1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Politano D, Tonduti D, Battini R, Fazzi E, Orcesi S. Exploring emerging JAK inhibitors in the treatment of Aicardi-Goutières syndrome. Expert Opin Emerg Drugs 2024:1-19. [PMID: 39704072 DOI: 10.1080/14728214.2024.2445508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Aicardi-Goutières syndrome (AGS) is a genetically heterogeneous monogenic autoinflammatory disorder classified as an 'interferonopathy'. Nine genes have been implicated in AGS, encoding proteins involved in nucleic acid clearance, repair, sensing, or histone pre-mRNA processing. Dysregulation in these pathways leads to excessive type I interferon production, the primary driver of the disease. AGS typically presents with early-life neurological regression, followed by stabilization with varying degrees of neurological impairment and common extra-neurological features, such as chilblains. Advances in understanding AGS pathogenesis have enabled the development of new therapies, with JAK inhibitors emerging as the most studied option for reducing interferon-mediated effects. AREAS COVERED This review discusses the clinical features, genetic basis, and molecular pathways of AGS while tracing the evolution of its therapeutic strategies. Particular emphasis is placed on JAK inhibitors, which target proteins activated by type I interferons, providing a novel direction in treatment. EXPERT OPINION Inhibitors effectively reduce extra-neurological symptoms in AGS, though their impact on neurological outcomes remains unclear. The unknown natural history of AGS limits treatment evaluation. Despite growing insights, key aspects of pathogenesis and treatment optimization - including timing, administration, and long-term effects - remain unresolved, highlighting the need for further research.
Collapse
Affiliation(s)
- Davide Politano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Fiordoro S, Rosano C, Pechkova E, Barocci S, Izzotti A. Epigenetic modulation of immune cells: Mechanisms and implications. Adv Biol Regul 2024; 94:101043. [PMID: 39305736 DOI: 10.1016/j.jbior.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 12/12/2024]
Abstract
Epigenetic modulation of the immune response entails modifiable and inheritable modifications that do not modify the DNA sequence. While there have been many studies on epigenetic changes in tumor cells, there is now a growing focus on epigenetically mediated changes in immune cells of both the innate and adaptive systems. These changes have significant implications for both the body's response to tumors and the development of potential therapeutic vaccines. This study primarily discusses the key epigenetic alterations, with a specific emphasis on pseudouridination, as well as non-coding RNAs and their transportation, which can lead to the development of cancer and the acquisition of new phenotypic traits by immune cells. Furthermore, the advancement of therapeutic vaccinations targeting the tumor will be outlined.
Collapse
Affiliation(s)
- S Fiordoro
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - C Rosano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - E Pechkova
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - S Barocci
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| |
Collapse
|
4
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
5
|
Masuda A, Nakamura T, Iwamoto H, Suzuki H, Sakaue T, Tanaka T, Imamura Y, Mori N, Koga H, Kawaguchi T. Ex-vivo expanded CD34 + cell transplantation alleviates fibrotic liver injury via innate immune modulation in metabolic dysfunction-associated steatohepatitis mice. Cytotherapy 2024; 26:899-909. [PMID: 38678462 DOI: 10.1016/j.jcyt.2024.03.488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND In drug-induced liver injury, vascular endothelial progenitor cells, specifically the CD34+ cell fractions, have been found to decrease liver fibrosis and promote regeneration. However, it is unclear whether CD34+ cell transplantation has anti-fibrogenic effects on MASH, which has previously been treated effectively with anti-angiogenic therapy. We investigated the efficacy of ex vivo-expanded CD34+ cells in treating MASH livers. MATERIALS AND METHODS Diet-induced MASH mice were fed a choline-deficient, L-amino acid-defined, high-fat diet for 12 or 20 weeks, and were designated as a mild and a severe fibrosis model, respectively. Mouse bone marrow CD34+ cells were expanded for 7 days, transplanted into each mouse once or twice 2 weeks later, and sacrificed at 4 weeks after the first transplantation. RESULTS Expanded CD34+ cell transplantation ameliorated liver fibrosis, regardless of fibrosis degree, as indicated by the decrease in α-smooth muscle actin-positive cells, hydroxyproline concentration, and fibrogenic gene expression of Col1a1 and Timp1. Furthermore, engrafted CD34+ cells reduced alanine transaminase levels, the number of TUNEL+ hepatocytes, and 8-OHdG concentration. RNA-sequencing data showed that "defense response to virus" was the most down-regulated category in the Gene Ontology analysis and subsequent analysis revealed the suppression of RIG-I-like receptors/Irf7/Stat1/Cxcl10 axis in expanded CD34+ cell-transplanted livers. Finally, the downregulation of CXCL10 expression inhibits the mobilization of inflammatory immune cells, macrophages, T cells, and natural killer cells to the MASH liver. CONCLUSIONS These findings suggest that transplanted expanded CD34+ cells alleviate fibrotic liver injury in MASH mouse models through possible modulation of the innate immune response, which is abnormally activated by hepatocyte lipotoxicity.
Collapse
Affiliation(s)
- Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan; Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan; Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan.
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan; Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan; Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan; Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan; Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan
| | - Yasuko Imamura
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan
| | - Nobuyuki Mori
- Department of Social Welfare, Kyushu University of Nursing and Social Welfare, Tamana, Kumamoto, 8650061, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan; Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka, 8300011, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 8300011, Japan
| |
Collapse
|
6
|
Shin B, Hrdlicka HC, Karki S, Fraser B, Lee SK, Delany AM. The miR-29-3p family suppresses inflammatory osteolysis. J Cell Physiol 2024; 239:e31299. [PMID: 38764231 PMCID: PMC11324400 DOI: 10.1002/jcp.31299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Osteoclasts are the cells primarily responsible for inflammation-induced bone loss, as is particularly seen in rheumatoid arthritis. Increasing evidence suggests that osteoclasts formed under homeostatic versus inflammatory conditions may differ in phenotype. While microRNA-29-3p family members (miR-29a-3p, miR-29b-3p, miR-29c-3p) promote the function of RANKL-induced osteoclasts, the role of miR-29-3p during inflammatory TNF-α-induced osteoclastogenesis is unknown. We used bulk RNA-seq, histology, qRT-PCR, reporter assays, and western blot analysis to examine bone marrow monocytic cell cultures and tissue from male mice in which the function of miR-29-3p family members was decreased by expression of a miR-29-3p tough decoy (TuD) competitive inhibitor in the myeloid lineage (LysM-cre). We found that RANKL-treated monocytic cells expressing the miR-29-3p TuD developed a hypercytokinemia/proinflammatory gene expression profile in vitro, which is associated with macrophages. These data support the concept that miR-29-3p suppresses macrophage lineage commitment and may have anti-inflammatory effects. In correlation, when miR-29-3p activity was decreased, TNF-α-induced osteoclast formation was accentuated in an in vivo model of localized osteolysis and in a cell-autonomous manner in vitro. Further, miR-29-3p targets mouse TNF receptor 1 (TNFR1/Tnfrsf1a), an evolutionarily conserved regulatory mechanism, which likely contributes to the increased TNF-α signaling sensitivity observed in the miR-29-3p decoy cells. Whereas our previous studies demonstrated that the miR-29-3p family promotes RANKL-induced bone resorption, the present work shows that miR-29-3p dampens TNF-α-induced osteoclastogenesis, indicating that miR-29-3p has pleiotropic effects in bone homeostasis and inflammatory osteolysis. Our data supports the concept that the knockdown of miR-29-3p activity could prime myeloid cells to respond to an inflammatory challenge and potentially shift lineage commitment toward macrophage, making the miR-29-3p family a potential therapeutic target for modulating inflammatory response.
Collapse
Affiliation(s)
- Bongjin Shin
- Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Brianna Fraser
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
7
|
Liu Y, Wang K, Gong X, Qu W, Xiao Y, Sun H, Kang J, Sheng J, Wu F, Dai F. Schisandra chinensis inhibits the entry of BoHV-1 by blocking PI3K-Akt pathway and enhances the m6A methylation of gD to inhibit the entry of progeny virus. Front Microbiol 2024; 15:1444414. [PMID: 39104584 PMCID: PMC11298802 DOI: 10.3389/fmicb.2024.1444414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Kang Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiao Gong
- Qingdao YeBio Bio-Engineering Co., Ltd., Qingdao, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yangyang Xiao
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Hongtao Sun
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinliang Sheng
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Feiyan Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
9
|
Chen YH, Wu KH, Wu HP. Unraveling the Complexities of Toll-like Receptors: From Molecular Mechanisms to Clinical Applications. Int J Mol Sci 2024; 25:5037. [PMID: 38732254 PMCID: PMC11084218 DOI: 10.3390/ijms25095037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Toll-like receptors (TLRs) are vital components of the innate immune system, serving as the first line of defense against pathogens by recognizing a wide array of molecular patterns. This review summarizes the critical roles of TLRs in immune surveillance and disease pathogenesis, focusing on their structure, signaling pathways, and implications in various disorders. We discuss the molecular intricacies of TLRs, including their ligand specificity, signaling cascades, and the functional consequences of their activation. The involvement of TLRs in infectious diseases, autoimmunity, chronic inflammation, and cancer is explored, highlighting their potential as therapeutic targets. We also examine recent advancements in TLR research, such as the development of specific agonists and antagonists, and their application in immunotherapy and vaccine development. Furthermore, we address the challenges and controversies surrounding TLR research and outline future directions, including the integration of computational modeling and personalized medicine approaches. In conclusion, TLRs represent a promising frontier in medical research, with the potential to significantly impact the development of novel therapeutic strategies for a wide range of diseases.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Taichung 427, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Artificial Intelligence and Data Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| |
Collapse
|
10
|
Liu D, He W, Yang LL. Revitalizing antitumor immunity: Leveraging nucleic acid sensors as therapeutic targets. Cancer Lett 2024; 588:216729. [PMID: 38387757 DOI: 10.1016/j.canlet.2024.216729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Nucleic acid sensors play a critical role in recognizing and responding to pathogenic nucleic acids as danger signals. Upon activation, these sensors initiate downstream signaling cascades that lead to the production and release of pro-inflammatory cytokines, chemokines, and type I interferons. These immune mediators orchestrate diverse effector responses, including the activation of immune cells and the modulation of the tumor microenvironment. However, careful consideration must be given to balancing the activation of nucleic acid sensors to avoid unwanted autoimmune or inflammatory responses. In this review, we provide an overview of nucleic acid sensors and their role in combating cancer through the perception of various aberrant nucleic acids and activation of the immune system. We discuss the connections between different programmed cell death modes and nucleic acid sensors. Finally, we outline the development of nucleic acid sensor agonists, highlighting how their potential as therapeutic targets opens up new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
11
|
Ramini D, Giuliani A, Kwiatkowska KM, Guescini M, Storci G, Mensà E, Recchioni R, Xumerle L, Zago E, Sabbatinelli J, Santi S, Garagnani P, Bonafè M, Olivieri F. Replicative senescence and high glucose induce the accrual of self-derived cytosolic nucleic acids in human endothelial cells. Cell Death Discov 2024; 10:184. [PMID: 38643201 PMCID: PMC11032409 DOI: 10.1038/s41420-024-01954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Recent literature shows that loss of replicative ability and acquisition of a proinflammatory secretory phenotype in senescent cells is coupled with the build-in of nucleic acids in the cytoplasm. Its implication in human age-related diseases is under scrutiny. In human endothelial cells (ECs), we assessed the accumulation of intracellular nucleic acids during in vitro replicative senescence and after exposure to high glucose concentrations, which mimic an in vivo condition of hyperglycemia. We showed that exposure to high glucose induces senescent-like features in ECs, including telomere shortening and proinflammatory cytokine release, coupled with the accrual in the cytoplasm of telomeres, double-stranded DNA and RNA (dsDNA, dsRNA), as well as RNA:DNA hybrid molecules. Senescent ECs showed an activation of the dsRNA sensors RIG-I and MDA5 and of the DNA sensor TLR9, which was not paralleled by the involvement of the canonical (cGAS) and non-canonical (IFI16) activation of the STING pathway. Under high glucose conditions, only a sustained activation of TLR9 was observed. Notably, senescent cells exhibit increased proinflammatory cytokine (IL-1β, IL-6, IL-8) production without a detectable secretion of type I interferon (IFN), a phenomenon that can be explained, at least in part, by the accumulation of methyl-adenosine containing RNAs. At variance, exposure to exogenous nucleic acids enhances both IL-6 and IFN-β1 expression in senescent cells. This study highlights the accrual of cytoplasmic nucleic acids as a marker of senescence-related endothelial dysfunction, that may play a role in dysmetabolic age-related diseases.
Collapse
Affiliation(s)
- Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | | | - Michele Guescini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | - Gianluca Storci
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | | | | | - Jacopo Sabbatinelli
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Liu Y, Cui J, Kang J, Wang Z, Xu X, Wu F. Bovine herpesvirus-1 gE protein inhibits IFN-β production to enhance replication by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. Vet Microbiol 2023; 287:109899. [PMID: 37931576 DOI: 10.1016/j.vetmic.2023.109899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause respiratory and genital tract diseases. In the process of viral infection, viruses can use their own proteins to suppress the innate immunity of the host and promote its replication; however, the mechanism by which BoHV-1 evades the innate immune response is not fully understood. In this study, we found that rabbits inoculated with the live gene deletion vaccine BoHV-1-△gI/gE/TK generated higher interferon-β (IFN-β) production in the serum, liver, lung and kidney than rabbits inoculated with wt BoHV-1, which led to milder lesions in the lung and kidney. We performed gene deletion and ectopic expression experiments on viral proteins and found that gE was the major protein that inhibited IFN-β expression. Further studies showed that MAVS and IRF3 were the targets of gE, and the specific mechanism was that gE inhibited IFN-β production by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. These results suggest a new way of BoHV-1 inhibition of IFN-β production to evade the host innate immunity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Cui
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| |
Collapse
|
13
|
Katoh H, Honda T. Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity. Biomolecules 2023; 13:1706. [PMID: 38136578 PMCID: PMC10741599 DOI: 10.3390/biom13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
Collapse
Affiliation(s)
- Hirokazu Katoh
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Tomoyuki Honda
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
14
|
Lažetić V, Batachari LE, Russell AB, Troemel ER. Similarities in the induction of the intracellular pathogen response in Caenorhabditis elegans and the type I interferon response in mammals. Bioessays 2023; 45:e2300097. [PMID: 37667453 PMCID: PMC10694843 DOI: 10.1002/bies.202300097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Lakshmi E. Batachari
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alistair B. Russell
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Emily R. Troemel
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
15
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Fu F, Shao Q, Wang J, Zhang J, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Bat MAVS involved in antiviral innate immunity via regulating IFN-beta production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104724. [PMID: 37178925 DOI: 10.1016/j.dci.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS) is an essential articulatory protein in immune responses against most RNA viruses. Whether bats, the natural hosts of numerous zoonotic RNA viruses, utilize conserved signaling pathways involving MAVS-mediated interferon (IFN) responses remains elusive. In this study, we performed the cloning and functional analysis of bat MAVS (BatMAVS). Amino acid sequence analysis revealed that BatMAVS was poorly conserved among species and evolutionarily closer to other mammals. Overexpression of BatMAVS significantly inhibited the replication of green fluorescent protein (GFP)-tagged VSV (VSV-GFP) and GFP-tagged Newcastle disease virus (NDV) (NDV-GFP) by activating the type I IFN pathway, and its expression at the transcriptional level was upregulated at the late stage of VSV-GFP infection. We further demonstrated that the CARD_2 and TM domains occupy a large proportion in the ability of BatMAVS to activate IFN-β. These results suggest that BatMAVS acts as an important regulatory molecule in IFN-induction and anti-RNA viruses in bats.
Collapse
Affiliation(s)
- Feiyu Fu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China
| | - Qi Shao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China
| | - Jie Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China
| | - Jianjian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China.
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, People's Republic of China.
| |
Collapse
|
18
|
Lee JH, Koepke L, Kirchhoff F, Sparrer KMJ. Interferon antagonists encoded by SARS-CoV-2 at a glance. Med Microbiol Immunol 2023; 212:125-131. [PMID: 35366686 PMCID: PMC8976456 DOI: 10.1007/s00430-022-00734-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
The innate immune system is a powerful barrier against invading pathogens. Interferons (IFNs) are a major part of the cytokine-mediated anti-viral innate immune response. After recognition of a pathogen by immune sensors, signaling cascades are activated that culminate in the release of IFNs. These activate cells in an autocrine or paracrine fashion eventually setting cells in an anti-viral state via upregulation of hundreds of interferon-stimulated genes (ISGs). To evade the anti-viral effect of the IFN system, successful viruses like the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved strategies to counteract both IFN induction and signaling. In fact, more than half of the about 30 proteins encoded by SARS-CoV-2 target the IFN system at multiple levels to escape IFN-mediated restriction. Here, we review recent insights into the molecular mechanisms used by SARS-CoV-2 proteins to suppress IFN production and the establishment of an anti-viral state.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany.
| |
Collapse
|
19
|
Naesens L, Muppala S, Acharya D, Nemegeer J, Bogaert D, Lee JH, Staes K, Debacker V, De Bleser P, De Bruyne M, De Baere E, van Gent M, Liu G, Lambrecht BN, Staal J, Kerre T, Beyaert R, Maelfait J, Tavernier SJ, Gack MU, Haerynck F. GTF3A mutations predispose to herpes simplex encephalitis by disrupting biogenesis of the host-derived RIG-I ligand RNA5SP141. Sci Immunol 2022; 7:eabq4531. [PMID: 36399538 PMCID: PMC10075094 DOI: 10.1126/sciimmunol.abq4531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus 1 (HSV-1) infects several billion people worldwide and can cause life-threatening herpes simplex encephalitis (HSE) in some patients. Monogenic defects in components of the type I interferon system have been identified in patients with HSE, emphasizing the role of inborn errors of immunity underlying HSE pathogenesis. Here, we identify compound heterozygous loss-of-function mutations in the gene GTF3A encoding for transcription factor IIIA (TFIIIA), a component of the RNA polymerase III complex, in a patient with common variable immunodeficiency and HSE. Patient fibroblasts and GTF3A gene-edited cells displayed impaired HSV-1-induced innate immune responses and enhanced HSV-1 replication. Chromatin immunoprecipitation sequencing analysis identified the 5S ribosomal RNA pseudogene 141 (RNA5SP141), an endogenous ligand of the RNA sensor RIG-I, as a transcriptional target of TFIIIA. GTF3A mutant cells exhibited diminished RNA5SP141 expression and abrogated RIG-I activation upon HSV-1 infection. Our work unveils a crucial role for TFIIIA in transcriptional regulation of a cellular RIG-I agonist and shows that GTF3A genetic defects lead to impaired cell-intrinsic anti-HSV-1 responses and can predispose to HSE.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Josephine Nemegeer
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signaling and Cell death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Delfien Bogaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Jung-Hyun Lee
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Veronique Debacker
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Marieke De Bruyne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tessa Kerre
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jonathan Maelfait
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signaling and Cell death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
20
|
Kusiak A, Brady G. Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation. Biochem Pharmacol 2022; 205:115246. [PMID: 36088989 DOI: 10.1016/j.bcp.2022.115246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022]
Abstract
The human innate immune response can be activated through a wide range of stimuli. This multi-faceted system can be triggered by a range of immunostimulants including pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These stimuli drive intracellular signalling pathways that branch off downstream to activate several distinct transcription factors. The two most impactful of which in innate immune outcomes are the NF-κB and the IRF family members. Both transcription factor families play defining roles in driving inflammation as well as the antiviral response. Pathways leading to their simultaneous activation share common upstream components but eventually distinct regulators which directly facilitate their activation. This review will discuss the current state of knowledge about what is known about how these pathways bifurcate to activate NF-κB and IRF family members.
Collapse
Affiliation(s)
- Aleksandra Kusiak
- Trinity Translational Medicine Institute, St James' Campus, Trinity College Dublin, D08 W9RT Dublin, Ireland.
| | - Gareth Brady
- Trinity Translational Medicine Institute, St James' Campus, Trinity College Dublin, D08 W9RT Dublin, Ireland.
| |
Collapse
|
21
|
Kienes I, Johnston EL, Bitto NJ, Kaparakis-Liaskos M, Kufer TA. Bacterial subversion of NLR-mediated immune responses. Front Immunol 2022; 13:930882. [PMID: 35967403 PMCID: PMC9367220 DOI: 10.3389/fimmu.2022.930882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the mammalian Nod-like receptor (NLR) protein family are important intracellular sensors for bacteria. Bacteria have evolved under the pressure of detection by host immune sensing systems, leading to adaptive subversion strategies to dampen immune responses for their benefits. These include modification of microbe-associated molecular patterns (MAMPs), interception of innate immune pathways by secreted effector proteins and sophisticated instruction of anti-inflammatory adaptive immune responses. Here, we summarise our current understanding of subversion strategies used by bacterial pathogens to manipulate NLR-mediated responses, focusing on the well-studied members NOD1/2, and the inflammasome forming NLRs NLRC4, and NLRP3. We discuss how bacterial pathogens and their products activate these NLRs to promote inflammation and disease and the range of mechanisms used by bacterial pathogens to evade detection by NLRs and to block or dampen NLR activation to ultimately interfere with the generation of host immunity. Moreover, we discuss how bacteria utilise NLRs to facilitate immunotolerance and persistence in the host and outline how various mechanisms used to attenuate innate immune responses towards bacterial pathogens can also aid the host by reducing immunopathologies. Finally, we describe the therapeutic potential of harnessing immune subversion strategies used by bacteria to treat chronic inflammatory conditions.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
| | - Ella L. Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J. Bitto
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Thomas A. Kufer
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
- *Correspondence: Thomas A. Kufer,
| |
Collapse
|
22
|
Fu F, Lin Z, Li Y, Wang J, Li Y, Liu P, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Goose STING mediates IFN signaling activation against RNA viruses. Front Immunol 2022; 13:921800. [PMID: 35958568 PMCID: PMC9360538 DOI: 10.3389/fimmu.2022.921800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Stimulator of the interferon gene (STING) is involved in mammalian antiviral innate immunity as an interferon (IFN) activator. However, there is still a lack of clarity regarding the molecular characterization of goose STING (GoSTING) and its role in the innate immune response. In the present study, we cloned GoSTING and performed a series of bioinformatics analyses. GoSTING was grouped into avian clades and showed the highest sequence similarity to duck STING. The in vitro experiments showed that the mRNA levels of GoSTING, IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines were significantly upregulated in goose embryo fibroblast cells (GEFs) infected with Newcastle disease virus (NDV). Overexpression of GoSTING in DF-1 cells and GEFs strongly activated the IFN-β promoter as detected by a dual-luciferase reporter assay. Furthermore, overexpression of GoSTING induced the expression of other types of IFN, ISGs, and proinflammatory cytokines and inhibited green fluorescent protein (GFP)-tagged NDV (NDV-GFP) and GFP-tagged vesicular stomatitis virus (VSV) (VSV-GFP) replication in vitro. In conclusion, these data suggest that GoSTING is an important regulator of the type I IFN pathway and is critical in geese’s innate immune host defense against RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianhe Sun
- *Correspondence: Yuqiang Cheng, ; Jianhe Sun,
| | | |
Collapse
|
23
|
Giordano AMS, Luciani M, Gatto F, Abou Alezz M, Beghè C, Della Volpe L, Migliara A, Valsoni S, Genua M, Dzieciatkowska M, Frati G, Tahraoui-Bories J, Giliani SC, Orcesi S, Fazzi E, Ostuni R, D'Alessandro A, Di Micco R, Merelli I, Lombardo A, Reijns MAM, Gromak N, Gritti A, Kajaste-Rudnitski A. DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes. J Exp Med 2022; 219:213058. [PMID: 35262626 PMCID: PMC8916121 DOI: 10.1084/jem.20211121] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 01/09/2023] Open
Abstract
Aberrant induction of type I IFN is a hallmark of the inherited encephalopathy Aicardi-Goutières syndrome (AGS), but the mechanisms triggering disease in the human central nervous system (CNS) remain elusive. Here, we generated human models of AGS using genetically modified and patient-derived pluripotent stem cells harboring TREX1 or RNASEH2B loss-of-function alleles. Genome-wide transcriptomic analysis reveals that spontaneous proinflammatory activation in AGS astrocytes initiates signaling cascades impacting multiple CNS cell subsets analyzed at the single-cell level. We identify accumulating DNA damage, with elevated R-loop and micronuclei formation, as a driver of STING- and NLRP3-related inflammatory responses leading to the secretion of neurotoxic mediators. Importantly, pharmacological inhibition of proapoptotic or inflammatory cascades in AGS astrocytes prevents neurotoxicity without apparent impact on their increased type I IFN responses. Together, our work identifies DNA damage as a major driver of neurotoxic inflammation in AGS astrocytes, suggests a role for AGS gene products in R-loop homeostasis, and identifies common denominators of disease that can be targeted to prevent astrocyte-mediated neurotoxicity in AGS.
Collapse
Affiliation(s)
- Anna Maria Sole Giordano
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Francesca Gatto
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Alessandro Migliara
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Julie Tahraoui-Bories
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| | - Elisa Fazzi
- Unit of Child Neurology and Psychiatry, Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Martin A M Reijns
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
van Gent M, Chiang JJ, Muppala S, Chiang C, Azab W, Kattenhorn L, Knipe DM, Osterrieder N, Gack MU. The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. J Virol 2022; 96:e0151021. [PMID: 34935440 PMCID: PMC8865413 DOI: 10.1128/jvi.01510-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J. Chiang
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Lisa Kattenhorn
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - David M. Knipe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
DEAD/H-box helicases:Anti-viral and pro-viral roles during infections. Virus Res 2021; 309:198658. [PMID: 34929216 DOI: 10.1016/j.virusres.2021.198658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
DEAD/H-box RNA helicases make the prominent family of helicases super family-2 which take part in almost all RNA-related processes, from initiation of transcription to RNA decay pathways. In addition to these RNA-related activities, in recent years a certain number of these helicases are reported to play important roles in anti-viral immunity through various ways. Along with RLHs, endosomal TLRs, and cytosolic DNA receptors, many RNA helicases including DDX3, DHX9, DDX6, DDX41, DHX33, DDX60, DHX36 and DDX1-DDX21-DHX36 complex act as viral nucleic acid sensors or co-sensors. These helicases mostly follow RLHs-MAVS and STING mediated signaling cascades to trigger induction of type-I interferons and pro-inflammatory cytokines. Many of them also function as downstream adaptor molecules (DDX3), segments of stress and processing bodies (DDX3 and DDX6) or negative regulators (DDX19, DDX24, DDX25, DDX39A and DDX46). On the contrary, many studies indicated that several DEAD/H-box helicases such as DDX1, DDX3, DDX6, DDX24, and DHX9 could be exploited by viruses to evade innate immune responses, suggesting that these helicases seem to have a dual function as anti-viral innate immune mediators and viral replication cofactors. In this review, we summarized the current knowledge on several representative DEAD/H-box helicases, with an emphasis on their functions in innate immunity responses, involved in their anti-viral and pro-viral roles.
Collapse
|
26
|
Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci 2021; 22:ijms222413397. [PMID: 34948194 PMCID: PMC8704656 DOI: 10.3390/ijms222413397] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.
Collapse
|
27
|
Sharma A, Kontodimas K, Bosmann M. The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxid Redox Signal 2021; 35:1376-1392. [PMID: 34348482 PMCID: PMC8817698 DOI: 10.1089/ars.2021.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
Significance: It is estimated that close to 50 million cases of sepsis result in over 11 million annual fatalities worldwide. The pathognomonic feature of sepsis is a dysregulated inflammatory response arising from viral, bacterial, or fungal infections. Immune recognition of pathogen-associated molecular patterns is a hallmark of the host immune defense to combat microbes and to prevent the progression to sepsis. Mitochondrial antiviral signaling protein (MAVS) is a ubiquitous adaptor protein located at the outer mitochondrial membrane, which is activated by the cytosolic pattern recognition receptors, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene 5 (MDA5), following binding of viral RNA agonists. Recent Advances: Substantial progress has been made in deciphering the activation of the MAVS pathway with its interacting proteins, downstream signaling events (interferon [IFN] regulatory factors, nuclear factor kappa B), and context-dependent type I/III IFN response. Critical Issues: In the evolutionary race between pathogens and the host, viruses have developed immune evasion strategies for cleavage, degradation, or blockade of proteins in the MAVS pathway. For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M protein and ORF9b protein antagonize MAVS signaling and a protective type I IFN response. Future Directions: The role of MAVS as a sensor for nonviral pathogens, host cell injury, and metabolic perturbations awaits better characterization in the future. New technical advances in multidimensional single-cell analysis and single-molecule methods will accelerate the rate of new discoveries. The ultimate goal is to manipulate MAVS activities in the form of immune-modulatory therapies to combat infections and sepsis. Antioxid. Redox Signal. 35, 1376-1392.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
28
|
Li Y, Shen S, Guo H, Zhang Z, Zhang L, Yang Q, Gao Y, Niu J, Wei W. Enterovirus Infection Restricts Long Interspersed Element 1 Retrotransposition. Front Microbiol 2021; 12:706241. [PMID: 34733242 PMCID: PMC8559978 DOI: 10.3389/fmicb.2021.706241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Long interspersed element 1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome that can serve as an endogenous upstream activator of cytoplasmic nucleic acid sensing pathways to elicit an antiviral immune response. In this study, we investigated the influence of enteroviral infection on L1 mobility. The results showed that infection with different enteroviruses, both EV-D68 and EV-A71, blocked L1 transposition. We screened diverse viral accessory proteins for L1 activity and identified EV-D68 2A, 3A, 3C, and EV-A71 ORF2p proteins as viral L1 inhibitors. EV-D68 2A suppressed L1 mobility by expression suppression of L1 proteins. Viral proteins 3A and 3C restricted ORF2p-mediated L1 reverse transcription in isolated L1 ribonucleoproteins. The newly identified enteroviral protein ORF2p inhibited the expression of L1 ORF1p. Altogether, our findings shed light on the strict modulation of L1 retrotransposons during enterovirus replication.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Qingran Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
29
|
Lee S, Goyal A, Perelson AS, Ishida Y, Saito T, Gale M. Suppression of hepatitis B virus through therapeutic activation of RIG-I and IRF3 signaling in hepatocytes. iScience 2021; 24:101969. [PMID: 33458618 PMCID: PMC7797372 DOI: 10.1016/j.isci.2020.101969] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) mediates persistent infection, chronic hepatitis, and liver disease. HBV covalently closed circular (ccc)DNA is central to viral persistence such that its elimination is considered the cornerstone for HBV cure. Inefficient detection by pathogen recognition receptors (PRRs) in the infected hepatocyte facilitates HBV persistence via avoidance of innate immune activation and interferon regulatory factor (IRF)3 induction of antiviral gene expression. We evaluated a small molecule compound, F7, and 5'-triphosphate-poly-U/UC pathogen-associated-molecular-pattern (PAMP) RNA agonists of RIG-I, a PRR that signals innate immunity, for ability to suppress cccDNA. F7 and poly-U/UC PAMP treatment of HBV-infected cells induced RIG-I signaling of IRF3 activation to induce antiviral genes for suppression of cccDNA formation and accelerated decay of established cccDNA, and were additive to the actions of entecavir. Our study shows that activation of the RIG-I pathway and IRF3 to induce innate immune actions offers therapeutic benefit toward elimination of cccDNA.
Collapse
Affiliation(s)
- Sooyoung Lee
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Yuji Ishida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- PhoenixBio Co., Ltd., Research and Development Unit, Higashi-Hiroshima, Japan
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
30
|
In vitro production of synthetic viral RNAs and their delivery into mammalian cells and the application of viral RNAs in the study of innate interferon responses. Methods 2020; 183:21-29. [PMID: 31682923 DOI: 10.1016/j.ymeth.2019.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5'mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.
Collapse
|
31
|
Vogel OA, Han J, Liang CY, Manicassamy S, Perez JT, Manicassamy B. The p150 Isoform of ADAR1 Blocks Sustained RLR signaling and Apoptosis during Influenza Virus Infection. PLoS Pathog 2020; 16:e1008842. [PMID: 32898178 PMCID: PMC7500621 DOI: 10.1371/journal.ppat.1008842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Signaling through retinoic acid inducible gene I (RIG-I) like receptors (RLRs) is tightly regulated, with activation occurring upon sensing of viral nucleic acids, and suppression mediated by negative regulators. Under homeostatic conditions aberrant activation of melanoma differentiation-associated protein-5 (MDA5) is prevented through editing of endogenous dsRNA by RNA editing enzyme Adenosine Deaminase Acting on RNA (ADAR1). In addition, ADAR1 is postulated to play pro-viral and antiviral roles during viral infections that are dependent or independent of RNA editing activity. Here, we investigated the importance of ADAR1 isoforms in modulating influenza A virus (IAV) replication and revealed the opposing roles for ADAR1 isoforms, with the nuclear p110 isoform restricting versus the cytoplasmic p150 isoform promoting IAV replication. Importantly, we demonstrate that p150 is critical for preventing sustained RIG-I signaling, as p150 deficient cells showed increased IFN-β expression and apoptosis during IAV infection, independent of RNA editing activity. Taken together, the p150 isoform of ADAR1 is important for preventing sustained RIG-I induced IFN-β expression and apoptosis during viral infection.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chieh-Yu Liang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
32
|
Stok JE, Vega Quiroz ME, van der Veen AG. Self RNA Sensing by RIG-I–like Receptors in Viral Infection and Sterile Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 205:883-891. [DOI: 10.4049/jimmunol.2000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
|
33
|
Liwinski T, Zheng D, Elinav E. The microbiome and cytosolic innate immune receptors. Immunol Rev 2020; 297:207-224. [PMID: 32658330 DOI: 10.1111/imr.12901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
The discovery of innate immune sensors (pattern recognition receptors, PRRs) has profoundly transformed the notion of innate immunity, in providing a mechanistic basis for host immune interactions with a wealth of environmental signals, leading to a variety of immune-mediated outcomes including instruction and activation of the adaptive immune arm. As part of this growing understanding of host-environmental cross talk, an intimate connection has been unveiled between innate immune sensors and signals perceived from the commensal microbiota, which may be regarded as a hub integrating a variety of environmental cues. Among cytosolic PRRs impacting on host homeostasis by interacting with the commensal microbiota are nucleotide-binding domain, leucine-rich repeat-containing protein receptors (NLRs), together with a number of cytosolic DNA sensors and the family of absent in melanoma (AIM)-like receptors (ALRs). NLR sensors have been a particular focus of research, and some NLRs have emerged as key orchestrators of inflammatory responses and host homeostasis. Some NLRs achieve this through the formation of cytoplasmic multiprotein complexes termed inflammasomes. More recently discovered PRRs include retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), cyclic GMP-AMP synthase (cGAS), and STING. In the present review, they summarize recent advancements in knowledge on structure and function of cytosolic PRRs and their roles in host-microbiota cross talk and immune surveillance. In addition, we discuss their relevance for human health and disease and future therapeutic applications involving modulation of their activation and signaling.
Collapse
Affiliation(s)
- Timur Liwinski
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Chandler M, Johnson MB, Panigaj M, Afonin KA. Innate immune responses triggered by nucleic acids inspire the design of immunomodulatory nucleic acid nanoparticles (NANPs). Curr Opin Biotechnol 2020; 63:8-15. [PMID: 31778882 PMCID: PMC7246180 DOI: 10.1016/j.copbio.2019.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
The unknown immune stimulation by nucleic acid nanoparticles (NANPs) has become one of the major impediments to a broad spectrum of clinical developments of this novel technology. Having evolved to defend against bacterial and viral nucleic acids, mammalian cells have established patterns of recognition that are also the pathways through which NANPs can be processed. Explorations into the immune stimulation brought about by a vast diversity of known NANPs have shown that variations in design correlate with variations in immune response. Therefore, as the mechanisms of stimulation are further elucidated, these trends are now being taken into account in the design phase to allow for development of NANPs that are tailored for controlled immune activation or quiescence.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Morgan Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Martin Panigaj
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, 041 54, Slovak Republic
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
35
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019; 10:2647. [PMID: 31798565 PMCID: PMC6868034 DOI: 10.3389/fmicb.2019.02647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses constitute a large family of disease-causing DNA viruses. Each herpesvirus strain is capable of infecting particular organisms with a specific cell tropism. Upon infection, pattern recognition receptors (PRRs) recognize conserved viral features to trigger signaling cascades that culminate in the production of interferons and pro-inflammatory cytokines. To invoke a proper immune response while avoiding collateral tissue damage, signaling proteins involved in these cascades are tightly regulated by post-translational modifications (PTMs). Herpesviruses have developed strategies to subvert innate immune signaling pathways in order to ensure efficient viral replication and achieve persistent infection. The ability of these viruses to control the proteins involved in these signaling cascades post-translationally, either directly via virus-encoded enzymes or indirectly through the deregulation of cellular enzymes, has been widely reported. This ability provides herpesviruses with a powerful tool to shut off or restrict host antiviral and inflammatory responses. In this review, we highlight recent findings on the herpesvirus-mediated post-translational control along PRR-mediated signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
Schirrmacher V, van Gool S, Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019; 7:E66. [PMID: 31480379 PMCID: PMC6783952 DOI: 10.3390/biomedicines7030066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to therapy is a major obstacle to cancer treatment. It may exist from the beginning, or it may develop during therapy. The review focusses on oncolytic Newcastle disease virus (NDV) as a biological agent with potential to break therapy resistance. This avian virus combines, upon inoculation into non-permissive hosts such as human, 12 described anti-neoplastic effects with 11 described immune stimulatory properties. Fifty years of clinical application of NDV give witness to the high safety profile of this biological agent. In 2015, an important milestone was achieved, namely the successful production of NDV according to Good Manufacturing Practice (GMP). Based on this, IOZK in Cologne, Germany, obtained a GMP certificate for the production of a dendritic cell vaccine loaded with tumor antigens from a lysate of patient-derived tumor cells together with immunological danger signals from NDV for intracutaneous application. This update includes single case reports and retrospective analyses from patients treated at IOZK. The review also presents future perspectives, including the concept of in situ vaccination and the combination of NDV or other oncolytic viruses with checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Stefaan van Gool
- Immune-Oncological Center Cologne (IOZK), D-50674 Cologne, Germany
| | | |
Collapse
|