1
|
Muchtaridi M, Triwahyuningtyas D, Muhammad Fakih T, Megantara S, Choi SB. Mechanistic insight of α-mangostin encapsulation in 2-hydroxypropyl-β-cyclodextrin for solubility enhancement. J Biomol Struct Dyn 2024; 42:3223-3232. [PMID: 37286382 DOI: 10.1080/07391102.2023.2214237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
α-Mangostin is the most abundant compound contained in the mangostin (Garcinia mangostana L.) plant which have been developed and proven to have many promising pharmacological effects. However, the low water solubility of α-mangostin causes limitations in its development in clinical purpose. To increase the solubility of a compound, a method currently being developed is to make drug inclusion complexes using cyclodextrins. This research aimed to use in silico techniques namely molecular docking study and molecular dynamics simulation to explore the molecular mechanism and stability of the encapsulation of α-mangostin using cyclodextrins. Two types of cyclodextrins were used including β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin docked against α-mangostin. From the molecular docking results, it shows that the α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin provides the lowest binding energy value of -7.99 Kcal/mol compared to β-cyclodextrin value of -6.14 Kcal/mol. The α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin also showed good stability based on molecular dynamics simulation during 100 ns. From molecular motion, RDF, Rg, SASA, density, total energy analyzes, this complex shows increased solubility in water and provided good stability. This indicates that the encapsulation of α-mangostin with 2-hydroxypropyl-β-cyclodextrin can increase the solubility of the α-mangostin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, BRIN, Jatinangor, West Java, Indonesia
| | - Dian Triwahyuningtyas
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, West Java, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Sy Bing Choi
- Faculty of Applied Sciences, UCSI University, Cheras, Federal Territory of Kuala Lumpur
| |
Collapse
|
2
|
Vítek L, Woronyczova J, Hanzikova V, Posová H. Complement System Deficiencies in Elite Athletes. SPORTS MEDICINE - OPEN 2024; 10:11. [PMID: 38252367 PMCID: PMC10803703 DOI: 10.1186/s40798-024-00681-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Although regular physical activity improves immune competency and reduces the prevalence of inflammatory diseases, strenuous training in elite athletes is associated with an increased susceptibility to infectious complications. Therefore, the objective of our study was to assess the routinely examined parameters of the complement system in elite athletes. The study was carried out in a cohort of elite athletes (n = 134) and healthy control subjects (n = 110). In all subjects, besides a routine laboratory check-up, serum concentrations of the C3 and C4 complement components, mannose-binding lectin (MBL), as well as activation of all three complement pathways were determined. RESULTS Compared to healthy controls, lower C3 and C4 complement component concentrations were observed in elite athletes (0.96 ± 0.1 vs. 1.08 ± 0.2 mg/L, and 0.18 ± 0.1 vs. 0.25 ± 0.1 mg/L, respectively, p < 0.05); with much higher frequency rates of C3 and C4 deficiencies in athletes (31.3 vs. 14.5%, and 6 vs. 0%, p < 0.05). Simultaneously, athletes had much higher frequency rates of deficiencies of activation of classical and alternative complement pathways; while, deficiency of activation of the lectin pathway was similar in both cohorts. CONCLUSIONS We confirmed a high frequency of defects in the complement system in elite athletes. Lower concentrations of C3 and C4 complement components, with high frequencies of deficiencies of the classical and alternative complement activation pathways were the most prevalent disorder of the complement system in elite athletes. Further studies are needed to uncover the functional impacts of these observations upon the susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 120 00, Prague, Czech Republic.
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jana Woronyczova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 120 00, Prague, Czech Republic
- Sports Research Institute of the Czech Armed Forces, Prague, Czech Republic
| | - Veronika Hanzikova
- Blood Transfusion Unit, General University Hospital in Prague, Prague, Czech Republic
| | - Helena Posová
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 120 00, Prague, Czech Republic
| |
Collapse
|
3
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Kalick LS, Khan HA, Maung E, Baez Y, Atkinson AN, Wallace CE, Day F, Delgadillo BE, Mondal A, Watanapokasin R, Barbalho SM, Bishayee A. Mangosteen for malignancy prevention and intervention: Current evidence, molecular mechanisms, and future perspectives. Pharmacol Res 2023; 188:106630. [PMID: 36581166 DOI: 10.1016/j.phrs.2022.106630] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Mangosteen (Garcinia mangostana L.), also known as the "queen of fruits", is a tropical fruit of the Clusiacea family. While native to Southeast Asian countries, such as Thailand, Indonesia, Malaysia, Myanmar, Sri Lanka, India, and the Philippines, the fruit has gained popularity in the United States due to its health-promoting attributes. In traditional medicine, mangosteen has been used to treat a variety of illnesses, ranging from dysentery to wound healing. Mangosteen has been shown to exhibit numerous biological and pharmacological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, antidiabetic, and anticancer properties. Disease-preventative and therapeutic properties of mangosteen have been ascribed to secondary metabolites called xanthones, present in several parts of the tree, including the pericarp, fruit rind, peel, stem bark, root bark, and leaf. Of the 68 mangosteen xanthones identified so far, the most widely-studied are α-mangostin and γ-mangostin. Emerging studies have found that mangosteen constituents and phytochemicals exert encouraging antineoplastic effects against a myriad of human malignancies. While there are a growing number of individual research papers on the anticancer properties of mangosteen, a complete and critical evaluation of published experimental findings has not been accomplished. Accordingly, the objective of this work is to present an in-depth analysis of the cancer preventive and anticancer potential of mangosteen constituents, with a special emphasis on the associated cellular and molecular mechanisms. Moreover, the bioavailability, pharmacokinetics, and safety of mangosteen-derived agents together with current challenges and future research avenues are also discussed.
Collapse
Affiliation(s)
- Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Hamaad A Khan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Erica Maung
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Yasmany Baez
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Alexa N Atkinson
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carly E Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sandra M Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, São Paulo, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
Huang LT, Kuo CH, Tseng L, Li YS, Cheng LH, Cheng CY, Sheu SR, Chang WT, Chen CC, Cheng HC. Alpha-Mangostin Reduces Pericellular Fibronectin on Suspended Tumor Cells and Therapeutically, but Not Prophylactically, Suppresses Distant Metastasis. Life (Basel) 2022; 12:life12091375. [PMID: 36143411 PMCID: PMC9503692 DOI: 10.3390/life12091375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022] Open
Abstract
Major cancer deaths can be ascribed to distant metastasis to which the assembly of pericellular fibronectin (periFN) on suspended tumor cells (STCs) in the bloodstream that facilitate endothelial attachment can lead. Even though mangosteen pericarps (MP) extracts and the major component α-mangostin (α-MG) exhibit potent cancer chemopreventive properties, whether they can prophylactically and therapeutically be used as dietary nutraceuticals to prevent distant metastasis by suppressing periFN assembly on STCs within the circulation remains obscure. Immunofluorescence staining, MTT assays, flow cytometric assays, immunoblotting, and experimental metastasis mouse models were used to detect the effects of MP extracts or α-MG on periFN on STCs, tumor cell proliferation and apoptosis, the AKT activity, and tumor lung metastasis. The periFN assembly on STCs was significantly diminished upon treatments of STCs with either α-MG or MP extracts in a dose-dependent manner without inhibiting cell proliferation and viability due to increased AKT activity. Pretreatment of STCs with α-MG appeared to suppress tumor lung metastasis and prolong mouse survival rates. Oral gavage with MP extracts could therapeutically, but not prophylactically, prevent lung metastasis of STCs. We concluded that MP extracts or the major component α-MG may therapeutically serve as a potent anti-metastatic nutraceutical.
Collapse
Affiliation(s)
- Li-Tzu Huang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chin-Ho Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan 736, Taiwan
| | - Lin Tseng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Yi-Syuan Li
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chin-Yun Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- The Institute of Biotechnology Research Center, Far East University, Tainan 74448, Taiwan
| | - Shane-Rong Sheu
- The Institute of Biotechnology Research Center, Far East University, Tainan 74448, Taiwan
| | - Wen-Tsan Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-Chi Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Nauman MC, Johnson JJ. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected xanthones. Pharmacol Res 2022; 175:106032. [PMID: 34896543 PMCID: PMC9597473 DOI: 10.1016/j.phrs.2021.106032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
The purple mangosteen (Garcinia mangostana) is a popular Southeast Asian fruit that has been used traditionally for its health promoting benefits for years. Unique to the mangosteen are a class of phytochemicals known as xanthones that have been reported to display significant anti-cancer and anti-tumor activities, specifically through the promotion of apoptosis, targeting of specific cancer-related proteins, or modulation of cell signaling pathways. α-Mangostin, the most abundant xanthone isolated from the mangosteen, has received substantial attention as it has proven to be a potent phytochemical, specifically as an anticancer agent, in numerous different cancer cell studies and cancer animal models. While the mechanisms for these anticancer effects have been reported in many studies, lesser xanthones, including gartanin, β-mangostin, γ-mangostin, garcinone C, and garcinone E, and mangosteen extracts from the pericarp, roots, rind, and stem show promise for their anticancer activity but their mechanisms of action are not as well developed and remain to be determined. Mangosteen products appear safe and have been well tolerated in human clinical trials where they show antioxidant activity, though their clinical anticancer activity has not yet been evaluated. This review summarizes the work that has been done to explore and explain the anticancer and antitumor activities of α-mangostin, lesser xanthones, and mangosteen extracts in vitro, in vivo, and in humans in various cancers.
Collapse
Affiliation(s)
- Mirielle C Nauman
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, USA
| | - Jeremy J Johnson
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, USA.
| |
Collapse
|
7
|
Gul S, Aslam K, Pirzada Q, Rauf A, Khalil AA, Semwal P, Bawazeer S, Al-Awthan YS, Bahattab OS, Al Duais MA, Thiruvengadam M. Xanthones: A Class of Heterocyclic Compounds with Anticancer Potential. Curr Top Med Chem 2022; 22:1930-1949. [PMID: 36056870 DOI: 10.2174/1568026622666220901145002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Xanthones (9H xanthen-9-one) are an important class of heterocyclic compounds containing oxygen and a moiety of gamma-pirone, dense with a two-benzene ring structure, distributed widely in nature. Naturally occurring xanthones are found in micro-organisms and higher plants as secondary metabolites in fungi and lichens. Compounds of the family Caryophyllaceae, Guttiferae and Gentianaceae, are the most common natural source of xanthones. The structure of the xanthones nucleus, coupled with its biogenetic source, imposes that the carbons are numbered according to the biosynthetic pact. The characteristics oxygenation pattern of xanthones earlier is mixed shikimateacetate biogenesis. The major class of xanthones includes simple oxygenated, non-oxygenated, xanthonolignoids, bisxanthones, prenylated and related xanthones, miscellaneous xanthones. Their great pharmacological importance and interesting scaffolds were highly encouraged by scientists to investigate either the synthesis design or natural products for cancer treatment. Because currently used antitumor drugs possess high toxicity and low selectivity, efficacious treatment may be compromised. This review is limited to the antitumor activity of xanthones and the chemistry of xanthone core, which may help provide fundamental knowledge to the medicinal chemist for new and advanced research in drug development.
Collapse
Affiliation(s)
- Somia Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Khadija Aslam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Quratulain Pirzada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sami Bawazeer
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yahya Saleh Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Omar Salem Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Ali Al Duais
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb, Yemen
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
8
|
Zheng X, Yang Y, Lu Y, Chen Q. Affinity-Guided Isolation and Identification of Procyanidin B2 from Mangosteen (Garcinia mangostana L.) Rinds and its In Vitro LPS Binding and Neutralization Activities. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:442-448. [PMID: 34480677 DOI: 10.1007/s11130-021-00920-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Garcinia mangostana L. (mangosteen) is a tropical fruit that has been used for medicinal purposes in Southeast Asia for centuries. With an interest in its applications to treat infection, we sought to investigate the bioactive constituents of mangosteen and identified the phenolic compound procyanidin B2 from the mangosteen pericarp by examining lipopolysaccharide (LPS) binding capacity. The LPS binding and neutralization activities of procyanidin B2 were determined by a combination of biophysical and in silico techniques. The affinity of procyanidin B2 to LPS was 1.61 × 10-5 M. Procyanidin B2 significantly neutralized LPS and selectively inhibited the LPS-induced release of tumor necrosis factor (TNF)-α from RAW264.7 cells in a dose-dependent manner. Binding thermodynamics revealed favorable hydrogen bonding and hydrophobic interactions between procyanidin B2 and LPS. Molecular simulations suggested that hydrogen bonding and hydrophobic interactions were involved in the binding process. These findings have, for the first time, shed light on the anti-inflammatory properties of procyanidin B2 through LPS binding and neutralization and provided a promising lead for the development of antiendotoxin agents.
Collapse
Affiliation(s)
- Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Yongjun Yang
- Clinical Research Centre, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Yongling Lu
- Clinical Research Centre, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Qian Chen
- Clinical Research Centre, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
9
|
Clinical and Immunological Efficacy of Mangosteen and Propolis Extracted Complex in Patients with Gingivitis: A Multi-Centered Randomized Controlled Clinical Trial. Nutrients 2021; 13:nu13082604. [PMID: 34444764 PMCID: PMC8400303 DOI: 10.3390/nu13082604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Mangosteen and propolis extracts (MAEC) have been potential therapeutic agents known to exhibit powerful antioxidant and anti-inflammatory properties. The aim of the current study was to evaluate the clinical and immunological efficacy of MAEC as well as safety and patient-reported outcomes (PROMs) on gingivitis and incipient periodontitis. Methods: This study was performed on 104 patients diagnosed with gingivitis or incipient periodontitis. At baseline, the participants were randomly allocated to either the test group, with daily intake of a single capsule containing 194 mg of MAEC for eight weeks, or control group, with placebo. Clinical periodontal evaluation and immunological parameters from saliva and gingival sulcular fluid were assessed at baseline, four, and eight weeks. Individual PROMs were assessed by OHIP-14 questionnaires. Results: There was a significant difference of modified gingival index at four and eight weeks between the test and control groups. In the test group, crevicular interleukin (IL)-6 was reduced, and the salivary matrix metalloproteinase (MMP)-9 was increased after eight weeks. PROMs were improved up to four weeks compared to placebo. Conclusion: Oral administration of MAEC would have a potential to reduce gingival inflammation clinically and immunologically in the patients with gingivitis and incipient periodontitis.
Collapse
|
10
|
Turner A, Baker A, Dean OM, Walker AJ, Dodd S, Cotton SM, Scott JG, Kavanagh BE, Ashton MM, Brown E, McGrath JJ, Berk M. Adjunctive Garcinia mangostana Linn. (Mangosteen) Pericarp for Schizophrenia: A 24-Week Double-blind, Randomized, Placebo Controlled Efficacy Trial: Péricarpe d'appoint Garcinia mangostana Linn (mangoustan) pour la schizophrénie : un essai d'efficacité de 24 semaines, à double insu, randomisé et contrôlé par placebo. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2021; 66:354-366. [PMID: 33355478 PMCID: PMC8172349 DOI: 10.1177/0706743720982437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Garcinia mangostana Linn. ("mangosteen") pericarp contains bioactive compounds that may target biological pathways implicated in schizophrenia. We conducted a double-blind randomized placebo-controlled trial evaluating the efficacy of adjunctive mangosteen pericarp, compared to placebo, in the treatment of schizophrenia. METHODS People diagnosed with schizophrenia or schizoaffective disorder (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition), recruited across 2 sites (Brisbane and Victoria, Australia), were randomized to receive 24 weeks of adjunctive mangosteen pericarp (1,000 mg/day) or matched placebo. The primary outcome measure was the Positive and Negative Symptom Scale total score. Secondary outcomes included positive and negative symptoms, general psychopathology, clinical global severity and improvement, participant reported overall improvement, depressive symptoms, functioning, quality of life, and safety data at 24 and 28 weeks (4 weeks postdiscontinuation). Data were collected from July 2016 to February 2019. RESULTS Baseline assessments were conducted on 148 people (mangosteen = 74, placebo = 74); data analyses were conducted on 136 (92%) participants with postbaseline data. The treatment group had significantly higher symptom severity compared to placebo, and both groups significantly improved on all symptom, functioning, and quality of life measures over time. No between-group differences were found for the rate of change between baseline and 24 or 28 weeks. CONCLUSION Despite promising preclinical and clinical work, our results do not support mangosteen pericarp extract as an adjunctive treatment for schizophrenia or schizoaffective disorder.
Collapse
Affiliation(s)
- Alyna Turner
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Andrea Baker
- 90131Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
| | - Olivia M Dean
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Adam J Walker
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Seetal Dodd
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Susan M Cotton
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
- Orygen, Parkville, Australia
| | - James G Scott
- 90131Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
- Metro North Mental Health Service, Herston, Queensland, Australia
- Mental Health Programme, QIMRBerghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bianca E Kavanagh
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Melanie M Ashton
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ellie Brown
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
- Orygen, Parkville, Australia
| | - John J McGrath
- 90131Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
- Queensland Brain Institute, 1974University of Queensland, St Lucia, Australia
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark
| | - Michael Berk
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
- Orygen, Parkville, Australia
| |
Collapse
|
11
|
Ashton MM, Dean OM, Walker AJ, Bortolasci CC, Ng CH, Hopwood M, Harvey BH, Möller M, McGrath JJ, Marx W, Turner A, Dodd S, Scott JG, Khoo JP, Walder K, Sarris J, Berk M. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia. Front Psychiatry 2019; 10:115. [PMID: 30918489 PMCID: PMC6424889 DOI: 10.3389/fpsyt.2019.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
New treatments are urgently needed for serious mental illnesses including bipolar disorder and schizophrenia. This review proposes that Garcinia mangostana Linn. (mangosteen) pericarp is a possible adjunctive therapeutic agent for these disorders. Research to date demonstrates that neurobiological properties of the mangosteen pericarp are well aligned with the current understanding of the pathophysiology of bipolar disorder and schizophrenia. Mangosteen pericarp has antioxidant, putative neuroprotective, anti-inflammatory, and putative mitochondrial enhancing properties, with animal studies demonstrating favorable pharmacotherapeutic benefits with respect to these disorders. This review summarizes evidence of its properties and supports the case for future studies to assess the utility of mangosteen pericarp as an adjunctive treatment option for mood and psychotic disorders.
Collapse
Affiliation(s)
- Melanie M. Ashton
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Olivia M. Dean
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Adam J. Walker
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Malcolm Hopwood
- Professorial Psychiatry Unit, Albert Road Clinic, University of Melbourne, Melbourne, VIC, Australia
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - John J. McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - James G. Scott
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Metro North Mental Health, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jon-Paul Khoo
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen Youth Health Research Centre, Parkville, VIC, Australia
| |
Collapse
|
12
|
Biological properties in relation to health promotion effects of Garcinia mangostana (queen of fruit). JOURNAL OF HEALTH RESEARCH 2018. [DOI: 10.1108/jhr-08-2018-043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose
For the prevention and cure of disease, patient use various types of chemical and drug agents. Along with their curative effect, almost all drugs have some destructive effects and side-effects. Due to the minimal and/or none of unwanted side-effect, recently, the use of herbal remedy as the drug of choice becomes the preference choice. The mangosteen, Garcinia mangostana, contains various types of polyphenols. It has been used as a traditional medicine from the ancient times till present days. The purpose of this paper is to investigate the biological properties of mangosteen in relation to health promotion effects.
Design/methodology/approach
Several research papers from well-known database (such as PubMed, Google scholar, Scopus and Sciencedirect) were reviewed without considering publication-times to understand the biological properties of mangosteen.
Findings
Mangosteen and its xanthone exerted diverse biological activities such as anti-oxidant, anti-inflammatory, anti-allergy, anti-bacteria, anti-fungal, anti-malaria, anticancer and anti-diabetes.
Originality/value
Based on these studies, mangosteen is beneficial dietary supplement of overall human health.
Collapse
|
13
|
Affiliation(s)
- Choothaweep Palakawong
- Faculty of Agricultural Technology, Department of Food Technology Rajabhat Maha Sarakham University Maha Sarakham Thailand
| | - Pascal Delaquis
- Agriculture and Agri‐Food Canada Summerland Research and Development Centre Summerland British Columbia Canada
| |
Collapse
|
14
|
Benatrehina PA, Pan L, Naman CB, Li J, Kinghorn AD. Usage, biological activity, and safety of selected botanical dietary supplements consumed in the United States. J Tradit Complement Med 2018; 8:267-277. [PMID: 29736381 PMCID: PMC5934707 DOI: 10.1016/j.jtcme.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/06/2018] [Indexed: 12/29/2022] Open
Abstract
In view of the continuous growth of the botanical dietary supplement industry and the increased popularity of lesser known or exotic botanicals, recent findings are described on the phytochemical composition and biological activities of five selected fruits consumed in the United States, namely, açaí, noni, mangosteen, black chokeberry, and maqui berry. A review of the ethnomedicinal uses of these plants has revealed some similarities ranging from wound-healing to the treatment of fever and infectious diseases. Laboratory studies on açaí have shown both its antioxidant and anti-inflammatory activities in vitro, and more importantly, its neuroprotective properties in animals. Anthraquinones and iridoid glucosides isolated from noni fruit induce the phase II enzyme quinone reductase (QR), and noni fruit juice exhibited antitumor and antidiabetic activities in certain animal models. Antitumorigenic effects of mangosteen in animal xenograft models of human cancers have been attributed to its xanthone content, and pure α-mangostin was shown to display antineoplastic activity in mice despite a reported low oral bioavailability. Work on the less extensively investigated black chokeberry and maqui berry has focused on recent isolation studies and has resulted in the identification of bioactive secondary metabolites with QR-inducing and hydroxyl-radical scavenging properties. On the basis of the safety studies and toxicity case reports described herein, these fruits may be generally considered as safe. However, cases of adulteration found in a commercialized açaí product and some conflicting results from mangosteen safety studies warrant further investigation on the safety of these marketed botanical dietary supplements.
Collapse
Affiliation(s)
| | | | | | | | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Ruan J, Zheng C, Liu Y, Qu L, Yu H, Han L, Zhang Y, Wang T. Chemical and Biological Research on Herbal Medicines Rich in Xanthones. Molecules 2017; 22:E1698. [PMID: 29019929 PMCID: PMC6151445 DOI: 10.3390/molecules22101698] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023] Open
Abstract
Xanthones, as some of the most active components and widely distributed in various herb medicines, have drawn more and more attention in recent years. So far, 168 species of herbal plants belong to 58 genera, 24 families have been reported to contain xanthones. Among them, Calophyllum, Cratoxylum, Cudrania, Garcinia, Gentiana, Hypericum and Swertia genera are plant resources with great development prospect. This paper summarizes the plant resources, bioactivity and the structure-activity relationships (SARs) of xanthones from references published over the last few decades, which may be useful for new drug research and development on xanthones.
Collapse
Affiliation(s)
- Jingya Ruan
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Chang Zheng
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Yanxia Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Lu Qu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Haiyang Yu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Lifeng Han
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|
16
|
Abountiolas M, Nascimento Nunes C. Polyphenols, ascorbic acid and antioxidant capacity of commercial nutritional drinks, fruit juices, smoothies and teas. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marvin Abountiolas
- Food Quality Laboratory, Department of Cell Biology, Microbiology and Molecular Biology University of South Florida 4202 East Fowler Avenue, ISA 2015 Tampa FL 33620 USA
| | - Cecilia Nascimento Nunes
- Food Quality Laboratory, Department of Cell Biology, Microbiology and Molecular Biology University of South Florida 4202 East Fowler Avenue, ISA 2015 Tampa FL 33620 USA
| |
Collapse
|
17
|
Santos JAR, Zacca R, Fernandes RJ. Micronutrient Supplementation does not Change Complement System Response to Heavy Training. Sports Med Int Open 2017; 1:E113-E118. [PMID: 30539095 PMCID: PMC6226084 DOI: 10.1055/s-0043-111403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/06/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022] Open
Abstract
AbstractWe aimed to examine the micronutrient supplementation effect on complement system activity after heavy training. 24 male firefighters were randomly divided into supplemented and placebo groups, and tested for immunology-related parameters using venous blood samples in the fasting state pre- and post-5 weeks of nutritional supplementation. C3 and C4 complement components were determined in a nephelometer from immune complexes formed through specific human antisera and total haemolytic complement activity (CH100) was determined by enzyme immunoassay. Differences between pre- and post-supplementation were observed only for CH100 on placebo group (p=0.004; mean diff −26.92; 95%CI −43.58 to −10.25) and no interaction, treatment or time effects were observed for C3 and C4. Although interaction accounted for 8.8% of the total variance in CH100 (with time effect pre- vs post-accounting for 19.5% of the total variance), the treatment effect (supplemented vs placebo) was not significant. The absence of effects on the complement system response to supplementation during heavy training could be justified by the fact that: (i) nutritional supplements do not improve humoral innate immunity in well-fed subjects; (ii) selected supplements unlikely improve the innate immune system in situations of adequate nutritional status; and/or (iii) selected doses of supplementation were not sufficient to elicit immune changes.
Collapse
Affiliation(s)
| | - Rodrigo Zacca
- University of Porto, Faculty of Sport, Cifi2d, Porto, Portugal
| | - Ricardo J Fernandes
- University of Porto, Faculty of Sport, Cifi2d, Porto, Portugal.,University of Porto, Labiomep, Porto, Portugal
| |
Collapse
|
18
|
Carrillo-Hormaza L, Ramírez AM, Quintero-Ortiz C, Cossio M, Medina S, Ferreres F, Gil-Izquierdo A, Osorio E. Comprehensive characterization and antioxidant activities of the main biflavonoids of Garcinia madruno : A novel tropical species for developing functional products. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
19
|
Taher M, Tg Zakaria TMFS, Susanti D, Zakaria ZA. Hypoglycaemic activity of ethanolic extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:135. [PMID: 27208974 PMCID: PMC4875614 DOI: 10.1186/s12906-016-1118-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/13/2016] [Indexed: 12/31/2022]
Abstract
Background Various parts of Garcinia mangostana Linn., including its pericarp, have been traditionally used to treat a variety of ailments. In an attempt to establish its medicinal value, the present study was carried out to determine the hypoglycaemic potential of G. mangostana pericarp ethanolic extract (GME) using the streptozotocin-induced (STZ) diabetic rats. Methods GME at 2,000 mg/kg was subjected to a single-dose acute toxicity test. Following this, the effect of GME (50, 100, and 200 mg/kg) on blood glucose level of normoglycaemic and STZ-induced diabetic rats was determined using single-dose (acute) and multiple-dose (subacute) approaches. Subsequent to the multiple-dose study, serum biochemical analysis and liver histopathological examination were also performed. Throughout the experiments, the effect of GME was compared against the standard hypoglycaemic drug, glibenclamide. Results GME was safe for oral consumption up to the dose of 2,000 mg/kg. In both single- and multiple-dose studies, GME significantly (p < 0.05) reduced the blood glucose level in normoglycaemic rats and STZ-induced diabetic rats when compared against the normal control group or diabetic control group, respectively. Moreover, GME also significantly (p < 0.05) increased the rats’ body weight in comparison to the diabetic control group in the multiple-dose study. GME also significantly (p < 0.05) reduced the levels of certain biochemical parameters [i.e., triglycerides (TG), total cholesterol (TC), low density lipoprotein (LDL), very low density lipoprotein (VLDL), serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), urea, and creatinine] while increased the others [i.e., high density lipoprotein (HDL) and total protein (TP)] when compared to the diabetic control group. Histopathological assessment of the collected liver revealed a mild increase in the population of β-cells in the diabetic rats. Conclusion GME exerts the hypoglycaemic activity possibly by increasing the population of insulin-producing β-cells. This activity could be attributed to the presence of antioxidant-bearing tannins like epicathecin, and xanthones like α-mangostin. Thus, the findings demonstrated that GME could be a potential candidate in the management of diabetes owing to its hypoglycaemic effect.
Collapse
|
20
|
ONODERA TAKEFUMI, TAKENAKA YUKIKO, KOZAKI SACHIKO, TANAHASHI TAKAO, MIZUSHINA YOSHIYUKI. Screening of mammalian DNA polymerase and topoisomerase inhibitors from Garcinia mangostana L. and analysis of human cancer cell proliferation and apoptosis. Int J Oncol 2016; 48:1145-54. [DOI: 10.3892/ijo.2016.3321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/14/2015] [Indexed: 11/05/2022] Open
|
21
|
A Method of Effectively Improved α-Mangostin Bioavailability. Eur J Drug Metab Pharmacokinet 2015; 41:605-13. [DOI: 10.1007/s13318-015-0283-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
|
22
|
Pratoomsoot C, Sruamsiri R, Dilokthornsakul P, Chaiyakunapruk N. Quality of reporting of randomised controlled trials of herbal interventions in ASEAN Plus Six Countries: a systematic review. PLoS One 2015; 10:e108681. [PMID: 25633206 PMCID: PMC4310614 DOI: 10.1371/journal.pone.0108681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/02/2014] [Indexed: 01/15/2023] Open
Abstract
Background Many randomised controlled trials (RCTs) of herbal interventions have been conducted in the ASEAN Communities. Good quality reporting of RCTs is essential for assessing clinical significance. Given the importance ASEAN placed on herbal medicines, the reporting quality of RCTs of herbal interventions among the ASEAN Communities deserved a special attention. Objectives To systematically review the quality of reporting of RCTs of herbal interventions conducted in the ASEAN Plus Six Countries. Methods Searches were performed using PubMed, EMBASE, The Cochrane Library, and Allied and Complementary Medicine (AMED), from inception through October 2013. These were limited to studies specific to humans and RCTs. Herbal species search terms were based on those listed in the National List of Essential Medicines [NLEM (Thailand, 2011)]. Studies conducted in the ASEAN Plus Six Countries, published in English were included. Results Seventy-one articles were identified. Thirty (42.25%) RCTs were from ASEAN Countries, whereas 41 RCTs (57.75%) were from Plus Six Group. Adherence to the recommended CONSORT checklist items for reporting of RCTs of herbal interventions among ASEAN Plus Six Countries ranged from 0% to 97.18%. Less than a quarter of the RCTs (18.31%) reported information on standardisation of the herbal products. However, the scope of our interventions of interest was limited to those developed from 20 herbal species listed in the NLEM of Thailand. Conclusions The present study highlights the need to improve reporting quality of RCTs of herbal interventions across ASEAN Plus Six Communities.
Collapse
Affiliation(s)
| | - Rosarin Sruamsiri
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Population Medicine, Drug Policy Research Group, Harvard Medical School & Harvard Pilgrim Health Care Institute, Boston, MA, United States of America
| | - Piyameth Dilokthornsakul
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center for Pharmacoepidemiology and Pharmacoeconomic Research and Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Nathorn Chaiyakunapruk
- Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
- School of Population Health, Public Health Building, University of Queensland, Herston, Australia
- School of Pharmacy, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
23
|
Synthesis of xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents. Bioorg Med Chem Lett 2014; 24:2062-5. [DOI: 10.1016/j.bmcl.2014.03.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 11/22/2022]
|
24
|
Gutierrez-Orozco F, Thomas-Ahner JM, Berman-Booty LD, Galley JD, Chitchumroonchokchai C, Mace T, Suksamrarn S, Bailey MT, Clinton SK, Lesinski GB, Failla ML. Dietary α-mangostin, a xanthone from mangosteen fruit, exacerbates experimental colitis and promotes dysbiosis in mice. Mol Nutr Food Res 2014; 58:1226-38. [PMID: 24668769 DOI: 10.1002/mnfr.201300771] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022]
Abstract
SCOPE Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. α-Mangostin (α-MG), the most abundant xanthone in mangosteen fruit, exerts anti-inflammatory and antibacterial activities in vitro. We evaluated the impact of dietary α-MG on murine experimental colitis and on the gut microbiota of healthy mice. METHODS AND RESULTS Colitis was induced in C57BL/6J mice by administration of dextran sulfate sodium (DSS). Mice were fed control diet or diet with α-MG (0.1%). α-MG exacerbated the pathology of DSS-induced colitis. Mice fed diet with α-MG had greater colonic inflammation and injury, as well as greater infiltration of CD3(+) and F4/80(+) cells, and colonic myeloperoxidase, than controls. Serum levels of granulocyte colony-stimulating factor, IL-6, and serum amyloid A were also greater in α-MG-fed animals than in controls. The colonic and cecal microbiota of healthy mice fed α-MG but no DSS shifted to an increased abundance of Proteobacteria and decreased abundance of Firmicutes and Bacteroidetes, a profile similar to that found in human UC. CONCLUSION α-MG exacerbated colonic pathology during DSS-induced colitis. These effects may be associated with an induction of intestinal dysbiosis by α-MG. Our results suggest that the use of α-MG-containing supplements by patients with UC may have unintentional risk.
Collapse
Affiliation(s)
- Fabiola Gutierrez-Orozco
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Food Innovation Center, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Review of existing experimental methods for assessing the outcome of plant food supplementation on immune function. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients 2013; 5:3163-83. [PMID: 23945675 PMCID: PMC3775248 DOI: 10.3390/nu5083163] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/03/2013] [Accepted: 08/02/2013] [Indexed: 12/19/2022] Open
Abstract
Mangosteen (Garcinia mangostana L.) is a tropical tree native to Southeast Asia that produces a fruit whose pericarp contains a family of tricyclic isoprenylated polyphenols referred to as xanthones. Numerous in vitro studies have shown that these xanthones possess anti-oxidant, anti-proliferative, pro-apoptotic, anti-inflammatory and anti-carcinogenic activities. Aggressive marketing of such health promoting benefits has resulted in mangosteen’s classification as a “superfruit”. This has led to sales of mangosteen containing beverages in USA alone exceeding $200 million in 2008 despite very limited animal and human studies. This review will (a) critically address recent reports of in vivo studies on the bioavailability and metabolism of mangosteen xanthones, (b) update the in vitro and in vivo data on anti-cancer and anti-inflammatory activities of mangosteen xanthones, and (c) suggest needed areas of inquiry regarding the absorption, metabolism and efficacy of mangosteen xanthones.
Collapse
|
27
|
Inhibitory effects of α-mangostin on mammalian DNA polymerase, topoisomerase, and human cancer cell proliferation. Food Chem Toxicol 2013; 59:793-800. [PMID: 23811100 DOI: 10.1016/j.fct.2013.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 11/20/2022]
Abstract
We found that the ethanol extract of mangosteen (Garcinia mangostana L.) fruit rind had a strong inhibitory effect on mammalian DNA polymerase (pol) activity and isolated α-mangostin as a potent pol inhibitor from the extract. In this study, the inhibitory activities against mammalian pols by α-mangostin and its related five compounds, 3-isomangostin, xanthone, 9,10-anthraquinone, 9-anthracenecarboxylic acid, and anthracene, were investigated. α-Mangostin was the most potent inhibitor of the mammalian pol species among the tested compounds, with IC₅₀ values of 14.8-25.6 μM. This compound also inhibited human DNA topoisomerases (topos) I and II activities with IC₅₀ values of 15.0 and 7.5 μM, respectively, but did not inhibit the activities of other DNA metabolic enzymes tested. α-Mangostin also did not directly bind to double-stranded DNA as determined by thermal transition analysis. α-Mangostin was found to suppress human colon HCT116 carcinoma cell proliferation with an LC₅₀ of 18.5 μM, inhibit the activity of cellular topos, halt cell cycle in the G2/M phase, and induce apoptosis. These results suggest that decreased proliferation by α-mangostin may be a result of the inhibition of cellular topos rather than pols, and α-mangostin might be an anticancer chemotherapeutic agent.
Collapse
|
28
|
Gutierrez-Orozco F, Chitchumroonchokchai C, Lesinski GB, Suksamrarn S, Failla ML. α-Mangostin: anti-inflammatory activity and metabolism by human cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3891-900. [PMID: 23578285 PMCID: PMC3793015 DOI: 10.1021/jf4004434] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Information about the anti-inflammatory activity and metabolism of α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, in human cells is limited. On the basis of available literature, we hypothesized that α-MG will inhibit the secretion of pro-inflammatory mediators by control and activated macrophage-like THP-1, hepatic HepG2, enterocyte-like Caco-2, and colon HT-29 human cell lines, as well as primary human monocyte-derived macrophages (MDM), and that such activity would be influenced by the extent of metabolism of the xanthone. α-MG attenuated TNF-α and IL-8 secretion by the various cell lines but increased TNF-α output by both quiescent and LPS-treated MDM. The relative amounts of free and phase II metabolites of α-MG and other xanthones present in media 24 h after addition of α-MG was shown to vary by cell type and inflammatory insult. Increased transport of xanthones and their metabolites across Caco-2 cell monolayers suggests enhanced absorption during an inflammatory episode. The anti-inflammatory activities of xanthones and their metabolites in different tissues merit consideration.
Collapse
Affiliation(s)
- Fabiola Gutierrez-Orozco
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Gregory B. Lesinski
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sunit Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Mark L. Failla
- Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, United States
- Corresponding Author
| |
Collapse
|
29
|
Karim AA, Azlan A. Fruit pod extracts as a source of nutraceuticals and pharmaceuticals. Molecules 2012; 17:11931-46. [PMID: 23052712 PMCID: PMC6268244 DOI: 10.3390/molecules171011931] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/03/2022] Open
Abstract
Fruit pods contain various beneficial compounds that have biological activities and can be used as a source of pharmaceutical and nutraceutical products. Although pods or pericarps are usually discarded when consuming the edible parts of fruits, they contain some compounds that exhibit biological activities after extraction. Most fruit pods included in this review contain polyphenolic components that can promote antioxidant effects on human health. Additionally, anti-inflammatory, antibacterial, antifungal and chemopreventive effects are associated with these fruit pod extracts. Besides polyphenolics, other compounds such as xanthones, carotenoids and saponins also exhibit health effects and can be potential sources of nutraceutical and pharmaceutical components. In this review, information on fruit pods or pericarp of Garcinia mangostana, Ceratonia siliqua, Moringa oleifera, Acacia nilotica, Sapindus rarak and Prosopis cineraria is presented and discussed with regard to their biological activity of the major compounds existing in them. The fruit pods of other ethno- botanical plants have also been reviewed. It can be concluded that although fruit pods are considered as being of no practical use and are often being thrown away, they nevertheless contain compounds that might be useful sources of nutraceutical and other pharmaceutical components.
Collapse
Affiliation(s)
- Azila Abdul Karim
- Cocoa Innovation & Technology Centre, Malaysian Cocoa Board, PT12621, Nilai Industrial Area, 71800 Nilai, Negeri Sembilan, Malaysia;
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Gürsel FE, Ateş A, Bilal T, Altiner A. Effect of dietary Garcinia cambogia extract on serum essential minerals (calcium, phosphorus, magnesium) and trace elements (iron, copper, zinc) in rats fed with high-lipid diet. Biol Trace Elem Res 2012; 148:378-82. [PMID: 22419377 DOI: 10.1007/s12011-012-9385-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 02/29/2012] [Indexed: 01/20/2023]
Abstract
The aim of the study was to investigate the effect of Garcinia cambogia extract on serum calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe), zinc (Zn) and copper (Cu) concentrations in rats fed with the normal or the high-lipid and -cholesterol diet. Thirty 1-year-old female Sprague-Dawley rats (pathogen-free), weighing an average of 229 g, were randomly assigned to three experimental groups of ten animals each. Diets and tap water were given ad libitum for 75 days. Group 1 (control group) was fed with basal diet (2 % liquid vegetable oil, 0 % cholesterol), while the diets of groups 2 and 3 contained vegetable oil (2 % liquid vegetable oil and 5 % hydrogenated vegetable oil) and cholesterol (3 %) in high levels. 4,5 % G. cambogia extract containing 65 % HCA was added to the diet of group 3 as from day 45. Blood samples were withdrawn on days 0, 45 and 75. Serum mineral levels were analyzed using standard enzymatic colorimetric methods with a spectrophotometer. All significant differences were p<0.05. Serum Ca levels were not significantly different between all groups on days 45 and 75. Serum P level was significantly higher in the group fed with high-lipid diet and G. cambogia extract than in the control group on day 45. Serum Mg level was significantly higher in group 2 than in the control group on day 45. Serum Fe levels were significantly lower in the control group than in the other groups on days 45 and 75. Serum Zn level of the group fed with high-lipid diet and G. cambogia extract was significantly higher than in the control group on day 75. Serum Cu levels were significantly higher in group 2 than in the control group, and in group 3 than in group 2 on day 75. In conclusion, a diet containing the high fat amounts may lead to the increase in circular levels of some minerals due to the short-chain fatty acid production lowering the luminal pH which increases mineral solubility, or serving as a fuel for mucosal cells and stimulating cell proliferation in the large intestine. G. cambogia extract may be used in the P and Cu deficiencies due to increases resulting in the present P and Cu amounts in G. cambogia extract, or the use of phytate P in diet. It was hoped that with further evidence-based study this product will enter to mainstream medicines.
Collapse
Affiliation(s)
- Feraye Esen Gürsel
- Faculty of Veterinary Medicine, Dept. of Biochemistry, Istanbul University, 34320-Avcilar, Istanbul, Turkey.
| | | | | | | |
Collapse
|
31
|
Aisha AFA, Abu-Salah KM, Ismail Z, Majid AMSA. In vitro and in vivo anti-colon cancer effects of Garcinia mangostana xanthones extract. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:104. [PMID: 22818000 PMCID: PMC3457913 DOI: 10.1186/1472-6882-12-104] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 07/20/2012] [Indexed: 12/12/2022]
Abstract
Background Xanthones are a group of oxygen-containing heterocyclic compounds with remarkable
pharmacological effects such as anti-cancer, antioxidant, anti-inflammatory, and
antimicrobial activities. Methods A xanthones extract (81% α-mangostin and 16% γ-mangostin), was prepared
by crystallization of a toluene extract of G. mangostana fruit rinds and
was analyzed by LC-MS. Anti-colon cancer effect was investigated on HCT 116 human
colorectal carcinoma cells including cytotoxicity, apoptosis, anti-tumorigenicity,
and effect on cell signalling pathways. The in vivo anti-colon cancer
activity was also investigated on subcutaneous tumors established in nude
mice. Results The extract showed potent cytotoxicity (median inhibitory concentration
6.5 ± 1.0 μg/ml), due to induction of the
mitochondrial pathway of apoptosis. Three key steps in tumor metastasis including
the cell migration, cell invasion and clonogenicity, were also inhibited. The
extract and α-mangostin up-regulate the MAPK/ERK, c-Myc/Max, and p53 cell
signalling pathways. The xanthones extract, when fed to nude mice, caused
significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal
carcinoma cells. Conclusions Our data suggest new mechanisms of action of α-mangostin and the G.
mangostana xanthones, and suggest the xanthones extract of as a potential
anti-colon cancer candidate.
Collapse
|
32
|
Cawood AL, Elia M, Stratton RJ. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res Rev 2012; 11:278-96. [PMID: 22212388 DOI: 10.1016/j.arr.2011.12.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/04/2011] [Accepted: 12/14/2011] [Indexed: 12/16/2022]
Abstract
Disease-related malnutrition is common, detrimentally affecting the patient and healthcare economy. Although use of high protein oral nutritional supplements (ONS) has been recommended to counteract the catabolic effects of disease and to facilitate recovery from illness, there is a lack of systematically obtained evidence to support these recommendations. This systematic review involving 36 randomised controlled trials (RCT) (n=3790) (mean age 74 years; 83% of trials in patients >65 years) and a series of meta-analyses of high protein ONS (>20% energy from protein) demonstrated a range of effects across settings and patient groups in favour of the high protein ONS group. These included reduced complications (odds ratio (OR) 0.68 (95%CI 0.55-0.83), p<0.001, 10 RCT, n=1830); reduced readmissions to hospital (OR 0.59 (95%CI 0.41-0.84), p=0.004, 2 RCT, n=546); improved grip strength (1.76 kg (95%CI 0.36-3.17), p<0.014, 4 RCT, n=219); increased intake of protein (p<0.001) and energy (p<0.001) with little reduction in normal food intake and improvements in weight (p<0.001). There was inadequate information to compare standard ONS (<20% energy from protein) with high protein ONS (>20% energy from protein). The systematic review and meta-analysis provides evidence that high protein supplements produce clinical benefits, with economic implications.
Collapse
Affiliation(s)
- A L Cawood
- Institute of Human Nutrition, University of Southampton, UK.
| | | | | |
Collapse
|
33
|
Chitchumroonchokchai C, Riedl KM, Suksumrarn S, Clinton SK, Kinghorn AD, Failla ML. Xanthones in mangosteen juice are absorbed and partially conjugated by healthy adults. J Nutr 2012; 142:675-80. [PMID: 22399525 PMCID: PMC3301988 DOI: 10.3945/jn.111.156992] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proposed health-promoting effects of the pericarp from mangosteen fruit have been attributed to a family of polyphenols referred to as xanthones. The purpose of this study was to determine the bioavailability of xanthones from 100% mangosteen juice in healthy adult participants (n = 10). Pericarp particles accounted for 1% of the mass and 99% of the xanthone concentration in the juice. The juice provided 5.3 ± 0.1 mmol/L total xanthones with α-mangostin, garcinones (C, D, and E), γ-mangostin, gartanins, and other identified xanthones accounting for 58, 2, 6, 4, and 5%, respectively. Participants ingested 60 mL mangosteen juice with a high-fat breakfast. Free and conjugated (glucuronidated/sulfated) xanthones were detected in serum and urine. There was marked variation in the AUC (762-4030 nmol/L × h), maximum concentration (113 ± 107 nmol/L), and time to maximum concentration (3.7 ± 2.4 h) for α-mangostin in sera during the 24-h collection. Similarly, xanthones in 24-h urine ranged from 0.9 to 11.1 μmol and accounted for 2.0 ± 0.3% (range 0.3-3.4%) of the ingested dose. There were no significant differences between female and male participants in mean pharmacokinetic values of α-mangostin in serum and urinary xanthones. Only 15.4 ± 0.7% of total xanthones in pericarp particles in the juice partitioned into mixed micelles during in vitro digestion. These results show that xanthones in mangosteen juice are absorbed when ingested along with a high-fat meal, although release of xanthones from pericarp particles during digestion may be limited.
Collapse
Affiliation(s)
| | - Kenneth M. Riedl
- Department of Food Science & Technology,Food Innovation Center, The Ohio State University, Columbus, OH, and
| | - Sunit Suksumrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Steven K. Clinton
- Department of Human Nutrition,Division of Medical Oncology, Department of Internal Medicine,Food Innovation Center, The Ohio State University, Columbus, OH, and
| | | | - Mark L. Failla
- Department of Human Nutrition,Food Innovation Center, The Ohio State University, Columbus, OH, and
| |
Collapse
|
34
|
Pierson JT, Dietzgen RG, Shaw PN, Roberts-Thomson SJ, Monteith GR, Gidley MJ. Major Australian tropical fruits biodiversity: Bioactive compounds and their bioactivities. Mol Nutr Food Res 2011; 56:357-87. [DOI: 10.1002/mnfr.201100441] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/30/2011] [Accepted: 09/20/2011] [Indexed: 01/03/2023]
|
35
|
Bautista-Garfias CR, Rios-Flores E, García-Rubio VG. Comparative effect of Lactobacillus casei and a commercial mangosteen dietary supplement on body weight gain and antibody response to Newcastle disease virus vaccine in fighting roosters. J Med Food 2011; 14:828-33. [PMID: 21548799 DOI: 10.1089/jmf.2010.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to compare the effect of Lactobacillus casei and a commercial mixed combination of fruit juice that included Garcinia mangostana fruit extract on body weight gain from 7 to 90 days of age, on the antibody response 23 days after vaccination against Newcastle disease virus (NDV), and on the mortality in fighting roosters. Fifty-four 7-day-old birds were randomly distributed into three groups (treated with L. casei, G. mangostana, and saline solution [LC, GM, and SS groups, respectively]) of 18 animals each; all birds were orally treated daily. At 60 and 90 days, the LC group showed the highest body weight gain compared with the other two groups (P<.01). The mean levels of antibody to NDV were significantly higher in the GM group compared with the LC and SS groups (P<.05). Throughout the study the percentages of mortality were 5.55%, 0%, and 22.22% for the LC, GM, and SS groups, respectively. The results indicate that L. casei and the commercial mangosteen dietary supplement intake, compared with the control group, induce beneficial effects in fighting roosters--L. casei on weight gain and the commercial mixed combination of fruit juice with G. mangostana fruit extract on humoral immune response--and both showed none or very low mortality.
Collapse
Affiliation(s)
- Carlos R Bautista-Garfias
- National Center of Disciplinary Research in Veterinary Parasitology, National Institute of Forestry, Agricultural, and Fishing Investigations, Jiutepec, Morelos, State of Mexico, Mexico.
| | | | | |
Collapse
|