1
|
Endesfelder S, Schmitz T, Bührer C. Bilirubin Exerts Protective Effects on Alveolar Type II Pneumocytes in an In Vitro Model of Oxidative Stress. Int J Mol Sci 2024; 25:5323. [PMID: 38791361 PMCID: PMC11121655 DOI: 10.3390/ijms25105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Newborn infants face a rapid surge of oxygen and a more protracted rise of unconjugated bilirubin after birth. Bilirubin has a strong antioxidant capacity by scavenging free radicals, but it also exerts direct toxicity. This study investigates whether cultured rat alveolar epithelial cells type II (AEC II) react differently to bilirubin under different oxygen concentrations. The toxic threshold concentration of bilirubin was narrowed down by means of a cell viability test. Subsequent analyses of bilirubin effects under 5% oxygen and 80% oxygen compared to 21% oxygen, as well as pretreatment with bilirubin after 4 h and 24 h of incubation, were performed to determine the induction of apoptosis and the gene expression of associated transcripts of cell death, proliferation, and redox-sensitive transcription factors. Oxidative stress led to an increased rate of cell death and induced transcripts of redox-sensitive signaling pathways. At a non-cytotoxic concentration of 400 nm, bilirubin attenuated oxidative stress-induced responses and possibly mediated cellular antioxidant defense by influencing Nrf2/Hif1α- and NFκB-mediated signaling pathways. In conclusion, the study demonstrates that rat AEC II cells are protected from oxidative stress-induced impairment by low-dose bilirubin.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.S.); (C.B.)
| | | | | |
Collapse
|
2
|
Wang X, Chen L, Chen X, Liu C, Qiu W, Guo K. Identification of potential miR‑155 target genes in epidermal immune microenvironment of atopic dermatitis patients and their inflammatory effects on HaCaT cells. Exp Ther Med 2024; 27:25. [PMID: 38125354 PMCID: PMC10728954 DOI: 10.3892/etm.2023.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition and the leading cause of morbidity associated with skin conditions worldwide. For the majority of patients, AD is a lifelong disease that cannot be cured completely. Therefore, in the present study, differentially expressed genes (DEGs) in the epidermal immune microenvironment were screened using bioinformatic techniques. Subsequently, an in vitro cellular model was constructed to investigate the role of microRNA (miR)-155 in immune infiltration during AD. In the present study, two datasets (GSE121212 and GSE157194) were downloaded from Gene Expression Omnibus, before the DEGs were screened and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. miRNet was used to predict the possible target genes of miR-155 among the differentially expressed genes found. Consequently, peptidase inhibitor 3 (PI3), FOS-like 1, AP-1 transcription factor subunit (FOSL1), C-X-C motif chemokine ligand (CXCL)1 and CXCL8 were selected to be the potential target genes of miR-155 in the epidermal immune microenvironment of patients with AD. Concurrently, an inflammatory cell model using HaCaT cells was constructed by TNF-α and IFN-γ treatment. The effects of miR-155 on HaCaT cell proliferation and secretion of IL-1β, IL-6, IL-10, IL-15, PI3, FOSL1, CXCL1 and CXCL8 under inflammatory and non-inflammatory conditions were then analyzed. The results showed that after the HaCaT cells were transfected with miR-155, miR-155 inhibited HaCaT cell proliferation and decreased the mRNA expression levels of PI3 and CXCL8, increased the mRNA levels of FOSL1 and secretion levels of IL-1β, IL-6, IL-15 and CXCL1. By contrast, miR-155 decreased the secretion levels of IL-10 and CXCL8. In the inflammatory cell model of HaCaT cells, miR-155 was found to significantly inhibit the proliferation of HaCaT cells during inflammation whilst significantly increasing the secretion of IL-1β, IL-6, IL-10 and IL-15. In addition, miR-155 increased the mRNA expression and secretion levels of CXCL1 and CXCL8, whilst also increasing the mRNA expression levels of PI3. Results from the current study suggest that miR-155 can stimulate keratinocytes to produce inflammatory cytokines and proteins to enhance the inflammatory response in AD.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lu Chen
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Xiaoqing Chen
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Chang Liu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Wenhong Qiu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Kaiwen Guo
- Department of Pathogenic Biology, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
3
|
Weng W, Wang X, Cui Y. Artesunate Alleviates Chronic Hyperoxia-induced Bronchopulmonary Dysplasia by Suppressing NF-κB Pathway in Neonatal Mice. Comb Chem High Throughput Screen 2024; 27:2681-2690. [PMID: 37861045 DOI: 10.2174/0113862073246710231002042239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/29/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a chronic lung condition that occurs in premature infants who undergo prolonged mechanical ventilation and oxygen therapy. Existing treatment methods have shown limited efficacy, highlighting the urgent need for new therapeutic strategies. Artesunate (AS) is a compound known for its potential anti-inflammatory properties, and studies have shown its protective effects against acute lung injury. However, its impact on BPD and the underlying mechanisms remain unclear. OBJECTIVE To investigate the effect and underlying mechanism of AS on chronic hyperoxiainduced BPD in neonatal mice. METHOD Full-term C57BL/6J mice were randomly assigned to the Air+lactate Ringer's solution (L/R) group, O2 + L/R group, and O2 + AS group. Analysis was performed using assay methods such as ELISA, RT-qPCR, hematoxylin-eosin staining, and Western blotting. RESULTS Compared with the O2+L/R group, the expression of inflammatory factors in the serum, tissue, and BALF of the O2+AS group was significantly reduced, the lung function of the mice was improved, and the inflammatory infiltrates were significantly alleviated. AS inhibited the mRNA expression of inflammatory factors in mice. We found that the expression of nuclear p65 and cytoplasmic p-IκBα in the NF-κB pathway was inhibited after adding AS. CONCLUSION AS ameliorated chronic hyperoxia-induced BPD in neonatal mice probably by inhibiting the expression of NF-κB pathway and inflammatory factors.
Collapse
Affiliation(s)
- Wenbo Weng
- Yuyao Health Training School, Ningbo, Zhejiang, China
| | - Xiaoying Wang
- Department of Pediatrics, Jiande First People's Hospital, Hangzhou, Zhejiang, China
| | - Yifei Cui
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Taylor S, Isobe S, Cao A, Contrepois K, Benayoun BA, Jiang L, Wang L, Melemenidis S, Ozen MO, Otsuki S, Shinohara T, Sweatt AJ, Kaplan J, Moonen JR, Marciano DP, Gu M, Miyagawa K, Hayes B, Sierra RG, Kupitz CJ, Del Rosario PA, Hsi A, Thompson AAR, Ariza ME, Demirci U, Zamanian RT, Haddad F, Nicolls MR, Snyder MP, Rabinovitch M. Endogenous Retroviral Elements Generate Pathologic Neutrophils in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2022; 206:1019-1034. [PMID: 35696338 PMCID: PMC9801997 DOI: 10.1164/rccm.202102-0446oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated β1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Sarasa Isobe
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Aiqin Cao
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology and,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Lihua Jiang
- Stanford Cardiovascular Institute,,Department of Genetics
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | | | - Mehmet O. Ozen
- Department of Radiology Canary Center for Cancer Early Detection
| | - Shoichiro Otsuki
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Tsutomu Shinohara
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Andrew J. Sweatt
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | - Jordan Kaplan
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Jan-Renier Moonen
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | | | - Mingxia Gu
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Kazuya Miyagawa
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Christopher J. Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Patricia A. Del Rosario
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | - Andrew Hsi
- Vera Moulton Wall Center for Pulmonary Vascular Diseases
| | - A. A. Roger Thompson
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology,,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| | - Maria E. Ariza
- Department of Cancer Biology and Genetics and,Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Roham T. Zamanian
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | - Francois Haddad
- Stanford Cardiovascular Institute,,Department of Medicine – Cardiovascular Medicine, Stanford University, Stanford, California
| | - Mark R. Nicolls
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | | | - Marlene Rabinovitch
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| |
Collapse
|
5
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
6
|
CREB1 Transcriptionally Activates LTBR to Promote the NF-κB Pathway and Apoptosis in Lung Epithelial Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9588740. [PMID: 36118831 PMCID: PMC9481394 DOI: 10.1155/2022/9588740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a prevalent chronic pediatric lung disease. Aberrant proliferation and apoptosis of lung epithelial cells are important in the pathogenesis of BPD. Lymphotoxin beta receptor (LTBR) is expressed in lung epithelial cells. Blocking LTBR induces regeneration of lung tissue and reverts airway fibrosis in young and aged mice. This study is aimed at revealing the role of LTBR in BPD. A mouse model of BPD and two in vitro models of BPD using A549 cells and type II alveolar epithelial (ATII) cells were established by exposure to hyperoxia. We found that LTBR and CREB1 exhibited a significant upregulation in lungs of mouse model of BPD. LTBR and CREB1 expression were also increased by hyperoxia in A549 and ATII cells. According to results of cell counting kit-8 assay and flow cytometry analysis, silencing of LTBR rescued the suppressive effect of hyperoxia on cell viability and its promotive effect on cell apoptosis of A549 and ATII cells. Bioinformatics revealed CREB1 as a transcriptional factor for LTBR, and the luciferase reporter assay and ChIP assay subsequently confirmed it. The NF-κB pathway was regulated by LTBR. CREB1 induced LTBR expression at the transcriptional level to regulate NF-κB pathway and further modulate A549 and ATII cells viability and apoptosis. In conclusion, this study revealed the CREB1/LTBR/NF-κB pathway in BPD and supported the beneficial role of LTBR silence in BPD by promoting viability and decreasing apoptosis of lung epithelial cells.
Collapse
|
7
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ailing Chen
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Renqiang Yu
| |
Collapse
|
8
|
Wang X, Kaiser H, Kvist-Hansen A, McCauley BD, Skov L, Hansen PR, Becker C. IL-17 Pathway Members as Potential Biomarkers of Effective Systemic Treatment and Cardiovascular Disease in Patients with Moderate-to-Severe Psoriasis. Int J Mol Sci 2022; 23:ijms23010555. [PMID: 35008981 PMCID: PMC8745093 DOI: 10.3390/ijms23010555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Psoriasis is a chronic inflammatory condition associated with atherosclerotic cardiovascular disease (CVD). Systemic anti-psoriatic treatments mainly include methotrexate and biological therapies targeting TNF, IL-12/23 and IL-17A. We profiled plasma proteins from patients with moderate-to-severe psoriasis to explore potential biomarkers of effective systemic treatment and their relationship to CVD. We found that systemically well-treated patients (PASI < 3.0, n = 36) had lower circulating levels of IL-17 pathway proteins compared to untreated patients (PASI > 10, n = 23). Notably, IL-17C and PI3 were decreased with all four examined systemic treatment types. Furthermore, in patients without CVD, we observed strong correlations among IL-17C/PI3/PASI (r ≥ 0.82, p ≤ 1.5 × 10−12) pairs or between IL-17A/PASI (r = 0.72, p = 9.3 × 10−8). In patients with CVD, the IL-17A/PASI correlation was abolished (r = 0.2, p = 0.24) and the other correlations were decreased, e.g., IL-17C/PI3 (r = 0.61, p = 4.5 × 10−5). Patients with moderate-to-severe psoriasis and CVD had lower levels of IL-17A compared to those without CVD (normalized protein expression [NPX] 2.02 vs. 2.55, p = 0.013), and lower IL-17A levels (NPX < 2.3) were associated with higher incidence of CVD (OR = 24.5, p = 0.0028, 95% CI 2.1–1425.1). As a result, in patients with moderate-to-severe psoriasis, we propose circulating IL-17C and PI3 as potential biomarkers of effective systemic anti-psoriatic treatment, and IL-17A as potential marker of CVD.
Collapse
Affiliation(s)
- Xing Wang
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (X.W.); (B.D.M.)
| | - Hannah Kaiser
- Department of Cardiology, University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (H.K.); (A.K.-H.); (P.R.H.)
- Department of Dermatology and Allergy, University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Amanda Kvist-Hansen
- Department of Cardiology, University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (H.K.); (A.K.-H.); (P.R.H.)
- Department of Dermatology and Allergy, University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark;
| | - Benjamin D. McCauley
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (X.W.); (B.D.M.)
| | - Lone Skov
- Department of Dermatology and Allergy, University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Cardiology, University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (H.K.); (A.K.-H.); (P.R.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Becker
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (X.W.); (B.D.M.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
9
|
Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K, Gul CC, Deveci MF, Aslan M. The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 2022; 57:109-121. [PMID: 34581514 DOI: 10.1002/ppul.25707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/08/2022]
Abstract
AIM Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1β levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
10
|
Ozdemir R, Gokce IK, Taslidere AC, Tanbek K, Gul CC, Sandal S, Turgut H, Kaya H, Aslan M. Does Chrysin prevent severe lung damage in Hyperoxia-Induced lung injury Model? Int Immunopharmacol 2021; 99:108033. [PMID: 34343938 DOI: 10.1016/j.intimp.2021.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oxidative stress and inflammation play a critical role in the etiopathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study was to evaluate the preventive effect of Chrysin (CH), an antioxidant, antiinflammatory, antiapoptotic and antifibrotic drug, on hyperoxia-induced lung injury in a neonatal rat model. METHODS Forty infant rats were divided into four groups labeled the Control, CH, BPD, and BPD + CH. The control and CH groups were kept in a normal room environment, while the BPD and BPD + CH groups were kept in a hyperoxic (90-95%) environment. At the end of the study, lung tissue was evaluated with respect to apoptosis, histopathological damage and alveolar macrophage score as well as oxidant capacity, antioxidant capacity, and inflammation. RESULTS Compared to the BPD + CH and control groups, the lung tissues of the BPD group displayed substantially higher levels of MDA, TOS, TNF-α, and IL-1β (p < 0.05). While the BPD + CH group showed similar levels of TNF-α and IL-1β as the control group, MDA and TOS levels were higher than the control group, and significantly lower than the BPD group (p < 0.05). The BPD group exhibited considerably lower levels of TAS, SOD, GSH, and GSH-Px in comparison to the control group (p < 0.05). The BPD and BPD + CH groups exhibited higher mean scores of histopathological damage and alveolar macrophage when compared to the control and CH groups (p ≤ 0.0001). Both scores were found to be lower in the BPD + CH group in comparison to the BPD group (p ≤ 0.0001). The BPD + CH group demonstrated a significantly lower average of TUNEL and caspase-3 positive cells than the BPD group. CONCLUSION We found that prophylaxis with CH results in lower histopathological damage score and reduces apoptotic cell count, inflammation and oxidative stress while increasing anti-oxidant capacity.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey.
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Suleyman Sandal
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Huseyin Kaya
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
11
|
Gao W, Jin Z, Zheng Y, Xu Y. Psoralen inhibits the inflammatory response and mucus production in allergic rhinitis by inhibiting the activator protein 1 pathway and the downstream expression of cystatin‑SN. Mol Med Rep 2021; 24:652. [PMID: 34278468 PMCID: PMC8299190 DOI: 10.3892/mmr.2021.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Psoralen (PSO) exerts anti-inflammatory pharmacological effects and plays an important role in a variety of inflammatory diseases. However, the effects of PSO with allergic rhinitis (AR) are yet to be reported. In the present study, an in vitro AR model was generated by inducing JME/CF15 human nasal epithelial cells with IL-13, after which MTT was used to assess the cytotoxicity of PSO. The expression levels of inflammatory cytokines (granulocyte-macrophage colony-stimulating factor and Eotaxin) were determined by ELISA. Furthermore, the expression of inflammatory IL-6 and −8, as well as mucin 5AC, was assessed by reverse transcription-quantitative PCR and western blotting, and cellular reactive oxygen species were detected using a 2′,7′-dichlorodihydrofluorescein diacetate fluorescent probe. Western blotting was also used to detect the expression and phosphorylation of c-Fos and c-Jun in the activator protein 1 (AP-1) pathway, as well as the expression of cystatin-SN (CST1). PSO inhibited the inflammatory response and mucus production in IL-13-induced JME/CF15 cells. Furthermore, the levels of c-Fos and c-Jun phosphorylation in the AP-1 pathway were decreased in IL-13-induced JME/CF15 cells following PSO treatment. The expression of pathway proteins was activated by the addition of PMA, an AP-1 pathway activator, which concurrently reversed the inhibitory effects of PSO on the inflammatory response and mucus formation. The addition of an AP-1 inhibitor (SP600125) further inhibited pathway activity, and IL-13-induced inflammation and mucus formation was restored. In conclusion, PSO regulates the expression of CST1 by inhibiting the AP-1 pathway, thus suppressing the IL-13-induced inflammatory response and mucus production in nasal mucosal epithelial cells.
Collapse
Affiliation(s)
- Wenying Gao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Zhenglong Jin
- Department of Neurology, Jiangmen Wuyi Hospital of TCM Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, Guangdong 529000, P.R. China
| | - Yanxia Zheng
- Department of TCM Pediatrics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Youjia Xu
- Department of TCM Pediatrics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
12
|
Wang Y, Zhang L, Wu Y, Zhu R, Wang Y, Cao Y, Long W, Ji C, Wang H, You L. Peptidome analysis of umbilical cord mesenchymal stem cell (hUC-MSC) conditioned medium from preterm and term infants. Stem Cell Res Ther 2020; 11:414. [PMID: 32967723 PMCID: PMC7510303 DOI: 10.1186/s13287-020-01931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The therapeutic role of mesenchymal stem cells (MSCs) has been widely confirmed in several animal models of premature infant diseases. Micromolecule peptides have shown promise for the treatment of premature infant diseases. However, the potential role of peptides secreted from MSCs has not been studied. The purpose of this study is to help to broaden the knowledge of the hUC-MSC secretome at the peptide level through peptidomic profile analysis. Methods We used tandem mass tag (TMT) labeling technology followed by tandem mass spectrometry to compare the peptidomic profile of preterm and term umbilical cord MSC (hUC-MSC) conditioned medium (CM). Gene Ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) were conducted to explore the differentially expressed peptides by predicting the functions of their precursor proteins. To evaluate the effect of candidate peptides on human lung epithelial cells stimulated by hydrogen peroxide (H2O2), quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were, respectively, adopted to detect inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression levels at the mRNA and protein levels. Results A total of 131 peptides derived from 106 precursor proteins were differentially expressed in the preterm hUC-MSC CM compared with the term group, comprising 37 upregulated peptides and 94 downregulated peptides. Bioinformatics analysis showed that these differentially expressed peptides may be associated with developmental disorders, inflammatory response, and organismal injury. We also found that peptides 7118TGAKIKLVGT7127 derived from MUC19 and 508AAAAGPANVH517 derived from SIX5 reduced the expression levels of TNF-α, IL-1β, and IL-6 in H2O2-treated human lung epithelial cells. Conclusions In summary, this study provides further secretomics information on hUC-MSCs and provides a series of peptides that might have antiinflammatory effects on pulmonary epithelial cells and contribute to the prevention and treatment of respiratory diseases in premature infants.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.,Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Rongping Zhu
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
13
|
Jiao B, Tang Y, Liu S, Guo C. Tetrandrine attenuates hyperoxia-induced lung injury in newborn rats via NF-κB p65 and ERK1/2 pathway inhibition. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1018. [PMID: 32953818 PMCID: PMC7475456 DOI: 10.21037/atm-20-5573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Bronchopulmonary dysplasia (BPD) is an important cause of respiratory illness in preterm newborns that results in significant morbidity and mortality. Hyperoxia is a critical factor in the pathogenesis of BPD, hyperoxia-induced lung injury model has similar pathological manifestations as human BPD. Tetrandrine (Tet) is known to suppress oxidative stress, apoptosis and inflammation. Thus it has been used to prevent organ injuries. However, the protective effect of Tet against hyperoxia-induced lung injury in newborn rats has not been reported. Methods A hyperoxia-induced lung injury model was established using newborn rats exposed to high O2 levels. The models were treated with various concentrations of Tet, and a lung function test was conducted. Then, the lung tissues and blood were collected to detect the effect of Tet on cell apoptosis, inflammatory response, and fibrosis. The effect of Tet on nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase1/2 (ERK1/2) pathways was also determined. Results Lung function was decreased in hyperoxia-induced rats, and Tet could reverse this inhibiting effect. For oxidative stress, Tet caused an increase in the levels of antioxidant enzymes. The apoptosis rate and apoptosis-related proteins were decreased in hyperoxia-induced rats after Tet treatment. Additionally, Tet treatment could reduce inflammatory factor levels, while increasing CD4+IFN-γ+ T cell levels and decreasing CD4+IL-4+ T cell levels. Tet treatment was also able to inhibit the expression of fibrosis-related markers and NF-κB and ERK1/2 pathways. Conclusions Tet demonstrated potent activity against hyperoxia-induced lung injury in newborn rats through NF-κB and ERK1/2 pathway inhibition.
Collapse
Affiliation(s)
- Beibei Jiao
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yan Tang
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Shan Liu
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Chunyan Guo
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|