1
|
Meng Y, Song Y, Li H. Cardiorespiratory fitness in Chinese children and adolescents: a systematic review and meta-analysis. Ann Hum Biol 2025; 52:2459141. [PMID: 39992301 DOI: 10.1080/03014460.2025.2459141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Cardiorespiratory fitness (CRF) has become a significant focus in the field of public health. CRF is considered a strong predictor of health outcomes. However, cardiorespiratory fitness levels of children and adolescents are declining. AIMS (1) To analyse the cardiorespiratory fitness levels of children and adolescents in China, focusing on maximum oxygen uptake (VO2max), maximum heart rate (HRmax), peak oxygen uptake (Peak VO2) and 20-metre shuttle run test (20 m-SRT). (2) To provide baseline data, with the goal of supporting the development of sports programs, intervention strategies, and public health decision-making. SUBJECTS AND METHODS A meta-analysis was conducted using 30 studies selected from five databases. RESULTS The average performance on 20 m-SRT for Chinese children and adolescents was 34.67 laps, with a VO2max of 46.47 ml/kg/min, HRmax of 195.02 bpm, and Peak VO2 of 48.58 ml/kg/min. Boys outperformed girls in VO2max, 20 m-SRT, and HRmax, although the differences in HRmax and Peak VO2 were not statistically significant. Tibetan children showed better performance than Han children in three indicators with no significant differences found. CONCLUSION Cardiorespiratory fitness in Chinese children and adolescents is within a healthy range but not optimal. Boys generally perform better than girls, and Tibetan children outperform Han children.
Collapse
Affiliation(s)
- Yihan Meng
- School of Sport Science and Key Laboratory of the Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing, China
| | - Yu Song
- School of Sport Science and Key Laboratory of the Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing, China
| | - Hongjuan Li
- School of Sport Science and Key Laboratory of the Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
She H, Qu Y. Cardiovascular Plasticity and Adaptation of High-Altitude Birds and Mammals. Integr Zool 2025. [PMID: 40400082 DOI: 10.1111/1749-4877.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/28/2025] [Accepted: 04/05/2025] [Indexed: 05/23/2025]
Abstract
Exposure to a hypoxic environment at high altitudes imposes severe pressure on animals living there, which utilize substantial cardiovascular and respiratory responses to meet the physiological challenge of oxygen requirement. These responses may result from phenotypic plasticity through short-term exposure (i.e., within a generation) to a new environment or shaped by adaptation (i.e., many generations) through long-term evolution. For example, plasticity triggers a sympathetic-mediated adrenergic response, resulting in an elevation of heart rate and hypoxia-induced pulmonary vasoconstriction that eventually contributes to pulmonary hypertension in some animals. Adaptation to high altitudes can drive an increase in muscular capillarization and adaptive cardiac growth, which promote oxygen diffusion and transportation. Exposure to a high-altitude hypoxic environment stimulates excessive erythropoiesis, which has maladaptive effects and contributes to chronic mountain sickness. Maladaptation caused by plasticity at early stages can be reversed during adaptation. Despite extensive research on high-altitude adaptation, the phenotypic changes and genetic variations in cardiovascular systems responding to high-altitude hypoxia remain insufficiently integrated across taxa. While genomic and transcriptomic studies have advanced our understanding, a cross-taxa comparison of cardiovascular adaptations is still incomplete. We here review recent literature on phenotypic plasticity, adaptations, and genetic and transcriptional basis of cardiovascular systems of mammals and birds living in high altitudes with respect to their duration of exposure at high altitudes. By integrating and comparing data across mammalian and avian species, we aim to provide a framework for understanding the plasticity and adaptation of the cardiovascular system in high-altitude environments.
Collapse
Affiliation(s)
- Huishang She
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cheng F, Shen RJ, Zheng Z, Chen ZJ, Huang PJ, Feng ZK, Li X, Lin N, Zheng M, Liang Y, Qu J, Lu F, Jin ZB, Yang J. Distinct methylomic signatures of high-altitude acclimatization and adaptation in the Tibetan Plateau. Cell Discov 2025; 11:45. [PMID: 40328746 PMCID: PMC12056056 DOI: 10.1038/s41421-025-00795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
High altitude presents a challenging environment for human settlement. DNA methylation is an essential epigenetic mechanism that responds to environmental stimuli, but its roles in high-altitude short-term acclimatization (STA) and long-term adaptation (LTA) are poorly understood. Here, we conducted a methylome-wide association study involving 687 native highlanders and 299 acclimatized newcomers in the Tibetan Plateau and 462 native lowlanders to identify differentially methylated sites (DMSs) associated with STA or LTA. We identified 93 and 4070 DMSs for STA and LTA, respectively, which had no overlap, showed opposite asymmetric effect size patterns, and resided near genes enriched in distinct biological pathways/processes (e.g., cell cycle for STA and immune diseases and calcium signalling pathway for LTA). Epigenetic clock analysis revealed evidence of accelerated ageing in the acclimatized newcomers compared to the native lowlanders. Our research provides novel insights into epigenetic regulation in relation to high altitude and intervention strategies for altitude-related ageing or illnesses.
Collapse
Affiliation(s)
- Feifei Cheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhen Ji Chen
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng-Juan Huang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo-Kun Feng
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoman Li
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Lin
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiqin Zheng
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanbo Liang
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Lu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Dai W, Nian X, Zhou Z, Du A, Liu Q, Jia S, Lu Y, Li D, Lu X, Zhu Y, Huang Q, Lu J, Xiao Y, Zheng L, Lei W, Sheng N, Zang X, Hou Y, Qiu Z, Xu R, Xu S, Zhang X, Zhang L. A neuronal Slit1-dependent program rescues oligodendrocyte differentiation and myelination under chronic hypoxic conditions. Cell Rep 2025; 44:115467. [PMID: 40117292 DOI: 10.1016/j.celrep.2025.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Oligodendrocyte maturation arrest in hypoxia-induced white matter injury (WMI) results in long-term neurofunctional disabilities of preterm infants. Although neurons are closely linked to myelination regulation, how neurons respond to the above process remains elusive. Here, we identify a compensatory role of neuronal Slit1-dependent signaling in protecting against hypoxia-induced hypomyelination and ameliorating motor and cognitive disabilities. Conditional ablation of Slit1 in neurons exacerbates hypoxia-induced hypomyelination but is negligible for developmental myelination. Secreted Slit1 from hypoxic neurons directly targets oligodendrocyte, acting through Robo2-srGAP1-RhoA signaling. Pharmacological inhibition of RhoA restores myelination and promotes neurofunctional recovery in adolescent mice. Notably, natural selection analysis and functional validation indicate an adaptive variant with higher Slit1 gene expression in the Tibetan population, which has low oxygen availability. Collectively, these findings show a neuronal Slit1-dependent program of OL differentiation and suggest that targeting the Slit1-Robo2 signaling axis may have therapeutic potential for treatment of preterm infants with hypoxic WMI.
Collapse
Affiliation(s)
- Wenxiu Dai
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ximing Nian
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhihao Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ailian Du
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Shufang Jia
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Daopeng Li
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyun Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanqin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiuying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaquan Lu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunshan Xiao
- Department of Obstetrics and Gynecology, Women and Children's Hospital Affiliated to Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Liangkai Zheng
- Department of Pathology, Women and Children's Hospital Affiliated to Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wanying Lei
- Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiujuan Zang
- Department of Nephrology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanqiang Hou
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zilong Qiu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueqin Zhang
- Department of Obstetrics and Gynecology, Women and Children's Hospital Affiliated to Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Liang Zhang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
5
|
Guo Y, Zheng W, Yue T, Baimakangzhuo, Qi X, Liu K, Li L, He Y, Su B. GCH1 contributes to high-altitude adaptation in Tibetans by regulating blood nitric oxide. J Genet Genomics 2025:S1673-8527(25)00114-6. [PMID: 40254159 DOI: 10.1016/j.jgg.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Nitric oxide (NO) is a key vasodilator that regulates vascular pressure and blood flow. Tibetans have developed a "blunted" mechanism for regulating NO levels at high altitude, with GTP cyclohydrolase 1 (GCH1) identified as a key candidate gene. Here, we present comprehensive genetic and functional analyses of GCH1, which exhibits strong Darwinian positive selection in Tibetans. We show that Tibetan-enriched GCH1 variants down-regulate its expression in the blood of Tibetans. Based on this observation, we generate the heterozygous Gch1 knockout (Gch1+/-) mouse model to simulate its downregulation in Tibetans. We find that under prolonged hypoxia, the Gch1+/- mice have relatively higher blood NO and blood oxygen saturation levels compared to the wild-type (WT) controls, providing better oxygen supplies to the cardiovascular and pulmonary systems. Markedly, hypoxia-induced cardiac hypertrophy and pulmonary remodeling are significantly attenuated in the Gch1+/- mice compared with the WT controls, likely due to the adaptive changes in molecular regulations related to metabolism, inflammation, circadian rhythm, extracellular matrix, and oxidative stress. This study sheds light on the role of GCH1 in regulating blood NO, contributing to the physiological adaptation of the cardiovascular and pulmonary systems in Tibetans at high altitude.
Collapse
Affiliation(s)
- Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China; School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, Xizang 850000, China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
6
|
Yang S, Cui Y, Yu S, He J, Ma R, Bai X, Zhang H, Zhao P. Integrated analysis of the expression profiles of the lncRNA-miRNA-mRNA ceRNA network in CASMCs under hypoxia and normoxia conditions in yak heart. Sci Rep 2025; 15:9165. [PMID: 40097453 PMCID: PMC11914617 DOI: 10.1038/s41598-025-85483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025] Open
Abstract
Hypoxia causes the occurrence of right heart hypertrophy and right heart failure. However, the yak living in the hypoxic environment, does not exhibit hypoxia-related pathological features. Therefore, It is of great significance to explore the hypoxia adaptation mechanism of yak heart. In this study, the yak heart coronary vascular smooth muscle cells (CASMCs) were treated with 21% O2 (normoxic group) and 5% O2 (hypoxic group). The results showed that hypoxia could promote the proliferation of CASMCs. Subsequently, we sequenced CASMCs in normoxic and hypoxic groups. The analysis revealed differential expression of 835 mRNAs, 285 lncRNAs and 126 miRNAs were between the two groups. GO and KEGG analysis showed that the differentially expressed genes were predominantly associated with extracellular matrix components, transcription factor activity, protein binding, immune system processes, metabolic processes and cell development processes and TGF-β, MAPK, cAMP, mTOR, PI3K-Akt and other signaling pathways. By constructing a network of mRNAs, miRNAs and lncRNAs based on the major differentially expressed RNAs, core regulatory elements associated with hypoxic adaptive function were identified. Our study may help to prove the potential role of differential genes related to hypoxic adaptation, and enhanced understanding of the molecular mechanisms of hypoxic adaptation in yak heart.
Collapse
Affiliation(s)
- Shanshan Yang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- , No.1 Yingmen Village, Anning, Lanzhou, 730070, Gansu, China.
| | - Sijiu Yu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rui Ma
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuefeng Bai
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hui Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pengfei Zhao
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
7
|
Yu B, Yang Y, Li Y, Gao R, Ma M, Wang X. Transcriptomic Study of Testicular Hypoxia Adaptation in Tibetan Sheep. Reprod Domest Anim 2025; 60:e70037. [PMID: 40099575 DOI: 10.1111/rda.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
The Tibetan sheep is a typical hypoxia-tolerant mammal, which lives on the plateau, at an altitude of between 2500 and 5000 m above sea level; the study of its hypoxic adaptation mechanism provides a reference for exploring the hypoxic adaptation mechanism of other animals. To grope for the genetic mechanism of adaptation to the hypoxic environment at the transcriptional level in Tibetan sheep testicular tissue, and to identify candidate genes and key pathways related to sheep adaptation, histological observation of testicular tissues from two sheep breeds was carried out using haematoxylin-eosin (HE) conventional staining. A total of 103 differentially expressed genes (DEGs) were authenticated in high altitude Tibetan sheep (ZYH) and low altitude Tibetan sheep (ZYM) by RNA sequencing technology (RNA-Seq), which included 50 up-regulated genes and 53 down-regulated genes. Functional analyses revealed several terms and pathways that were closely related to testis adaptation to the plateau. Several genes (including GGT5, AGTR2, EDN1, LPAR3, CYP2C19, IGFBP3, APOC3 and PKC1) were remarkably enriched in several pathways and terms, which may impact the Plateau adaptability of sheep by adjusting its reproductive activity and sexual maturation, and protecting Sertoli cells, various spermatocytes, and spermatogenesis processes. The results make a reasonable case for a better understanding of the molecular mechanisms of adaptation to altitude in sheep.
Collapse
Affiliation(s)
- Binyan Yu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yijian Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Rong Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Min Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xinrong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Sun Z, Wang S, He H, Zhang C, Li M, Ye Y, Zhang H, Yao X, Sun S, Du Y, Zhong Y, Wu Y. Influence of High-Altitude Residential History on Optimal HbA1c Cutoff for Detecting Abnormal Glucose Metabolism. High Alt Med Biol 2025; 26:45-54. [PMID: 39379067 DOI: 10.1089/ham.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Zengmei, Sun, Suyuan Wang, Hua He, Chenghui Zhang, Mingxia Li, Yan Ye, Huiqin Zhang, Xuanyu Yao, Shuyao Sun, Yuanze Du, Yang Zhong, and Yunhong Wu. Influence of high-altitude residential history on optimal HbA1c cutoff for detecting abnormal glucose metabolism. High Alt Med Biol. 26:45-54, 2025. Aims: To explore the influence of recent high-altitude residential history on the optimal cutoff of glycosylated hemoglobin (HbA1c) for detecting abnormal glucose metabolism. Methods: The study included 505 self-reported healthy Han participants of age 18-65 years, recruited in Chengdu and categorized based on recent (within 3 months) high-altitude (>2,500 m) residential history. The 1999 WHO criteria was used as the gold standard for defining prediabetes and diabetes. HbA1c test performance was assessed using receiver operating characteristic curve, with the optimal cutoff determined by Maximum Youden index. Propensity score matching with 0.02 calipers and nearest neighbor method was used to balance confounding factors between groups. Results: Of the participants, 238 (47.13%) were populations with recent high-altitude residential history (HA group), and 267 (52.87%) were low-altitude dwellers (LA group). The HA group had slightly higher HbA1c levels (p > 0.05) and higher erythrocyte and hemoglobin levels (p < 0.05), compared to the LA group. Weak correlations between prediabetes and HbA1c levels were observed in the HA group (rs = 0.21, p < 0.05) and the LA group (rs = 0.07, p = 0.25). The optimal cutoff for the detection of diabetes was 6.5% (area under the curve [AUC] 0.94) in the HA group and 5.9% (AUC 0.97) in the LA group, which remained unchanged after adjustment for confounders. Conclusions: The optimal cutoff of HbA1c for the detection of diabetes in populations with recent history of living at high altitude was higher than that in general populations living at low altitude, and the diagnostic value of HbA1c for prediabetes was also inadequate.
Collapse
Affiliation(s)
- Zengmei Sun
- Department of Nursing, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Suyuan Wang
- Department of Endocrinology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
- Tibet Autonomous Region Clinical Research Center for High-Altitude Stress, Endocrinology and Metabolism Disease, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Hua He
- Department of Endocrinology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Chenghui Zhang
- Department of Endocrinology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
- Tibet Autonomous Region Clinical Research Center for High-Altitude Stress, Endocrinology and Metabolism Disease, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Mingxia Li
- Department of Endocrinology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Yan Ye
- Department of Nursing, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Huiqin Zhang
- Department of Nursing, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Xuanyu Yao
- Department of Nursing, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Shuyao Sun
- Department of Endocrinology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Yuanze Du
- Department of Nursing, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Yang Zhong
- Tibet Autonomous Region Clinical Research Center for High-Altitude Stress, Endocrinology and Metabolism Disease, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
- Department of Biobank, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Yunhong Wu
- Department of Endocrinology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
- Tibet Autonomous Region Clinical Research Center for High-Altitude Stress, Endocrinology and Metabolism Disease, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| |
Collapse
|
9
|
Ahrens S, Singer D. Placental Adaptation to Hypoxia: The Case of High-Altitude Pregnancies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:214. [PMID: 40003440 PMCID: PMC11855801 DOI: 10.3390/ijerph22020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Even in the highest inhabited regions of the world, well above 2500 m altitude, women become pregnant and give birth to healthy children. The underlying adaptation to hypobaric hypoxia provides interesting insights into the physio(patho)logy of the human placenta. Although increasing altitude is regularly associated with fetal growth restriction (FGR), oxygen deficiency does not appear to be a direct cause. Rather, placental oxygen consumption is reduced to maintain the oxygen supply to the fetus. This comes at the expense of placental synthesis and transport functions, resulting in inappropriate nutrient supply. The hypoxia-inducible factor (HIF-1α), which modulates the mitochondrial electron transport chain to protect placental tissue from reactive oxygen species, plays a key role here. Reduced oxygen consumption also reflects decreased placental vascularization and perfusion, which is accompanied by an increased risk of maternal pre-eclampsia at high altitude. In native highlanders, the latter seems to be attenuated, partly due to a lower release of HIF-1α. In addition, metabolic peculiarities have been described in indigenous people that enhance glucose availability and thus reduce the extent of FGR. This review attempts to revisit the (albeit incomplete) knowledge in this area to draw the clinical reader's attention to the crucial role of the placenta in defending the fetus against hypoxia.
Collapse
Affiliation(s)
- Sofia Ahrens
- Department of Pediatric Surgery, Altona Children’s Hospital, University Medical Center Eppendorf (UKE), 20251 Hamburg, Germany;
- Division of Neonatology and Pediatric Critical Care Medicine, University Medical Center Eppendorf (UKE), 20251 Hamburg, Germany
| | - Dominique Singer
- Division of Neonatology and Pediatric Critical Care Medicine, University Medical Center Eppendorf (UKE), 20251 Hamburg, Germany
| |
Collapse
|
10
|
Si Y, Zhang Y, Zhang X, Liu S, Zhang H, Yang H. A finer-grained high altitude EEG dataset for hypoxia levels assessment. Sci Data 2024; 11:1352. [PMID: 39695125 PMCID: PMC11655562 DOI: 10.1038/s41597-024-04102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
The study reports on a high-altitude EEG dataset comprising 64-channel EEG signals from 23 subjects, aiming at achieving a finer-grained assessment of hypoxia levels. Four hypoxia levels were induced by creating a gradient of oxygen partial pressure through changes in altitude and external hypoxia stimulation. The dataset was collected in a hypoxic chamber that simulates altitude changes, allowing for a refined classification of different hypoxia levels based on ranges of oxygen saturation. The total recorded EEG data amounts to approximately 10.25 hours. Validation results indicate that the four hypoxia levels can be effectively recognized using EEG signals. Compared to binary classification, our fine-grained dataset allows for more precise detection of hypoxia levels. This dataset is anticipated to have significant research and practical value in developing accurate methods for identifying hypoxia levels. As a valuable and standardized resource, it will enable extensive analysis and comparison for researchers in the field of high-altitude hypoxia.
Collapse
Affiliation(s)
- Yingjun Si
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yu Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Xi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Sicong Liu
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Honghao Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
11
|
Paris HL, Baranauskas MN, Constantini K, Shei RJ, Allen PE, Jadovitz JR, Wiggins CC, Storm CP. Born high, born fast: Does highland birth confer a pulmonary advantage for sea level endurance? Exp Physiol 2024. [PMID: 39576829 DOI: 10.1113/ep091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
Less than 7% of the world's population live at an altitude above 1500 m. Yet, as many as 67% of medalists in the 2020 men's and women's Olympic marathon, and 100% of medalists in the 2020 men's and women's Olympic 5000 m track race may have been born or raised above this otherwise rare threshold. As a possible explanation, research spanning nearly a quarter of a century demonstrates that indigenous highlanders exhibit pulmonary adaptations distinct from their lowland counterparts. These adaptations may then promote endurance performance. Indeed, healthy indigenous highlanders often exhibit a larger aerobic exercise capacity compared to sea-level residents who travel to high altitude. However, questions remain on whether high-altitude birth is advantageous for sea-level competitions. In this review, we ask whether being born at a high altitude generates an ergogenic advantage for endurance performance in the Summer Olympics-a venue that is generally held at sea level. In so doing, we distinguish between three groups of high-altitude residents: (i) the indigenous highlander, (ii) the highland newcomer, and (iii) the highland sojourner. Concentrating specifically on altitude-induced alterations to pulmonary physiology beginning in the perinatal period, we propose that if altitude-related maladaptations are avoided, genomic and developmental alterations accompanying highland birth may present benefits for endurance competitions at sea level.
Collapse
Affiliation(s)
- Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, Colorado, USA
| | - Keren Constantini
- Sylvan Adams Sports Institute, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ren-Jay Shei
- Indiana University Alumni Association, Bloomington, Indiana, USA
| | - Peyton E Allen
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - John R Jadovitz
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - Chad C Wiggins
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
12
|
Liu N, Feng L, Chai S, Li H, He Y, Guo Y, Hu X, Li H, Li X, Zhou Z, Li X, Huang Y, He W, Huang X, Wu Y, Meng J. A diffusion tensor imaging-based multidimensional study of brain structural changes after long-term high-altitude exposure and their relationships with cognitive function. Front Physiol 2024; 15:1487953. [PMID: 39605859 PMCID: PMC11599258 DOI: 10.3389/fphys.2024.1487953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background Brain structure changes after long-term adaptation to the high-altitude environment; however, related studies are few, results are in consistent, and long-term effects on cognitive function and pathophysiological mechanisms are unclear. Therefore, diffusion tensor imaging (DTI) was used to investigate the damage to white matter fiber tracts and correlations between brain structural abnormalities and cognitive function. Methods Forty healthy Han people living on the high-altitude and 40 healthy Han people living on the plains were enrolled in this study and underwent magnetic resonance imaging, emotional state assessment, and cognitive function tests. The sex, age, education level, and social status of the two groups were not different. The tract-based spatial statistics (TBSS) method was used to analyze the DTI parameters of the white matter fiber tracts of the two groups. Moreover, the partial correlation method (age and sex as covariates) was used to analyze the correlations between the intergroup differences in the DTI parameters and a series of clinical indicators of emotional state and cognitive function. Two-sample t tests, Mann-Whitney U test, generalized linear model, or chi-square tests were used for statistical analysis. Results Compared with those individuals in the plain group, the scores on the PSQI, SDS, SAS, PHQ-9, and GAD-7 of individuals in the high-altitude group were higher, while the scores on the DST-Backwards, MoCA, and MMSE in the high-altitude group were lower. The fractional anisotropy (FA) value of the body of the corpus callosum in the high-altitude group was lower than that in the plain group. The FA value of the body of the corpus callosum in the plain group was negatively correlated with the Logical Memory, while no significant correlation was found in the high-altitude group. Conclusion This study revealed that long-term exposure to a high-altitude environment could lead to a series of changes in sleep, emotion, and cognitive function and irreversible damage to the white matter microstructure of the body of the corpus callosum, which is the related brain region responsible for logical memory. The absence of logical memory impairment in the healthy Han Chinese population living on the high-altitude in this study may be due to the existence of adaptive compensation after long-term high-altitude exposure.
Collapse
Affiliation(s)
- Ning Liu
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Li Feng
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Shuangwei Chai
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan He
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Yongyue Guo
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Xin Hu
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Hengyan Li
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Xiangwei Li
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Zan Zhou
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Xiaomei Li
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Yonghong Huang
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Wanlin He
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yunhong Wu
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| | - Jinli Meng
- Department of Radiology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu, Sichuan, China
| |
Collapse
|
13
|
Möller FN, Fan JL, Futral JE, Hodgman CF, Kayser B, Lovering AT. Cardiopulmonary haemodynamics in Tibetans and Han Chinese during rest and exercise. J Physiol 2024; 602:3893-3907. [PMID: 38924564 DOI: 10.1113/jp286303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
During sea-level exercise, blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) in humans without a patent foramen ovale (PFO) is negatively correlated with pulmonary pressure. Yet, it is unknown whether the superior exercise capacity of Tibetans well adapted to living at high altitude is the result of lower pulmonary pressure during exercise in hypoxia, and whether their cardiopulmonary characteristics are significantly different from lowland natives of comparable ancestry (e.g. Han Chinese). We found a 47% PFO prevalence in male Tibetans (n = 19) and Han Chinese (n = 19) participants. In participants without a PFO (n = 10 each group), we measured heart structure and function at rest and peak oxygen uptake (V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ), peak power output (W ̇ p e a k ${{\dot{W}}_{peak}}$ ), pulmonary artery systolic pressure (PASP), blood flow through IPAVA and cardiac output (Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ ) at rest and during recumbent cycle ergometer exercise at 760 Torr (SL) and at 410 Torr (ALT) barometric pressure in a pressure chamber. Tibetans achieved a higherW peak ${W}_{\textit{peak}}$ than Han, and a higherV ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ at ALT without differences in heart rate, stroke volume orQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ . Blood flow through IPAVA was generally similar between groups. Increases in PASP and total pulmonary resistance at ALT were comparable between the groups. There were no differences in the slopes of PASP plotted as a function ofQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ during exercise. In those without PFO, our data indicate that the superior aerobic exercise capacity of Tibetans over Han Chinese is independent of cardiopulmonary features and more probably linked to differences in local muscular oxygen extraction. KEY POINTS: Patent foramen ovale (PFO) prevalence was 47% in Tibetans and Han Chinese living at 2 275 m. Subjects with PFO were excluded from exercise studies. Compared to Han Chinese, Tibetans had a higher peak workload with acute compression to sea level barometric pressure (SL) and acute decompression to 5000 m altitude (ALT). Comprehensive cardiac structure and function at rest were not significantly different between Han Chinese and Tibetans. Tibetans and Han had similar blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) during exercise at SL. Peak pulmonary artery systolic pressure (PASP) and total pulmonary resistance were different between SL and ALT, with significantly increased PASP for Han compared to Tibetans at ALT. No differences were observed between groups at acute SL and ALT.
Collapse
Affiliation(s)
- Fabian N Möller
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- German Sport University Cologne, Institute for Professional Sport Education and Qualification, Cologne, Germany
| | - Jui-Lin Fan
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, University of Auckland, Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Joel E Futral
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Oregon Heart & Vascular Institute, Springfield, Oregon, USA
| | - Charles F Hodgman
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Bengt Kayser
- University of Lausanne, Institute of Sports Sciences, Lausanne, Switzerland
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
14
|
Zhang L, Zhu Y, Ren Y, Xu L, Liu X, Qi X, Jiao T, Sun G, Han H, Zhang J, Sun F, Yang Y, Zhao S. Genetic characterization of Tibetan pigs adapted to high altitude under natural selection based on a large whole-genome dataset. Sci Rep 2024; 14:17062. [PMID: 39048584 PMCID: PMC11269713 DOI: 10.1038/s41598-024-65559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The Qinghai-Tibet Plateau is a valuable genetic resource pool, and the high-altitude adaptation of Tibetan pigs is a classic example of the adaptive evolution of domestic animals. Here, we report the presence of Darwinian positive selection signatures in Tibetan pigs (TBPs) using 348 genome-wide datasets (127 whole-genome sequence datasets (WGSs) and 221 whole-genome single-nucleotide polymorphism (SNP) chip datasets). We characterized a high-confidence list of genetic signatures related response to high-altitude adaptation in Tibetan pigs, including 4,598 candidate SNPs and 131 candidate genes. Functional annotation and enrichment analysis revealed that 131 candidate genes are related to multiple systems and organs in Tibetan pigs. Notably, eight of the top ten novel genes, RALB, NBEA, LIFR, CLEC17A, PRIM2, CDH7, GK5 and FAM83B, were highlighted and associated with improved adaptive heart functions in Tibetan pigs high-altitude adaptation. Moreover, genome-wide association analysis revealed that 29 SNPs were involved in 13 candidate genes associated with at least one adaptive trait. In particular, among the top ten candidate genes, CLEC17A is related to a reduction in hemoglobin (HGB) in Tibetan pigs. Overall, our study provides a robust SNP/gene list involving genetic adaptation for Tibetan pig high-altitude adaptation, and it will be a valuable resource for future Tibetan pig studies.
Collapse
Affiliation(s)
- Lingyun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanbin Zhu
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Linna Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Guangming Sun
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Haiyu Han
- The Animal Husbandry Station in Changdu, Changdu, China
| | - Jian Zhang
- The Beast Prevention Station in Gongbujiangda County, Linzhi, China
| | - Fengbo Sun
- The Animal Husbandry Station in Tibet Autonomous Region, Lhasa, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
15
|
Guo F, Wang C, Tao G, Ma H, Zhang J, Wang Y. A longitudinal study on the impact of high-altitude hypoxia on perceptual processes. Psychophysiology 2024; 61:e14548. [PMID: 38385977 DOI: 10.1111/psyp.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
This study aimed to explore the neural mechanisms underlying high-altitude (HA) adaptation and deadaptation in perceptual processes in lowlanders. Eighteen healthy lowlanders were administered a facial S1-S2 matching task that included incomplete face (S1) and complete face (S2) photographs combined with ERP technology. Participants were tested at four time points: shortly before they departed the HA (Test 1), twenty-five days after entering the HA (Test 2), and one week (Test 3) and one month (Test 4) after returning to the lowlands. Compared with those at sea level (SL), shorter reaction times (RTs), shorter latencies of P1 and N170, and larger amplitudes of complete face N170 were found in HAs. After returning to SL, compared with that of HA, the amplitude of the incomplete face P1 was smaller after one week, and the complete face was smaller after one month. The right hemisphere N170 amplitude was greater after entering HA and one week after returning to SL than at baseline, but it returned to baseline after one month. Taken together, the current findings suggest that HA adaptation increases visual cortex excitation to accelerate perceptual processing. More mental resources are recruited during the configural encoding stage of complete faces after HA exposure. The perceptual processes affected by HA exposure are reversible after returning to SL, but the low-level processing stage differs between incomplete and complete faces due to neural compensation mechanisms. The configural encoding stage in the right hemisphere is affected by HA exposure and requires more than one week but less than one month to recover to baseline.
Collapse
Affiliation(s)
- Fumei Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Getong Tao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Guangzhou/Tibet, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
| | - Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Su R, Jia S, Zhang N, Wang Y, Li H, Zhang D, Ma H, Su Y. The effects of long-term high-altitude exposure on cognition: A meta-analysis. Neurosci Biobehav Rev 2024; 161:105682. [PMID: 38642865 DOI: 10.1016/j.neubiorev.2024.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Long-term high altitudes (HA) exposure's impact on cognition has yielded inconsistent findings in previous research. To address this, we conducted a meta-analysis of 49 studies (6191 individuals) to comprehensively evaluate this effect. Moderating factors such as cognitive task type, altitude (1500-2500 m, 2500-4000 m, and above 4000 m), residential type (chronic and lifelong), adaptation level and demographic factors were analyzed. Cognitive tasks were classified into eight categories: perceptual processes, psychomotor function, long-term memory, working memory, inhibitory control, problem-solving, language, and others. Results revealed a moderate negative effect of HA on cognitive performance (g = -.40, SE =.18, 95% CI = -.76 to -.05). Psychomotor function and long-term memory notably experience the most pronounced decline, while working memory and language skills show moderate decreases due to HA exposure. However, perceptual processes, inhibitory control, and problem-solving abilities remain unaffected. Moreover, residing at altitudes above 4000 m and being a HA immigrant are associated with significant cognitive impairment. In summary, our findings indicate a selective adaptation of cognitive performance to HA conditions.
Collapse
Affiliation(s)
- Rui Su
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa 85000, China
| | - Shurong Jia
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa 85000, China
| | - Niannian Zhang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa 85000, China
| | - Yiyi Wang
- Department of Psychology, University of Chicago, Chicago, IL 60637, United States
| | - Hao Li
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa 85000, China
| | - Delong Zhang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa 85000, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hailin Ma
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa 85000, China
| | - Yanjie Su
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Holmström PK, Harman TS, Kalker A, Steiner B, Hawkins E, Jorgensen KC, Zhu KT, Kunwar AJ, Thakur N, Dhungel S, Sherpa N, Day TA, Schagatay EK, Bigham AW, Brutsaert TD. Differential splenic responses to hyperoxic breathing at high altitude in Sherpa and lowlanders. Exp Physiol 2024; 109:535-548. [PMID: 38180087 PMCID: PMC10988702 DOI: 10.1113/ep091579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The human spleen contracts in response to stress-induced catecholamine secretion, resulting in a temporary rise in haemoglobin concentration ([Hb]). Recent findings highlighted enhanced splenic response to exercise at high altitude in Sherpa, possibly due to a blunted splenic response to hypoxia. To explore the potential blunted splenic contraction in Sherpas at high altitude, we examined changes in spleen volume during hyperoxic breathing, comparing acclimatized Sherpa with acclimatized individuals of lowland ancestry. Our study included 14 non-Sherpa (7 female) residing at altitude for a mean continuous duration of 3 months and 46 Sherpa (24 female) with an average of 4 years altitude exposure. Participants underwent a hyperoxic breathing test at altitude (4300 m; barrometric pressure = ∼430 torr;P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ = ∼90 torr). Throughout the test, we measured spleen volume using ultrasonography and monitored oxygen saturation (S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). During rest, Sherpa exhibited larger spleens (226 ± 70 mL) compared to non-Sherpa (165 ± 34 mL; P < 0.001; effect size (ES) = 0.95, 95% CI: 0.3-1.6). In response to hyperoxia, non-Sherpa demonstrated 22 ± 12% increase in spleen size (35 ± 17 mL, 95% CI: 20.7-48.9; P < 0.001; ES = 1.8, 95% CI: 0.93-2.66), while spleen size remained unchanged in Sherpa (-2 ± 13 mL, 95% CI: -2.4 to 7.3; P = 0.640; ES = 0.18, 95% CI: -0.10 to 0.47). Our findings suggest that Sherpa and non-Sherpas of lowland ancestry exhibit distinct variations in spleen volume during hyperoxia at high altitude, potentially indicating two distinct splenic functions. In Sherpa, this phenomenon may signify a diminished splenic response to altitude-related hypoxia at rest, potentially contributing to enhanced splenic contractions during physical stress. Conversely, non-Sherpa experienced a transient increase in spleen size during hyperoxia, indicating an active tonic contraction, which may influence early altitude acclimatization in lowlanders by raising [Hb].
Collapse
Affiliation(s)
- Pontus K. Holmström
- Department of Health SciencesMid‐Sweden UniversityÖstersundSweden
- Department of Exercise ScienceSyracuse UniversitySyracuseNew YorkUSA
| | - Taylor S. Harman
- Department of AnthropologySyracuse UniversitySyracuseNew YorkUSA
| | - Anne Kalker
- Department of AnesthesiologyRadboud Medical CenterNijmegenNetherlands
| | - Bethany Steiner
- Department of Exercise ScienceSyracuse UniversitySyracuseNew YorkUSA
| | - Ella Hawkins
- Department of AnthropologySyracuse UniversitySyracuseNew YorkUSA
| | | | - Kimberly T. Zhu
- Department of AnthropologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Ajaya J. Kunwar
- Kathmandu Center for Genomics and Research LaboratoryGlobal Hospital, GwarkoLalitpurNepal
| | - Nilam Thakur
- Kathmandu Center for Genomics and Research LaboratoryGlobal Hospital, GwarkoLalitpurNepal
| | - Sunil Dhungel
- College of MedicineNepalese Army Institute of Health SciencesKathmanduNepal
| | - Nima Sherpa
- Local collaborator without institutional affiliation
| | - Trevor A. Day
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | | | - Abigail W. Bigham
- Department of AnthropologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Tom D. Brutsaert
- Department of Exercise ScienceSyracuse UniversitySyracuseNew YorkUSA
| |
Collapse
|
18
|
Liu S, Wang F, Sha S, Cai H, Ng CH, Feng Y, Xiang YT. A comparison of quality of life between older adults living in high and low altitude areas. Front Public Health 2023; 11:1184967. [PMID: 38074716 PMCID: PMC10699141 DOI: 10.3389/fpubh.2023.1184967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 12/18/2023] Open
Abstract
Background High altitude is known to have a significant impact on human physiology and health, therefore, understanding its relationship with quality of life is an important research area. This study compared the quality of life (QOL) in older adults living in high and low altitude areas, and examined the independent correlates of QOL in those living in a high altitude area. Methods Older adults living in three public nursing homes in Xining (high altitude area) and one public nursing home in Guangzhou (low altitude area) were recruited. The WHOQOL-BREF was used to measure the QOL. Results 644 older adults (male: 39.1%) were included, with 207 living in high altitude and 437 living in low altitude areas. After controlling for the covariates, older adults living in the high altitude area had higher QOL in terms of physical (P = 0.035) and social domains (P = 0.002), but had lower QOL in psychological (P = 0.009) domain compared to their counterparts living in the low altitude area. For older adults living in the high altitude area, smoking status was associated with higher social QOL (P = 0.021), good financial status was associated with higher physical QOL (P = 0.035), and fair or good health status was associated with higher physical (p < 0.001) and psychological QOL (P = 0.046), while more severe depressive symptoms were associated with lower QOL. Conclusion Appropriate interventions and support to improve depressive symptoms and both financial and health status should be developed for older adults living in high altitude areas to improve their QOL.
Collapse
Affiliation(s)
- Shou Liu
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Fei Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Sha Sha
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Cai
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Chee H. Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Richmond, VIC, Australia
| | - Yuan Feng
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| |
Collapse
|
19
|
Zhong H, Zhou Y, Wang P, Jia Q, Wan Y, Xiong H. Influencing factors of bone mass abnormalities among postmenopausal women in Tibet, China. BMC Public Health 2023; 23:2100. [PMID: 37880645 PMCID: PMC10601267 DOI: 10.1186/s12889-023-17015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND This study aimed to provide a reference for the prevention and treatment of abnormal bone mass in postmenopausal women by analysing the current situation and influencing factors of bone mass abnormalities in Tibet. METHODS A total of 229 postmenopausal Tibetan women were randomly selected from six counties by a multistage cluster random sampling method. Multiple logistic regression was utilized to analyse the status and influencing factors of bone mass abnormalities in postmenopausal Tibetan women. RESULTS Among 229 postmenopausal Tibetan women, the prevalence of osteopenia and osteoporosis was 54.6% and 9.6%, respectively. Age {odds ratio (OR) = 0.022 [95% confidence interval (CI) = 0.003 ~ 0.163]}, BMI [OR = 441.902 (20.899,9343.717)], altitude [OR = 18.818 (1.391,254.585)], and creatinine (CREA) levels [OR = 0.895 (0.825 ~ 0.971)] were significantly associated with the risk of osteoporosis. CONCLUSION Postmenopausal Tibetan women had high rates of abnormal bone mass. Age, BMI, altitude and CREA levels were associated with osteoporosis. It is suggested that relevant departments should take targeted measures to promote health education on the prevention of osteoporosis in the general population and increase the screening of high-risk groups for osteoporosis to improve the bone health of postmenopausal Tibetan women.
Collapse
Affiliation(s)
- Huaichang Zhong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaxi Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Wang
- Tibet University Medical college, Lhasa, Tibet, China
| | - Qundi Jia
- Tibet University Medical college, Lhasa, Tibet, China
| | - Yang Wan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- Tibet University Medical college, Lhasa, Tibet, China.
| |
Collapse
|
20
|
Zila-Velasque JP, Soriano-Moreno DR, Medina-Ramirez SA, Ccami-Bernal F, Castro-Diaz SD, Cortez-Soto AG, Esparza Varas AL, Fernandez-Morales J, Olortegui-Rodriguez JJ, Pelayo-Luis IP, Zafra-Tanaka JH. Prevalence of hypertension in adults living at altitude in Latin America and the Caribbean: A systematic review and meta-analysis. PLoS One 2023; 18:e0292111. [PMID: 37824544 PMCID: PMC10569637 DOI: 10.1371/journal.pone.0292111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE The objective of this systematic review and meta-analysis was to assess the prevalence of hypertension in populations living at altitude in Latin America and the Caribbean. METHODS We conducted a systematic search from January 1, 2000 to January 10, 2023 in Web of Science (WoS)/Core Collection, WoS/Medline, WoS/Scielo, Scopus, PubMed and Embase databases. We included studies that assessed the prevalence of hypertension in altitude populations (>1500 m.a.s.l.) and these were meta-analyzed using a random-effects model. To assess the sources of heterogeneity, we performed subgroup and meta-regression analyses. RESULTS Thirty cross-sectional studies (117 406 participants) met the inclusion criteria. Studies used different cut-off points. The prevalence of hypertension in the studies that considered the cut-off point of ≥ 140/90 mmHg in the general population was 19.1%, ≥ 130/85 mmHg was 13.1%, and ≥ 130/80 mmHg was 43.4%. There was a tendency for the prevalence of hypertension to be higher in men. In meta-regression analyses, no association was found between altitude, mean age, year of publication, risk of bias and prevalence of hypertension. CONCLUSION The prevalence of hypertension in the altitude population of Latin America and the Caribbean is lower than that reported in populations living at sea level and lower than other altitude populations such as Tibetans. PROSPERO CRD42021275229.
Collapse
Affiliation(s)
- J. Pierre Zila-Velasque
- Facultad de Medicina Humana, Universidad Nacional Daniel Alcides Carrion, Pasco, Peru
- Red Latinoamericana de Medicina en Altitud e Investigacion (REDLAMAI), Pasco, Peru
| | - David R. Soriano-Moreno
- Unidad de Investigación Clínica y Epidemiológica, Escuela de Medicina, Universidad Peruana Unión, Lima, Peru
| | - Sebastian A. Medina-Ramirez
- Unidad de Investigación Clínica y Epidemiológica, Escuela de Medicina, Universidad Peruana Unión, Lima, Peru
| | - Fabricio Ccami-Bernal
- Facultad de Medicina, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru
| | - Sharong D. Castro-Diaz
- Unidad de Investigación Clínica y Epidemiológica, Escuela de Medicina, Universidad Peruana Unión, Lima, Peru
| | - Andrea G. Cortez-Soto
- Sociedad Científica de Estudiantes de Medicina de Ica, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | - Analis L. Esparza Varas
- Universidad Nacional de Trujillo, La Libertad, Peru
- Sociedad científica de estudiantes de medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
| | - Jared Fernandez-Morales
- Unidad de Investigación Clínica y Epidemiológica, Escuela de Medicina, Universidad Peruana Unión, Lima, Peru
| | - Juan J. Olortegui-Rodriguez
- Unidad de Investigación Clínica y Epidemiológica, Escuela de Medicina, Universidad Peruana Unión, Lima, Peru
| | - Isabel P. Pelayo-Luis
- Unidad de Investigación Clínica y Epidemiológica, Escuela de Medicina, Universidad Peruana Unión, Lima, Peru
- Escuela de Enfermería, Universidad Peruana Unión, Lima, Peru
| | | |
Collapse
|
21
|
He Y, Guo Y, Zheng W, Yue T, Zhang H, Wang B, Feng Z, Ouzhuluobu, Cui C, Liu K, Zhou B, Zeng X, Li L, Wang T, Wang Y, Zhang C, Xu S, Qi X, Su B. Polygenic adaptation leads to a higher reproductive fitness of native Tibetans at high altitude. Curr Biol 2023; 33:4037-4051.e5. [PMID: 37643619 DOI: 10.1016/j.cub.2023.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
The adaptation of Tibetans to high-altitude environments has been studied extensively. However, the direct assessment of evolutionary adaptation, i.e., the reproductive fitness of Tibetans and its genetic basis, remains elusive. Here, we conduct systematic phenotyping and genome-wide association analysis of 2,252 mother-newborn pairs of indigenous Tibetans, covering 12 reproductive traits and 76 maternal physiological traits. Compared with the lowland immigrants living at high altitudes, indigenous Tibetans show better reproductive outcomes, reflected by their lower abortion rate, higher birth weight, and better fetal development. The results of genome-wide association analyses indicate a polygenic adaptation of reproduction in Tibetans, attributed to the genomic backgrounds of both the mothers and the newborns. Furthermore, the EPAS1-edited mice display higher reproductive fitness under chronic hypoxia, mirroring the situation in Tibetans. Collectively, these results shed new light on the phenotypic pattern and the genetic mechanism of human reproductive fitness in extreme environments.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Chaoying Cui
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
22
|
Lin Z, Lu Y, Yu G, Teng H, Wang B, Yang Y, Li Q, Sun Z, Xu S, Wang W, Tian P. Genome-wide DNA methylation landscape of four Chinese populations and epigenetic variation linked to Tibetan high-altitude adaptation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2354-2369. [PMID: 37115492 DOI: 10.1007/s11427-022-2284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 04/29/2023]
Abstract
DNA methylation (DNAm) is one of the major epigenetic mechanisms in humans and is important in diverse cellular processes. The variation of DNAm in the human population is related to both genetic and environmental factors. However, the DNAm profiles have not been investigated in the Chinese population of diverse ethnicities. Here, we performed double-strand bisulfite sequencing (DSBS) for 32 Chinese individuals representing four major ethnic groups including Han Chinese, Tibetan, Zhuang, and Mongolian. We identified a total of 604,649 SNPs and quantified DNAm at more than 14 million CpGs in the population. We found global DNAm-based epigenetic structure is different from the genetic structure of the population, and ethnic difference only partially explains the variation of DNAm. Surprisingly, non-ethnic-specific DNAm variations showed stronger correlation with the global genetic divergence than these ethnic-specific DNAm. Differentially methylated regions (DMRs) among these ethnic groups were found around genes in diverse biological processes. Especially, these DMR-genes between Tibetan and non-Tibetans were enriched around high-altitude genes including EPAS1 and EGLN1, suggesting DNAm alteration plays an important role in high-altitude adaptation. Our results provide the first batch of epigenetic maps for Chinese populations and the first evidence of the association of epigenetic changes with Tibetans' high-altitude adaptation.
Collapse
Affiliation(s)
- Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guoliang Yu
- GrandOmics Biosciences, Beijing, 102200, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yajun Yang
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Peng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
23
|
Ding M, Zhen Z, Ju M, Quzong S, Zeng X, Guo X, Li R, Xu M, Xu J, Li H, Zhang W. Metabolomic profiling between vitiligo patients and healthy subjects in plateau exhibited significant differences with those in plain. Clin Immunol 2023; 255:109764. [PMID: 37683903 DOI: 10.1016/j.clim.2023.109764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Vitiligo is the most common disorder of depigmentation, which is caused by multiple factors like metabolic abnormality, oxidative stress and the disorders of immune. In recent years, several studies have used untargeted metabolomics to analyze differential metabolites in patients with vitiligo, however, the subjects in these studies were all in plain area. In our study, multivariate analysis indicated a distinct separation between the healthy subjects from plateau and plain areas in electrospray positive and negative ions modes, respectively. Similarly, a distinct separation between vitiligo patients and healthy controls from plateau and plain areas was detected in the two ions modes. Among the identified metabolites, the serum levels of sphingosine 1-phosphate (S1P) were markedly higher in vitiligo patients compare to healthy subjects in plain and markedly higher in healthy subjects in plateau compare to those in plain. There are significant differences in serum metabolome between vitiligo patients and healthy subjects in both plateau and plain areas, as well as in healthy subjects from plateau and plain areas. S1P metabolism alteration may be involved in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Meilin Ding
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zha Zhen
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Suolang Quzong
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Xuesi Zeng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoxia Guo
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rui Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Mingming Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jingjing Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210042, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
24
|
He Y, Zheng W, Guo Y, Yue T, Cui C, Ouzhuluobu, Zhang H, Liu K, Yang Z, Wu T, Qu J, Jin ZB, Yang J, Lu F, Qi X, Su B. Deep phenotyping of 11,880 highlanders reveals novel adaptive traits in native Tibetans. iScience 2023; 26:107677. [PMID: 37680474 PMCID: PMC10481350 DOI: 10.1016/j.isci.2023.107677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Tibetans are the ideal population to study genetic adaptation in extreme environments. Here, we performed systematic phenotyping of 11,880 highlanders, covering 133 quantitative traits of 13 organ systems. We provided a comprehensive phenotypic atlas by comparing altitude adaptation and altitude acclimatization. We found the differences between adaptation and acclimatization are quantitative rather than qualitative, with a whole-system "blunted effect" seen in the adapted Tibetans. We characterized twelve different functional changes between adaptation and acclimatization. More importantly, we established a landscape of adaptive phenotypes of indigenous Tibetans, including 45 newly identified Tibetan adaptation-nominated traits, involving specific changes of Tibetans in internal organ state, metabolism, eye morphology, and skin pigmentation. In addition, we observed a sex-biased pattern between altitude acclimatization and adaptation. The generated atlas of phenotypic landscape provides new insights into understanding of human adaptation to high-altitude environments, and it serves as a valuable blueprint for future medical and physiological studies.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ouzhuluobu
- Tibetan Fukang Hospital, Lhasa 850000, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaohui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Academy of Medicine Science, Zhengzhou University, Zhengzhou 450052, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zi-Bing Jin
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Fan Lu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Tibetan Fukang Hospital, Lhasa 850000, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
25
|
He Y, Cui C, Guo Y, Zheng W, Yue T, Zhang H, Ouzhuluobu, Wu T, Qi X, Su B. High Arterial Oxygen Saturation in the Acclimatized Lowlanders Living at High Altitude. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:329-332. [PMID: 37589023 PMCID: PMC10425305 DOI: 10.1007/s43657-023-00117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 08/18/2023]
Abstract
Blood oxygen saturation (SpO2) is a key indicator of oxygen availability in the body. It is known that a low SpO2 at high altitude is associated with morbidity and mortality risks due to physiological hypoxemia. Previously, it was proposed that the lowlander immigrants living at high altitude should have a lower SpO2 level compared to the highlander natives, but this proposal has not been rigorously tested due to the lack of data from the lowlander immigrants living at high altitude. In this study, we compared arterial oxygen saturation of 5929 Tibetan natives and 1034 Han Chinese immigrants living at altitudes ranging from 1120 m to 5020 m. Unexpectedly, the Han immigrants had a higher SpO2 than the Tibetan natives at the same high altitudes. At the same time, there is a higher prevalence of chronic mountain sickness in Han than in Tibetans at the same altitude. This result suggests that the relatively higher SpO2 level of the acclimatized Han is associated with a physiological cost, and the SpO2 level of Tibetans tends to be sub-optimal. Consequently, SpO2 alone is not a robust indicator of physiological performance at high altitude. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00117-x.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810012 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
26
|
Song Z, Zhang A, Luo J, Xiong G, Peng H, Zhou R, Li Y, Xu H, Li Z, Zhao W, Zhang H. Prevalence of High-Altitude Polycythemia and Hyperuricemia and Risk Factors for Hyperuricemia in High-Altitude Immigrants. High Alt Med Biol 2023; 24:132-138. [PMID: 37015076 DOI: 10.1089/ham.2022.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Song Zhen, Anxin Zhang, Jie Luo, Guanghai Xiong, Haibo Peng, Rang Zhou, Yuanfeng Li, Hongqiang Xu, Zhen Li, Wei Zhao, and Haoxiang Zhang. Prevalence of high-altitude polycythemia and hyperuricemia and risk factors for hyperuricemia in high-altitude immigrants. High Alt Med Biol. 24:132-138, 2023. Background: Few studies have investigated the epidemiology of chronic mountain sickness (CMS) in high-altitude immigrants. This study evaluated the prevalence of polycythemia and hyperuricemia (HUA) and risk factors for HUA in high-altitude immigrants. Methods: A cross-sectional study was conducted with 7,070 immigrants 15-45 years of age living on the Tibetan Plateau between January and December 2021. Information from routine physical examinations was obtained from each participant. Binary logistic regression analysis was performed to determine the correlation of several risk factors for HUA. Results: The prevalence of high-altitude polycythemia (HAPC) and HUA was 25.8% (28.7% in males and 9.4% in females) and 54.2% (59.9% in males and 22.5% in females), respectively. The highest prevalence of HAPC in males and females was observed in participants 26-30 and 21-25 years of age, respectively. The highest prevalence of HUA in both males and females was observed in participants 26-30 years of age. Binary logistic regression analysis showed that age, sex, and hemoglobin (Hb) concentration were risk factors for HUA, among which age was a negative factor and male sex and Hb concentration were positive factors. Conclusions: Immigrants are more susceptible to HAPC and HUA. The high prevalence of CMS of immigrants may be associated with Hb concentration, age, and sex.
Collapse
Affiliation(s)
- Zhen Song
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Anxin Zhang
- Department of Ultrasonography, The 954th Army Hospital, Shannan, P.R. China
| | - Jie Luo
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Guanghai Xiong
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Haibo Peng
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Rang Zhou
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hongqiang Xu
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Zhen Li
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Wei Zhao
- Department of Gastroenterology, The 954th Army Hospital, Shannan, P.R. China
| | - Haoxiang Zhang
- Department of Gastroenterology, The 954th Army Hospital, Shannan, P.R. China
| |
Collapse
|
27
|
Yu R, Xie F, Tang Q. Insight into adaption to hypoxia in Tibetan chicken embryonic brains using lipidomics. Biochem Biophys Res Commun 2023; 671:183-191. [PMID: 37302293 DOI: 10.1016/j.bbrc.2023.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Tibetan chickens (Gallus gallus; TBCs) are a good model for studying hypoxia-related challenges. However, lipid composition in TBC embryonic brains has not been elucidated. In this study, we characterized brain lipid profiles of embryonic day 18 TBCs and dwarf laying chickens (DLCs) during hypoxia (13% O2, HTBC18, and HDLC18) and normoxia (21% O2, NTBC18, and NDLC18) by using lipidomics. A total of 50 lipid classes, including 3540 lipid molecular species, were identified and grouped into glycerophospholipids, sphingolipids, glycerolipids, sterols, prenols, and fatty acyls. Of these lipids, 67 and 97 were expressed at different levels in the NTBC18 and NDLC18, and HTBC18 and HDLC18 samples, respectively. Several lipid species, including phosphatidylethanolamines (PEs), hexosylceramides, phosphatidylcholines (PCs), and phospha-tidylserines (PSs), were highly expressed in HTBC18. These results suggest that TBCs adapt bet-ter to hypoxia than DLCs and may have distinct cell membrane composition and nervous system development, at least partly owing to differential expression of several lipid species. One tri-glyceride, one PC, one PS, and three PE lipids were identified as potential markers that discrim-inated between lipid profiles of the HTBC18 and HDLC18 samples. The present study provides valuable information about the dynamic composition of lipids in TBCs that may explain the adaptation of this species to hypoxia.
Collapse
Affiliation(s)
- Runjie Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fuyin Xie
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiguo Tang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
28
|
Zheng W, He Y, Guo Y, Yue T, Zhang H, Li J, Zhou B, Zeng X, Li L, Wang B, Cao J, Chen L, Li C, Li H, Cui C, Bai C, Baimakangzhuo, Qi X, Ouzhuluobu, Su B. Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biol 2023; 24:73. [PMID: 37055782 PMCID: PMC10099689 DOI: 10.1186/s13059-023-02912-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Tibetans are genetically adapted to high-altitude environments. Though many studies have been conducted, the genetic basis of the adaptation remains elusive due to the poor reproducibility for detecting selective signatures in the Tibetan genomes. RESULTS Here, we present whole-genome sequencing (WGS) data of 1001 indigenous Tibetans, covering the major populated areas of the Qinghai-Tibetan Plateau in China. We identify 35 million variants, and more than one-third of them are novel variants. Utilizing the large-scale WGS data, we construct a comprehensive map of allele frequency and linkage disequilibrium and provide a population-specific genome reference panel, referred to as 1KTGP. Moreover, with the use of a combined approach, we redefine the signatures of Darwinian-positive selection in the Tibetan genomes, and we characterize a high-confidence list of 4320 variants and 192 genes that have undergone selection in Tibetans. In particular, we discover four new genes, TMEM132C, ATP13A3, SANBR, and KHDRBS2, with strong signals of selection, and they may account for the adaptation of cardio-pulmonary functions in Tibetans. Functional annotation and enrichment analysis indicate that the 192 genes with selective signatures are likely involved in multiple organs and physiological systems, suggesting polygenic and pleiotropic effects. CONCLUSIONS Overall, the large-scale Tibetan WGS data and the identified adaptive variants/genes can serve as a valuable resource for future genetic and medical studies of high-altitude populations.
Collapse
Affiliation(s)
- Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jun Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Jingxin Cao
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Li Chen
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Chunxia Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Hongyan Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China.
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
29
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
30
|
Zhang J, Tang S, Chen C, Jiang H, Liao H, Liu H, Wang L, Chen X. A bibliometric analysis of the studies in high-altitude induced sleep disturbances and cognitive impairment research. Front Physiol 2023; 14:1133059. [PMID: 36860517 PMCID: PMC9968939 DOI: 10.3389/fphys.2023.1133059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Background: The two main symptoms at high altitude, sleep abnormalities and cognitive impairments, interact with each other. These two dysfunctions are also closely related to systemic multisystem diseases, including cerebrovascular diseases, psychiatric disorders, and immune regulatory diseases. Purpose: To systematically analyze and visualize research on sleep disturbances and cognitive impairment at high altitudes using a bibliometrics method, and to determine future research directions by analyzing research trends and the latest hotspots. Methods: Publications from 1990 to 2022 on sleep disturbances and cognitive impairment at high altitudes were retrieved from the Web of Science. Using the R Bibliometrix software and Microsoft Excel, all data were examined statistically and qualitatively. For network visualization, the data were later exported into VOSviewer 1.6.17 and CiteSpace 6.1.R6. Results: A total of 487 articles in this area were published from 1990 to 2022. In this period, there was an overall increase in the number of publications. The United States has shown considerable importance in this sector. Bloch Konrad E was the most prolific and valuable author. The most prolific journal was High Altitude Medicine & Biology, and it has been the first choice for publishing in this field in recent years. Analysis of keyword co-occurrences suggested that research interest in the clinical manifestations of sleep disturbances and cognitive impairment caused by altitude hypoxia was mainly focused on "acute mountain-sickness," "insomnia," "apnea syndrome," "depression," "anxiety," "Cheyne-strokes respiration," and "pulmonary hypertension." The mechanisms of disease development related to "oxidative stress," "inflammation," "hippocampus," "prefrontal cortex," "neurodegeneration," and "spatial memory" in the brain have been the focus of recent research. According to burst detection analysis, "mood" and "memory impairment," as terms with high strength, are expected to remain hot topics in the coming years. High-altitude-induced pulmonary hypertension is also in the emerging stage of research, and the treatments will continue to receive attention in the future. Conclusion: More attention is being focused on sleep disturbances and cognitive impairment at high altitudes. This work will serve as a useful reference for the clinical development of treatments for sleep disturbances and cognitive impairment induced by hypobaric hypoxia at high altitudes.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Songyuan Tang
- Faculty of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chao Chen
- Department of Osteology, The 5th People’s Hospital of Jinan, Jinan, Shandong, China
| | - Hezhong Jiang
- Faculty of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Li Wang
- Sichuan Baicheng Chinese Medicine Technology Co., Chengdu, Sichuan, China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China,*Correspondence: Xin Chen,
| |
Collapse
|
31
|
Li A, Wang M, Zhang Y, Lin Z, Xu M, Wang L, Kulyar MFEA, Li J. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics. Front Vet Sci 2023; 9:1099150. [PMID: 36713867 PMCID: PMC9875379 DOI: 10.3389/fvets.2022.1099150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Probiotics have attracted attention due to their multiple health benefits to the host. Yaks inhabiting the Tibetan plateau exhibit excellent disease resistance and tolerance, which may be associated with their inner probiotics. Currently, research on probiotics mainly focuses on their positive effects on the host, but information regarding their genome remains unclear. To reveal the potential functional genes of Bacillus subtilis isolated from yaks, we sequenced its whole genome. Results indicated that the genomic length of Bacillus subtilis was 866,044,638 bp, with 4,429 coding genes. The genome of this bacteria was composed of one chromosome and one plasmid with lengths of 4,214,774 and 54,527 bp, respectively. Moreover, Bacillus subtilis contained 86 tRNAs, 27 rRNAs (9 16S_rRNA, 9 23S_rRNA, and 9 5S_rRNA), and 114 other ncRNA. KEGG annotation indicated that most genes in Bacillus subtilis were associated with biosynthesis of amino acids, carbon metabolism, purine metabolism, pyrimidine metabolism, and ABC transporters. GO annotation demonstrated that most genes in Bacillus subtilis were related to nucleic acid binding transcription factor activity, transporter activity, antioxidant activity, and biological adhesion. EggNOG uncovered that most genes in Bacillus subtilis were related to energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism. CAZy annotation found glycoside hydrolases (33.65%), glycosyl transferases (22.11%), polysaccharide lyases (3.84%), carbohydrate esterases (14.42%), auxiliary activities (3.36%), and carbohydrate-binding modules (22.59%). In conclusion, this study investigated the genome and genetic properties of Bacillus subtilis derived from yaks, which contributed to understanding the potential prebiotic mechanism of probiotics from the genetic perspective.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China,*Correspondence: Jiakui Li ✉
| |
Collapse
|
32
|
De S, Rai D, Tamang S, Sherpa RD, Subba S, Lepcha DT, Govindaraj P, Thangaraj K, Chaubey G, Tamang R. Signatures of high altitude adaptation in Tibeto-Burman tribes of the Darjeeling Hill Region. Am J Hum Biol 2023; 35:e23858. [PMID: 36591954 DOI: 10.1002/ajhb.23858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES The long-term isolation, endogamy practices, and environmental adaptations have shaped the enormous human diversity in India. The genetic and morphological variations in mainland Indians are well studied. However, the data on the Indian Himalayan populations are scattered. Thus, the present study attempts to understand variations in the selected parameter among four Tibeto-Burman speaking ethnic tribal populations from the Darjeeling Hill Region (DHR) in the Eastern Himalaya Biodiversity Hotspot region of India. METHODS A total of 178 healthy male individuals (Lepcha 98, Sherpa 31, Bhutia 27, and Tibetans 22) living at an altitudinal range of 1467-2258 m above the sea level were studied for the 10 parameters namely, weight (kg), height (cm), body mass index (BMI) (kg/m2 ) systolic and diastolic pressure (mm of Hg), pulse rate (per minute), saturation of peripheral oxygen (SPO2 ) (%), hemoglobin (g/dl), hematocrit (HCT) (%), and blood glucose (mg/dl). The data was statistically analyzed using analysis of variance and multiple linear regression methods. RESULTS Our analysis revealed comparatively lower hemoglobin and HCT levels, and higher systolic and diastolic blood pressure in the Sherpas followed by the Tibetans. This may be reflecting the persistence of high-altitude adaptation signatures even in lowlands. Interestingly, the Tibetans differed significantly from other populations in terms of their higher body weight, height, and BMI. CONCLUSION Thus, our study showed the persistence of high altitude signatures in Tibetans and Sherpa inhabited the DHR. Additionally, we also observed significant differences in the anthropometric and physiological parameters among the Tibeto-Burman populations of the DHR.
Collapse
Affiliation(s)
- Saptaparni De
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Divya Rai
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Shishir Tamang
- Department of Zoology, University of Calcutta, Kolkata, India
| | | | - Soni Subba
- Department of Zoology, University of Calcutta, Kolkata, India
| | | | | | | | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Rakesh Tamang
- Department of Zoology, University of Calcutta, Kolkata, India
| |
Collapse
|
33
|
Bi C, Lin H, Zhang J, Gui X, Shi Z. Regional variation in growth status: A cross-sectional survey among Tibetan adolescents living at three different high altitudes in Tibet, China. Am J Hum Biol 2022; 35:e23856. [PMID: 36579776 DOI: 10.1002/ajhb.23856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To explore the regional and age variation in growth status and age-by-site interaction effect on the growth status among Chinese Tibetan adolescents at different altitudes in Tibet, China. METHODS The research was conducted in three regions of Tibet, China: Nyingchi (average altitude 3100 m), Lhasa (average altitude 3650 m), and Nagqu (average altitude 4500 m). A total of 3817 Chinese Tibetan adolescents aged 12-18 years were tested for height, weight, chest circumference, and waist circumference. One-way ANOVA was used to compare the growth status of Chinese Tibetan adolescents. Two-way ANOVA was used to explore the age-by-site interaction effect on the growth status of Chinese Tibetan adolescents. RESULTS The height, weight, and chest circumference of Chinese Tibetan adolescents in Nagqu are the lowest among the three cities. Age and site have an interaction effect influence on the growth status of Chinese Tibetan adolescents (p < .01). CONCLUSIONS The growth indicators (height, weight, chest circumference, WC) of Chinese Tibetan adolescents differed with altitudes. Policies to improve the growth status of Chinese Tibetan adolescents in Nagqu are urgently needed.
Collapse
Affiliation(s)
- Cunjian Bi
- School of Physical Education, Chizhou University, Chizhou, China.,Sports Health Promotion Center, Chizhou University, Chizhou, China
| | - Hongniu Lin
- School of Physical Education, Chizhou University, Chizhou, China.,Sports Health Promotion Center, Chizhou University, Chizhou, China
| | - Jie Zhang
- School of Physical Education, Chizhou University, Chizhou, China.,Sports Health Promotion Center, Chizhou University, Chizhou, China
| | - Xiaoying Gui
- Lhasa Beijing Experimental Middle School Sports Group, Lhasa, China
| | - Zhen Shi
- Sports Department, Tibet University, Lhasa, China
| |
Collapse
|
34
|
Fabries P, Gomez-Merino D, Sauvet F, Malgoyre A, Koulmann N, Chennaoui M. Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia. Front Physiol 2022; 13:1046166. [PMID: 36579023 PMCID: PMC9792101 DOI: 10.3389/fphys.2022.1046166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In the course of their missions or training, alpinists, but also mountain combat forces and mountain security services, professional miners, aircrew, aircraft and glider pilots and helicopter crews are regularly exposed to altitude without oxygen supplementation. At altitude, humans are exposed to systemic environmental hypoxia induced by the decrease in barometric pressure (<1,013 hPa) which decreases the inspired partial pressure of oxygen (PIO2), while the oxygen fraction is constant (equal to approximately 20.9%). Effects of altitude on humans occur gradually and depend on the duration of exposure and the altitude level. From 1,500 m altitude (response threshold), several adaptive responses offset the effects of hypoxia, involving the respiratory and the cardiovascular systems, and the oxygen transport capacity of the blood. Fatigue and cognitive and sensory disorders are usually observed from 2,500 m (threshold of prolonged hypoxia). Above 3,500 m (the threshold for disorders), the effects are not completely compensated and maladaptive responses occur and individuals develop altitude headache or acute altitude illness [Acute Mountain Sickness (AMS)]. The magnitude of effects varies considerably between different physiological systems and exhibits significant inter-individual variability. In addition to comorbidities, the factors of vulnerability are still little known. They can be constitutive (genetic) or circumstantial (sleep deprivation, fatigue, speed of ascent.). In particular, sleep loss, a condition that is often encountered in real-life settings, could have an impact on the physiological and cognitive responses to hypoxia. In this review, we report the current state of knowledge on the impact of sleep loss on responses to environmental hypoxia in humans, with the aim of identifying possible consequences for AMS risk and cognition, as well as the value of behavioral and non-pharmacological countermeasures.
Collapse
Affiliation(s)
- Pierre Fabries
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,*Correspondence: Pierre Fabries,
| | - Danielle Gomez-Merino
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Fabien Sauvet
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Alexandra Malgoyre
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Nathalie Koulmann
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France
| | - Mounir Chennaoui
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| |
Collapse
|
35
|
Zhong M, Zeng H, Wang D, Li J, Duan X, Li Y. Structure and activity alteration in adult highland residents' cerebrum: Voxel-based morphometry and amplitude of low-frequency fluctuation study. Front Neurosci 2022; 16:1035308. [PMID: 36507327 PMCID: PMC9730815 DOI: 10.3389/fnins.2022.1035308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction People living in highland areas may have factors that allow them to adapt to chronic hypoxia, but these physiological mechanisms remain unclear. This study aimed to investigate the brain mechanism in a cohort of adult residents of Tibet, a well-known plateau section in China, by observing differences in brain structure and function in non-plateau populations. Methods The study included 27 Tibetan and 27 non-plateau region residents who were matched in age, sex, and education. All participants underwent high-resolution three-dimensional T1 weighted imaging (3D-T1WI) and resting-state functional magnetic resonance imaging (rs-fMRI) scans on a 1.5 Tesla MR. Gray matter volumes and regional spontaneous neuronal activity (SNA) were calculated and compared between the two groups. Results When comparing gray matter in people living in high altitudes to those living in the flatlands, the results showed positive activation of gray matter in local brain regions (p < 0.05, false discovery rate (FDR) corrected), in the right postcentral [automated atomic labeling (aal)], left postcentral (aal), and right lingual (aal) regions. Comparing the people of high altitude vs. flat land in the brain function study (p < 0.05, FDR corrected), positive activation was found in the right superior motor area (aal) and left superior frontal (aal), and negative activation was found in the right precuneus (aal). Conclusion In high-altitude individuals, larger regional gray matter volumes and higher SNA may represent a compensatory mechanism to adapt to chronic hypoxia.
Collapse
Affiliation(s)
- Minzhi Zhong
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Huaqu Zeng
- Department of Radiotherapy Center, Gaozhou People's Hospital, Guangdong, China
| | - Dongye Wang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Jiesheng Li
- Department of Radiology, Sanshui People's Hospital, Foshan, China
| | - Xuguang Duan
- Department of Radiology, Nyingchi People's Hospital of Tibet Autonomous Region, Nyingchi, China
| | - Yong Li
- Department of Radiology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
36
|
Fabries P, Drogou C, Sauvet F, Nespoulous O, Erkel MC, Marchandot V, Bouaziz W, Lepetit B, Hamm-Hornez AP, Malgoyre A, Koulmann N, Gomez-Merino D, Chennaoui M. The HMOX2 polymorphism contributes to the carotid body chemoreflex in European sea-level residents by regulating hypoxic ventilatory responses. Front Med (Lausanne) 2022; 9:1000786. [PMID: 36405624 PMCID: PMC9669423 DOI: 10.3389/fmed.2022.1000786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 10/18/2023] Open
Abstract
This study investigates whether a functional single nucleotide polymorphism of HMOX2 (heme oxygenase-2) (rs4786504 T>C) is involved in individual chemosensitivity to acute hypoxia, as assessed by ventilatory responses, in European individuals. These responses were obtained at rest and during submaximal exercise, using a standardized and validated protocol for exposure to acute normobaric hypoxia. Carriers of the ancestral T allele (n = 44) have significantly lower resting and exercise hypoxic ventilatory responses than C/C homozygous carriers (n = 40). In the literature, a hypoxic ventilatory response threshold to exercise has been identified as an independent predictor of severe high altitude-illness (SHAI). Our study shows that carriers of the T allele have a higher risk of SHAI than carriers of the mutated C/C genotype. Secondarily, we were also interested in COMT (rs4680 G > A) polymorphism, which may be indirectly involved in the chemoreflex response through modulation of autonomic nervous system activity. Significant differences are present between COMT genotypes for oxygen saturation and ventilatory responses to hypoxia at rest. In conclusion, this study adds information on genetic factors involved in individual vulnerability to acute hypoxia and supports the critical role of the ≪ O2 sensor ≫ - heme oxygenase-2 - in the chemosensitivity of carotid bodies in Humans.
Collapse
Affiliation(s)
- Pierre Fabries
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- French Military Health Academy - Ecole du Val-de-Grâce, Paris, France
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé – LBEPS – UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Catherine Drogou
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- Vigilance Fatigue Sommeil et Santé Publique – VIFASOM – UPR 7330, Université de Paris Cité, Paris, France
| | - Fabien Sauvet
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- French Military Health Academy - Ecole du Val-de-Grâce, Paris, France
- Vigilance Fatigue Sommeil et Santé Publique – VIFASOM – UPR 7330, Université de Paris Cité, Paris, France
| | - Olivier Nespoulous
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
| | - Marie-Claire Erkel
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- Vigilance Fatigue Sommeil et Santé Publique – VIFASOM – UPR 7330, Université de Paris Cité, Paris, France
| | | | - Walid Bouaziz
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
| | - Benoît Lepetit
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé – LBEPS – UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | | | - Alexandra Malgoyre
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé – LBEPS – UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Nathalie Koulmann
- French Military Health Academy - Ecole du Val-de-Grâce, Paris, France
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé – LBEPS – UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Danielle Gomez-Merino
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- Vigilance Fatigue Sommeil et Santé Publique – VIFASOM – UPR 7330, Université de Paris Cité, Paris, France
| | - Mounir Chennaoui
- French Armed Forces Biomedical Research Institute – IRBA, Brétigny-sur-Orge, France
- Vigilance Fatigue Sommeil et Santé Publique – VIFASOM – UPR 7330, Université de Paris Cité, Paris, France
| |
Collapse
|
37
|
Abstract
Strong ultraviolet (UV) radiation at high altitude imposes a serious selective pressure, which may induce skin pigmentation adaptation of indigenous populations. We conducted skin pigmentation phenotyping and genome-wide analysis of Tibetans in order to understand the underlying mechanism of adaptation to UV radiation. We observe that Tibetans have darker baseline skin color compared with lowland Han Chinese, as well as an improved tanning ability, suggesting a two-level adaptation to boost their melanin production. A genome-wide search for the responsible genes identifies GNPAT showing strong signals of positive selection in Tibetans. An enhancer mutation (rs75356281) located in GNPAT intron 2 is enriched in Tibetans (58%) but rare in other world populations (0 to 18%). The adaptive allele of rs75356281 is associated with darker skin in Tibetans and, under UVB treatment, it displays higher enhancer activities compared with the wild-type allele in in vitro luciferase assays. Transcriptome analyses of gene-edited cells clearly show that with UVB treatment, the adaptive variant of GNPAT promotes melanin synthesis, likely through the interactions of CAT and ACAA1 in peroxisomes with other pigmentation genes, and they act synergistically, leading to an improved tanning ability in Tibetans for UV protection.
Collapse
|
38
|
Zhang X, Zhang J. The human brain in a high altitude natural environment: A review. Front Hum Neurosci 2022; 16:915995. [PMID: 36188182 PMCID: PMC9520777 DOI: 10.3389/fnhum.2022.915995] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
With the advancement of in vivo magnetic resonance imaging (MRI) technique, more detailed information about the human brain at high altitude (HA) has been revealed. The present review aimed to draw a conclusion regarding changes in the human brain in both unacclimatized and acclimatized states in a natural HA environment. Using multiple advanced analysis methods that based on MRI as well as electroencephalography, the modulations of brain gray and white matter morphology and the electrophysiological mechanisms underlying processing of cognitive activity have been explored in certain extent. The visual, motor and insular cortices are brain regions seen to be consistently affected in both HA immigrants and natives. Current findings regarding cortical electrophysiological and blood dynamic signals may be related to cardiovascular and respiratory regulations, and may clarify the mechanisms underlying some behaviors at HA. In general, in the past 10 years, researches on the brain at HA have gone beyond cognitive tests. Due to the sample size is not large enough, the current findings in HA brain are not very reliable, and thus much more researches are needed. Moreover, the histological and genetic bases of brain structures at HA are also needed to be elucidated.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
- Department of Physiology, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
- Department of Physiology, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Jiaxing Zhang,
| |
Collapse
|
39
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
40
|
Sharma V, Varshney R, Sethy NK. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Hum Genomics 2022; 16:21. [PMID: 35841113 PMCID: PMC9287971 DOI: 10.1186/s40246-022-00395-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Both genomics- and proteomics-based investigations have identified several essential genes, proteins, and pathways that may facilitate human adaptive genotype/phenotype in a population-specific manner. This comprehensive review provides an up-to-date list of genes and proteins identified for human adaptive responses to high altitudes. Genomics studies for indigenous high-altitude populations like Tibetans, Andeans, Ethiopians, and Sherpas have identified 169 genes under positive natural selection. Similarly, global proteomics studies have identified 258 proteins (± 1.2-fold or more) for Tibetan, Sherpa, and Ladakhi highlanders. The primary biological processes identified for genetic signatures include hypoxia-inducible factor (HIF)-mediated oxygen sensing, angiogenesis, and erythropoiesis. In contrast, major biological processes identified for proteomics signatures include 14–3-3 mediated sirtuin signaling, integrin-linked kinase (ILK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and integrin signaling. Comparing genetic and protein signatures, we identified 7 common genes/proteins (HBB/hemoglobin subunit beta, TF/serotransferrin, ANGPTL4/angiopoietin-related protein 4, CDC42/cell division control protein 42 homolog, GC/vitamin D-binding protein, IGFBP1/insulin-like growth factor-binding protein 1, and IGFBP2/insulin-like growth factor-binding protein 2) involved in crucial molecular functions like IGF-1 signaling, LXR/RXR activation, ferroptosis signaling, iron homeostasis signaling and regulation of cell cycle. Our combined multi-omics analysis identifies common molecular targets and pathways for human adaptation to high altitude. These observations further corroborate convergent positive selection of hypoxia-responsive molecular pathways in humans and advocate using multi-omics techniques for deciphering human adaptive responses to high altitude.
Collapse
Affiliation(s)
- Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
41
|
Yu L, Feng J, Zhou C, Zhu X, Lou X, Yang J, Qi H, Li J. Cognitive Function Mainly Shaped by Socioeconomic Status Rather Than Chronic Hypoxia in Adolescents at High Altitude. High Alt Med Biol 2022; 23:223-231. [PMID: 35833789 DOI: 10.1089/ham.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yu, Linyang, Jinqing Feng, Chen Zhou, Xiaohan Zhu, Xiaobin Lou, Jian Yang, Haiying Qi, and Jia Li. Cognitive function mainly shaped by socioeconomic status rather than chronic hypoxia in adolescents at high altitude. High Alt Med Biol. 23:000-000, 2022. Background: The study evaluated cognitive function in relation to the changes in brain tissue oxygenation in three groups of high school students from different socioeconomic regions including Tibetans in Jiuzhi and Lhasa (both at 3,600 m), and Han in Beijing (44 m). Methods: Jiuzhi, Lhasa, and Beijing Group included 21 Tibetans, 24 Tibetans, and 23 Han, respectively. Wechsler Intelligence Scale was used for cognitive evaluation. Functional near infrared spectroscopy was used to measure the changes of oxygenated hemoglobin (oxy-Hb) during the cognitive assessment. Gross domestic product (GDP) was used to indicate the socioeconomic status. Results: All the cognitive scores were significantly lower in the two high altitude groups compared with the Beijing Group (p < 0.001). The scores in Jiuzhi Group were significantly lower compared with the Lhasa Group (p < 0.001). The changes in oxy-Hb in channels 6 and 15 in both high-altitude groups were significantly greater compared with the Beijing Group (p < 0.05), without significant difference between the two high-altitude groups. GDP was significantly correlated with all the scores (p < 0.001), but not altitude. Conclusions: Cognitive impairment occurs in adolescents at high altitude, being severer in Jiuzhi Group compared with the Lhasa Group. The lower performance in both high-altitude groups require greater brain activity over-compensated by cerebral oxygen delivery as indicated by the changes in oxy-Hb. The cognitive scores were significantly correlated with GDP rather than altitude. Cognitive function in adolescents at high altitude is not limited by chronic hypoxia, but mainly shaped by socioeconomic determinants.
Collapse
Affiliation(s)
- Linyang Yu
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinqing Feng
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chen Zhou
- Beijing Jiaoyangzhixin Education Consulting Co., Ltd., Beijing, China
| | - Xiaohan Zhu
- Department of Neurology, Children's Hospital Affiliated to the Capital Institute of Pediatrics, Beijing, China
| | - Xiaobin Lou
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian Yang
- Department of Neurology, Children's Hospital Affiliated to the Capital Institute of Pediatrics, Beijing, China
| | - Haiying Qi
- Division of Electrophysiology, Women and Children's Hospital of Qinghai Province, Xining, China
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Wang D, Zhu XQ, Wu H, Liu ZJ, Jin WQ, Wang W, Wang X, Wang W, Tang YL, E CR, Jiang W, Ren YP, Ma X, McDonald WM. Electroconvulsive therapy on the Roof of the World: The safety and efficacy of ECT in Tibetans living in high altitude climates. Brain Stimul 2022; 15:984-986. [PMID: 35803455 DOI: 10.1016/j.brs.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Dan Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xue-Quan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Han Wu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zi-Jun Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wen-Qing Jin
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wei Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wen Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi-Lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA; Mental Health Service Line, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Cai-Ren E
- Third People's Hospital of Yushu, Qinghai province, China
| | - Wei Jiang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Yan-Ping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| |
Collapse
|
43
|
Villafuerte FC, Simonson TS, Bermudez D, León-Velarde F. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology (Bethesda) 2022; 37:0. [PMID: 35001654 PMCID: PMC9191173 DOI: 10.1152/physiol.00029.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Fabiola León-Velarde
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
44
|
Prevalence of Epstein-Barr Virus Infection and Mismatch Repair Protein Deficiency and the Correlation of Immune Markers in Tibetan Patients with Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2684065. [PMID: 35734348 PMCID: PMC9208987 DOI: 10.1155/2022/2684065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
Background Gastric cancer (GC) is a major cause of cancer-related death in China. Immunotherapies based on PD-1/PD-L1 inhibitors have improved the survival of some patients with GC. Epstein–Barr virus (EBV) infection, mismatch repair (MMR) deficiency, and tumor immune microenvironment (TIME) markers (such as CD3, CD8, and PD-L1) may help to identify specific patients who will respond to PD-1/PD-L1 inhibitors. Considering racial heterogeneity, the pattern of TIME markers in Tibetan patients with GC is still unclear. We aimed to identify the prevalence of EBV infection and the MMR status and their association with immune markers in Tibetan GC to aid in patient selection for immunotherapy. Materials and Methods From 2001 to 2015, we retrospectively collected 120 tissue samples from consecutive Tibetan GC patients and constructed tissue microarrays. EBV infection was assessed by Epstein–Barr-encoded RNA (EBER) in situ hybridization, and MMR protein levels were measured. Immune markers (including CD3 and CD8) in intraepithelial, stromal, and total areas were detected by immunohistochemistry (IHC). PD-L1 expression was assessed by the combined positive score (CPS). We also analyzed the relationships of EBV infection and MMR status with immune markers. Results Of the 120 samples, 11 (9.17%) were EBV positive (+), and 6 (5%) were MMR deficient (dMMR). PD-L1 CPS ≥1% was found in 32.5% (39/120) of Tibetan GC patients. EBV infection was associated with higher numbers of CD3+ T cells (P < 0.05) and CD8+ T cells (P < 0.05) and higher PD-L1 expression (P < 0.05). For the limited number of dMMR patients, no significant relationship was observed between dMMR and TIME markers (P > 0.05). Conclusions In Tibetan GC patients, the rates of EBV infection, dMMR, and positive PD-L1 expression were 9.17%, 5%, and 32.5%, respectively. EBV infection was associated with the numbers of CD3+ T cells and CD8+ T cells and PD-L1 expression within the tumor. These markers may guide the selection of Tibetan GC patients for immunotherapy.
Collapse
|
45
|
Resting-State Neuronal Activity and Functional Connectivity Changes in the Visual Cortex after High Altitude Exposure: A Longitudinal Study. Brain Sci 2022; 12:brainsci12060724. [PMID: 35741609 PMCID: PMC9221383 DOI: 10.3390/brainsci12060724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
Damage to the visual cortex structures after high altitude exposure has been well clarified. However, changes in the neuronal activity and functional connectivity (FC) of the visual cortex after hypoxia/reoxygenation remain unclear. Twenty-three sea-level college students, who took part in 30 days of teaching at high altitude (4300 m), underwent routine blood tests, visual behavior tests, and magnetic resonance imaging scans before they went to high altitude (Test 1), 7 days after they returned to sea level (Test 2), as well as 3 months (Test 3) after they returned to sea level. In this study, we investigated the hematological parameters, behavioral data, and spontaneous brain activity. There were significant differences among the tests in hematological parameters and spontaneous brain activity. The hematocrit, hemoglobin concentration, and red blood cell count were significantly increased in Test 2 as compared with Tests 1 and 3. As compared with Test 1, Test 3 increased amplitudes of low-frequency fluctuations (ALFF) in the right calcarine gyrus; Tests 2 and 3 increased ALFF in the right supplementary motor cortex, increased regional homogeneity (ReHo) in the left lingual gyrus, increased the voxel-mirrored homotopic connectivity (VMHC) value in the motor cortex, and decreased FC between the left lingual gyrus and left postcentral gyrus. The color accuracy in the visual task was positively correlated with ALFF and ReHo in Test 2. Hypoxia/reoxygenation increased functional connection between the neurons within the visual cortex and the motor cortex but decreased connection between the visual cortex and motor cortex.
Collapse
|
46
|
Zhao P, Zhao F, Hu J, Wang J, Liu X, Zhao Z, Xi Q, Sun H, Li S, Luo Y. Physiology and Transcriptomics Analysis Reveal the Contribution of Lungs on High-Altitude Hypoxia Adaptation in Tibetan Sheep. Front Physiol 2022; 13:885444. [PMID: 35634140 PMCID: PMC9133604 DOI: 10.3389/fphys.2022.885444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023] Open
Abstract
The Tibetan sheep is an indigenous species on the Tibetan plateau with excellent adaptability to high-altitude hypoxia and is distributed at altitudes of 2500–5000 m. The high-altitude hypoxia adaptation of Tibetan sheep requires adaptive reshaping of multiple tissues and organs, especially the lungs. To reveal the mechanisms of adaptation at the tissue and molecular levels in the lungs of Tibetan sheep under hypoxic conditions at different altitudes, we performed light and electron microscopic observations, transcriptomic sequencing, and enzyme-linked immunosorbent assay studies on the lungs of Tibetan sheep from three altitudes (2500, 3500, and 4500 m). The results showed that in addition to continuous increase in pulmonary artery volume, thickness, and elastic fiber content with altitude, Tibetan sheep increase the hemoglobin concentration at an altitude of 3500 m, while they decrease the Hb concentration and increase the surface area of gas exchange and capacity of the blood at an altitude of 4500 m. Other than that, some important differentially expressed genes related to angiogenesis (FNDC1, HPSE, and E2F8), vasomotion and fibrogenesis (GJA4, FAP, COL1A1, COL1A2, COL3A1, and COL14A1), and gas transport (HBB, HBA1, APOLD1, and CHL1) were also identified; these discoveries at the molecular level explain to some extent the physiological findings. In conclusion, the lungs of Tibetan sheep adopt different strategies when adapting to different altitudes, and these findings are valuable for understanding the basis of survival of indigenous species on the Tibetan plateau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaobin Li
- *Correspondence: Shaobin Li, ; Yuzhu Luo,
| | - Yuzhu Luo
- *Correspondence: Shaobin Li, ; Yuzhu Luo,
| |
Collapse
|
47
|
Li Y, Wang MY, Xu M, Xie WT, Zhang YM, Yang XY, Wang ZX, Song R, Yang L, Ma JP, Zhang J, Han CX, Wang CZ, Liu WY, Gan WH, Su R, Ma HL, Li H. High-Altitude Exposure and Time Interval Perception of Chinese Migrants in Tibet. Brain Sci 2022; 12:585. [PMID: 35624972 PMCID: PMC9139562 DOI: 10.3390/brainsci12050585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
High-altitude exposure can negatively impact one’s ability to accurately perceive time. This study focuses on Chinese migrants who have traveled to the Tibetan plateau and explores the effects of high-altitude exposure on their time interval judgment abilities based on three separate studies. In Study 1, it was found that exposure to high altitudes negatively impacted the time interval judgment functions of the migrants compared with a low-altitude control group; they exhibited a prolonged response time (540 ms: p = 0.006, 95% CI (−1.70 −0.32)) and reduced accuracy (1080 ms: p = 0.032, 95% CI (0.06 1.26)) in certain behavioral tasks. In Study 2, the results showed that high-altitude exposure and sleepiness had an interactive effect on time interval judgment (1080 ms) (p < 0.05, 95% CI (−0.83 −0.40)). To further verify our interaction hypothesis, in Study 3, we investigated the time interval judgment of interactions between acute high-altitude exposure and sleepiness level. The results revealed that the adaptation effect disappeared and sleepiness significantly exacerbated the negative effects of high-altitude exposure on time interval judgment (p < 0.001, 95% CI (−0.85 −0.34)). This study is the first to examine the effects of high-altitude exposure on time interval judgment processing functions and the effects of sleep-related factors on individual time interval judgment.
Collapse
Affiliation(s)
- Yuan Li
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Mei-Yi Wang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Meng Xu
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Wen-Ting Xie
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Yu-Ming Zhang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Xi-Yue Yang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Zhi-Xin Wang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Rui Song
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China;
| | - Liu Yang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Jin-Ping Ma
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Jia Zhang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Chen-Xiao Han
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Cheng-Zhi Wang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Wan-Ying Liu
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Wan-Hong Gan
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
- Institute of Oxygen Supply, Tibet University, Lhasa 850012, China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
- Institute of Oxygen Supply, Tibet University, Lhasa 850012, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Y.L.); (M.-Y.W.); (M.X.); (W.-T.X.); (Y.-M.Z.); (X.-Y.Y.); (Z.-X.W.); (L.Y.); (J.-P.M.); (J.Z.); (C.-X.H.); (C.-Z.W.); (W.-Y.L.); (W.-H.G.); (R.S.); (H.-L.M.)
- Institute of Oxygen Supply, Tibet University, Lhasa 850012, China
| |
Collapse
|
48
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
49
|
He Y, Li J, Yue T, Zheng W, Guo Y, Zhang H, Chen L, Li C, Li H, Cui C, Qi X, Su B. Seasonality and Sex-Biased Fluctuation of Birth Weight in Tibetan Populations. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:64-71. [PMID: 36939792 PMCID: PMC9590487 DOI: 10.1007/s43657-021-00038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED Birth weight (BW) is a key determinant of infant mortality. Previous studies have reported seasonal fluctuation of BW. However, the responsible environmental factors remain disputable. High-altitude environment provides a great opportunity to test the current hypotheses due to its distinctive climate conditions. We collected BW data of ~ 9000 Tibetan singletons born at Lhasa (elevation: 3660 m) from 2014 to 2018. Using regression models, we analyzed BW seasonality of highland Tibetans. Multivariate models with meteorological factors as independent variables were employed to examine responsible environmental factors accounting for seasonal variation. We compared BW, low-BW prevalence and sex ratio between highland and lowland populations, and we observed a significant seasonal pattern of BW in Tibetans, with a peak in winter and a trough in summer. Notably, there is a marked sex-biased pattern of BW seasonality (more striking in males than in females). Sunlight exposure in the 3rd trimester and barometric pressure exposure in the 2nd trimester are significantly correlated with BW, and the latter can be explained by seasonal change of oxygen partial pressure. In particular, due to the male-biased BW seasonality, we found a more serious BW reduction and higher prevalence of low-BW in males, and a skewed sex ratio in highlanders. The infant BW of highland Tibetans has a clear pattern of seasonality. The winter BW is larger than the summer BW, due to the longer sunlight exposure during the late-trimester. Male infants are more sensitive to hypoxia than female infants during the 2nd trimester, leading to more BW reduction and higher mortality. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43657-021-00038-7.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| | - Jun Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| | - Li Chen
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Chunxia Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Hongyan Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
50
|
Bao H, He X, Wang F, Kang D. Study of Brain Structure and Function in Chronic Mountain Sickness Based on fMRI. Front Neurol 2022; 12:763835. [PMID: 35069409 PMCID: PMC8777079 DOI: 10.3389/fneur.2021.763835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: Headache and memory impairment are the primary clinical symptoms of chronic mountain sickness (CMS). In this study, we used voxel-based morphometry (VBM) and the amplitude of the low-frequency fluctuation method (ALFF) based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to identify changes in the brain structure and function caused by CMS. Materials and Methods: T1W anatomical images and a resting-state functional MRI (fMRI) of the whole brain were performed in 24 patients diagnosed with CMS and 25 normal controls matched for age, sex, years of education, and living altitude. MRI images were acquired, followed by VBM and ALFF data analyses. Results: Compared with the control group, the CMS group had increased gray matter volume in the left cerebellum crus II area, left inferior temporal gyrus, right middle temporal gyrus, right insula, right caudate nucleus, and bilateral lentiform nucleus along with decreased gray matter volume in the left middle occipital gyrus and left middle temporal gyrus. White matter was decreased in the bilateral middle temporal gyrus and increased in the right Heschl's gyrus. Resting-state fMRI in patients with CMS showed increased spontaneous brain activity in the left supramarginal gyrus, left parahippocampal gyrus, and left middle temporal gyrus along with decreased spontaneous brain activity in the right cerebellum crus I area and right supplementary motor area. Conclusion: Patients with CMS had differences in gray and white matter volume and abnormal spontaneous brain activity in multiple brain regions compared to the controls. This suggests that long-term chronic hypoxia may induce changes in brain structure and function, resulting in CMS.
Collapse
|