1
|
Kaisar MH, Kelly M, Kamruzzaman M, Bhuiyan TR, Chowdhury F, Khan AI, LaRocque RC, Calderwood SB, Harris JB, Charles RC, Čížová A, Mečárová J, Korcová J, Bystrický S, Kováč P, Xu P, Qadri F, Ryan ET. Comparison of O-specific polysaccharide responses in patients following infection with Vibrio cholerae O139 versus vaccination with a bivalent (O1/O139) oral killed cholera vaccine in Bangladesh. mSphere 2023; 8:e0025523. [PMID: 37646517 PMCID: PMC10597347 DOI: 10.1128/msphere.00255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 09/01/2023] Open
Abstract
Cholera caused by Vibrio cholerae O139 emerged in the early 1990s and spread rapidly to 11 Asian countries before receding for unclear reasons. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). V. cholerae O139 also expresses the OSP-capsule. We, therefore, assessed antibody responses targeting V. cholerae O139 OSP, LPS, capsule, and vibriocidal responses in patients in Bangladesh with cholera caused by V. cholerae O139. We compared these responses to those of age-gender-blood group-matched recipients of the bivalent oral cholera vaccine (OCV O1/O139). We found prominent OSP, LPS, and vibriocidal responses in patients, with a high correlation between these responses. OSP responses primarily targeted the terminal tetrasaccharide of OSP. Vaccinees developed OSP, LPS, and vibriocidal antibody responses, but of significantly lower magnitude and responder frequency (RF) than matched patients. We separately analyzed responses in pediatric vaccinees born after V. cholerae O139 had receded in Bangladesh. We found that OSP responses were boosted in children who had previously received a single dose of bivalent OCV 3 yr previously but not in vaccinated immunologically naïve children. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 despite the presence of capsules, that vaccination with bivalent OCV is poorly immunogenic in the short term in immunologically naïve individuals, but that OSP-specific immune responses can be primed by previous exposure, although whether such responses can protect against O139 cholera is uncertain. IMPORTANCE Cholera is a severe dehydrating illness in humans caused by Vibrio cholerae serogroups O1 or O139. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) of V. cholerae LPS. Yet, little is known about immunity to O139 OSP. In this study, we assessed immune responses targeting OSP in patients from an endemic region with cholera caused by V. cholerae O139. We compared these responses to those of the age-gender-blood group-matched recipients of the bivalent oral cholera vaccine. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 and that the OSP responses primarily target the terminal tetrasaccharide of OSP. Our results further suggest that vaccination with the bivalent vaccine is poorly immunogenic in the short term for inducing O139-specific OSP responses in immunologically naïve individuals, but OSP-specific immune responses can be primed by previous exposure or vaccination.
Collapse
Affiliation(s)
- M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammad Kamruzzaman
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Korcová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Kamruzzaman M, Kelly M, Charles RC, Harris JB, Calderwood SB, Akter A, Biswas R, Kaisar MH, Bhuiyan TR, Ivers LC, Ternier R, Jerome JG, Pfister HB, Lu X, Soliman SE, Ruttens B, Saksena R, Mečárová J, Čížová A, Qadri F, Bystrický S, Kováč P, Xu P, Ryan ET. Defining Polysaccharide-Specific Antibody Targets against Vibrio cholerae O139 in Humans following O139 Cholera and following Vaccination with a Commercial Bivalent Oral Cholera Vaccine, and Evaluation of Conjugate Vaccines Targeting O139. mSphere 2021; 6:e0011421. [PMID: 34232076 PMCID: PMC8386440 DOI: 10.1128/msphere.00114-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cholera caused by Vibrio cholerae O139 could reemerge, and proactive development of an effective O139 vaccine would be prudent. To define immunoreactive and potentially immunogenic carbohydrate targets of Vibrio cholerae O139, we assessed immunoreactivities of various O-specific polysaccharide (OSP)-related saccharides with plasma from humans hospitalized with cholera caused by O139, comparing responses to those induced in recipients of a commercial oral whole-cell killed bivalent (O1 and O139) cholera vaccine (WC-O1/O139). We also assessed conjugate vaccines containing selected subsets of these saccharides for their ability to induce protective immunity using a mouse model of cholera. We found that patients with wild-type O139 cholera develop IgM, IgA, and IgG immune responses against O139 OSP and many of its fragments, but we were able to detect only a moderate IgM response to purified O139 OSP-core, and none to its fragments, in immunologically naive recipients of WC-O1/O139. We found that immunoreactivity of O139-specific polysaccharides with antibodies elicited by wild-type infection markedly increase when saccharides contain colitose and phosphate residues, that a synthetic terminal tetrasaccharide fragment of OSP is more immunoreactive and protectively immunogenic than complete OSP, that native OSP-core is a better protective immunogen than the synthetic OSP lacking core, and that functional vibriocidal activity of antibodies predicts in vivo protection in our model but depends on capsule thickness. Our results suggest that O139 OSP-specific responses are not prominent following vaccination with a currently available oral cholera vaccine in immunologically naive humans and that vaccines targeting V. cholerae O139 should be based on native OSP-core or terminal tetrasaccharide. IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae serogroup O1 or O139. Protection against cholera is serogroup specific, and serogroup specificity is defined by O-specific polysaccharide (OSP). Little is known about immunity to O139 OSP. In this study, we used synthetic fragments of the O139 OSP to define immune responses to OSP in humans recovering from cholera caused by V. cholerae O139, compared these responses to those induced by the available O139 vaccine, and evaluated O139 fragments in next-generation conjugate vaccines. We found that the terminal tetrasaccharide of O139 is a primary immune target but that the currently available bivalent cholera vaccine poorly induces an anti-O139 OSP response in immunologically naive individuals.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Aklima Akter
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Rajib Biswas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Louise C. Ivers
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Xiaowei Lu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Sameh E. Soliman
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Bart Ruttens
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Rina Saksena
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Kauffman RC, Adekunle O, Yu H, Cho A, Nyhoff LE, Kelly M, Harris JB, Bhuiyan TR, Qadri F, Calderwood SB, Charles RC, Ryan ET, Kong J, Wrammert J. Impact of Immunoglobulin Isotype and Epitope on the Functional Properties of Vibrio cholerae O-Specific Polysaccharide-Specific Monoclonal Antibodies. mBio 2021; 12:e03679-20. [PMID: 33879588 PMCID: PMC8092325 DOI: 10.1128/mbio.03679-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/15/2023] Open
Abstract
Vibrio cholerae causes the severe diarrheal disease cholera. Clinical disease and current oral cholera vaccines generate antibody responses associated with protection. Immunity is thought to be largely mediated by lipopolysaccharide (LPS)-specific antibodies, primarily targeting the O-antigen. However, the properties and protective mechanism of functionally relevant antibodies have not been well defined. We previously reported on the early B cell response to cholera in a cohort of Bangladeshi patients, from which we characterized a panel of human monoclonal antibodies (MAbs) isolated from acutely induced plasmablasts. All antibodies in that previous study were expressed in an IgG1 backbone irrespective of their original isotype. To clearly determine the impact of affinity, immunoglobulin isotype and subclass on the functional properties of these MAbs, we re-engineered a subset of low- and high-affinity antibodies in different isotype and subclass immunoglobulin backbones and characterized the impact of these changes on binding, vibriocidal, agglutination, and motility inhibition activity. While the high-affinity antibodies bound similarly to O-antigen, irrespective of isotype, the low-affinity antibodies displayed significant avidity differences. Interestingly, despite exhibiting lower binding properties, variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies, suggesting that how the MAb binds to the O-antigen may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.IMPORTANCE Immunity to the severe diarrheal disease cholera is largely mediated by lipopolysaccharide (LPS)-specific antibodies. However, the properties and protective mechanisms of functionally relevant antibodies have not been well defined. Here, we have engineered low and high-affinity LPS-specific antibodies in different immunoglobulin backbones in order to assess the impact of affinity, immunoglobulin isotype, and subclass on binding, vibriocidal, agglutination, and motility inhibition functional properties. Importantly, we found that affinity did not directly dictate functional potency since variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies. This suggests that how the antibody binds sterically may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.
Collapse
Affiliation(s)
- Robert C Kauffman
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Oluwaseyi Adekunle
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hanyi Yu
- Department of Computer Science, Emory University, Atlanta, Georgia, USA
| | - Alice Cho
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay E Nyhoff
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason B Harris
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jun Kong
- Department of Computer Science, Emory University, Atlanta, Georgia, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| | - Jens Wrammert
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Inhibition of Francisella tularensis phagocytosis using a novel anti-LPS scFv antibody fragment. Sci Rep 2019; 9:11418. [PMID: 31388083 PMCID: PMC6684794 DOI: 10.1038/s41598-019-47931-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis (Ft), the causative agent of lethal tularemia, is classified as a category A biological warfare threat agent. While Ft infection is treatable by antibiotics, many failed antibiotic treatments were reported, highlighting the need for effective new treatments. It has been demonstrated that binding of antibody-coated bacteria to the Fc receptor located on phagocytic cells is a key process needed for efficient protection against Ft. Yet, Ft utilizes the same receptor to enter the phagocytic cells in order to escape the immune system. To address the question whether an anti-Ft LPS antibody lacking the ability to bind the Fc receptor may inhibit the entry of Ft into host cells, a soluble scFv (TL1-scFv) was constructed from an anti Ft-LPS antibody (TL1) that was isolated from an immune single-chain (scFv) phage-display library. Bacterial uptake was assessed upon infection of macrophages with Ft live attenuated strain (LVS) in the presence of either TL1 or TL1-scFv. While incubation of LVS in the presence of TL1 greatly enhanced bacterial uptake, LVS uptake was significantly inhibited in the presence of TL1-scFv. These results prompt further experiments probing the therapeutic efficacy of TL1-scFv, alone or in combination with antibiotic treatment.
Collapse
|
5
|
An O-Antigen Glycoconjugate Vaccine Produced Using Protein Glycan Coupling Technology Is Protective in an Inhalational Rat Model of Tularemia. J Immunol Res 2018; 2018:8087916. [PMID: 30622981 PMCID: PMC6304830 DOI: 10.1155/2018/8087916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
There is a requirement for an efficacious vaccine to protect people against infection from Francisella tularensis, the etiological agent of tularemia. The lipopolysaccharide (LPS) of F. tularensis is suboptimally protective against a parenteral lethal challenge in mice. To develop a more efficacious subunit vaccine, we have used a novel biosynthetic technique of protein glycan coupling technology (PGCT) that exploits bacterial N-linked glycosylation to recombinantly conjugate F. tularensis O-antigen glycans to the immunogenic carrier protein Pseudomonas aeruginosa exoprotein A (ExoA). Previously, we demonstrated that an ExoA glycoconjugate with two glycosylation sequons was capable of providing significant protection to mice against a challenge with a low-virulence strain of F. tularensis. Here, we have generated a more heavily glycosylated conjugate vaccine and evaluated its efficacy in a Fischer 344 rat model of tularemia. We demonstrate that this glycoconjugate vaccine protected rats against disease and the lethality of an inhalational challenge with F. tularensis Schu S4. Our data highlights the potential of this biosynthetic approach for the creation of next-generation tularemia subunit vaccines.
Collapse
|
6
|
O’Malley KJ, Bowling JL, Stinson E, Cole KS, Mann BJ, Namjoshi P, Hazlett KRO, Barry EM, Reed DS. Aerosol prime-boost vaccination provides strong protection in outbred rabbits against virulent type A Francisella tularensis. PLoS One 2018; 13:e0205928. [PMID: 30346998 PMCID: PMC6197691 DOI: 10.1371/journal.pone.0205928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tularemia, also known as rabbit fever, is a severe zoonotic disease in humans caused by the gram-negative bacterium Francisella tularensis (Ft). While there have been a number of attempts to develop a vaccine for Ft, few candidates have advanced beyond experiments in inbred mice. We report here that a prime-boost strategy with aerosol delivery of recombinant live attenuated candidate Ft S4ΔaroD offers significant protection (83% survival) in an outbred animal model, New Zealand White rabbits, against aerosol challenge with 248 cfu (11 LD50) of virulent type A Ft SCHU S4. Surviving rabbits given two doses of the attenuated strains by aerosol did not exhibit substantial post-challenge fevers, changes in erythrocyte sedimentation rate or in complete blood counts. At a higher challenge dose (3,186 cfu; 139 LD50), protection was still good with 66% of S4ΔaroD-vaccinated rabbits surviving while 50% of S4ΔguaBA vaccinated rabbits also survived challenge. Pre-challenge plasma IgG titers against Ft SCHU S4 corresponded with survival time after challenge. Western blot analysis found that plasma antibody shifted from predominantly targeting Ft O-antigen after the prime vaccination to other antigens after the boost. These results demonstrate the superior protection conferred by a live attenuated derivative of virulent F. tularensis, particularly when given in an aerosol prime-boost regimen.
Collapse
Affiliation(s)
- Katherine J. O’Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jennifer L. Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Elizabeth Stinson
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kelly S. Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Barbara J. Mann
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States of America
| | - Prachi Namjoshi
- Department for Immunology & Microbial Diseases, Albany Medical College, Albany, NY, United States of America
| | - Karsten R. O. Hazlett
- Department for Immunology & Microbial Diseases, Albany Medical College, Albany, NY, United States of America
| | - Eileen M. Barry
- Center for Vaccine Development, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Nualnoi T, Kirosingh A, Basallo K, Hau D, Gates-Hollingsworth MA, Thorkildson P, Crump RB, Reed DE, Pandit S, AuCoin DP. Immunoglobulin G subclass switching impacts sensitivity of an immunoassay targeting Francisella tularensis lipopolysaccharide. PLoS One 2018; 13:e0195308. [PMID: 29630613 PMCID: PMC5890998 DOI: 10.1371/journal.pone.0195308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/20/2018] [Indexed: 01/15/2023] Open
Abstract
The CDC Tier 1 select agent Francisella tularensis is a small, Gram-negative bacterium and the causative agent of tularemia, a potentially life-threatening infection endemic in the United States, Europe and Asia. Currently, there is no licensed vaccine or rapid point-of-care diagnostic test for tularemia. The purpose of this research was to develop monoclonal antibodies (mAbs) specific to the F. tularensis surface-expressed lipopolysaccharide (LPS) for a potential use in a rapid diagnostic test. Our initial antigen capture ELISA was developed using murine IgG3 mAb 1A4. Due to the low sensitivity of the initial assay, IgG subclass switching, which is known to have an effect on the functional affinity of a mAb, was exploited for the purpose of enhancing assay sensitivity. The ELISA developed using the IgG1 or IgG2b mAbs from the subclass-switch family of 1A4 IgG3 yielded improved assay sensitivity. However, surface plasmon resonance (SPR) demonstrated that the functional affinity was decreased as a result of subclass switching. Further investigation using direct ELISA revealed the potential self-association of 1A4 IgG3, which could explain the higher functional affinity and higher assay background seen with this mAb. Additionally, the higher assay background was found to negatively affect assay sensitivity. Thus, enhancement of the assay sensitivity by subclass switching is likely due to the decrease in assay background, simply by avoiding the self-association of IgG3.
Collapse
Affiliation(s)
- Teerapat Nualnoi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Adam Kirosingh
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Kaitlin Basallo
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Derrick Hau
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | | | - Peter Thorkildson
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Reva B. Crump
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Dana E. Reed
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Sujata Pandit
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - David P. AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
8
|
Schumann B, Hahm HS, Parameswarappa SG, Reppe K, Wahlbrink A, Govindan S, Kaplonek P, Pirofski LA, Witzenrath M, Anish C, Pereira CL, Seeberger PH. A semisynthetic Streptococcus pneumoniae serotype 8 glycoconjugate vaccine. Sci Transl Med 2017; 9:9/380/eaaf5347. [PMID: 28275152 DOI: 10.1126/scitranslmed.aaf5347] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/19/2016] [Accepted: 02/06/2017] [Indexed: 01/09/2023]
Abstract
Glycoconjugate vaccines based on capsular polysaccharides (CPSs) of pathogenic bacteria such as Streptococcus pneumoniae successfully protect from disease but suffer from incomplete coverage, are troublesome to manufacture from isolated CPSs, and lack efficacy against certain serotypes. Defined, synthetic oligosaccharides are an attractive alternative to isolated CPSs but require the identification of immunogenic and protective oligosaccharide antigens. We describe a medicinal chemistry strategy based on a combination of automated glycan assembly (AGA), glycan microarray-based monoclonal antibody (mAb) reverse engineering, and immunological evaluation in vivo to uncover a protective glycan epitope (glycotope) for S. pneumoniae serotype 8 (ST8). All four tetrasaccharide frameshifts of ST8 CPS were prepared by AGA and used in glycan microarray experiments to identify the glycotopes recognized by antibodies against ST8. One tetrasaccharide frameshift that was preferentially recognized by a protective, CPS-directed mAb was conjugated to the carrier protein CRM197. Immunization of mice with this semisynthetic glycoconjugate followed by generation and characterization of a protective mAb identified protective and nonprotective glycotopes. Immunization of rabbits with semisynthetic ST8 glycoconjugates containing protective glycotopes induced an antibacterial immune response. Coformulation of ST8 glycoconjugates with the marketed 13-valent glycoconjugate vaccine Prevnar 13 yielded a potent 14-valent S. pneumoniae vaccine. Our strategy presents a facile approach to develop efficient semisynthetic glycoconjugate vaccines.
Collapse
Affiliation(s)
- Benjamin Schumann
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heung Sik Hahm
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | | | - Katrin Reppe
- Division of Pulmonary Inflammation, Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Annette Wahlbrink
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Subramanian Govindan
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Paulina Kaplonek
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Chakkumkal Anish
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Claney L Pereira
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany. .,Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
9
|
Ruehle B, Clemens DL, Lee BY, Horwitz MA, Zink JI. A Pathogen-Specific Cargo Delivery Platform Based on Mesoporous Silica Nanoparticles. J Am Chem Soc 2017; 139:6663-6668. [PMID: 28437093 DOI: 10.1021/jacs.7b01278] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present a synthetic approach to a highly pathogen-selective detection and delivery platform based on the interaction of an antibody nanovalve with a tetrasaccharide from the O-antigen of the lipopolysaccharide (LPS) of Francisella tularensis bacteria, a Tier 1 Select Agent of bioterrorism. Different design considerations are explored, and proof-of-concept for highly pathogen-specific cargo release from mesoporous silica nanoparticles is demonstrated by comparisons of the release of a signal transducer and model drug by LPS from F. tularensis vs Pseudomonas aeruginosa and by F. tularensis live bacteria vs the closely related bacterium Francisella novocida. In addition to the specific response to a biowarfare agent, treatment of infectious diseases in general could benefit tremendously from a delivery platform that releases its antibiotic payload only at the site of infection and only in the presence of the target pathogen, thereby minimizing off-target toxicities.
Collapse
Affiliation(s)
- Bastian Ruehle
- Department of Chemistry and Biochemistry, ‡California NanoSystems Institute, and §Division of Infectious Diseases, Department of Medicine, University of California , Los Angeles, California 90095, United States
| | - Daniel L Clemens
- Department of Chemistry and Biochemistry, ‡California NanoSystems Institute, and §Division of Infectious Diseases, Department of Medicine, University of California , Los Angeles, California 90095, United States
| | - Bai-Yu Lee
- Department of Chemistry and Biochemistry, ‡California NanoSystems Institute, and §Division of Infectious Diseases, Department of Medicine, University of California , Los Angeles, California 90095, United States
| | - Marcus A Horwitz
- Department of Chemistry and Biochemistry, ‡California NanoSystems Institute, and §Division of Infectious Diseases, Department of Medicine, University of California , Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, ‡California NanoSystems Institute, and §Division of Infectious Diseases, Department of Medicine, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions. J Immunol Res 2017; 2017:2197615. [PMID: 28321417 PMCID: PMC5340944 DOI: 10.1155/2017/2197615] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Pathogens have evolved unique mechanisms to breach the cell surface barrier and manipulate the host immune response to establish a productive infection. Proteins exposed to the extracellular environment, both cell surface-expressed receptors and secreted proteins, are essential targets for initial invasion and play key roles in pathogen recognition and subsequent immunoregulatory processes. The identification of the host and pathogen extracellular molecules and their interaction networks is fundamental to understanding tissue tropism and pathogenesis and to inform the development of therapeutic strategies. Nevertheless, the characterization of the proteins that function in the host-pathogen interface has been challenging, largely due to the technical challenges associated with detection of extracellular protein interactions. This review discusses available technologies for the high throughput study of extracellular protein interactions between pathogens and their hosts, with a focus on mammalian viruses and bacteria. Emerging work illustrates a rich landscape for extracellular host-pathogen interaction and points towards the evolution of multifunctional pathogen-encoded proteins. Further development and application of technologies for genome-wide identification of extracellular protein interactions will be important in deciphering functional host-pathogen interaction networks, laying the foundation for development of novel therapeutics.
Collapse
|
11
|
Polyspecificity of Anti-lipid A Antibodies and Its Relevance to the Development of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:181-202. [PMID: 28887790 DOI: 10.1007/5584_2017_94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The process of natural selection favours germ-line gene segments that encode CDRs that have the ability to recognize a range of structurally related antigens. This presents an immunological advantage to the host, as it can confer protection against a common pathogen and still cope with new or changing antigens. Cross-reactive and polyspecific antibodies also play a central role in autoimmune responses, and a link has been shown to exist between auto-reactive B cells and certain bacterial infections. Bacterial DNA, lipids, and carbohydrates have been implicated in the progression of autoimmune diseases such as systemic lupus erythematosus. As well, reports of anti-lipid A antibody polyspecificity towards single-stranded DNA together with the observed sequence homology amongst isolated auto- and anti-lipid A antibodies has prompted further study of this phenomenon. Though the lipid A epitope appears cryptic during Gram-negative bacterial infection, there have been several reported instances of lipid A-specific antibodies isolated from human sera, some of which have exhibited polyspecificity for single stranded DNA. In such cases, the breakdown of negative selection through polyspecificity can have the unfortunate consequence of autoimmune disease. This review summarizes current knowledge regarding such antibodies and emphasizes the features of S1-15, A6, and S55-5, anti-lipid A antibodies whose structures were recently determined by X-ray crystallography.
Collapse
|
12
|
Barker JH, Kaufman JW, Apicella MA, Weiss JP. Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A. PLoS One 2016; 11:e0157842. [PMID: 27326857 PMCID: PMC4915664 DOI: 10.1371/journal.pone.0157842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023] Open
Abstract
Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS) has a structurally unique lipid anchor, we have metabolically labeled Francisella with [14C]acetate to facilitate highly sensitive compositional analysis of capsule-associated lipids. Capsule was purified by two independent methods and yielded similar results. Autoradiographic and immunologic analysis confirmed that this purified material was largely devoid of low molecular weight LPS and of the copious amounts of free lipid A that the Francisellae accumulate. Chemical hydrolysis yielded [14C]-labeled free fatty acids characteristic of Francisella lipid A but with a different molar ratio of 3-OH C18:0 to 3-OH C16:0 and different composition of non-hydroxylated fatty acids (mainly C14:0 rather than C16:0) than that of free Francisella lipid A. Mild acid hydrolysis to induce selective cleavage of KDO-lipid A linkage yielded a [14C]-labeled product that partitioned during Bligh/Dyer extraction and migrated during thin-layer chromatography like lipid A. These findings suggest that the O-antigen capsule of Francisella contains a covalently linked and structurally distinct lipid A species. The presence of a discrete lipid A-like molecule associated with capsule raises the possibility that Francisella selectively exploits lipid A structural heterogeneity to regulate synthesis, transport, and stable bacterial surface association of the O-antigen capsular layer.
Collapse
Affiliation(s)
- Jason H. Barker
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
- * E-mail:
| | - Justin W. Kaufman
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Michael A. Apicella
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Jerrold P. Weiss
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| |
Collapse
|
13
|
Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV. Antibody recognition of carbohydrate epitopes†. Glycobiology 2015; 25:920-52. [PMID: 26033938 DOI: 10.1093/glycob/cwv037] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/24/2015] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigens are valuable as components of vaccines for bacterial infectious agents and human immunodeficiency virus (HIV), and for generating immunotherapeutics against cancer. The crystal structures of anti-carbohydrate antibodies in complex with antigen reveal the key features of antigen recognition and provide information that can guide the design of vaccines, particularly synthetic ones. This review summarizes structural features of anti-carbohydrate antibodies to over 20 antigens, based on six categories of glyco-antigen: (i) the glycan shield of HIV glycoproteins; (ii) tumor epitopes; (iii) glycolipids and blood group A antigen; (iv) internal epitopes of bacterial lipopolysaccharides; (v) terminal epitopes on polysaccharides and oligosaccharides, including a group of antibodies to Kdo-containing Chlamydia epitopes; and (vi) linear homopolysaccharides.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - N Martin Young
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| |
Collapse
|
14
|
Lu Z, Rynkiewicz MJ, Yang CY, Madico G, Perkins HM, Roche MI, Seaton BA, Sharon J. Functional and structural characterization of Francisella tularensis O-antigen antibodies at the low end of antigen reactivity. Monoclon Antib Immunodiagn Immunother 2015; 33:235-45. [PMID: 25171003 DOI: 10.1089/mab.2014.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The O-antigen (OAg) of the Gram-negative bacterium Francisella tularensis (Ft), which is both a capsular polysaccharide and a component of lipopolysaccharide, is comprised of tetrasaccharide repeats and induces antibodies mainly against repeating internal epitopes. We previously reported on several BALB/c mouse monoclonal antibodies (MAbs) that bind to internal Ft OAg epitopes and are protective in mouse models of respiratory tularemia. We now characterize three new internal Ft OAg IgG2a MAbs, N203, N77, and N24, with 10- to 100-fold lower binding potency than previously characterized internal-OAg IgG2a MAbs, despite sharing one or more variable region germline genes with some of them. In a mouse model of respiratory tularemia with the highly virulent Ft type A strain SchuS4, the three new MAbs reduced blood bacterial burden with potencies that mirror their antigen-binding strength; the best binder of the new MAbs, N203, prolonged survival in a dose-dependent manner, but was at least 10-fold less potent than the best previously characterized IgG2a MAb, Ab52. X-ray crystallographic studies of N203 Fab showed a flexible binding site in the form of a partitioned groove, which cannot provide as many contacts to OAg as does the Ab52 binding site. These results reveal structural features of antibodies at the low end of reactivity with multi-repeat microbial carbohydrates and demonstrate that such antibodies still have substantial protective effects against infection.
Collapse
Affiliation(s)
- Zhaohua Lu
- 1 Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu Z, Rynkiewicz MJ, Madico G, Li S, Yang CY, Perkins HM, Sompuram SR, Kodela V, Liu T, Morris T, Wang D, Roche MI, Seaton BA, Sharon J. B-cell epitopes in GroEL of Francisella tularensis. PLoS One 2014; 9:e99847. [PMID: 24968190 PMCID: PMC4072690 DOI: 10.1371/journal.pone.0099847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/16/2014] [Indexed: 01/01/2023] Open
Abstract
The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guillermo Madico
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sheng Li
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hillary M. Perkins
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Seshi R. Sompuram
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Vani Kodela
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Tong Liu
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Timothy Morris
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Daphne Wang
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Marly I. Roche
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sharon J, Rynkiewicz MJ, Lu Z, Yang CY. Discovery of protective B-cell epitopes for development of antimicrobial vaccines and antibody therapeutics. Immunology 2014; 142:1-23. [PMID: 24219801 PMCID: PMC3992043 DOI: 10.1111/imm.12213] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 01/07/2023] Open
Abstract
Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B-cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X-ray crystallography of antigen-antibody complexes, antibody inhibition of hydrogen-deuterium exchange in the antigen, antibody-induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen-antibody complexes. The diversity in shape, size and structure of protective B-cell epitopes, and the increasing importance of protective B-cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V-shaped Ab52 glycan epitope in the O-antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antigen-Antibody Reactions
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/therapeutic use
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Humans
- Models, Molecular
- Protein Conformation
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of MedicineBoston, MA, USA
| | - Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| |
Collapse
|
17
|
Brogioni B, Berti F. Surface plasmon resonance for the characterization of bacterial polysaccharide antigens: a review. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00088a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review gives an overview of significant applications of flow SPR to investigate the specific interactions of bacterial polysaccharide antigens.
Collapse
|
18
|
Antibodies to both terminal and internal B-cell epitopes of Francisella tularensis O-polysaccharide produced by patients with tularemia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:227-33. [PMID: 24351753 DOI: 10.1128/cvi.00626-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Francisella tularensis, the Gram-negative bacterium that causes tularemia, is considered a potential bioterrorism threat due to its low infectivity dose and the high morbidity and mortality from respiratory disease. We previously characterized two mouse monoclonal antibodies (MAbs) specific for the O-polysaccharide (O antigen [OAg]) of F. tularensis lipopolysaccharide (LPS): Ab63, which targets a terminal epitope at the nonreducing end of OAg, and Ab52, which targets a repeating internal OAg epitope. These two MAbs were protective in a mouse model of respiratory tularemia. To determine whether these epitope types are also targeted by humans, we tested the ability of each of 18 blood serum samples from 11 tularemia patients to inhibit the binding of Ab63 or Ab52 to F. tularensis LPS in a competition enzyme-linked immunosorbent assay (ELISA). Although all serum samples had Ab63- and Ab52-inhibitory activities, the ratios of Ab63 to Ab52 inhibitory potencies varied 75-fold. However, the variation was only 2.3-fold for sequential serum samples from the same patient, indicating different distributions of terminal- versus internal-binding antibodies in different individuals. Western blot analysis using class-specific anti-human Ig secondary antibodies showed that both terminal- and internal-binding OAg antibodies were of the IgG, IgM, and IgA isotypes. These results support the use of a mouse model to discover protective B-cell epitopes for tularemia vaccines or prophylactic/therapeutic antibodies, and they present a general strategy for interrogating the antibody responses of patients and vaccinees to microbial carbohydrate epitopes that have been characterized in experimental animals.
Collapse
|
19
|
Lu Z, Rynkiewicz MJ, Yang CY, Madico G, Perkins HM, Wang Q, Costello CE, Zaia J, Seaton BA, Sharon J. The binding sites of monoclonal antibodies to the non-reducing end of Francisella tularensis O-antigen accommodate mainly the terminal saccharide. Immunology 2013; 140:374-89. [PMID: 23844703 DOI: 10.1111/imm.12150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/19/2013] [Accepted: 07/05/2013] [Indexed: 11/27/2022] Open
Abstract
We have previously described two types of protective B-cell epitopes in the O-antigen (OAg) of the Gram-negative bacterium Francisella tularensis: repeating internal epitopes targeted by the vast majority of anti-OAg monoclonal antibodies (mAbs), and a non-overlapping epitope at the non-reducing end targeted by the previously unique IgG2a mAb FB11. We have now generated and characterized three mAbs specific for the non-reducing end of F. tularensis OAg, partially encoded by the same variable region germline genes, indicating that they target the same epitope. Like FB11, the new mAbs, Ab63 (IgG3), N213 (IgG3) and N62 (IgG2b), had higher antigen-binding bivalent avidity than internally binding anti-OAg mAbs, and an oligosaccharide containing a single OAg repeat was sufficient for optimal inhibition of their antigen-binding. The X-ray crystal structure of N62 Fab showed that the antigen-binding site is lined mainly by aromatic amino acids that form a small cavity, which can accommodate no more than one and a third sugar residues, indicating that N62 binds mainly to the terminal Qui4NFm residue at the nonreducing end of OAg. In efficacy studies with mice infected intranasally with the highly virulent F. tularensis strain SchuS4, N62, N213 and Ab63 prolonged survival and reduced blood bacterial burden. These results yield insights into how antibodies to non-reducing ends of microbial polysaccharides can contribute to immune protection despite the smaller size of their target epitopes compared with antibodies to internal polysaccharide regions.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sarkar A, Fontana C, Imberty A, Pérez S, Widmalm G. Conformational Preferences of the O-Antigen Polysaccharides of Escherichia coli O5ac and O5ab Using NMR Spectroscopy and Molecular Modeling. Biomacromolecules 2013; 14:2215-24. [DOI: 10.1021/bm400354y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anita Sarkar
- Centre de Recherches sur les Macromolécules Végétales - CNRS, affiliated with Université Grenoble and ICMG, BP 53 X, 38041
Grenoble Cedex, France
| | - Carolina Fontana
- Department of Organic
Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales - CNRS, affiliated with Université Grenoble and ICMG, BP 53 X, 38041
Grenoble Cedex, France
| | - Serge Pérez
- Centre de Recherches sur les Macromolécules Végétales - CNRS, affiliated with Université Grenoble and ICMG, BP 53 X, 38041
Grenoble Cedex, France
| | - Göran Widmalm
- Department of Organic
Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| |
Collapse
|
21
|
Barker JH, Kaufman JW, Zhang DS, Weiss JP. Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes. Innate Immun 2013; 20:88-103. [PMID: 23729477 DOI: 10.1177/1753425913485308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hallmark of Francisella tularensis, a highly virulent Gram-negative bacterium, is an unusual LPS that possesses both structural heterogeneity and characteristics that may contribute to innate immune evasion. However, none of the methods yet employed has been sufficient to determine the overall LPS composition of Francisella. We now demonstrate that metabolic labeling of francisellae with [(14)C]acetate, combined with fractionation of [(14)C]acetate-labeled lipids by ethanol precipitation rather than hot phenol-water extraction, permits a more sensitive and quantitative appraisal of overall compositional heterogeneity in lipid A and LPS. The majority of lipid A of different francisellae strains grown in diverse bacteriologic media and within human phagocytes accumulated as very hydrophobic species, including free lipid A, with <10% of the lipid A molecules substituted with O-Ag polysaccharides. The spectrum of lipid A and LPS species varied in a medium- and strain-dependent fashion, and growth in THP-1 cells yielded lipid A species that were not present in the same bacteria grown in brain heart infusion broth. In summary, metabolic labeling with [(14)C]acetate greatly facilitates assessment of the effect of genotypic and/or environmental variables on the synthesis and accumulation of lipid A and LPS by Francisella, including during growth within the cytosol of infected host cells.
Collapse
Affiliation(s)
- Jason H Barker
- 1Inflammation Program and Department of Medicine, University of Iowa and Veterans Affairs Medical Center, IA, USA
| | | | | | | |
Collapse
|
22
|
Lu Z, Madico G, Roche MI, Wang Q, Hui JH, Perkins HM, Zaia J, Costello CE, Sharon J. Protective B-cell epitopes of Francisella tularensis O-polysaccharide in a mouse model of respiratory tularaemia. Immunology 2012; 136:352-60. [PMID: 22486311 DOI: 10.1111/j.1365-2567.2012.03589.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibodies to the lipopolysaccharide (LPS) of Francisella tularensis have been shown to be protective against respiratory tularaemia in mouse models, and we have previously described mouse monoclonal antibodies (mAbs) to non-overlapping terminal and internal epitopes of the F. tularensis LPS O-polysaccharide (OAg). In the current study, we used F. tularensis LPS oligosaccharides of defined OAg repeat length as molecular rulers in competition ELISA to demonstrate that the epitope targeted by the terminal OAg-binding mAb FB11 is contained within one tetrasaccharide repeat whereas the epitope targeted by the internal OAg-binding mAb Ab52 spans two tetrasaccharide repeats. Both mAbs conferred survival to BALB/c mice infected intranasally with the F. tularensis type B live vaccine strain and prolonged survival of BALB/c mice infected intranasally with the highly virulent F. tularensis type A strain SchuS4. The protective effects correlated with reduced bacterial burden in mAb-treated infected mice. These results indicate that an oligosaccharide with two OAg tetrasaccharide repeats covers both terminal and internal protective OAg epitopes, which may inform the design of vaccines for tularaemia. Furthermore, the FB11 and Ab52 mAbs could serve as reporters to monitor the response of vaccine recipients to protective B-cell epitopes of F. tularensis OAg.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rynkiewicz MJ, Lu Z, Hui JH, Sharon J, Seaton BA. Structural analysis of a protective epitope of the Francisella tularensis O-polysaccharide. Biochemistry 2012; 51:5684-94. [PMID: 22747335 DOI: 10.1021/bi201711m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Francisella tularensis (Ft), the Gram-negative facultative intracellular bacterium that causes tularemia, is considered a biothreat because of its high infectivity and the high mortality rate of respiratory disease. The Ft lipopolysaccharide (Ft LPS) is thought to be a main protective antigen in mice and humans, and we have previously demonstrated the protective effect of the Ft LPS-specific monoclonal antibody Ab52 in a mouse model of respiratory tularemia. Immunochemical characterization has shown that the epitope recognized by Ab52 is contained within two internal repeat units of the O-polysaccharide [O-antigen (OAg)] of Ft LPS. To further localize the Ab52 epitope and understand the molecular interactions between the antibody and the saccharide, we determined the X-ray crystal structure of the Fab fragment of Ab52 and derived an antibody-antigen complex using molecular docking. The docked complex, refined through energy minimization, reveals an antigen binding site in the shape of a large canyon with a central pocket that accommodates a V-shaped epitope consisting of six sugar residues, α-D-GalpNAcAN(1→4)-α-D-GalpNAcAN(1→3)-β-D-QuipNAc(1→2)-β-D-Quip4NFm(1→4)-α-D-GalpNAcAN(1→4)-α-D-GalpNAcAN. These results inform the development of vaccines and immunotherapeutic/immunoprophylactic antibodies against Ft by suggesting a desired topology for binding of the antibody to internal epitopes of Ft LPS. This is the first report of an X-ray crystal structure of a monoclonal antibody that targets a protective Ft B cell epitope.
Collapse
Affiliation(s)
- Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
24
|
Wang Q, Shi X, Leymarie N, Madico G, Sharon J, Costello CE, Zaia J. A typical preparation of Francisella tularensis O-antigen yields a mixture of three types of saccharides. Biochemistry 2011; 50:10941-50. [PMID: 22091710 DOI: 10.1021/bi201450v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tularemia is a severe infectious disease in humans caused by the Gram-negative bacterium Francisella tularensis (Ft). Because of its low infectious dose, high mortality rate, and the threat of its large-scale dissemination in weaponized form, development of vaccines and immunotherapeutics against Ft is essential. Ft lipopolysaccharide (LPS), which contains the linear graded-length saccharide component O-antigen (OAg) attached to a core oligosaccharide, has been reported as a protective antigen. Purification of LPS saccharides of defined length and composition is necessary to reveal the epitopes targeted by protective antibodies. In this study, we purified saccharides from LPS preparations from both the Ft subspecies holarctica live vaccine strain (LVS) and the virulent Ft subspecies tularensis SchuS4 strain using liquid chromatography. We then characterized the fractions using high-resolution mass spectrometry and tandem mass spectrometry. Three types of saccharides were observed in both the LVS and SchuS4 preparations: two consisting of OAg tetrasaccharide repeats attached to one of two core oligosaccharide variants and one consisting of tetrasaccharide repeats only (coreless). The coreless OAg oligosaccharides were shown to contain Qui4NFm (4,6-dideoxy-4-formamido-D-glucose) at the nonreducing end and QuiNAc (2-acetamido-2,6-dideoxy-O-D-glucose) at the reducing end. Purified homogeneous preparations of saccharides of each type will allow mapping of protective epitopes in Ft LPS.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | | | | | | | | | | | | |
Collapse
|