin and ciprofloxacin at 14.97 and 9.77 μg/kg, respectively, providing evidence of fluoroquinolone bioaccumulation in plants. Abundance of sul1 and intI1 in poultry litter was not affected by storage. Manured soils showed better soil quality than controls, but sul1 gene abundance was 1.6 times higher, reaching 7.61 Log sul1/g soil. A less sensitive, but significant effect was registered for intI1. These findings show that static storage is insufficient to stop the transmission of antibiotics and AMR biomarkers from poultry to horticulture. Amending soil with industrial poultry litter contributes to pollution with these emergent contaminants and risks human antibiotic exposure through fresh vegetables.
Collapse
Affiliation(s)
- Barbara Prack McCormick
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC Groningen, the Netherlands; Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina.
| | - Camila A Knecht
- Universidad de Buenos Aires, Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (UBA-CONICET, IMPaM), Buenos Aires, Argentina
| | - Ana Clara Sokolowski
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Pablo Martín Palladino
- Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina), Instituto Tecnología de los Alimentos, Argentina
| | - Dante Emanuel Rojas
- Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina), Instituto Tecnología de los Alimentos, Argentina
| | - Diego Sebastián Cristos
- Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina), Instituto Tecnología de los Alimentos, Argentina
| | - Hernan J Rivera
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Carola Gonçalves Vila Cova
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Javier De Grazia
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Hernán A Rodriguez
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Pablo Tittonell
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC Groningen, the Netherlands
| | - Daniela Centrón
- Universidad de Buenos Aires, Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (UBA-CONICET, IMPaM), Buenos Aires, Argentina
| | - Monica B Barrios
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| |
Collapse
|
9
|
Zhang CM, Yuan QQ, Li YQ, Liu A. Characteristics of heterotrophic endophytic bacteria in four kinds of edible raw vegetables: species distribution, antibiotic resistance, and related genes. Lett Appl Microbiol 2024; 77:ovae120. [PMID: 39611313 DOI: 10.1093/lambio/ovae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
This study aimed to explore antibiotic resistance characteristics and species of heterotrophic endophytic bacteria (HEB) in four kinds of edible raw vegetables, including radishes, lettuces, onions, and tomatoes. A total of 144 HEB were isolated and tested for resistance to sulfamethoxazole (SMZ), tetracycline (TET), cefotaxime (CTX), and ciprofloxacin (CIP), and their species were identified by 16S rRNA gene sequencing. Antibiotic resistance genes (ARGs) and class I integron in antibiotic-resistant isolates were analyzed by polymerase chain reaction. The results showed radishes had the highest, while tomatoes had the lowest concentration of antibiotic-resistant HEB. SMZ and CTX were predominant antibiotic-resistant phenotypes in HEB. The multi-resistant phenotypes, the combinations SMZ-TET-CTX and SMZ-TET-CIP, accounted for 9.34% of all antibiotic-resistant phenotypes, mainly in radishes and lettuces. Bacillus, Pseudomonas, Staphylococcus, and Stenotrophomonas showed resistance to two antibiotics and existed in more than one kind of vegetable, and were the main carriers of sul1, sul2, blaTEM, and intI1 genes. Therefore, these four genera were considered potential hosts of ARGs in edible raw vegetables. The study provides an early warning regarding health risks associated with ingesting antibiotic-resistant bacteria through raw vegetable consumption.
Collapse
Affiliation(s)
- Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - An Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Bywater A, Dintwe G, Alexander KA, Ponder MA. Characterization of Diarrheagenic Escherichia coli and Salmonella enterica from Produce in the Chobe District of Botswana. J Food Prot 2024; 87:100351. [PMID: 39187132 DOI: 10.1016/j.jfp.2024.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Diarrheal disease is a leading cause of death in children in low- and moderate-income countries. Fresh produce, including fruits and vegetables, may harbor diarrheal disease-causing bacteria including strains of Salmonella enterica and Escherichia coli. This study aimed to determine the prevalence and antibiotic resistance profiles of S. enterica and E. coli isolated from produce samples (n = 207) obtained from retail markets in northern Botswana in Chobe District of Botswana in 2022. Samples were enriched in the appropriate selective media: Brilliant Green Bile Broth for E. coli and Rappaport Vassiliadis Broth for S. enterica. E. coli were confirmed by PCR detecting the phoA gene, and classified as potentially pathogenic through screening for the eae, stx, and stx2 and estIb genes. S. enterica isolates were confirmed using invA primers. Isolates were evaluated for resistance to ampicillin, amoxicillin-clavulanic acid, chloramphenicol, cefotaxime, doxycycline, streptomycin, sulfamethoxazole, and tetracycline antibiotic using the Kirby-Bauer Disk Diffusion method. E. coli was isolated from 15.5% of produce samples (n = 207). The gene eae was detected from 1.5% of samples, while stx1, stx2, and estIb were not detected. Resistance to one or more antibiotics was common (72%) with the majority of the resistant E. coli (n = 32) isolated from fruits (22%) and greens (18%) compared to other types of vegetables. Multidrug resistance (MDR, resistant to 3 or more antibiotics) was identified in 18% of samples. S. enterica was isolated from 3.4% of produce samples (7, n = 207). Resistance was uncommon among the S. enterica isolates (1/7). Overall prevalence of diarrheagenic S. enterica and E. coli was low; however, their presence and that of MDR E. coli in foods commonly consumed raw increases the risk to vulnerable populations. Strategies to reduce contamination of fresh produce and public education on washing and cooking some types of produce may be useful to reduce disease.
Collapse
Affiliation(s)
- Auja Bywater
- Virginia Tech, Department of Food Science and Technology, 1230 Washington St, Blacksburg, VA 24061, USA
| | - Galaletsang Dintwe
- Center for African Resources: Animals, Communities and Land Use (CARACAL), Kasane, Botswana
| | - Kathleen A Alexander
- Center for African Resources: Animals, Communities and Land Use (CARACAL), Kasane, Botswana; Virginia Tech, Department of Fisheries and Wildlife, Blacksburg, VA 24061, USA
| | - Monica A Ponder
- Virginia Tech, Department of Food Science and Technology, 1230 Washington St, Blacksburg, VA 24061, USA.
| |
Collapse
|
11
|
Furlan JPR, Lopes R, Ramos MS, Rosa RDS, Dos Santos LDR, Stehling EG. Identification of plasmid-mediated mcr-1 and chromosomal bla CTX-M-2 in Escherichia coli from fresh vegetables. J Glob Antimicrob Resist 2024; 38:66-68. [PMID: 38821441 DOI: 10.1016/j.jgar.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
Echeverry-Gallego RA, Martínez-Pachón D, Arenas NE, Franco DC, Moncayo-Lasso A, Vanegas J. Characterization of bacterial diversity in rhizospheric soils, irrigation water, and lettuce crops in municipalities near the Bogotá river, Colombia. Heliyon 2024; 10:e35909. [PMID: 39229531 PMCID: PMC11369436 DOI: 10.1016/j.heliyon.2024.e35909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The use of wastewater in agricultural practices poses a potential risk for the spread of foodborne diseases. Therefore, this study aimed to characterize the bacterial biodiversity in rhizospheric soil, irrigation water, and lettuce crops in three municipalities adjacent to the Bogotá River, Colombia. Samples were collected in Mosquera, Funza, and Cota municipalities, including rhizospheric soil, lettuce leaves, and irrigation water. The total DNA extraction was performed to analyze bacterial diversity through high-throughput sequencing of the 16S ribosomal RNA genes, utilizing the Illumina HiSeq 2500 PE 300 sequencing platform. A total of 198 genera from the rhizospheric soil were detected including a higher abundance of zOTUs such as Bacillus, Streptomyces, and clinically relevant genera such as Mycobacterium and Pseudomonas. In lettuce, the detection of 26 genera of endophytic bacteria showed to Proteobacteria and Firmicutes as the predominant phyla, with Staphylococcus and Bacillus as the most abundant genera. Notably, Funza's crops exhibited the highest abundance of endophytes, approximately 50 %, compared to Cota (20 %). Furthermore, the most abundant bacterial genera in the irrigation water were Flavobacterium and Pseudomonas. The most prevalent Enterobacteriaceae were Serratia, Enterobacter, Citrobacter, Klebsiella, Yersinia, Shigella, Escherichia, and Erwinia. The Bacillus genus was highly enriched in both rhizospheric soils and lettuce crops, indicating its significant contribution as the main endophytic bacterium.
Collapse
Affiliation(s)
- Rodrigo A. Echeverry-Gallego
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
- Doctorado en Ciencia Aplicada, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Nelson Enrique Arenas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
- Facultad de Medicina, Universidad de Cartagena. Cartagena, Colombia
| | - Diego C Franco
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| |
Collapse
|
13
|
Martak D, Henriot CP, Hocquet D. Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: One health or more? Infect Dis Now 2024; 54:104895. [PMID: 38548016 DOI: 10.1016/j.idnow.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Antimicrobial resistance (AMR) is a major public health challenge. For several years, AMR has been addressed through a One Health approach that links human health, animal health, and environmental quality. In this review, we discuss AMR in different reservoirs with a focus on the environment. Anthropogenic activities produce effluents (sewage, manure, and industrial wastes) that contaminate soils and aquatic environments with antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), and selective agents such as antibiotics, biocides, and heavy metals. Livestock treated with antibiotics can also contaminate food with ARB. In high-income countries (HICs), effective sanitation infrastructure and limited pharmaceutical industries result in more controlled discharges associated with human activities. Hence, studies using genome-based typing methods have revealed that, although rare inter-reservoir transmission events have been reported, human acquisition in HICs occurs primarily through person-to-person transmission. The situation is different in low- and middle-income countries (LMICs) where high population density, poorer sanitation and animal farming practices are more conducive to inter-reservoir transmissions. In addition, environmental bacteria can be a source of ARGs that, when transferred to pathogenic species under antibiotic selection pressure in environmental hotspots, produce new antibiotic-resistant strains that can potentially spread in the human community through human-to-human transmission. The keys to reducing AMR in the environment are (i) better treatment of human waste by improving wastewater treatment plants (WWTPs) in HICs and improving sanitation infrastructure in LMICs, (ii) reducing the use of antibiotics by humans and animals, (iii) prioritizing the use of less environmentally harmful antibiotics, and (iv) better control of pharmaceutical industry waste.
Collapse
Affiliation(s)
- Daniel Martak
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France.
| | - Charles P Henriot
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France
| | - Didier Hocquet
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France; CHU de Besançon, Hygiène Hospitalière, F-25000 Besançon, France
| |
Collapse
|
14
|
Nahim-Granados S, Quon H, Polo-López MI, Oller I, Agüera A, Jiang S. Assessment of antibiotic-resistant infection risks associated with reclaimed wastewater irrigation in intensive tomato cultivation. WATER RESEARCH 2024; 254:121437. [PMID: 38479171 DOI: 10.1016/j.watres.2024.121437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Agricultural irrigation using reclaimed urban wastewater (RWW) represents a sustainable practice to meet the ever-increasing water stress in modern societies. However, the occurrence of residual antibiotics and antibiotic resistant bacteria (ARB) in RWW is an important human health concern. This study applied for the first time a novel Simple-Death dose-response model to the field data of Escherichia coli and Pseudomonas spp. collected from three greenhouses for cultivation of tomatoes irrigated with RWW. The model estimates the risk of infection by enteropathogenic E. coli associated with consumption of tomatoes and the risk of eye-infection caused by Pseudomonas aeruginosa in cultivation soil through hand-to-eye contacts. The fraction of antibiotic resistant (AR)-E. coli measured in irrigation water and AR-Pseudomonas spp. in soil was incorporated in the model to estimate the survival of ARB and antibiotic susceptible bacteria in the presence of trace level of antibiotics in human body. The results showed that the risk of E. coli infection through consumption of tomatoes irrigated with RWW is within the WHO and USEPA recommended risk threshold (<10-4); Pseudomonas aeruginosa eye-infection risk is at or below the acceptable risk level. The presence of residual antibiotic in human body reduced the overall risk probabilities of infections but selectively enhanced the survival of ARB in comparison to their susceptible counterparts, which resulted in antibiotic untreatable infection. Therefore, the outcomes of this study call for a new risk threshold for antibiotic untreatable infections and highlight the key importance of adopting work safety measures for better human health protection.
Collapse
Affiliation(s)
- Samira Nahim-Granados
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Tabernas, Almería 04200, Spain; Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; CIESOL, Joint Centre of the University of Almería-CIEMAT, Almería 04120, Spain.
| | - Hunter Quon
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - María Inmaculada Polo-López
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Tabernas, Almería 04200, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, Almería 04120, Spain
| | - Isabel Oller
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Tabernas, Almería 04200, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, Almería 04120, Spain
| | - Ana Agüera
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Tabernas, Almería 04200, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, Almería 04120, Spain
| | - Sunny Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| |
Collapse
|
15
|
Leighton EA, Gale CN, Huang E, Yang X, DiCaprio EL, Li X. A Multidrug-Resistant Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacter hormaechei Strain from Mixed Sprouts. Curr Microbiol 2024; 81:131. [PMID: 38592505 DOI: 10.1007/s00284-024-03663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Fresh vegetables can harbor antibiotic-resistant bacteria, including extended-spectrum β-lactamase (ESBL)-producing Enterobacterales. Enterobacter hormaechei is a bacterium belonging to the Enterobacterales order and the most commonly identified nosocomial pathogen of Enterobacter cloacae complex. The purpose of this study was to characterize a multi-drug resistant ESBL-producing E. hormaechei strain isolated from a sample of mixed sprouts. Vegetable samples were pre-enriched in buffered peptone water, followed by enrichment in Enterobacteria Enrichment Broth, and isolation on Chromagar™ ESBL plates. One isolate from a sprout sample was confirmed to produce both ESBL and AmpC β-lactamases through the combination disk diffusion assay using antibiotic disks containing cefotaxime and ceftazidime with or without clavulanate, and with or without cloxacillin, respectively. The isolate was also resistant to multiple antibiotics, including cefotaxime, ceftazidime, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, ampicillin, and amoxicillin-clavulanate, as determined by antimicrobial susceptibility testing. Through whole genome sequencing, the isolate was identified as E. hormaechei 057-E1, which carried multiple antibiotic resistance (AR) genes and a sul2-aph(3″)-Ib-aph(6)-Id-blaTEM-1-ISEcp1 -blaCTX-M-15 gene cluster. Our results further demonstrate the important role of fresh vegetables in AR and highlight the need to develop strategies for AR mitigation in fresh vegetables.
Collapse
Affiliation(s)
- Elizabeth A Leighton
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA
| | - Chelsea N Gale
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA
| | - En Huang
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA
| | - Erin L DiCaprio
- Department of Food Science and Technology, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA.
| |
Collapse
|
16
|
Viviers SA, Richter L, du Plessis EM, Korsten L. Microbiological quality of irrigation water on highly diverse fresh produce smallholder farms: elucidating environmental routes of contamination. J Appl Microbiol 2024; 135:lxae091. [PMID: 38632044 DOI: 10.1093/jambio/lxae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
AIM To evaluate the microbiological safety, potential multidrug-resistant bacterial presence and genetic relatedness (DNA fingerprints) of Escherichia coli isolated from the water-soil-plant nexus on highly diverse fresh produce smallholder farms. METHODS AND RESULTS Irrigation water (n = 44), soil (n = 85), and fresh produce (n = 95) samples from six smallholder farms with different production systems were analysed for hygiene indicator bacterial counts and the presence of shigatoxigenic E. coli and Salmonella spp. using standard microbiological methods. Identities of isolates were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the genetic relatedness of the E. coli isolates determined using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) analysis. Irrigation water E. coli levels ranged between 0 and 3.45 log MPN/100 ml-1 with five farms having acceptable levels according to the World Health Organization limit (3 log MPN/100 ml-1). Fresh produce samples on four farms (n = 65) harboured E. coli at low levels (<1 log CFU/g-1) except for one sample from kale, spring onion, green pepper, onion, and two tomato samples, which exceeded international acceptable limits (100 CFU/g-1). Only one baby carrot fresh produce sample tested positive for Salmonella spp. Of the 224 samples, E. coli isolates were identified in 40% (n = 90) of all water, soil, and fresh produce types after enrichment. Additionally, the DNA fingerprints of E. coli isolates from the water-soil-plant nexus of each respective farm clustered together at high similarity values (>90%), with all phenotypically characterized as multidrug-resistant. CONCLUSIONS The clustering of E. coli isolated throughout the water-soil-plant nexus, implicated irrigation water in fresh produce contamination. Highlighting the importance of complying with irrigation water microbiological quality guidelines to limit the spread of potential foodborne pathogens throughout the fresh produce supply chain.
Collapse
Affiliation(s)
- Sheldon A Viviers
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
17
|
Meijs AP, Rozwandowicz M, Hengeveld PD, Dierikx CM, de Greeff SC, van Duijkeren E, van Dissel JT. Human carriage of ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae in relation to the consumption of raw or undercooked vegetables, fruits, and fresh herbs. Microbiol Spectr 2024; 12:e0284923. [PMID: 38206033 PMCID: PMC10845978 DOI: 10.1128/spectrum.02849-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
We investigated to what extent the consumption of raw or undercooked vegetables, fruits, and fresh herbs influences carriage rates of ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae (ESBL-E/K) in the general population. We assessed long-term carriage and changes in ESBL-E/K prevalence over time, by comparing the results to findings in the same population 5 years earlier. Between July and December 2021, participants sent in two fecal samples and questionnaires, 3 months apart. Food frequency questionnaires were sent on a monthly basis. Fecal samples were cultured and screened for ESBL-E/K, and phenotypically positive isolates were sequenced. Multivariable logistic regression models were established to assess the association between the consumption of fresh produce and ESBL-E/K carriage. The ESBL-E/K prevalence was 7.6% [41/537; 95% confidence interval (CI): 5.7-10.2] in the first sampling round and 7.0% (34/489; 95% CI: 5.0-9.6) in the second. Multivariable models did not result in statistical significance for any of the selected fruit and vegetable types. Trends for increased carriage rates were observed for the consumption of raspberry and blueberry in the summer period. ESBL-E/K prevalence was comparable with the prevalence in the same cohort 5 years earlier (7.5%; 95% CI: 5.6-10.1%). In six persons (1.2%) a genetically highly homologous ESBL-E/K was found. In conclusion, the contribution of the consumption of raw fruits, vegetables, and herbs to ESBL-E/K carriage in humans in the Netherlands is probably low. Despite COVID-19 containment measures (e.g., travel restrictions, social distancing, and hygiene) the ESBL-E/K prevalence was similar to 5 years earlier. Furthermore, indications for long-term carriage were found.IMPORTANCEESBL-producing bacteria are resistant against important classes of antibiotics, including penicillins and cephalosporines, which complicates treatment of infections. Food is one of the main routes of transmission for carriage of these bacteria in the general population. Although fruits, vegetables, and herbs are generally less frequently contaminated with ESBL-producing bacteria compared to meat, exposure might be higher since these products are often eaten raw or undercooked. This research showed that the contribution of the consumption of raw or undercooked fresh produce to ESBL-E/K carriage in the general Dutch population was low. No specific types of fruit or vegetables could be identified that gave a higher risk of carriage. In addition, we demonstrated the presence of genetically highly homologous ESBL-E/K in six persons after a period of 5 years, indicative for long-term carriage.
Collapse
Affiliation(s)
- A. P. Meijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - M. Rozwandowicz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - P. D. Hengeveld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - C. M. Dierikx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - S. C. de Greeff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - E. van Duijkeren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - J. T. van Dissel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Infectious Diseases and Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Kujat Choy S, Neumann EM, Romero-Barrios P, Tamber S. Contribution of Food to the Human Health Burden of Antimicrobial Resistance. Foodborne Pathog Dis 2024; 21:71-82. [PMID: 38099924 PMCID: PMC10877391 DOI: 10.1089/fpd.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The impact of foodborne antimicrobial resistance (AMR) on the human health burden of AMR infections is unknown. The aim of this review was to evaluate and summarize the scientific literature investigating all potential sources of human AMR infections related to food. A literature search was conducted in Embase (Ovid) and MEDLINE (Ovid) databases to identify appropriate studies published between 2010 and 2023. The results of the search were reviewed and categorized based on the primary subject matter. Key concepts from each category are described from the perspective of food safety as a public health objective. The search yielded 3457 references, 1921 remained after removal of duplicates, abstracts, editorials, comments, notes, retractions, and errata. No properly designed source attribution studies were identified, but 383 journal articles were considered relevant and were classified into eight subcategories and discussed in the context of four streams of evidence: prevalence data, epidemiological studies, outbreak investigations and human health impact estimates. There was sufficient evidence to conclude that AMR genes, whether present in pathogenic or nonpathogenic bacteria, constitute a foodborne hazard. The level of consumer risk owing to this hazard cannot be accurately estimated based on the data summarized here. Key gaps in the literature are noted.
Collapse
Affiliation(s)
- Sonya Kujat Choy
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Eva-Marie Neumann
- Library Services Division, Corporate Services Branch, Health Canada, Ottawa, Canada
| | - Pablo Romero-Barrios
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandeep Tamber
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
19
|
Oh M, Cevallos-Urena A, Kim BS. Bacteriophages PECP14, PECP20, and their endolysins as effective biocontrol agents for Escherichia coli O157:H7 and other foodborne pathogens. Int J Food Microbiol 2024; 409:110460. [PMID: 37925886 DOI: 10.1016/j.ijfoodmicro.2023.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Escherichia coli O157:H7 is a notorious foodborne pathogen known to cause severe illnesses such as hemolytic colitis and hemolytic uremic syndrome, with fresh produce consumption being implicated in recent outbreaks. The inappropriate use of antimicrobials to combat pathogens has led to the emergence and rapid dissemination of antimicrobial-resistant microorganisms including pathogenic E. coli, presenting a significant risk to humans. Here, we isolated two E. coli O157:H7 infecting bacteriophages, PECP14 and PECP20, from irrigation water and city sewage, respectively, as alternatives to antimicrobials. Both phages were stable for at least 16 h in a broad range of pH (pH 3-11) and temperature (4-40 °C) conditions and have a double-stranded DNA chromosome. PECP14 and PECP20, classified under the Epseptimavirus and Mosigvirus genera, respectively, exhibit specificity in targeting different host receptors, BtuB protein and lipopolysaccharide. Interestingly, these phages demonstrate the ability to infect not only E. coli O157:H7 but also other foodborne enteric pathogens like Shigella sonnei and S. flexneri. Upon mixing phages with their respective host bacteria, rapid adsorption (at least 68 % adsorption within 10 min) and substantial bacterial lysis were observed. The efficacy of phage treatment was further validated through the reduction of E. coli O157:H7 on radish sprouts. Moreover, purified endolysins, LysPECP14 and LysPECP20, derived from each phage exhibited remarkable bacteriolytic activity against E. coli O157:H7 cells pretreated with EDTA. In particular, the activity of LysPECP20 was also noticeable against Listeria monocytogenes and Bacillus cereus, suggesting its potential for broader antimicrobial applications in food industry. The combined results showed that the phages PECP14, PECP20, and their endolysins could be used for biological control of E. coli O157:H7 in various circumstances, from production, harvesting, and storage stages to processing and distribution steps of agricultural products.
Collapse
Affiliation(s)
- Minjin Oh
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ana Cevallos-Urena
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
20
|
Dokuta S, Yadoung S, Jeeno P, Hongjaisee S, Khamnoi P, Manochomphu S, Danmek K, Maitip J, Chuttong B, Hongsibsong S. Isolation and Identification of Microorganisms and Antibiotic Resistance Microorganisms from Beehives Located in Palm, Corn and Longan Plantations, Thailand. Microorganisms 2023; 11:2855. [PMID: 38137999 PMCID: PMC10745485 DOI: 10.3390/microorganisms11122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
This study aims to determine the prevalence of microorganisms and antibiotic-resistant microorganisms in beehives located on different plantations in Thailand. Seventeen swabs immersed in transport media were utilized for samples from different zones within beehives. Traditional microbial culture-based methods, biochemical tests, MALDI-TOF MS (VITEK® MS, bioMerieux, Marcy-l'Étoile, France), and antibiotic drug susceptibility (disk-diffusion) tests were used to detect microorganism and antimicrobial resistance bacteria. The results from 16 beehive swabs found Gram-positive bacteria at 59.5%, Gram-negative bacteria at 35.1%, and fungi (yeast) at 5.4%. These organisms are classified as 11, 11, and 2 types of Gram-positive bacteria, Gram-negative bacteria, and fungi (yeast), respectively. Furthermore, no organism showed resistance to vancomycin or cefoxitin for antibiotic drug susceptibility testing. In contrast, all Acinetobacter spp. were susceptible to ciprofloxacin, levofloxacin, ceftazidime, cefotaxime, imipenem, and meropenem, except for Acinetobacter schindleri, which was resistant to ceftazidime and cefotaxime. For other organisms, due to the limitations of tests to identify some environmental microbial species, the antimicrobial susceptibility test results cannot be interpreted as resistant or susceptible to the drug for these organisms. The study's findings will support prevention, healthcare services, and public health systems.
Collapse
Affiliation(s)
- Sirikwan Dokuta
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.D.); (P.J.); (S.H.)
| | - Sumed Yadoung
- Environmental Sciences Program, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Peerapong Jeeno
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.D.); (P.J.); (S.H.)
| | - Sayamon Hongjaisee
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.D.); (P.J.); (S.H.)
| | - Phadungkiat Khamnoi
- Microbiology Unit, Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (S.M.)
| | - Sirinya Manochomphu
- Microbiology Unit, Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (S.M.)
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Jakkrawut Maitip
- Faculty of Science, Energy and Environment, Rayong Campus, King Mongkut’s University of Technology North Bangkok, Bankhai 21120, Thailand;
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.D.); (P.J.); (S.H.)
- Environmental Sciences Program, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental, Occupational Health Sciences and NCD Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
James C, James SJ, Onarinde BA, Dixon RA, Williams N. A Critical Review of AMR Risks Arising as a Consequence of Using Biocides and Certain Metals in Food Animal Production. Antibiotics (Basel) 2023; 12:1569. [PMID: 37998771 PMCID: PMC10668721 DOI: 10.3390/antibiotics12111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
The focus of this review was to assess what evidence exists on whether, and to what extent, the use of biocides (disinfectants and sanitizers) and certain metals (used in feed and other uses) in animal production (both land and aquatic) leads to the development and spread of AMR within the food chain. A comprehensive literature search identified 3434 publications, which after screening were reduced to 154 relevant publications from which some data were extracted to address the focus of the review. The review has shown that there is some evidence that biocides and metals used in food animal production may have an impact on the development of AMR. There is clear evidence that metals used in food animal production will persist, accumulate, and may impact on the development of AMR in primary animal and food production environments for many years. There is less evidence on the persistence and impact of biocides. There is also particularly little, if any, data on the impact of biocides/metal use in aquaculture on AMR. Although it is recognized that AMR from food animal production is a risk to human health there is not sufficient evidence to undertake an assessment of the impact of biocide or metal use on this risk and further focused in-field studies are needed provide the evidence required.
Collapse
Affiliation(s)
- Christian James
- Formerly Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK;
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Stephen J. James
- Formerly Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK;
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Bukola A. Onarinde
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Ronald A. Dixon
- School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK;
| |
Collapse
|
22
|
Kon H, Lurie-Weinberger M, Cohen A, Metsamber L, Keren-Paz A, Schwartz D, Carmeli Y, Schechner V. Occurrence, Typing, and Resistance Genes of ESBL/AmpC-Producing Enterobacterales in Fresh Vegetables Purchased in Central Israel. Antibiotics (Basel) 2023; 12:1528. [PMID: 37887229 PMCID: PMC10604292 DOI: 10.3390/antibiotics12101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Beta-lactam resistance can lead to increased mortality, higher healthcare expenses, and limited therapeutic options. The primary mechanism of beta-lactam resistance is the production of extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases. The spread of beta-lactamase-producing Enterobacterales via the food chain may create a resistance reservoir. The aims of this study were to determine the prevalence of ESBL/AmpC-producing Enterobacterales in vegetables, to examine the association between EBSL/AmpC-producing bacteria and types of vegetables, packaging, and markets, and to investigate the genetic features of ESBL-producing isolates. The antibiotic susceptibilities were determined using VITEK. Phenotypic ESBL/AmpC production was confirmed using disk diffusion. ESBL-producing isolates were subjected to Fourier-transform infrared (FT-IR) spectroscopy and to whole genome sequencing using Oxford Nanopore sequencing technology. Of the 301 vegetable samples, 20 (6.6%) were positive for ESBL producers (16 Klebsiella pneumoniae and 4 Escherichia coli), and 63 (20.9%) were positive for AmpC producers (56 Enterobacter cloacae complex, 4 Enterobacter aerogenes/cancerogenus, and 3 Pantoea spp., Aeromonas hydrophila, and Citrobacter braakii). The blaCTX-M and blaSHV genes were most common among ESBL-producing isolates. The beta-lactamase genes of the ESBL producers were mainly carried on plasmids. Multilocus sequence typing and FT-IR typing revealed high diversity among the ESBL producers. AmpC producers were significantly more common in leafy greens and ESBL producers were significantly less common in climbing vegetables. The presence of ESBL/AmpC-producing Enterobacterales in raw vegetables may contribute to the dissemination of resistance genes in the community.
Collapse
Affiliation(s)
- Hadas Kon
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Mor Lurie-Weinberger
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Adi Cohen
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Liat Metsamber
- School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Alona Keren-Paz
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Vered Schechner
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
- School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| |
Collapse
|
23
|
Tomaś N, Myszka K, Wolko Ł. Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish. Molecules 2023; 28:6654. [PMID: 37764430 PMCID: PMC10536532 DOI: 10.3390/molecules28186654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Sodium chloride (NaCl) is a commonly used additive in minimally processed fish-based products. The addition of NaCl to fish products and packaging in a modified atmosphere is usually efficient with regard to limiting the occurrence of the aquatic environmental pathogen Pseudomonas aeruginosa. Given the negative effects of excess NaCl in the diet, there is a growing demand to reduce NaCl in food products with safer substituents, but the knowledge of their impact on antibiotic resistant P. aeruginosa is limited. This study aimed to evaluate the physiological and transcriptome characteristics of P. aeruginosa NT06 isolated from fish and to determine the effect of selected concentrations of alternative NaCl compounds (KCl/NaL/NaC) on the P. aeruginosa NT06 virulence phenotype and genotype. In the study, among the isolated microorganisms, P. aeruginosa NT06 showed the highest antibiotic resistance (to ampicillin, ceftriaxone, nalidixic acid, and norfloxacin) and the ability to grow at 4 °C. The Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB) revealed the presence of 24 and 134 gene products assigned to AMR and VF in the P. aeruginosa NT06 transcriptome, respectively. KCl, KCl/NaL and KCl/NaL/NaC inhibited pyocyanin biosynthesis, elastase activity, and protease activity from 40 to 77%. The above virulence phenotypic observations were confirmed via RT-qPCR analyses, which showed that all tested AMR and VF genes were the most downregulated due to KCl/NaL/NaC treatment. In conclusion, this study provides insight into the potential AMR and VF among foodborne P. aeruginosa and the possible impairment of those features by KCl, NaL, and NaC, which exert synergistic effects and can be used in minimally processed fish-based products.
Collapse
Affiliation(s)
- Natalia Tomaś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
24
|
Asfaw T, Genetu D, Shenkute D, Shenkutie TT, Yitayew B. Commonly Consumed Vegetables as a Potential Source of Multidrug-Resistant and β-Lactamase-Producing Bacteria in Debre Berhan Town, Ethiopia. Infect Drug Resist 2023; 16:3693-3705. [PMID: 37333678 PMCID: PMC10275314 DOI: 10.2147/idr.s412126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Background Recently, antibiotic resistance of bacteria contained in foods such as vegetables has become a public health problem. In Ethiopia, the diversity of bacterial contamination and level of antibiotic resistance in vegetables are poorly understood. Local analysis of vegetable contamination and its contribution to the spread of antibiotic resistance are therefore essential for One Health interventions. Therefore, the aim of this study was to investigate the level of bacterial contamination of commonly consumed vegetables and their antimicrobial resistance patterns. Methods A cross-sectional research was conducted in Debre Berhan town from February to August 2022. Questionnaires were used to collect data on sociodemographic variables, hygiene practices, and market hygiene. Six carefully selected vegetables (30 each, 180 in total) were purchased at a local market. Bacterial isolation and identification, multidrug-resistant (MDR) screening and confirmation, extended-spectrum β-lactamase (ESBL) screening and confirmation, and antibiotic susceptibility tests were performed using standard operating procedure. The data were analysed statistically using SPSS software version 25. Results The contamination rate of vegetables was 119 (66.1%). Of the 176 bacteria isolates, E. coli (26.1%; 46/176), S. aureus (18.8%; 176), S. epidermidis (10.8%; 19/176), Klebsiella spp. (9.1%; 16/179) and Acinetobacter spp. (6.8%; 12/176) were the most frequently detected isolates. Of the 180 samples tested, (66.1%; 119/180) were contaminated with at least one type of bacteria. Lettuce (22.7%; 40/176), spinach (18.6%; 33/176), and cabbage (19.2%; 32/176) were the most contaminated vegetables. Of the 176 bacteria isolates, (64.8%; 114/176) were MDR, and (18.5%; 23/124) isolates were ESBL producers. The kind of vegetables, vendor/seller finger-nail status, medium of display, market type, and not cleaned before to display were all significantly associated with bacterial contamination. Conclusion This study found that commonly consumed vegetables are contaminated with antibiotic-resistant bacteria. Vegetables were also notable for the incidence of multidrug-resistant, extended β-lactamase-resistant, and methicillin-resistant bacterial isolates. Therefore, we urge local health authorities to develop and implement effective control strategies to reduce vegetable contamination.
Collapse
Affiliation(s)
- Tsegahun Asfaw
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Deribew Genetu
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | | | - Berhanu Yitayew
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
25
|
Habib I, Al-Rifai RH, Mohamed MYI, Ghazawi A, Abdalla A, Lakshmi G, Agamy N, Khan M. Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Fresh Salad Vegetables in the United Arab Emirates. Trop Med Infect Dis 2023; 8:294. [PMID: 37368712 DOI: 10.3390/tropicalmed8060294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
Contaminated fresh produce has been identified as a vehicle for human foodborne illness. The present study investigated the counts, antimicrobial resistance profile, and genome-based characterization of Escherichia coli in 11 different types of fresh salad vegetable products (n = 400) sampled from retailers in Abu Dhabi and Dubai in the United Arab Emirates. E. coli was detected in 30% of the tested fresh salad vegetable items, with 26.5% of the samples having an unsatisfactory level (≥100 CFU/g) of E. coli, notably arugula and spinach. The study also assessed the effect of the variability in sample conditions on E. coli counts and found, based on negative binominal regression analysis, that samples from local produce had a significantly higher (p-value < 0.001) E. coli count than imported samples. The analysis also indicated that fresh salad vegetables from the soil-less farming system (e.g., hydroponic and aeroponic) had significantly (p-value < 0.001) fewer E. coli than those from traditional produce farming. The study also examined the antimicrobial resistance in E. coli (n = 145) recovered from fresh salad vegetables and found that isolates exhibited the highest phenotypic resistance toward ampicillin (20.68%), tetracycline (20%), and trimethoprim-sulfamethoxazole (10.35%). A total of 20 (13.79%) of the 145 E. coli isolates exhibited a multidrug-resistant phenotype, all from locally sourced leafy salad vegetables. The study further characterized 18 of the 20 multidrug-resistant E. coli isolates using whole-genome sequencing and found that the isolates had varying numbers of virulence-related genes, ranging from 8 to 25 per isolate. The frequently observed genes likely involved in extra-intestinal infection were CsgA, FimH, iss, and afaA. The β-lactamases gene blaCTX-M-15 was prevalent in 50% (9/18) of the E. coli isolates identified from leafy salad vegetable samples. The study highlights the potential risk of foodborne illness and the likely spread of antimicrobial resistance and resistance genes associated with consuming leafy salad vegetables and emphasizes the importance of proper food safety practices, including proper storage and handling of fresh produce.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21511, Egypt
| | - Rami H Al-Rifai
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Afra Abdalla
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Glindya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Neveen Agamy
- High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21511, Egypt
| | - Mushtaq Khan
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| |
Collapse
|
26
|
Huygens J, Rasschaert G, Cottyn B, Dewulf J, Van Coillie E, Willekens K, Quataert P, Becue I, Daeseleire E, Heyndrickx M. The impact of antibiotic residues on resistance patterns in leek at harvest. Heliyon 2023; 9:e16052. [PMID: 37215782 PMCID: PMC10192768 DOI: 10.1016/j.heliyon.2023.e16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 μg/kg manure), sulfadiazine (1000 μg/kg manure), or lincomycin (1000 μg/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin.
Collapse
Affiliation(s)
- Judith Huygens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Bart Cottyn
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Jeroen Dewulf
- Ghent University, Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction an Population Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Els Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Koen Willekens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Paul Quataert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Ilse Becue
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Ghent University, Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
27
|
Benlabidi S, Raddaoui A, Lengliz S, Cheriet S, Hynds P, Achour W, Ghrairi T, Abbassi MS. Occurrence of High-Risk Clonal Lineages ST58, ST69, ST224, and ST410 among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Free-Range Chickens ( Gallus gallus domesticus) in a Rural Region in Tunisia. Genes (Basel) 2023; 14:genes14040875. [PMID: 37107633 PMCID: PMC10138121 DOI: 10.3390/genes14040875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial-resistant Escherichia coli isolates have emerged in various ecologic compartments and evolved to spread globally. We sought to (1.) investigate the occurrence of ESBL-producing E. coli (ESBL-Ec) in feces from free-range chickens in a rural region and (2.) characterize the genetic background of antimicrobial resistance and the genetic relatedness of collected isolates. Ninety-five feces swabs from free-range chickens associated with two households (House 1/House 2) in a rural region in northern Tunisia were collected. Samples were screened to recover ESBL-Ec, and collected isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, and molecular typing (pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST)). Overall, 47 ESBL-Ec were identified, with the following genes detected: 35 blaCTX-M-1, 5 blaCTX-M-55, 5 blaCTX-M-15, 1 blaSHV-2, and 1 blaSHV-12. Resistance to fluoroquinolones, tetracycline, sulfonamides, and colistin was encoded by aac(6')-Ib-cr (n = 21), qnrB (n = 1), and qnrS (n = 2); tetA (n = 17)/tetB (n = 26); sul1 (n = 29)/sul2 (n = 18); and mcr-2 (n = 2) genes, respectively. PFGE and MLST identified genetic homogeneity of isolates in House 1; however, isolates from House 2 were heterogeneous. Notably, among nine identified sequence types, ST58, ST69, ST224, and ST410 belong to pandemic high-risk clonal lineages associated with extrapathogenic E. coli. Minor clones belonging to ST410 and ST471 were shared by chickens from both households. The virulence genes fyuA, fimH, papGIII, and iutA were detected in 35, 47, 17, and 23 isolates, respectively. Findings indicate a high occurrence of ESBL-Ec in free-range chickens and highlight the occurrence of pandemic zoonotic clones.
Collapse
Affiliation(s)
- Saloua Benlabidi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Sana Lengliz
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Materials, Molecules and Application LR11ES22, Preparatory Institute for Scientific and Technical Studies, University of Carthage, Tunis 1054, Tunisia
| | - Sarah Cheriet
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Research Laboratory 'Antimicrobial Resistance' LR18ES39, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
28
|
Koilybayeva M, Shynykul Z, Ustenova G, Abzaliyeva S, Alimzhanova M, Amirkhanova A, Turgumbayeva A, Mustafina K, Yeleken G, Raganina K, Kapsalyamova E. Molecular Characterization of Some Bacillus Species from Vegetables and Evaluation of Their Antimicrobial and Antibiotic Potency. Molecules 2023; 28:3210. [PMID: 37049972 PMCID: PMC10095821 DOI: 10.3390/molecules28073210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Numerous natural habitats, such as soil, air, fermented foods, and human stomachs, are home to different Bacillus strains. Some Bacillus strains have a distinctive predominance and are widely recognized among other microbial communities, as a result of their varied habitation and physiologically active metabolites. The present study collected vegetable products (potato, carrot, and tomato) from local markets in Almaty, Kazakhstan. The bacterial isolates were identified using biochemical and phylogenetic analyses after culturing. Our phylogenetic analysis revealed three Gram-positive bacterial isolates BSS11, BSS17, and BSS19 showing 99% nucleotide sequence similarities with Bacillus subtilis O-3, Bacillus subtilis Md1-42, and Bacillus subtilis Khozestan2. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Candida albicans, Candida krusei, Pseudomonas aeruginosa, Shigella sonnei, Klebsiella pneumoniae, Salmonella enteritidis, Klebsiella aerogenes, Enterococcus hirae, Escherichia coli, Serratia marcescens, and Proteus vulgaris. This study found that the species that were identified have the ability to produce antibiotic chemicals. Additionally, the GC-MS analysis of three bacterial extracts revealed the presence of many antibiotic substances including phenol, benzoic acid, 1,2-benzenedicarboxylic acid and bis(2-methylpropyl), methoxyphenyl-oxime, and benzaldehyde. This work sheds light on the potential of Bacillus to be employed as an antimicrobial agent to target different multidrug-resistant bacterial strains. The results indicate that market vegetables may be a useful source of strains displaying a range of advantageous characteristics that can be used in the creation of biological antibiotics.
Collapse
Affiliation(s)
- Moldir Koilybayeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan
| | - Gulbaram Ustenova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Symbat Abzaliyeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan
| | - Mereke Alimzhanova
- Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050012, Kazakhstan
| | - Akerke Amirkhanova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan
| | - Kamilya Mustafina
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Gulnur Yeleken
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Karlygash Raganina
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Elmira Kapsalyamova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| |
Collapse
|
29
|
Wolfe BE. Are fermented foods an overlooked reservoir and vector of antimicrobial resistance? Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
30
|
Characterization of Escherichia coli and Other Enterobacterales Resistant to Extended-Spectrum Cephalosporins Isolated from Dairy Manure in Ontario, Canada. Appl Environ Microbiol 2023; 89:e0186922. [PMID: 36695602 PMCID: PMC9972979 DOI: 10.1128/aem.01869-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Extended-spectrum cephalosporins (ESCs) resistance genes, such as blaCTX-M, blaCMY, and blaSHV, have been found regularly in bacteria from livestock. However, information on their distribution in dairy cattle in Canada and on the associated genome sequences of ESC-resistant Enterobacterales is sparse. In this study, the diversity and distribution of ESC-resistant Escherichia coli throughout manure treatments in six farms in Southern Ontario were assessed over a one-year period, and their ESC-resistance plasmids were characterized. The manure samples were enriched using selective media. The resulting isolates were screened via polymerase chain reaction for blaCTX-M, blaCMY, and blaSHV. No E. coli carrying blaSHV were detected. Escherichia coli (n = 248) carrying blaCTX-M or blaCMY underwent whole-genome sequencing using an Illumina MiSeq/NextSeq. These isolates were typed using multilocus sequence typing (MLST) and their resistance gene profiles. A subset of E. coli (n = 28) were sequenced using Oxford Nanopore Technologies. Plasmids were assembled using Unicycler and characterized via the resistance genes pattern, replicon type, plasmid MLST, phylogenetic analysis, and Mauve alignments. The recovery of ESC-resistant Enterobacterales (18 species, 8 genera) was drastically reduced in manure outputs. However, multiple treatment stages were needed to attain a significant reduction. 62 sequence types were identified, with ST10, ST46, ST58, ST155, ST190, ST398, ST685, and ST8761 being detected throughout the treatment pipeline. These STs overlapped with those found on multiple farms. The ESC-resistance determinants included CTX-M-1, -14, -15, -17, -24, -32, -55, and CMY-2. The plasmids carrying blaCTX-M were more diverse than were the plasmids carrying blaCMY. Known "epidemic plasmids" were detected for both blaCTX-M and blaCMY. IMPORTANCE The increase in antimicrobial resistance is of concern for human and animal health, especially when resistance is conferred to extended-spectrum cephalosporins, which are used to treat serious infections in both human and veterinary medicine. Bacteria carrying extended-spectrum cephalosporin resistance genes, including blaCTX-M and blaCMY, are frequently found in dairy manure. Manure treatment influences the loads and diversity of bacteria, including those carrying antimicrobial resistance genes, such as Enterobacterales and Escherichia coli. Any bacteria that survive the treatment process are subsequently applied to the environment. Enterobacterales carrying blaCTX-M or blaCMY can contaminate soil and crops consumed by humans and animals, thereby increasing the potential for antimicrobial resistance genes to integrate into the human gut microflora through horizontal gene transfer. This furthers the dissemination of resistance. Therefore, it is imperative to understand the effects manure treatments have on ESC-resistance in environmentally applied manure.
Collapse
|
31
|
Jiménez-Belenguer AI, Ferrús MA, Hernández M, García-Hernández J, Moreno Y, Castillo MÁ. Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics (Basel) 2023; 12:387. [PMID: 36830297 PMCID: PMC9952115 DOI: 10.3390/antibiotics12020387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed blaVIM to be the most frequently isolated ESBL-encoding gene, followed by blaTEM and blaOXA-48. These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community.
Collapse
Affiliation(s)
- Ana Isabel Jiménez-Belenguer
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Maria Antonia Ferrús
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Manuel Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Yolanda Moreno
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - María Ángeles Castillo
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| |
Collapse
|
32
|
Ashwini M, Ray M, Sumana K, Halami PM. Prevalence of macrolide-lincosamide-streptogramin resistant lactic acid bacteria isolated from food samples. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:630-642. [PMID: 36712199 PMCID: PMC9873896 DOI: 10.1007/s13197-022-05648-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Lactic acid bacteria (LAB) being a reservoir of antibiotic resistance genes, tend to disseminate antibiotic resistance that possibly pose a threat to human and animal health. Therefore, the study focuses on the prevalence of macrolide-lincosamide-streptogramin- (MLS) resistance among LAB isolated from various food samples. Diverse phenotypic and genotypic MLS resistance were determined among the LAB species (n = 146) isolated from fermented food products (n = 6) and intestine of food-producing animals (n = 4). Double disc, triple disc diffusion and standard minimum inhibitory concentration (MIC) tests were evaluated for phenotypic MLS resistance. Specific primers for MLS resistance genes were used for the evaluation of genotypic MLS resistance and gene expressions using total RNA of each isolate at different antibiotic concentrations. The isolates identified are Levilactobacillus brevis (n = 1), Enterococcus hirae (n = 1), Limosilactobacillus fermentum (n = 2), Pediococcus acidilactici (n = 3), Enterococcus faecalis (n = 1). The MIC tests along with induction studies displayed cMLSb, L phenotype, M phenotype, KH phenotype, I phenotype resistance among MLS antibiotics. Genotypic evaluation tests revealed the presence of ermB, mefA/E, msrA/B and msrC genes. Also, gene expression studies displayed increased level of gene expression to the twofold increased antibiotic concentrations. In the view of global health concern, this study identified that food samples and food-producing animals represent source of antibiotic resistant LAB that can disseminate resistance through food chain. This suggests the implementation of awareness in the use of antibiotics as growth promoters and judicious use of antibiotics in veterinary sectors in order to prevent the spread of antibiotic resistance.
Collapse
Affiliation(s)
- M. Ashwini
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020 India
| | - K. Sumana
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - Prakash M. Halami
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020 India
| |
Collapse
|
33
|
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol 2023; 12:1065796. [PMID: 36726644 PMCID: PMC9884834 DOI: 10.3389/fcimb.2022.1065796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.
Collapse
Affiliation(s)
| | | | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
34
|
Zhao CX, Su XX, Xu MR, An XL, Su JQ. Uncovering the diversity and contents of gene cassettes in class 1 integrons from the endophytes of raw vegetables. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114282. [PMID: 36371907 DOI: 10.1016/j.ecoenv.2022.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Rapid spread of antibiotic resistance genes (ARGs) in pathogens is threatening human health. Integrons allow bacteria to integrate and express foreign genes, facilitating horizontal transfer of ARGs in environments. Consumption of raw vegetables represents a pathway for human exposure to environmental ARGs. However, few studies have focused on integron-associated ARGs in the endophytes of raw vegetables. Here, based on the approach of qPCR and clone library, we quantified the abundance of integrase genes and analyzed the diversity and contents of resistance gene cassettes in class 1 integrons from the endophytes of six common raw vegetables. The results revealed that integrase genes for class 1 integron were most prevalent compared with class 2 and class 3 integron integrase genes (1-2 order magnitude, P < 0.05). The cucumber endophytes harbored a higher absolute abundance of integrase genes than other vegetables, while the highest bacterial abundance was detected in cabbage and cucumber endophytes. Thirty-two unique resistance gene cassettes were detected, the majority of which were associated with the genes encoding resistance to beta-lactam and aminoglycoside. Antibiotic resistance gene cassettes accounted for 52.5 % of the functionally annotated gene cassettes, and blaTEM-157 and aadA2 were the most frequently detected resistance cassettes. Additionally, carrot endophytes harbored the highest proportion of antibiotic resistance gene cassettes in the class 1 integrons. Collectively, these results provide an in-depth view of acquired resistance genes by integrons in the raw vegetable endophytes and highlight the potential health risk of the transmission of ARGs via the food chain.
Collapse
Affiliation(s)
- Cai-Xia Zhao
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Xuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, 400715 Chongqing, China
| | - Mei-Rong Xu
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li An
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Brunn AA, Roustit M, Kadri-Alabi Z, Guardabassi L, Waage J. A Meta-Analysis to Estimate Prevalence of Resistance to Tetracyclines and Third Generation Cephalosporins in Enterobacteriaceae Isolated from Food Crops. Antibiotics (Basel) 2022; 11:1424. [PMID: 36290083 PMCID: PMC9598472 DOI: 10.3390/antibiotics11101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Application of human and animal waste to fields and water sources and on-farm antimicrobial usage are documented contributors to the occurrence of antimicrobial resistance (AMR) in agricultural domains. This meta-analysis aimed to determine the prevalence of resistance to tetracycline (TET) and third generation cephalosporins (3GC) in Enterobacteriaceae isolated from food crops. TET was selected in view of its wide use in agriculture, whereas 3GC were selected because of the public health concerns of reported resistance to these critically important antibiotics in the environment. Forty-two studies from all six world regions published between 2010 and 2022 met the eligibility criteria. A random effects model estimated that 4.63% (95% CI: 2.57%, 7.18%; p-value: <0.0001) and 3.75% (95%CI: 2.13%, 5.74%; p-value: <0.0001) of surveyed food crops harboured Enterobacteriaceae resistant to TET and 3GC, respectively. No significant differences were observed between pre- and post-harvest stages of the value chain. 3GC resistance prevalence estimates in food crops were highest for the African region (6.59%; 95% CI: 2.41%, 12.40%; p-value: <0.0001) and lowest for Europe (1.84%; 95% CI: 0.00%, 6.02%; p-value: <0.0001). Considering the rare use of 3GC in agriculture, these results support its inclusion for AMR surveillance in food crops. Integrating food crops into One Health AMR surveillance using harmonized sampling methods could confirm trends highlighted here.
Collapse
Affiliation(s)
- Ariel A. Brunn
- Department of Public Health, Environment and Society, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Manon Roustit
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Zaharat Kadri-Alabi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Jeff Waage
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
36
|
Łysakowska M, Głowacka IE, Andrei G, Schols D, Snoeck R, Lisiecki P, Szemraj M, Piotrowska DG. Design, Synthesis, Anti-Varicella-Zoster and Antimicrobial Activity of (Isoxazolidin-3-yl)Phosphonate Conjugates of N1-Functionalised Quinazoline-2,4-Diones. Molecules 2022; 27:molecules27196526. [PMID: 36235061 PMCID: PMC9571433 DOI: 10.3390/molecules27196526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dipolar cycloaddition of the N-substituted C-(diethoxyphosphonyl)nitrones with N3-allyl-N1-benzylquinazoline-2,4-diones produced mixtures of diastereoisomeric 3-(diethoxyphosphonyl)isoxazolidines with a N1-benzylquinazoline-2,4-dione unit at C5. The obtained compounds were assessed for antiviral and antibacterial activities. Several compounds showed moderate inhibitory activities against VZV with EC50 values in the range of 12.63-58.48 µM. A mixture of isoxazolidines cis-20c/trans-20c (6:94) was found to be the most active against B. cereus PCM 1948, showing an MIC value 0.625 mg/mL, and also was not mutagenic up to this concentration.
Collapse
Affiliation(s)
- Magdalena Łysakowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000 Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000 Leuven, Belgium
| | - Paweł Lisiecki
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- Correspondence:
| |
Collapse
|
37
|
Cabal A, Rab G, Daza-Prieto B, Stöger A, Peischl N, Chakeri A, Mo SS, Bock H, Fuchs K, Sucher J, Rathammer K, Hasenberger P, Stadtbauer S, Caniça M, Strauß P, Allerberger F, Wögerbauer M, Ruppitsch W. Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Int J Mol Sci 2022; 23:ijms231911276. [PMID: 36232576 PMCID: PMC9570485 DOI: 10.3390/ijms231911276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain.
Collapse
Affiliation(s)
- Adriana Cabal
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Correspondence:
| | - Gerhard Rab
- Institute of Hydraulic Engineering and Water Resources Management, Technical University of Vienna, 1040 Vienna, Austria
- Institute for Land and Water Management Research, Federal Agency for Water Management, 3252 Petzenkirchen, Austria
| | - Beatriz Daza-Prieto
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, 1060 Vienna, Austria
| | - Anna Stöger
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Nadine Peischl
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Ali Chakeri
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Center for Public Health, Medical University Vienna, 1090 Vienna, Austria
| | - Solveig Sølverød Mo
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Harald Bock
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Klemens Fuchs
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Jasmin Sucher
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Krista Rathammer
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | | | - Silke Stadtbauer
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - Peter Strauß
- Institute for Land and Water Management Research, Federal Agency for Water Management, 3252 Petzenkirchen, Austria
| | | | | | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, 1096 Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| |
Collapse
|
38
|
Keenum I, Wind L, Ray P, Guron G, Chen C, Knowlton K, Ponder M, Pruden A. Metagenomic tracking of antibiotic resistance genes through a pre-harvest vegetable production system: an integrated lab-, microcosm- and greenhouse-scale analysis. Environ Microbiol 2022; 24:3705-3721. [PMID: 35466491 PMCID: PMC9541739 DOI: 10.1111/1462-2920.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Prior research demonstrated the potential for agricultural production systems to contribute to the environmental spread of antibiotic resistance genes (ARGs). However, there is a need for integrated assessment of critical management points for minimizing this potential. Shotgun metagenomic sequencing data were analysed to comprehensively compare total ARG profiles characteristic of amendments (manure or compost) derived from either beef or dairy cattle (with and without dosing antibiotics according to conventional practice), soil (loamy sand or silty clay loam) and vegetable (lettuce or radish) samples collected across studies carried out at laboratory-, microcosm- and greenhouse-scale. Vegetables carried the greatest diversity of ARGs (n = 838) as well as the most ARG-mobile genetic element co-occurrences (n = 945). Radishes grown in manure- or compost-amended soils harboured a higher relative abundance of total (0.91 and 0.91 ARGs/16S rRNA gene) and clinically relevant ARGs than vegetables from other experimental conditions (average: 0.36 ARGs/16S rRNA gene). Lettuce carried the highest relative abundance of pathogen gene markers among the metagenomes examined. Total ARG relative abundances were highest on vegetables grown in loamy sand receiving antibiotic-treated beef amendments. The findings emphasize that additional barriers, such as post-harvest processes, merit further study to minimize potential exposure to consumers.
Collapse
Affiliation(s)
- Ishi Keenum
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| | - Lauren Wind
- Department of Biological Systems EngineeringVirginia TechBlacksburgVAUSA
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingRG6 6ARUK
| | - Giselle Guron
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Chaoqi Chen
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVAUSA
| | | | - Monica Ponder
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Amy Pruden
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| |
Collapse
|
39
|
Bassitta R, Kronfeld H, Bauer J, Schwaiger K, Hölzel C. Tracking Antimicrobial Resistant E. coli from Pigs on Farm to Pork at Slaughter. Microorganisms 2022; 10:1485. [PMID: 35893543 PMCID: PMC9394271 DOI: 10.3390/microorganisms10081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial-resistant bacteria might be transferred via the foodchain. However, that risk is rarely tracked along different production steps, e.g., from pigs at farm to meat. To close that gap, we performed a prospective study in four conventional and two organic farms from the moment pigs entered the farm until meat sampling at slaughter. Antimicrobial use was recorded (0 to 11 agents). Antimicrobial susceptibility (AMS) against 26 antibiotics, including critically important substances, was tested by microdilution, and tetA-tetB-sulI-sulII-strA-strB-bla-CTXM-qacEΔ1 were included in PCR-genotyping. From 244 meat samples of 122 pigs, 54 samples (22.1%) from 45 animals were positive for E. coli (n = 198). MICs above the breakpoint/ECOFF occurred for all antibiotics except meropenem. One isolate from organic farming was markedly resistant against beta-lactams including fourth-generation cefalosporines. AMS patterns differed remarkably between isolates from one piece of meat, varying from monoresistance to 16-fold multiresistance. Amplicon-typing revealed high similarity between isolates at slaughter and on farm. Prior pig lots andeven the farmer might serve as reservoirs for E. coli isolated from meat at slaughter. However, AMS phenotyping and genotyping indicate that antimicrobial resistance in E. coli is highly dynamic, impairing reliable prediction of health risks from findings along the production chain.
Collapse
Affiliation(s)
- Rupert Bassitta
- Former Department of Animal Hygiene, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany;
| | - Hanna Kronfeld
- Department for Animal Hygiene, Animal Health and Food Safety, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany;
| | - Johann Bauer
- Former Department of Animal Hygiene, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany;
| | - Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Christina Hölzel
- Department for Animal Hygiene, Animal Health and Food Safety, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany;
| |
Collapse
|
40
|
Occurrence of Extended Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram-Negative Bacteria in Fresh Vegetables, an Increasing Human Health Concern in Algeria. Antibiotics (Basel) 2022; 11:antibiotics11080988. [PMID: 35892378 PMCID: PMC9332692 DOI: 10.3390/antibiotics11080988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to screen for extended spectrum cephalosporin-, carbapenem- and colistin-resistant Gram-negative bacteria in fresh vegetables in Batna, Algeria. A total of 400 samples of fresh vegetables were collected from different retail stores. Samples were immediately subjected to selective isolation, then the representative colonies were identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF–MS). Phenotypic and genotypic analyses were carried out in terms of species identification and relative antibiotic resistance. Transferability of the carbapenemase and mcr-bearing plasmids was verified by conjugation. The clonal relationships of carbapenemase and mcr-positive Escherichia coli isolates were studied by multi-locus sequence typing (MLST). Sixty-seven isolates were characterised and were mostly isolated from green leafy vegetables, where the dominant species identified included Citrobacter freundii, Klebsiella pneumoniae, Enterobacter cloacae, Stenotrophomona maltophilia, E. coli and Citrobacter braakii. PCR and sequencing results showed that E. coli was the bacterial species presenting the highest antibiotic resistance level in parallel to blaTEM (n = 16) and blaCTX-M-15 (n = 11), which were the most detected genes. Moreover, five isolates carried carbapenemase genes, including the blaOXA-48 and/or blaVIM-4 genes. The mcr-1 gene was detected in two E. coli isolates. MLST analysis revealed three different E. coli sequence types: ST101 (n = 1), ST216 (n = 1) and ST2298 (n = 1). Conjugation assays confirmed the transferability of the blaOXA-48 and mcr-1 genes. In this study we report, for the first time, the detection of the blaOXA-48 gene in E. coli and C. braakii isolates and the blaVIM-4 gene in vegetables. To the best of our knowledge, this is the first report on the detection of mcr-1 genes from vegetables in Algeria.
Collapse
|
41
|
Sequino G, Valentino V, Torrieri E, De Filippis F. Specific Microbial Communities Are Selected in Minimally-Processed Fruit and Vegetables according to the Type of Product. Foods 2022; 11:foods11142164. [PMID: 35885409 PMCID: PMC9315490 DOI: 10.3390/foods11142164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Fruits and vegetables (F&V) products are recommended for the daily diet due to their low caloric content, high amount of vitamins, minerals and fiber. Furthermore, these foods are a source of various phytochemical compounds, such as polyphenols, flavonoids and sterols, exerting antioxidant activity. Despite the benefits derived from eating raw F&V, the quality and safety of these products may represent a source of concern, since they can be quickly spoiled and have a very short shelf-life. Moreover, they may be a vehicle of pathogenic microorganisms. This study aims to evaluate the bacterial and fungal populations in F&V products (i.e., iceberg lettuces, arugula, spinaches, fennels, tomatoes and pears) by using culture-dependent microbiological analysis and high-throughput sequencing (HTS), in order to decipher the microbial populations that characterize minimally-processed F&V. Our results show that F&V harbor diverse and product-specific bacterial and fungal communities, with vegetables leaf morphology and type of edible fraction of fruits exerting the highest influence. In addition, we observed that several alterative (e.g., Pseudomonas and Aspergillus) and potentially pathogenic taxa (such as Staphylococcus and Cladosporium) are present, thus emphasizing the need for novel product-specific strategies to control the microbial composition of F&V and extend their shelf-life.
Collapse
Affiliation(s)
- Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
- Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-0812539388
| |
Collapse
|
42
|
Jang H, Eshwar A, Lehner A, Gangiredla J, Patel IR, Beaubrun JJG, Chase HR, Negrete F, Finkelstein S, Weinstein LM, Ko K, Addy N, Ewing L, Woo J, Lee Y, Seo K, Jaradat Z, Srikumar S, Fanning S, Stephan R, Tall BD, Gopinath GR. Characterization of Cronobacter sakazakii Strains Originating from Plant-Origin Foods Using Comparative Genomic Analyses and Zebrafish Infectivity Studies. Microorganisms 2022; 10:microorganisms10071396. [PMID: 35889115 PMCID: PMC9319161 DOI: 10.3390/microorganisms10071396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C β-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen.
Collapse
Affiliation(s)
- Hyein Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Athmanya Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Isha R. Patel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Junia Jean-Gilles Beaubrun
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Hannah R. Chase
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Samantha Finkelstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Leah M. Weinstein
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Katie Ko
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Nicole Addy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Laura Ewing
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Jungha Woo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Youyoung Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
| | - Kunho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Ziad Jaradat
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Shabarinath Srikumar
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin & WHO Collaborating Centre for Cronobacter, Belfield, D04 N2E5 Dublin, Ireland; (S.S.); (S.F.)
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin & WHO Collaborating Centre for Cronobacter, Belfield, D04 N2E5 Dublin, Ireland; (S.S.); (S.F.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland; (A.E.); (A.L.); (R.S.)
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
- Correspondence: (B.D.T.); (G.R.G.)
| | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (H.J.); (J.G.); (I.R.P.); (J.J.-G.B.); (H.R.C.); (F.N.); (S.F.); (L.M.W.); (K.K.); (N.A.); (L.E.); (J.W.); (Y.L.)
- Correspondence: (B.D.T.); (G.R.G.)
| |
Collapse
|
43
|
Kusi J, Ojewole CO, Ojewole AE, Nwi-Mozu I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics (Basel) 2022; 11:821. [PMID: 35740227 PMCID: PMC9219700 DOI: 10.3390/antibiotics11060821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/03/2023] Open
Abstract
Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.
Collapse
Affiliation(s)
- Joseph Kusi
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Catherine Oluwalopeye Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Akinloye Emmanuel Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Isaac Nwi-Mozu
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA;
| |
Collapse
|
44
|
Wang C, Ye Q, Jiang A, Zhang J, Shang Y, Li F, Zhou B, Xiang X, Gu Q, Pang R, Ding Y, Wu S, Chen M, Wu Q, Wang J. Pseudomonas aeruginosa Detection Using Conventional PCR and Quantitative Real-Time PCR Based on Species-Specific Novel Gene Targets Identified by Pangenome Analysis. Front Microbiol 2022; 13:820431. [PMID: 35602063 PMCID: PMC9119647 DOI: 10.3389/fmicb.2022.820431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Mining novel specific molecular targets and establishing efficient identification methods are significant for detecting Pseudomonas aeruginosa, which can enable P. aeruginosa tracing in food and water. Pangenome analysis was used to analyze the whole genomic sequences of 2017 strains (including 1,000 P. aeruginosa strains and 1,017 other common foodborne pathogen strains) downloaded from gene databases to obtain novel species-specific genes, yielding a total of 11 such genes. Four novel target genes, UCBPP-PA14_00095, UCBPP-PA14_03237, UCBPP-PA14_04976, and UCBPP-PA14_03627, were selected for use, which had 100% coverage in the target strain and were not present in nontarget bacteria. PCR primers (PA1, PA2, PA3, and PA4) and qPCR primers (PA12, PA13, PA14, and PA15) were designed based on these target genes to establish detection methods. For the PCR primer set, the minimum detection limit for DNA was 65.4 fg/μl, which was observed for primer set PA2 of the UCBPP-PA14_03237 gene. The detection limit in pure culture without pre-enrichment was 105 colony-forming units (CFU)/ml for primer set PA1, 103 CFU/ml for primer set PA2, and 104 CFU/ml for primer set PA3 and primer set PA4. Then, qPCR standard curves were established based on the novel species-specific targets. The standard curves showed perfect linear correlations, with R2 values of 0.9901 for primer set PA12, 0.9915 for primer set PA13, 0.9924 for primer set PA14, and 0.9935 for primer set PA15. The minimum detection limit of the real-time PCR (qPCR) assay was 102 CFU/ml for pure cultures of P. aeruginosa. Compared with the endpoint PCR and traditional culture methods, the qPCR assay was more sensitive by one or two orders of magnitude. The feasibility of these methods was satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 29 ready-to-eat vegetable samples and was almost consistent with that of the national standard detection method. The developed assays can be applied for rapid screening and detection of pathogenic P. aeruginosa, providing accurate results to inform effective monitoring measures in order to improve microbiological safety.
Collapse
Affiliation(s)
- Chufang Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Aiming Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Baoqing Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinran Xiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
45
|
Acacia Fiber Protects the Gut from Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Colonization Enabled by Antibiotics. mSphere 2022; 7:e0007122. [PMID: 35582906 PMCID: PMC9241499 DOI: 10.1128/msphere.00071-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel approaches to combating antibiotic resistance are needed given the ever-continuing rise of antibiotic resistance and the scarce discovery of new antibiotics. Little is known about the colonization dynamics and the role of intrinsic plant-food characteristics in this process. We sought to determine whether plant fiber could alter colonization dynamics by antibiotic-resistant bacteria in the gut. We determined that ingestion of antibiotics in mice markedly enhanced gut colonization by a pathogenic extended-spectrum beta-lactamase-producing Escherichia coli strain of human origin, E. coli JJ1886 (ST131-H30Rx). Furthermore, ingestion of soluble acacia fiber before and after antibiotic exposure significantly reduced pathogenic E. coli colonization. 16S rRNA analysis and ex vivo cocultures demonstrated that fiber protected the microbiome by serving as a prebiotic, which induced native gut E. coli to inhibit pathogenic E. coli via colicin M. Fiber may be a useful prebiotic with which to administer antibiotics to protect human and livestock gut microbiomes against colonization from antibiotic-resistant, pathogenic bacteria. IMPORTANCE A One Health-based strategy-the concept that human health and animal health are interconnected with the environment-is necessary to determine the drivers of antibiotic resistance from food to the clinic. Moreover, humans can ingest antibiotic-resistant bacteria on food and asymptomatically, or "silently," carry such bacteria in the gut long before they develop an opportunistic extraintestinal infection. Here, we determined that fiber-rich foods, in particular acacia fiber, may be a new, promising, and inexpensive prebiotic to administer with antibiotics to protect the mammalian (i.e., human and livestock) gut against such colonization by antibiotic-resistant, pathogenic bacteria.
Collapse
|
46
|
Pellegrini MC, Okada E, González Pasayo RA, Ponce AG. Prevalence of Escherichia coli strains in horticultural farms from Argentina: antibiotic resistance, biofilm formation, and phylogenetic affiliation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23225-23236. [PMID: 34802078 DOI: 10.1007/s11356-021-17523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Escherichia coli is the bacteria most commonly used as an indicator of fecal contamination in agricultural environments. Moreover, E. coli is categorized as a priority pathogen due to its widespread antibiotic resistance. This study aimed to characterize E. coli strains isolated from 10 horticultural farms. Isolates were obtained from samples of vegetable crops (n = 62), the surrounding soil (n = 62), poultry litter (n = 8), and groundwater (n = 6). Phyllo-grouping assignment was performed on the total of E. coli isolates. Antibiograms and quantification of the minimal inhibitory concentration (MIC) were performed with antibiotics commonly used in humans. Biofilm formation capacity was studied by quantifying cells attached to culture tubes. Overall, 21 E. coli isolates were obtained. Three phylogenetic groups (A, B1, and C) and two Escherichia clade IV and IV-V were identified in the collection by polymerase chain reaction. Sixty-seven percent of the E. coli isolates were resistant to amoxicillin-clavulanic acid and/or ampicillin. Amoxicillin MIC values ranged from 11.9 to >190.5 µg/mL and ampicillin MIC values ranged from 3 to >190.5 µg/mL. All the E. coli isolates, resistant and non-resistant, had biofilm forming capacity. The presence of phenotypic resistance on fresh produce and environmental matrices could present significant opportunities for contamination that result in health risks for consumers. To the authors' best knowledge, this is the first environmental assessment of resistant E. coli occurrence in horticultural farms in South America.
Collapse
Affiliation(s)
- María Celeste Pellegrini
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina.
| | - Elena Okada
- Instituto Nacional de Tecnología Agropecuaria (INTA) Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, 7620, Balcarce, Argentina
| | - Ramón Alejandro González Pasayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Alejandra Graciela Ponce
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina
| |
Collapse
|
47
|
Yin Y, Zhu D, Yang G, Su J, Duan G. Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152851. [PMID: 34990692 DOI: 10.1016/j.scitotenv.2021.152851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Fresh vegetables are considered as a reservoir of pathogenic bacteria and antibiotic resistance genes (ARGs), which are the emerging environmental contaminants, posing increasing concerned risk to human health. However, the prevalence of pathogens in phyllosphere of fresh vegetables, as well as the association of ARGs with pathogenic bacteria, have not been well elaborated. In this study, we explored the structure of microbial communities and ARGs through high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing, and characterized the microorganisms resisting to antibiotics by pure culture. From phyllosphere of six different kinds of vegetables, 205 ARGs were detected and genes for multidrug resistance was the most abundant. The predominant potential pathogens were classified to Pseudomonas, Klebsiella, and Acinetobacter genera, which carried various ARGs such as multidrug and beta-lactam resistance genes presumedly. Among six kinds of vegetables, Lactuca sativa var. asparagina carried the highest abundance of potential pathogens and ARGs, while Allium sativum L harbored the lowest abundance of pathogens and ARGs. In addition, various culturable bacteria resisting to colistin or meropenem could be isolated from all vegetables, remarkably, all the isolates resistant to both antibiotics are potential pathogens. Our study highlighted the risks of pathogens and ARGs from raw vegetables to consumers, characterized their structure patterns among different vegetables, and analyzed the potential mechanisms regulating phyllosphere pathogens and resistome of fresh vegetables, which would be helpful for reducing the microbial risk from vegetable ingestion.
Collapse
Affiliation(s)
- Yue Yin
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianqiang Su
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Brunn A, Kadri-Alabi Z, Moodley A, Guardabassi L, Taylor P, Mateus A, Waage J. Characteristics and Global Occurrence of Human Pathogens Harboring Antimicrobial Resistance in Food Crops: A Scoping Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BackgroundThe role of the crop environment as a conduit for antimicrobial resistance (AMR) through soil, water, and plants has received less attention than other sectors. Food crops may provide a link between the agro-environmental reservoir of AMR and acquisition by humans, adding to existing food safety hazards associated with microbial contamination of food crops.ObjectivesThe objectives of this review were: (1) to use a systematic methodology to characterize AMR in food crop value chains globally, and (2) to identify knowledge gaps in understanding exposure risks to humans.MethodsFour bibliographic databases were searched using synonyms of AMR in food crop value chains. Following two-stage screening, phenotypic results were extracted and categorized into primary and secondary combinations of acquired resistance in microbes of concern based on established prioritization. Occurrence of these pathogen-AMR phenotype combinations were summarized by sample group, value chain stage, and world region. Sub-analyses on antimicrobial resistance genes (ARG) focused on extended-spectrum beta-lactamase and tetracycline resistance genes.ResultsScreening of 4,455 citations yielded 196 studies originating from 49 countries, predominantly in Asia (89 studies) and Africa (38). Observations of pathogen-phenotype combinations of interest were reported in a subset of 133 studies (68%). Primary combinations, which include resistance to antimicrobials of critical importance to human medicine varied from 3% (carbapenem resistance) to 13% (fluoroquinolones), whereas secondary combinations, which include resistance to antimicrobials also used in agriculture ranged from 14% (aminoglycoside resistance) to 20% (aminopenicillins). Salad crops, vegetables, and culinary herbs were the most sampled crops with almost twice as many studies testing post-harvest samples. Sub-analysis of ARG found similar patterns corresponding to phenotypic results.DiscussionThese results suggest that acquired AMR in opportunistic and obligate human pathogens is disseminated throughout food crop value chains in multiple world regions. However, few longitudinal studies exist and substantial heterogeneity in sampling methods currently limit quantification of exposure risks to consumers. This review highlights the need to include agriculturally-derived AMR in monitoring food safety risks from plant-based foods, and the challenges facing its surveillance.
Collapse
|
49
|
Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and Dissemination Capacities of a BlaNDM-5-Harboring IncX-3 Plasmid in Escherichia coli Isolated from an Urban River in Montpellier, France. Antibiotics (Basel) 2022; 11:antibiotics11020196. [PMID: 35203799 PMCID: PMC8868147 DOI: 10.3390/antibiotics11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the capacities of persistence and dissemination of blaNDM-5 within Escherichia coli and in aquatic environment, we characterized E. coli (sequence type 636) strains B26 and B28 isolated one month apart from the same urban river in Montpellier, France. The two isolates carried a pTsB26 plasmid, which sized 45,495 Kb, harbored blaNDM-5 gene and belonged to IncX-3 incompatibility group. pTsB26 was conjugative in vitro at high frequency, it was highly stable after 400 generations and it exerted no fitness cost on its host. blaNDM-5harboring plasmids are widely dispersed in E. coli all around the world, with no lineage specialization. The genomic comparison between B26 and B28 stated that the two isolates probably originated from the same clone, suggesting the persistence of pTsB26 in an E. coli host in aquatic environment.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Fabien Aujoulat
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Estelle Jumas-Bilak
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
| | - Patricia Licznar-Fajardo
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
50
|
Kusuma SAF, Septyadi R, Sofian FF. Inhibition of bacillus spores germination by cinnamon bark, fingerroot, and moringa leaves extract. J Adv Pharm Technol Res 2022; 13:7-10. [PMID: 35223434 PMCID: PMC8820351 DOI: 10.4103/japtr.japtr_286_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 09/30/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
This study was intended to discover the natural food preservatives by comparing the antibacterial effect of the ethanolic extract of cinnamon bark, finger root, and moringa leaves toward Bacillus cereus both the vegetative cells and spores. The antibacterial activities of the investigated extracts were assessed against cells using the agar diffusion method. Whereas the sporicidal test was performed by observing the colony growth, after various times of incubation (1, 3, and 5 h). The investigated extracts produced inhibition in a diameter ranging from 10.6 to 35.3 mm, and it can be classified that the extract of cinnamon bark was the most potent extract to inhibit the vegetative cells form, followed by fingerroot and the moringa leaves extract. Consistently, the ethanolic extract of cinnamon bark and fingerroot significantly yielded sporicidal activities higher than the moringa leaves extract. Both extracts exerted sporicidal activity within 1 h of contact time at the lowest test concentration of 5% w/v, whereas moringa leaves extract required a longer contact time (5 h) at higher concentration of 20% w/v. It can be concluded that cinnamon bark and fingerroot extract have great potential as effective food preservative candidates to inhibit the B. cereus growth than moringa leaves extract.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, West Java, Indonesia,Address for correspondence: Dr. Sri Agung Fitri Kusuma, Komplek Permata Biru, 71D, West Java, Indonesia. E-mail:
| | - Rendy Septyadi
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, West Java, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, West Java, Indonesia
| |
Collapse
|