1
|
Ding X, Zhao F, Liu Z, Yao J, Yu H, Zhang X. Original antigenic sin: A potential double-edged effect for vaccine improvement. Biomed Pharmacother 2024; 178:117187. [PMID: 39084082 DOI: 10.1016/j.biopha.2024.117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Original antigenic sin (OAS) influences the immune response to subsequent infections with related variants following initial pathogen exposure. This phenomenon is characterized by cross-reactivity, which, although it may worsen infections, also provides a degree of protection against immune evasion caused by variations. This paradox complicates the development of creating universal vaccinations, as they frequently show diminished effectiveness against these emerging variants. This review aims to elucidate the diverse impacts of OAS on the immune response to various infections, emphasizing the complicated balance between beneficial and harmful outcomes. Moreover, we evaluate the influence of adjuvants and other variables on the extent of OAS, hence affecting the effectiveness of vaccines. Understanding the mechanisms of OAS that cause persistent infections and evasion of the immune system is crucial for the developing innovative vaccines. And it has significant potential for clinical applications.
Collapse
Affiliation(s)
- Xuan Ding
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Feijun Zhao
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China; Laboratory Medicine Center, the First Affiliated Hospital of University of South ChinaHengyang 421001, PR China
| | - Zhaoping Liu
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Jiangchen Yao
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Han Yu
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Xiaohong Zhang
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
2
|
Brooks CL, Moroz A. Charting the Course for Monoclonal Antibodies in Immunodiagnosis and Immunotherapy. Monoclon Antib Immunodiagn Immunother 2024; 43:83-84. [PMID: 38853640 DOI: 10.1089/mab.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Affiliation(s)
- Cory L Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California, USA
| | - Andrei Moroz
- Department of Clinical Analysis, Monoclonal Antibody Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
3
|
Pušnik J, Zorn J, Monzon-Posadas WO, Peters K, Osypchuk E, Blaschke S, Streeck H. Vaccination impairs de novo immune response to omicron breakthrough infection, a precondition for the original antigenic sin. Nat Commun 2024; 15:3102. [PMID: 38600072 PMCID: PMC11006949 DOI: 10.1038/s41467-024-47451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Several studies have suggested the imprinting of SARS-CoV-2 immunity by original immune challenge without addressing the formation of the de novo response to successive antigen exposures. As this is crucial for the development of the original antigenic sin, we assessed the immune response against the mutated epitopes of omicron SARS-CoV-2 after vaccine breakthrough. Our data demonstrate a robust humoral response in thrice-vaccinated individuals following omicron breakthrough which is a recall of vaccine-induced memory. The humoral and memory B cell responses against the altered regions of the omicron surface proteins are impaired. The T cell responses to mutated epitopes of the omicron spike protein are present due to the high cross-reactivity of vaccine-induced T cells rather than the formation of a de novo response. Our findings, therefore, underpin the speculation that the imprinting of SARS-CoV-2 immunity by vaccination may lead to the development of original antigenic sin if future variants overcome the vaccine-induced immunity.
Collapse
Affiliation(s)
- Jernej Pušnik
- Institute of Virology, University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany.
| | - Jasmin Zorn
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| | - Werner O Monzon-Posadas
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
- Occupational Medicine Department, University Hospital Bonn, Bonn, Germany
| | - Kathrin Peters
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| | - Emmanuil Osypchuk
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| | - Sabine Blaschke
- Emergency Department, University Medical Center Goettingen, Goettingen, Germany
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Braunschweig, Germany
| |
Collapse
|
4
|
McCarthy MW. Original antigen sin and COVID-19: implications for seasonal vaccination. Expert Opin Biol Ther 2022; 22:1353-1358. [PMID: 36243027 DOI: 10.1080/14712598.2022.2137402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Original antigenic sin describes the phenomenon in which immunity against pathogens or antigens is shaped by the host's first exposure to a related pathogen or antigen. AREAS COVERED When primary immunity is boosted not by the homologous but by a cross-reacting vaccine, the newly formed antibodies may react better with the primary antigen than with the antigen actually eliciting the response. This form of immune imprinting, which has been observed with influenza, dengue, human immunodeficiency virus, and other pathogens, has profound implications for the approach to seasonal vaccination against a variety of diseases, including COVID-19. EXPERT OPINION Public health agencies and regulatory bodies have consistently recommended repeated vaccination every few months as a way to protect against COVID-19. However, the risks and benefits of this approach requires scrutiny given the concern for original antigenic sin in response to SARS-CoV-2. This manuscript examines what is known about immune imprinting and looks ahead to explore how this phenomenon may impact seasonal vaccination against emerging SARS-CoV-2 subvariants such as BA.4, BA.5, and BA.5.1, which have been associated increased transmissibility due to enhanced immune escape.
Collapse
|
5
|
Broad Based Immunity? Monoclon Antib Immunodiagn Immunother 2022; 41:229-230. [DOI: 10.1089/mab.2022.29010.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Kieber-Emmons T, Pashov A. Living with Endemic COVID-19. Monoclon Antib Immunodiagn Immunother 2022; 41:171-172. [PMID: 36027042 DOI: 10.1089/mab.2022.29009.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thomas Kieber-Emmons
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Anastas Pashov
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Sofia, Bulgaria
| |
Collapse
|
7
|
Rijkers GT, van Overveld FJ. The "original antigenic sin" and its relevance for SARS-CoV-2 (COVID-19) vaccination. CLINICAL IMMUNOLOGY COMMUNICATIONS 2021; 1:13-16. [PMID: 38620690 PMCID: PMC8500682 DOI: 10.1016/j.clicom.2021.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 04/14/2023]
Abstract
Imprinting of the specific molecular image of a given protein antigen into immunological memory is one of the hallmarks of immunity. A later contact with a related, but different antigen should not trigger the memory response (because the produced antibodies would not be effective). The preferential expansion of cross-reactive antibodies, or T-lymphocytes for that matter, by a related antigen has been termed the original antigenic sin and was first described by Thomas Francis Jr. in 1960. The phenomenon was initially described for influenza virus, but also has been found for dengue and rotavirus. The antibody dependent enhancement observed in feline coronavirus vaccination also may be related to the original antigenic sin. For a full interpretation of the effectivity of the immune response against SARS-CoV-2, as well as for the success of vaccination, the role of existing immunological memory against circulating corona viruses is reviewed and analyzed.
Collapse
Affiliation(s)
- Ger T Rijkers
- Science Department, University College Roosevelt, Middelburg, the Netherlands
- Microvida Laboratory of Medical Microbiology and Immunology, St. Elizabeth Hospital, Tilburg, the Netherlands
| | | |
Collapse
|
8
|
Makoah NA, Tipih T, Litabe MM, Brink M, Sempa JB, Goedhals D, Burt FJ. A systematic review and meta-analysis of the sensitivity of antibody tests for the laboratory confirmation of COVID-19. Future Virol 2021; 17:10.2217/fvl-2021-0211. [PMID: 34950219 PMCID: PMC8686841 DOI: 10.2217/fvl-2021-0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Aim: The aim of this study was to investigate the utility of serological tests for the diagnosis of COVID-19 during the first week of symptom onset in patients confirmed with the real-time RT-PCR. Materials & methods: A systematic review and meta-analysis of 58 publications were performed using data obtained from Academic Search Ultimate, Africa-wide, Scopus, Web of Science and MEDLINE. Results: We found that the highest pooled sensitivities were obtained with ELISA IgM-IgG and chemiluminescence immunoassay IgM tests. Conclusion: Serological tests have low sensitivity within the first week of symptom onset and cannot replace nucleic acid amplification tests. However, serological assays can be used to support nucleic acid amplification tests.
Collapse
Affiliation(s)
- Nigel A Makoah
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Thomas Tipih
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Matefo M Litabe
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Mareza Brink
- Free State Department of Health, Bloemfontein, 9301, South Africa
| | - Joseph B Sempa
- Department of Biostatistics, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- DST-NRF Centre of Excellence in Epidemiological Modelling & Analysis (SACEMA), Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Dominique Goedhals
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- Division of Virology, National Health Laboratory Service, Bloemfontein, 9301, South Africa
| | - Felicity J Burt
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- Division of Virology, National Health Laboratory Service, Bloemfontein, 9301, South Africa
| |
Collapse
|
9
|
Murugavelu P, Perween R, Shrivastava T, Singh V, Ahmad Parray H, Singh S, Chiranjivi AK, Thiruvengadam R, Singh S, Yadav N, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Sharma C, Vishwakarma P, Khatri R, Kumar Panchal A, Das S, Ahmed S, Samal S, Kshetrapal P, Bhatnagar S, Luthra K, Kumar R. Non-neutralizing SARS CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus. Int Immunopharmacol 2021; 99:108020. [PMID: 34426117 PMCID: PMC8318684 DOI: 10.1016/j.intimp.2021.108020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
The spike protein of the SARS-CoV-2 virus is the foremost target for the designing of vaccines and therapeutic antibodies and also acts as a crucial antigen in the assessment of COVID-19 immune responses. The enveloped viruses; such as SARS-CoV-2, Human Immunodeficiency Virus-1 (HIV-1) and influenza, often hijack host-cell glycosylation pathways and influence pathobiology and immune selection. These glycan motifs can lead to either immune evasion or viral neutralization by the production of cross-reactive antibodies that can lead to antibody-dependent enhancement (ADE) of infection. Potential cross-protection from influenza vaccine has also been reported in COVID-19 infected individuals in several epidemiological studies recently; however, the scientific basis for these observations remains elusive. Herein, we show that the anti-SARS-CoV2 antibodies cross-reacts with the Hemagglutinin (HA) protein. This phenomenon is common to both the sera from convalescent SARS-CoV-2 donors and spike immunized mice, although these antibodies were unable to cross-neutralize, suggesting the presence of a non-neutralizing antibody response. Epitope mapping suggests that the cross-reactive antibodies are targeted towards glycan epitopes of the SARS-CoV-2 spike and HA. Overall, our findings address the cross-reactive responses, although non-neutralizing, elicited against RNA viruses and warrant further studies to investigate whether such non-neutralizing antibody responses can contribute to effector functions such as antibody-dependent cellular cytotoxicity (ADCC) or ADE.
Collapse
Affiliation(s)
- Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Adarsh Kumar Chiranjivi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ramachandran Thiruvengadam
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Savita Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Naveen Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kamini Jakhar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sudipta Sonar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sankar Bhattacharyya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Anil Kumar Panchal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Supratik Das
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Pallavi Kshetrapal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shinjini Bhatnagar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
10
|
Awogbindin IO, Ben-Azu B, Olusola BA, Akinluyi ET, Adeniyi PA, Di Paolo T, Tremblay MÈ. Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Front Cell Neurosci 2021; 15:670298. [PMID: 34211370 PMCID: PMC8240959 DOI: 10.3389/fncel.2021.670298] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Since December 2019, humankind has been experiencing a ravaging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, the second coronavirus pandemic in a decade after the Middle East respiratory syndrome coronavirus (MERS-CoV) disease in 2012. Infection with SARS-CoV-2 results in Coronavirus disease 2019 (COVID-19), which is responsible for over 3.1 million deaths worldwide. With the emergence of a second and a third wave of infection across the globe, and the rising record of multiple reinfections and relapses, SARS-CoV-2 infection shows no sign of abating. In addition, it is now evident that SARS-CoV-2 infection presents with neurological symptoms that include early hyposmia, ischemic stroke, meningitis, delirium and falls, even after viral clearance. This may suggest chronic or permanent changes to the neurons, glial cells, and/or brain vasculature in response to SARS-CoV-2 infection or COVID-19. Within the central nervous system (CNS), microglia act as the central housekeepers against altered homeostatic states, including during viral neurotropic infections. In this review, we highlight microglial responses to viral neuroinfections, especially those with a similar genetic composition and route of entry as SARS-CoV-2. As the primary sensor of viral infection in the CNS, we describe the pathogenic and neuroinvasive mechanisms of RNA viruses and SARS-CoV-2 vis-à-vis the microglial means of viral recognition. Responses of microglia which may culminate in viral clearance or immunopathology are also covered. Lastly, we further discuss the implication of SARS-CoV-2 CNS invasion on microglial plasticity and associated long-term neurodegeneration. As such, this review provides insight into some of the mechanisms by which microglia could contribute to the pathophysiology of post-COVID-19 neurological sequelae and disorders, including Parkinson's disease, which could be pervasive in the coming years given the growing numbers of infected and re-infected individuals globally.
Collapse
Affiliation(s)
- Ifeoluwa O. Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Babatunde A. Olusola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth T. Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Philip A. Adeniyi
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Therese Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Sen SR, Sanders EC, Santos AM, Bhuvan K, Tang DY, Gelston AA, Miller BM, Ricks-Oddie JL, Weiss GA. Evidence for Deleterious Antigenic Imprinting in SARS-CoV-2 Immune Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.21.445201. [PMID: 34127968 PMCID: PMC8202420 DOI: 10.1101/2021.05.21.445201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
UNLABELLED A previous report demonstrated the strong association between the presence of antibodies binding to an epitope region from SARS-CoV-2 nucleocapsid, termed Ep9, and COVID-19 disease severity. Patients with anti-Ep9 antibodies (Abs) had hallmarks of antigenic imprinting (AIM), including early IgG upregulation and cytokine-associated injury. Thus, the immunological memory of a previous infection was hypothesized to drive formation of suboptimal anti-Ep9 Abs in severe COVID-19 infections. This study identifies a putative primary antigen capable of stimulating production of cross-reactive, anti-Ep9 Abs. Binding assays with patient blood samples directly show cross-reactivity between Abs binding to Ep9 and only one bioinformatics-derived, homologous potential antigen, a sequence derived from the neuraminidase protein of H3N2 Influenza A virus. This cross-reactive binding is highly influenza strain specific and sensitive to even single amino acid changes in epitope sequence. The neuraminidase protein is not present in the influenza vaccine, and the anti-Ep9 Abs likely resulted from the widespread influenza infection in 2014. Therefore, AIM from a previous infection could underlie some cases of COVID-19 disease severity. IMPORTANCE Infections with SARS-COV-2 result in diverse disease outcomes, ranging from asymptomatic to fatal. The mechanisms underlying different disease outcomes remain largely unexplained. Previously, our laboratory identified a strong association between the presence of an antibody and increased disease severity in a subset of COVID-19 patients. Here, we report that this severity-associated antibody cross-reacts with viral proteins from an influenza A viral strain from 2014. Therefore, we speculate that antibodies generated against previous infections, like the 2014 influenza A, play a significant role in directing some peoples’ immune responses against SARS-COV-2. Such understanding of the sources and drivers of COVID-19 disease severity can help early identification and pre-emptive treatment.
Collapse
|
12
|
El-Nakeep S. To vaccinate or not to vaccinate; that is the question! (New insights on COVID-19 Vaccination). Curr Mol Med 2021; 22:567-571. [PMID: 33982651 DOI: 10.2174/1566524021666210512012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
AIM This is a mini-review of the literature; to discuss the obstacles and benefits of vaccination in the era of current pandemic, either the COVID-19 vaccines, which are on their way to be released or the influenza vaccines. There is much debate concerning their effectiveness on ameliorating the severity of the COVID-19 pandemic. METHODOLOGY Searching the literature till November 2020 in the PubMed database. RESULTS Pathophysiology behind the COVID-19 vaccination obstacles is discussed in detail with future hopes. Influenza vaccination during the debate of the pandemic is also discussed with the most recent guidelines. CONCLUSIONS During the COVID-19 pandemic, influenza vaccination is mandatory for all individuals provided no contraindications. Three SARS-CoV-2 vaccines are being released , while FDA approval for monoclonal antibodies for the treatment of at-risk outpatients to lower hospitalization rates is ongoing.
Collapse
|
13
|
Al-Jighefee HT, Yassine HM, Al-Nesf MA, Hssain AA, Taleb S, Mohamed AS, Maatoug H, Mohamedali M, Nasrallah GK. Evaluation of Antibody Response in Symptomatic and Asymptomatic COVID-19 Patients and Diagnostic Assessment of New IgM/IgG ELISA Kits. Pathogens 2021; 10:161. [PMID: 33546341 PMCID: PMC7913500 DOI: 10.3390/pathogens10020161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
This study aims to study the immune response and evaluate the performances of four new IgM and five IgG enzyme-linked immunosorbent assay (ELISA) kits for detecting anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies against different antigens in symptomatic and asymptomatic coronavirus disease 2019 (COVID-19) patients. A total of 291 samples collected from symptomatic and asymptomatic RT-PCR-confirmed patients were used to evaluate the ELISA kits' performance (EDI, AnshLabs, DiaPro, NovaLisa, and Lionex). The sensitivity was measured at three different time-intervals post symptoms onset or positive SARS-CoV-2 RT-PCR test (≤14, 14-30, >30 days). The specificity was investigated using 119 pre-pandemic serum samples. The sensitivity of all IgM kits gradually decreased with time, ranging from 48.7% (EDI)-66.4% (Lionex) at ≤14 days, 29.1% (NovaLisa)-61.8% (Lionex) at 14-30 days, and 6.0% (AnshLabs)-47.9% (Lionex) at >30 days. The sensitivity of IgG kits increased with time, peaking in the latest interval (>30 days) at 96.6% (Lionex). Specificity of IgM ranged from 88.2% (Lionex)-99.2% (EDI), while IgG ranged from 75.6% (DiaPro)-98.3% (Lionex). Among all RT-PCR-positive patients, 23 samples (7.9%) were seronegative by all IgG kits, of which only seven samples (30.4%) had detectable IgM antibodies. IgM assays have variable and low sensitivity, thus considered a poor marker for COVID-19 diagnosis. IgG assays can miss at least 8% of RT-PCR-positive cases.
Collapse
Affiliation(s)
- Hadeel T. Al-Jighefee
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.T.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.T.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Maryam A. Al-Nesf
- Adult Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, Doha 2713, Qatar;
| | - Ali A. Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha 2713, Qatar;
| | - Sara Taleb
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 2713, Qatar;
| | - Ahmed S. Mohamed
- Criticl Care Nursing Department, Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation, Doha 2713, Qatar;
| | - Hassen Maatoug
- Nursing Deaprtment, Hamad Medical Corporation, Doha 2713, Qatar;
| | - Mohamed Mohamedali
- Department of Medicine, Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation, Doha 2713, Qatar;
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.T.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
14
|
Kohler H. The Impact of the Hybridoma Technology on the R&D of Idiotypic Antibodies. Monoclon Antib Immunodiagn Immunother 2021; 40:2-5. [PMID: 33535018 DOI: 10.1089/mab.2020.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The PubMed data set was scanned with the title and abstract term "Idiotype" followed by secondary searches with "Vaccine" and "Clinical trial." The retrieved references were analyzed from the period before and after hybridoma technology (1975). In 1963, Oudin and Kunkel discovered that antibodies against antibodies can be raised to identify determinants unique to an antibody termed idiotype or individual antigenic determinant. Two laboratories reported that anti-idiotypic antibodies can suppress specific antibody responses in mice. In 1974, Jerne proposed a network of idiotypes and anti-idiotypes and the functionality of the idiotype network was confirmed. This prompted the proposal of a symmetrical regulatory immune response. By 1989, the concept and the functional parameters of the immune idiotype network were established in the prehybridoma period. It was not until 1981 that monoclonal anti-idiotypic antibodies were used as tools to study the expression of idiotypic determinants on antibodies and to categorize functional properties in the immune network as network antigens in 1989. Hybridoma-generated monoclonal anti-idiotypic antibodies provided the tools to precisely identify different idiotypic regions on antibodies and test these as targets to induce network cascades. The initial distinction of Ab2s as alpha and beta were expanded to include gamma and delta. The initial concept of Ab2beta being an antigen internal image, used as vaccine, was challenged showing that targeting all idiotopes on B cell receptors can induce specific antibodies. After the discovery of the hybridoma technology a wave of idiotype topic publications occurred, that declined by 2015. In 1985, in this wave of reports on anti-idiotypes, their importance to vaccines dominated. These vaccines targeted in animal models parasite, bacterial, and viral diseases, and cancer. The reported data indicated a therapeutic response in inbred mice. The issue of idiotype matching between mouse haplotypes of vaccine origin and treated mice were raised. In 1995, the human clinical trials in different cancers using anti-Id vaccines were reported. Only one such vaccine received conditional approval in Argentina and Cuba, whereas the other trials failed in phase II and III. The reasons for this failure were subsequently discussed. Although the use of the Milstein and Kohler hybridoma technology and subsequently alternative methods to produce monoclonal animal and human antibodies created a new class of drugs, commonly referred as "Biological," it failed on the promise therapeutic of anti-Id vaccines.
Collapse
Affiliation(s)
- Heinz Kohler
- Department of Microbiology and Immunology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Kohler H, Kaveri S. How IvIg Can Mitigate Covid-19 Disease: A Symmetrical Immune Network Model. Monoclon Antib Immunodiagn Immunother 2021; 40:17-20. [PMID: 33513050 DOI: 10.1089/mab.2020.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this report we provide a hypothesis of how intravenous immunoglobulin (IvIg) (pooled therapeutic normal IgG) mitigates the severe disease after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The disease is caused by an overreaction of the innate immune system producing a cytokine storm and inflicting multiple organ damage. Our interpretation of IvIg therapy hinges on a recent analysis of the immune dysregulation in Covid-19 infection. Previous infections with common cold coronavirus induce suppressor memory B cells that inhibit an immune response to Covid-19. The repertoire of natural antibodies (IvIg) contains suppressing antibodies in a symmetrically balanced network structure. When this repertoire interacts with the imbalanced network in the infected patient, it can neutralize the suppression of an antibody response against Covid-19. The described scenario for IvIg in Covid-19 infection may also apply in the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Heinz Kohler
- Department of Microbiology and Immunology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
16
|
Kieber-Emmons T. The Need for a Global Network to Cope with Pandemics from Studies of the COVID Infection. Monoclon Antib Immunodiagn Immunother 2020; 39:157-159. [DOI: 10.1089/mab.2020.29002.tke] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|