1
|
Lund MC, Clausen BH, Brambilla R, Lambertsen KL. The Role of Tumor Necrosis Factor Following Spinal Cord Injury: A Systematic Review. Cell Mol Neurobiol 2023; 43:925-950. [PMID: 35604578 PMCID: PMC11414445 DOI: 10.1007/s10571-022-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bettina Hjelm Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roberta Brambilla
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kate Lykke Lambertsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 21 st., 5000, Odense, Denmark.
| |
Collapse
|
2
|
MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep 2021; 40:222205. [PMID: 32096822 PMCID: PMC7069919 DOI: 10.1042/bsr20193315] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Secondary injury after spinal cord injury (SCI) is one reversible pathological change mainly involving excessive inflammatory response and neuro-apoptosis. Since in recent years, microRNAs (miRNAs) have been proposed as novel regulators of inflammation in different disease conditions. However, the role of miRNAs in the inflammatory response and apoptosis of secondary injury after SCI remains to be fully elucidated. Here, we tried to explore the influence and mechanism of miRNAs on the neuron inflammatory response and apoptosis after SCI. The expression profiles of miRNA were examined using miRNA microarray, and among the candidate miRNAs, miR-129-5p was found to be the most down-regulated miRNA in spinal tissues. Overexpression of miR-129-5p using agomir-miR-129-5p promoted injury mice functional recovery, suppressed the apoptosis and alleviated inflammatory response in spinal tissues. Using LPS-induced BV-2 cell model, we found miR-129-5p was also proved in protecting inflammatory response and cell apoptosis in vitro. High-mobility group protein B1 (HMGB1), a well-known inflammatory mediator, was found to be directly targeted by miR-129-5p and it was associated with the inhibitory effect of miR-129-5p on the activation of toll-like receptor (TLR)-4 (TLR4)/ nuclear factor-κB (NF-κB) pathway in vitro and in vivo. Further experiments revealed that the anti-apoptosis and anti-inflammatory effects of miR-129-5p were reversed by HMGB1 overexpression in BV-2 cells. Collectively, these data revealed that miR-129-5p alleviated SCI in mice via suppressing the apoptosis and inflammatory response through HMGB1//TLR4/NF-κB pathway. Our data suggest that up-regulation of miR-129-5p may be a novel therapeutic target for SCI.
Collapse
|
3
|
Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, Smith DH, Ozturk AK, Awad BI. Biomarkers in Spinal Cord Injury: Prognostic Insights and Future Potentials. Front Neurol 2019; 10:27. [PMID: 30761068 PMCID: PMC6361789 DOI: 10.3389/fneur.2019.00027] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Spinal Cord Injury (SCI) is a major challenge in Neurotrauma research. Complex pathophysiological processes take place immediately after the injury and later on as the chronic injury develops. Moreover, SCI is usually accompanied by traumatic injuries because the most common modality of injury is road traffic accidents and falls. Patients develop significant permanent neurological deficits that depend on the extent and the location of the injury itself and in time they develop further neurological and body changes that may risk their mere survival. In our review, we explored the recent updates with regards to SCI biomarkers. We observed two methods that may lead to the appearance of biomarkers for SCI. First, during the first few weeks following the injury the Blood Spinal Cord Barrier (BSCB) disruption that releases several neurologic structure components from the injured tissue. These components find their way to Cerebrospinal Fluid (CSF) and the systemic circulation. Also, as the injury develops several components of the pathological process are expressed or released such as in neuroinflammation, apoptosis, reactive oxygen species, and excitotoxicity sequences. Therefore, there is a growing interest in examining any correlations between these components and the degrees or the outcomes of the injury. Additionally, some of the candidate biomarkers are theorized to track the progressive changes of SCI which offers an insight on the patients' prognoses, potential-treatments-outcomes assessment, and monitoring the progression of the complications of chronic SCI such as Pressure Ulcers and urinary dysfunction. An extensive literature review was performed covering literature, published in English, until February 2018 using the Medline/PubMed database. Experimental and human studies were included and titles, PMID, publication year, authors, biomarkers studies, the method of validation, relationship to SCI pathophysiology, and concluded correlation were reported. Potential SCI biomarkers need further validation using clinical studies. The selection of the appropriate biomarker group should be made based on the stage of the injuries, the accompanying trauma and with regards to any surgical, or medical interference that might have been done. Additionally, we suggest testing multiple biomarkers related to the several pathological changes coinciding to offer a more precise prediction of the outcome.
Collapse
Affiliation(s)
- Ahmed A. Albayar
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Abigail Roche
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Przemyslaw Swiatkowski
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Antar
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nouran Ouda
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Emara
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Douglas H. Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Ali K. Ozturk
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Basem I. Awad
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Yousefifard M, Sarveazad A, Babahajian A, Baikpour M, Shokraneh F, Vaccaro AR, Harrop JS, Fehlings MG, Hosseini M, Rahimi‐Movaghar V. Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: A systematic review. J Neurochem 2019; 149:317-330. [DOI: 10.1111/jnc.14637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center Faculty of Medicine Iran University of Medical Sciences Tehran Iran
| | - Arash Sarveazad
- Colorectal Research Center Iran University of Medical Sciences Tehran Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Baikpour
- Department of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group Institute of Mental Health University of Nottingham Nottingham UK
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery Rothman Institute Thomas Jefferson University Philadelphia Pennsylvania USA
| | - James S. Harrop
- Department of Neurosurgery Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Michael G. Fehlings
- Division of Genetics and Development Krembil Research Institute University Health Network Toronto Ontario Canada
- Division of Neurosurgery, Toronto Western Hospital University Health Network Toronto Ontario Canada
- Department of Surgery and Spine Program University of Toronto Toronto Ontario Canada
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Vafa Rahimi‐Movaghar
- Sina Trauma and Surgery Research Center Tehran University of Medical Sciences Tehran Iran
- Brain and Spinal Injuries Research Center (BASIR) Neuroscience Institute Imam Khomeini Hospital Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Hasturk AE, Baran C, Yilmaz ER, Arikan M, Togral G, Hayirli N, Erguder BI, Evirgen O. Etanercept Prevents Histopathological Damage after Spinal Cord Injury in Rats. Asian J Neurosurg 2018; 13:37-45. [PMID: 29492118 PMCID: PMC5820892 DOI: 10.4103/ajns.ajns_307_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The aim of our study is to assess the neuroprotective effects of the tumor necrosis factor alpha (TNF-α) inhibitor etanercept (ETA) on histopathological and biochemical changes following spinal cord injury (SCI). Patients and Methods Fifty-four male Wistar albino rats were randomly assigned into three main groups: The sham, trauma, and ETA group (n = 18 per group). Each of these groups was further divided into three subgroups (n = 6 per subgroup) based on the different tissue sampling times postinjury: 1 h, 6 h, and 24 h. Clip compression model was used for SCI. Rats in the ETA group were treated with 5 mg/kg of ETA immediately after the clip was removed. After 1, 6, and 24 h, the spinal cord was totally removed between the levels T8-T10. Sample tissue was immediately harvested and fixed for histopathological and electron microscopic examination and were analyzed for TNF-α, interleukin-1β (IL-1β), superoxide dismutase (SOD), adenosine deaminase, catalase (CAT), and malondialdehyde levels in both the tissue and serum. Results The serum and tissue levels of cytokines and enzymes were seen to change after SCI between hyperacute, acute, and subacute stages. Treatment with ETA selectively inhibited TNF-α, and IL-1β expression together with increased levels of antioxidative enzymes (SOD, CAT). Conclusion Early administration of ETA after SCI may remarkably attenuate neuronal injury by decreasing tissue and serum TNF-α and IL-1β levels, while increasing antioxidative enzymes such as SOD and CAT in subacute and acute stages, respectively.
Collapse
Affiliation(s)
- Askin Esen Hasturk
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Cagdas Baran
- Department of Cardiovascular Surgery, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Department of Neurosurgery, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Murat Arikan
- Department of Orthopaedics and Traumatology, Oncology Training and Research Hospital, Ankara, Turkey
| | - Guray Togral
- Department of Orthopaedics and Traumatology, Oncology Training and Research Hospital, Ankara, Turkey
| | - Nazli Hayirli
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Berrin Imge Erguder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Oya Evirgen
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Li T, Li YT, Song DY. The expression of IL-1β can deteriorate the prognosis of nervous system after spinal cord injury. Int J Neurosci 2018; 128:778-782. [PMID: 29308940 DOI: 10.1080/00207454.2018.1424154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE We used Anakinra to inhibit the expression of IL-1β based on the model of spinal cord injury in the rat stomach and explored whether it had a certain neuroprotective effect after spinal cord injury. MATERIALS AND METHODS The spinal cord injury model of four segments (T5-T8) was prepared by using vascular clamp. Thirty rats were randomized to the control group and the experimental group, and the control group used normal saline, while the experimental group used Anakinra after spinal cord injury. The spinal cord tissue was extracted at 6 h and 24 h after the operation to carry out the histopathological evaluation and to analyze the contents of IL-1β and malondialdehyde and the activities of glutathione peroxidase and superoxide dismutase. RESULTS Edema and inflammatory cell infiltration were obviously seen after spinal cord injury, the IL-1β level in serum was significantly increased, but the activity of glutathione peroxidase, superoxide dismutase and catalase was decreased in the control group compared with the experimental group. The experimental group could increase the activity of antioxidant enzymes, but had no significant effect on malondialdehyde. CONCLUSIONS Anakinra had a certain protective effect through the inhibition of IL-1β on spinal cord injury.
Collapse
Affiliation(s)
- Tao Li
- a Department of Spinal Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , P.R. China
| | - Yu-Tang Li
- b Department of Microbiology and Infectious Disease Center , School of Basic Medical Sciences, Peking University Health Science Center , Beijing , P.R. China
| | - Di-Yu Song
- c Department of Orthopedics , The General Hospital of the PLA Rocket Force , Beijing , P.R. China
| |
Collapse
|
7
|
Hao J, Li B, Duan HQ, Zhao CX, Zhang Y, Sun C, Pan B, Liu C, Kong XH, Yao X, Feng SQ. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats. Neural Regen Res 2017; 12:959-968. [PMID: 28761430 PMCID: PMC5514872 DOI: 10.4103/1673-5374.208591] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.
Collapse
Affiliation(s)
- Jian Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui-Quan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen-Xi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | | | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
8
|
The Next Generation of Biomarker Research in Spinal Cord Injury. Mol Neurobiol 2016; 54:1482-1499. [DOI: 10.1007/s12035-016-9757-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
|
9
|
Gashmardi N, Mehrabani D, Khodabande Z, Hosseini SM. Effect of Bone Marrow-derived Mesenchymal Stem Cells on
Changes of Serum Levels of TNF-α and Locomotor Function after
Spinal Cord Injury in Mice. JOURNAL OF MEDICAL SCIENCES 2015. [DOI: 10.3923/jms.2016.16.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
10
|
Hasturk AE, Yilmaz ER, Turkoglu E, Arikan M, Togral G, Hayirli N, Erguder BI, Evirgen O. Potential neuroprotective effect of Anakinra in spinal cord injury in an in vivo experimental animal model. ACTA ACUST UNITED AC 2015; 20:124-30. [PMID: 25864064 PMCID: PMC4727622 DOI: 10.17712/nsj.2015.2.20140483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the therapeutic effects of inhibiting interleukin-1 beta (IL-1 beta) in vivo using Anakinra in an experimental model of spinal cord injury (SCI). METHODS All experimental procedures were performed in the animal laboratory of Ankara Education and Research Hospital, Ankara, Turkey between August 2012 and May 2014. The SCI was induced by applying vascular clips to the dura via a 4-level T5-T8 laminectomy. Fifty-four rats were randomized into the following groups: controls (n = 18), SCI + saline (n = 18), and SCI + Anakinra (n = 18). Spinal cord samples were obtained from animals in both SCI groups at one, 6, and 24 hours after surgery (n = 6 for each time point). Spinal cord tissue and serum were extracted, and the levels of IL-1 beta, malondialdehyde, glutathione peroxidase, superoxide dismutase, and catalase were analyzed. Furthermore, histopathological evaluation of the tissues was performed. RESULTS The SCI in rats caused severe injury characterized by edema, neutrophil infiltration, and cytokine production followed by recruitment of other inflammatory cells, lipid peroxidation, and increased oxidative stress. After SCI, tissue and serum IL-1 beta levels were significantly increased, but were significantly decreased by Anakinra administration. Following trauma, glutathione peroxidase, superoxide dismutase, and catalase levels were decreased; however, Anakinra increased the activity of these antioxidant enzymes. Malondialdehyde levels were increased after trauma, but were unaffected by Anakinra. Histopathological analysis showed that Anakinra effectively protected the spinal cord tissue from injury. CONCLUSION Treatment with Anakinra reduces inflammation and other tissue injury events associated with SCI.
Collapse
Affiliation(s)
- Askin E Hasturk
- Department of Neurosurgery, Oncology Training and Research Hospital, Demetevler, Ankara, Turkey. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cruz CD, Coelho A, Antunes-Lopes T, Cruz F. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv Drug Deliv Rev 2015; 82-83:153-9. [PMID: 25446137 DOI: 10.1016/j.addr.2014.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/02/2014] [Accepted: 11/08/2014] [Indexed: 12/29/2022]
Abstract
During the acute phase of SCI, the extension and residual neurological deficits that will persist after the waning of the spinal shock period are difficult to estimate on clinical grounds. Therefore, objective biomarkers able to estimate the extension of the lesion and the degree of neurological recovery are of great importance. Research has been focused on the detection of structural neuronal and glial proteins that leak from damaged cells, inflammatory proteins recruited to remove necrotic debris and more accurate neuroimaging methods that are able to discriminate the extension and functional consequences of the SCI. Urinary biomarkers are also being investigated to estimate functional changes that typically affect bladder function following SCI which can endanger patient's life in the long run. Future studies are needed to precisely characterize the composition and function of the glial scar that appears in the area of SCI and repeals axonal growth, therefore preventing axonal rewiring.
Collapse
|
12
|
Börcek AÖ, Çivi S, Öcal Ö, Gülbahar Ö. Effects of tumor necrosis factor alpha blocker adalimumab in experimental spinal cord injury. J Korean Neurosurg Soc 2015; 57:73-6. [PMID: 25733985 PMCID: PMC4345196 DOI: 10.3340/jkns.2015.57.2.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/04/2014] [Accepted: 08/24/2014] [Indexed: 11/27/2022] Open
Abstract
Objective Tumor necrosis factor alpha (TNF-α) have proven effects in pathogenesis of neuroinflammation after spinal cord injury (SCI). Current study is designed to evaluate the effects of an anti-TNF-α agent, adalimumab, on spinal cord clip compression injury in rats. Methods Thirty two male adult Wistar rats were divided into four groups (sham, trauma, infliximab, and adalimumab groups) and SCI was introduced using an aneurysm clip. Animals in treatment groups received 5 mg/kg subcutaneous adalimumab and infliximab right after the trauma. Malondialdehyde (MDA) levels were studied in traumatized spinal cord tissues 72 hours after the injury as a marker of lipid peroxidation. Results Animals that received anti-TNF-α agents are found to have significantly decreased MDA levels. MDA levels were significantly different between the trauma and infliximab groups (p<0.01) and trauma and adalimumab groups (p=0.022). There was no significant difference in neurological evaluation of the rats using Tarlov scale. Conclusion These results suggest that, like infliximab, adalimumab has favorable effects on lipid peroxidation induced by spinal cord trauma in rats.
Collapse
Affiliation(s)
- Alp Özgün Börcek
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Soner Çivi
- Department of Neurosurgery, Medicana Private Hospital, Konya, Turkey
| | - Özgür Öcal
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Taylor AR, Welsh CJ, Young C, Spoor E, Kerwin SC, Griffin JF, Levine GJ, Cohen ND, Levine JM. Cerebrospinal fluid inflammatory cytokines and chemokines in naturally occurring canine spinal cord injury. J Neurotrauma 2014; 31:1561-9. [PMID: 24786364 DOI: 10.1089/neu.2014.3405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Canine intervertebral disk herniation (IVDH) is a common, naturally occurring form of spinal cord injury (SCI) that is increasingly being used in pre-clinical evaluation of therapies. Although IVDH bears critical similarities to human SCI with respect to lesion morphology, imaging features, and post-SCI treatment, limited data are available concerning secondary injury mechanisms. Here, we characterized cerebrospinal fluid (CSF) cytokines, and chemokines in dogs with acute, surgically treated, thoracolumbar IVDH (n=39) and healthy control dogs (n=21) to investigate early inflammatory events after SCI. A bioplex system was used to measure interleukin (IL)-2, -6, -7, -8, -10, -15, and -18, granulocyte macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), keratinocyte chemoattractant (KC)-like protein, IFN-γ-inducible protein-10, monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor alpha. Cytokine and chemokine concentrations in the CSF of healthy and SCI dogs were compared and, in SCI dogs, were correlated to the duration of SCI, behavioral measures of injury severity at the time of sampling, and neurological outcome 42 days post-SCI as determined by a validated ordinal score. IL-8 concentration was significantly higher in SCI cases than healthy controls (p=0.0013) and was negatively correlated with the duration of SCI (p=0.042). CSF MCP-1 and KC-like protein were positively correlated with CSF microprotein concentration in dogs with SCI (p<0.0001 and p=0.004). CSF MCP-1 concentration was negatively associated with 42-day postinjury outcome (p<0.0001). Taken together, these data indicate that cytokines and chemokines present after SCI in humans and rodent models are associated with SCI pathogenesis in canine IVDH.
Collapse
Affiliation(s)
- Amanda R Taylor
- 1 Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Anti-inflammatory and Antiapoptotic Effect of Interleukine-18 Binding Protein on the Spinal Cord Ischemia-Reperfusion Injury. Inflammation 2014; 37:917-23. [DOI: 10.1007/s10753-014-9811-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun 2013; 34:11-6. [PMID: 23597431 DOI: 10.1016/j.bbi.2013.04.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 12/17/2022] Open
Abstract
Adaptive immunity was repeatedly shown to play a role in maintaining lifelong brain function. Under physiological conditions, this activity was associated with CD4+ T cells specific for brain self-antigens. Nevertheless, direct interactions of T cells with the healthy neuronal parenchyma are hardly detectable. Recent studies have identified the brain's choroid plexus (CP) as an active neuro-immunological interface, enriched with CNS-specific CD4+ T cells. Strategically positioned for receiving signals from both the central nervous system (CNS) through the cerebrospinal fluid (CSF), and from the circulation through epithelium-immune cell interactions, the CP has recently been recognized as an important immunological compartment in maintaining and restoring brain homeostasis/allostasis. Here, we propose that CNS-specific T cells shape brain function via the CP, and suggest this immunological control to be lost as part of aging, in general, and immune senescence, in particular. Accordingly, the CP may serve as a novel target for immunomodulation to restore brain equilibrium.
Collapse
Affiliation(s)
- Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
16
|
Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M. IFN-γ-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain 2013; 136:3427-40. [PMID: 24088808 DOI: 10.1093/brain/awt259] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Infiltrating T cells and monocyte-derived macrophages support central nervous system repair. Although infiltration of leucocytes to the injured central nervous system has recently been shown to be orchestrated by the brain's choroid plexus, the immunological mechanism that maintains this barrier and regulates its activity as a selective gate is poorly understood. Here, we hypothesized that CD4(+) effector memory T cells, recently shown to reside at the choroid plexus stroma, regulate leucocyte trafficking through this portal through their interactions with the choroid plexus epithelium. We found that the naïve choroid plexus is populated by T helper 1, T helper 2 and regulatory T cells, but not by encephalitogenic T cells. In vitro findings revealed that the expression of immune cell trafficking determinants by the choroid plexus epithelium is specifically induced by interferon-γ. Tumour necrosis factor-α and interferon-γ reciprocally controlled the expression of their receptors by the choroid plexus epithelium, and had a synergistic effect in inducing the epithelial expression of trafficking molecules. In vivo, interferon-γ-dependent signalling controlled trafficking through the choroid plexus; interferon-γ receptor knockout mice exhibited reduced levels of T cells and monocyte entry to the cerebrospinal fluid and impaired recovery following spinal cord injury. Moreover, reduced expression of trafficking molecules by the choroid plexus was correlated with reduced CD4(+) T cells in the choroid plexus and cerebrospinal fluid of interferon-γ receptor knockout mice. Similar effect on the expression of trafficking molecules by the choroid plexus was found in bone-marrow chimeric mice lacking interferon-γ receptor in the central nervous system, or reciprocally, lacking interferon-γ in the circulation. Collectively, our findings attribute a novel immunological plasticity to the choroid plexus epithelium, allowing it to serve, through interferon-γ signalling, as a tightly regulated entry gate into the central nervous system for circulating leucocytes immune surveillance under physiological conditions, and for repair following acute injury.
Collapse
Affiliation(s)
- Gilad Kunis
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Up-regulation of Smurf1 after spinal cord injury in adult rats. J Mol Histol 2013; 44:381-90. [PMID: 23595775 DOI: 10.1007/s10735-013-9499-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 01/16/2023]
|
18
|
|
19
|
Stammers A, Liu J, Kwon B. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res 2011; 90:782-90. [DOI: 10.1002/jnr.22820] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Vascular disruption and the role of angiogenic proteins after spinal cord injury. Transl Stroke Res 2011; 2:474-91. [PMID: 22448202 PMCID: PMC3296011 DOI: 10.1007/s12975-011-0109-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/20/2011] [Accepted: 09/25/2011] [Indexed: 02/06/2023]
Abstract
Spinal cord injuries (SCI) can result in devastating paralysis, for which there is currently no robustly efficacious neuroprotective/neuroregenerative treatment. When the spinal cord is subjected to a traumatic injury, the local vasculature is disrupted and the blood–spinal cord barrier is compromised. Subsequent inflammation and ischemia may then contribute to further secondary damage, exacerbating neurological deficits. Therefore, understanding the vascular response to SCI and the molecular elements that regulate angiogenesis has considerable relevance from a therapeutic standpoint. In this paper, we review the nature of vascular damage after traumatic SCI and what is known about the role that angiogenic proteins—angiopoietin 1 (Ang1), angiopoietin 2 (Ang2) and angiogenin—may play in the subsequent response. To this, we add recent work that we have conducted in measuring these proteins in the cerebrospinal fluid (CSF) and serum after acute SCI in human patients. Intrathecal catheters were installed in 15 acute SCI patients within 48 h of injury. CSF and serum samples were collected over the following 3–5 days and analysed for Ang1, Ang2 and angiogenin protein levels using a standard ELISA technique. This represents the first description of the endogenous expression of these proteins in an acute human SCI setting.
Collapse
|
21
|
Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, McMullen DC, Jacobowitz DM, Pollard HB, O'Neill JT, Grunberg NE, Dalgard CL, Frank JA, Watson WD. Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma 2011; 28:359-69. [PMID: 21190398 DOI: 10.1089/neu.2010.1427] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Neurological dysfunction after traumatic brain injury (TBI) is caused by both the primary injury and a secondary cascade of biochemical and metabolic events. Since TBI can be caused by a variety of mechanisms, numerous models have been developed to facilitate its study. The most prevalent models are controlled cortical impact and fluid percussion injury. Both typically use "sham" (craniotomy alone) animals as controls. However, the sham operation is objectively damaging, and we hypothesized that the craniotomy itself may cause a unique brain injury distinct from the impact injury. To test this hypothesis, 38 adult female rats were assigned to one of three groups: control (anesthesia only); craniotomy performed by manual trephine; or craniotomy performed by electric dental drill. The rats were then subjected to behavioral testing, imaging analysis, and quantification of cortical concentrations of cytokines. Both craniotomy methods generate visible MRI lesions that persist for 14 days. The initial lesion generated by the drill technique is significantly larger than that generated by the trephine. Behavioral data mirrored lesion volume. For example, drill rats have significantly impaired sensory and motor responses compared to trephine or naïve rats. Finally, of the seven tested cytokines, KC-GRO and IFN-γ showed significant increases in both craniotomy models compared to naïve rats. We conclude that the traditional sham operation as a control confers profound proinflammatory, morphological, and behavioral damage, which confounds interpretation of conventional experimental brain injury models. Any experimental design incorporating "sham" procedures should distinguish among sham, experimentally injured, and healthy/naïve animals, to help reduce confounding factors.
Collapse
Affiliation(s)
- Jeffrey T Cole
- Department of Neurology, Uniformed Services University of the Health Sciences, Silver Spring, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kurt G, Cemil B, Borcek AO, Borcek P, Akyurek N, Sepici A, Ceviker N. Infliximab administration reduces neuronal apoptosis on the optic pathways in a rabbit hydrocephalus model: a preliminary report. Br J Neurosurg 2011; 24:275-9. [PMID: 20465456 DOI: 10.3109/02688691003653751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECT This study was designed to explore the effects of infliximab on the optic pathway in kaolin induced hydrocephalus rabbit model. METHODS After injection of kaolin to the cisterna magna of 12 New Zealand rabbits for induction of hydrocephalus, animals were divided into 2 groups and received either infliximab or normal saline. The intracranial pressure measurement was performed 2 times; firstly, before kaolin injection and secondly, before decapitation to ensure that the rabbits had hydrocephalus. After 2 weeks, animals were decapitated. RESULTS Apoptotic cells in the lateral geniculate body, optic radiation, and optic disc were counted with TUNEL method. Apoptotic cell counts of the lateral geniculate body and the optic radiation were showed statistically significant difference between the infliximab group and the control group. CONCLUSIONS This study suggests that infliximab may have a neuroprotective effect through its anti-apoptotic property on hydrocephalus induced optic pathways injury.
Collapse
Affiliation(s)
- Gokhan Kurt
- Department of Neurosurgery, Gazi University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
23
|
Guven C, Borcek AO, Cemil B, Kurt G, Yildirim Z, Ucankus NL, Kilic N, Ceviker N. Neuroprotective effects of infliximab in experimental spinal cord ischemic injury. J Clin Neurosci 2011; 17:1563-7. [PMID: 20817464 DOI: 10.1016/j.jocn.2010.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/05/2010] [Accepted: 04/08/2010] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of spinal cord injury after both ischemia-reperfusion (I/R) and trauma. This experimental study was designed to investigate the potential effects of infliximab, an anti-tumor necrosis factor-α agent, on I/R injury of the rabbit spinal cord. Eighteen New Zealand white rabbits were divided into three groups, each consisting of six rabbits: sham (no I/R), I/R, and infliximab (I/R + infliximab). Spinal cord ischemia was induced by applying an infrarenal aortic cross clamp for 30 minutes. At 48 hours after ischemia, animals were functionally evaluated using the Tarlov score. Changes in the spinal cord were observed by measuring tissue levels of malondialdehyde (MDA), glutathione (GSH), advanced oxidation protein products (AOPP), and superoxide dismutase (SOD) and by evaluating hematoxylin-eosin-stained sections. At 48 hours after ischemia, the Tarlov scores in the infliximab group were higher than those of the I/R group, MDA and AOPP levels in the I/R group were significantly higher than those in the sham and infliximab groups (p < 0.05), and SOD levels in the infliximab group were significantly higher than those in the I/R and sham groups (p < 0.05). The sham group had higher GSH levels than the infliximab group; however, the difference was not statistically significant (p > 0.05). Histological examination revealed that the infliximab group had significantly less vascular proliferation, edema, and neuron loss than the I/R group. These results indicate that infliximab may protect the spinal cord against injury in a rabbit I/R model.
Collapse
Affiliation(s)
- Cagatay Guven
- Department of Neurosurgery, Gazi University, Faculty of Medicine, Beşevler, Ankara 06500, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kwon BK, Casha S, Hurlbert RJ, Yong VW. Inflammatory and structural biomarkers in acute traumatic spinal cord injury. Clin Chem Lab Med 2011; 49:425-33. [DOI: 10.1515/cclm.2011.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Ismailoğlu O, Oral B, Görgülü A, Sütçü R, Demir N. Neuroprotective effects of tamoxifen on experimental spinal cord injury in rats. J Clin Neurosci 2010; 17:1306-10. [PMID: 20630763 DOI: 10.1016/j.jocn.2010.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/23/2009] [Accepted: 01/04/2010] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the effects of tamoxifen on tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta) levels and ultrastructural changes in rats with spinal cord injury. Rats were divided into four groups: control group (laminectomy only), trauma group (laminectomy+spinal trauma), tamoxifen group (laminectomy+spinal trauma+tamoxifen), and vehicle group (laminectomy+spinal trauma+vehicle). Spinal cords were extirpated at the T(7)-T(12) level and tissue samples from the spinal cords were gathered for TNF-alpha and IL-1beta measurements at 1 and 6hours. Spinal cords harvested at 6 hours were evaluated for ultrastructural changes. TNF-alpha and IL-1beta levels at 6 hours were significantly lower in the tamoxifen group than in the trauma group. Electron microscopic examination of tissue from the trauma group revealed gross cell deformities with widespread edema of all structures as well as severe edema in the neuropil. At 6 hours after trauma, these ultrastructural changes were less marked in the tamoxifen group. Our findings support a neuroprotective and restorative role for tamoxifen in the context of secondary pathological biochemical events after SCI.
Collapse
Affiliation(s)
- Ozgür Ismailoğlu
- Department of Neurosurgery, School of Medicine, Süleyman Demirel University, Cünür, Isparta 32260, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Tai PA, Chang CK, Niu KC, Lin MT, Chiu WT, Lin CM. Attenuating Experimental Spinal Cord Injury by Hyperbaric Oxygen: Stimulating Production of Vasculoendothelial and Glial Cell Line-Derived Neurotrophic Growth Factors and Interleukin-10. J Neurotrauma 2010; 27:1121-7. [DOI: 10.1089/neu.2009.1162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Po-An Tai
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Buddhist Tzu Chi General Hospital, Taipei, Taiwan
| | - Chen-Kuei Chang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University and Municipal Wan-Fan Hospital, Taipei, Taiwan
| | - Ko-Chi Niu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Mao-Tsun Lin
- Graduate Institute of Injury Prevention and Control, Taipei Medical University and Municipal Wan-Fan Hospital, Taipei, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Ta Chiu
- Graduate Institute of Injury Prevention and Control, Taipei Medical University and Municipal Wan-Fan Hospital, Taipei, Taiwan
| | - Chien-Min Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
High mobility group box 1 is upregulated after spinal cord injury and is associated with neuronal cell apoptosis. Spine (Phila Pa 1976) 2010; 35:1109-15. [PMID: 20195207 DOI: 10.1097/brs.0b013e3181bd14b6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Cerebrocortical culture and rat spinal cord injury (SCI) model were used to examine the expression of high mobility group box 1 (HMGB1), TNF-alpha, and Rage by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical examination. In addition, relationship between upregulation of HMGB1 and neural cells apoptosis was evaluated after SCI. OBJECTIVE To evaluate the upregulation of HMGB1, TNF-alpha, and Rage after SCI. SUMMARY OF BACKGROUND DATA It is known that the mode of delayed neuronal cell death after SCI is apoptosis. Apoptotic cell death is influenced by several injury-promoting factors which include pro-inflammatory cytokines. Inhibition of apoptosis promotes neurologic improvement following SCI. However, the factors which transmit inflammatory signaling following SCI have not yet been clarified in detail. HMGB1 was reported as an important mediator of inflammation. We examined the expression of HMGB1, TNF-alpha and Rage following acute SCI. METHODS Expression of HMGB1, TNF-alpha and Rage was examined by RT-PCR and immunohistochemical examination. Apoptotic cell death was evaluated by TUNEL methods. RESULTS HMGB1 was exported from nuclei to cytoplasm in active caspase-3 positive apoptotic cell in vitro. In addition, HMGB1, TNF-alpha, and Rage was expressed in same cell after NMDA treatment. RT-PCR revealed that expression of HMGB1 and TNF-alpha was upregulated following SCI. Immunohistochemical examination revealed that the numbers of HMGB1-, TNF-alpha-, and Rage-positive cells were increased following SCI. The number of TUNEL-positive cells was significantly increased at 12 hours after injury, and was maximal at 72 hours after injury. However, HMGB1- and TNF-alpha-positive cells were maximal in number 48 hours after injury, while Rage-positive cells were maximal in number at 24 hours after injury. These data suggest that HMGB1, TNF-alpha, and Rage were upregulated following SCI but preceding the apoptotic cell death. CONCLUSION Our findings suggest that HMGB1 play a role in the induction of apoptosis via inflammatory reaction.
Collapse
|
28
|
Cantarella G, Di Benedetto G, Scollo M, Paterniti I, Cuzzocrea S, Bosco P, Nocentini G, Riccardi C, Bernardini R. Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice. Neuropsychopharmacology 2010; 35:1302-14. [PMID: 20107429 PMCID: PMC3055339 DOI: 10.1038/npp.2009.234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/30/2022]
Abstract
Spinal cord injury (SCI) is a major cause of disability, its clinical outcome depending mostly on the extent of damage in which proapoptotic cytokines have a crucial function. In particular, the inducers of apoptosis belonging to TNF receptor superfamily and their respective ligands are upregulated after SCI. In this study, the function of the proapoptotic cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in SCI-induced damage was investigated in the mouse. SCI resulted in severe trauma, characterized by prominent inflammation-related damage and apoptosis. Immunostaining for TRAIL and its receptor DR5 was found in the white and gray matter of the perilesional area, as also confirmed by western blotting experiments. Immunoneutralization of TRAIL resulted in improved functional recovery, reduced apoptotic cell number, modulation of molecules involved in the inflammatory response (FasL, TNF-alpha, IL-1beta, and MPO), and the corresponding signaling (caspase-8 and -3 activation, JNK phosphorylation, Bax, and Bcl-2 expression). As glucocorticoid-induced TNF receptor superfamily-related protein (GITR) activated by its ligand (GITRL) contributes to SCI-related inflammation, interactions between TRAIL and GITRL were investigated. SCI was associated with upregulated GITR and GITRL expression, a phenomenon prevented by anti-TRAIL treatment. Moreover, the expression of both TRAIL and DR5 was reduced in tissues from mice lacking the GITR gene (GITR(-/-)) in comparison with wild-type mice suggesting that TRAIL- and GITRL-activated pathways synergise in the development of SCI-related inflammatory damage. Characterization of new targets within such molecular systems may constitute a platform for innovative treatment of SCI.
Collapse
Affiliation(s)
- Giuseppina Cantarella
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| | - Giulia Di Benedetto
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
- ‘Oasi' Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Mimmo Scollo
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| | - Irene Paterniti
- Department of Pharmacology, University of Messina School of Medicine, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Pharmacology, University of Messina School of Medicine, Messina, Italy
| | - Paolo Bosco
- ‘Oasi' Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Giuseppe Nocentini
- Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Carlo Riccardi
- Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Renato Bernardini
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| |
Collapse
|
29
|
Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H, Umedaly H, Giffin M, Street J, Boyd MC, Paquette SJ, Fisher CG, Dvorak MF. Cerebrospinal Fluid Inflammatory Cytokines and Biomarkers of Injury Severity in Acute Human Spinal Cord Injury. J Neurotrauma 2010; 27:669-82. [DOI: 10.1089/neu.2009.1080] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Brian K. Kwon
- Combined Neurosurgical and Orthopaedic Spine Program (CNOSP), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthea M.T. Stammers
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Lise M. Belanger
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Arlene Bernardo
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Donna Chan
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Carole M. Bishop
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Gerard P. Slobogean
- Combined Neurosurgical and Orthopaedic Spine Program (CNOSP), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbin Zhang
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Hamed Umedaly
- Department of Anaesthesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mitch Giffin
- Department of Anaesthesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- Combined Neurosurgical and Orthopaedic Spine Program (CNOSP), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael C. Boyd
- Combined Neurosurgical and Orthopaedic Spine Program (CNOSP), Department of Surgery, Division of Neurosurgery, University of British Columbia Vancouver, British Columbia, Canada
| | - Scott J. Paquette
- Combined Neurosurgical and Orthopaedic Spine Program (CNOSP), Department of Surgery, Division of Neurosurgery, University of British Columbia Vancouver, British Columbia, Canada
| | - Charles G. Fisher
- Combined Neurosurgical and Orthopaedic Spine Program (CNOSP), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcel F. Dvorak
- Combined Neurosurgical and Orthopaedic Spine Program (CNOSP), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Dexamethasone minimizes the risk of cranial nerve injury during CEA. J Vasc Surg 2009; 49:99-102; discussion 103. [DOI: 10.1016/j.jvs.2008.08.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 02/03/2023]
|
31
|
Pettigrew LC, Kindy MS, Scheff S, Springer JE, Kryscio RJ, Li Y, Grass DS. Focal cerebral ischemia in the TNFalpha-transgenic rat. J Neuroinflammation 2008; 5:47. [PMID: 18947406 PMCID: PMC2583993 DOI: 10.1186/1742-2094-5-47] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 10/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine if chronic elevation of the inflammatory cytokine, tumor necrosis factor-alpha (TNFalpha), will affect infarct volume or cortical perfusion after focal cerebral ischemia. METHODS Transgenic (TNFalpha-Tg) rats overexpressing the murine TNFalpha gene in brain were prepared by injection of mouse DNA into rat oocytes. Brain levels of TNFalpha mRNA and protein were measured and compared between TNFalpha-Tg and non-transgenic (non-Tg) littermates. Mean infarct volume was calculated 24 hours or 7 days after one hour of reversible middle cerebral artery occlusion (MCAO). Cortical perfusion was monitored by laser-Doppler flowmetry (LDF) during MCAO. Cortical vascular density was quantified by stereology. Post-ischemic cell death was assessed by immunohistochemistry and regional measurement of caspase-3 activity or DNA fragmentation. Unpaired t tests or analysis of variance with post hoc tests were used for comparison of group means. RESULTS In TNFalpha-Tg rat brain, the aggregate mouse and rat TNFalpha mRNA level was fourfold higher than in non-Tg littermates and the corresponding TNFalpha protein level was increased fivefold (p CONCLUSION Chronic elevation of TNFalpha protein in brain increases susceptibility to ischemic injury but has no effect on vascular density. TNFalpha-Tg animals are more susceptible to apoptotic cell death after MCAO than are non-Tg animals. We conclude that the TNFalpha-Tg rat is a valuable new tool for the study of cytokine-mediated ischemic brain injury.
Collapse
Affiliation(s)
- L Creed Pettigrew
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- Veterans Administration (VA) Medical Center, Lexington, Kentucky, USA
| | - Mark S Kindy
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Stephen Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Joe E Springer
- Department of Physical Medicine & Rehabilitation, University of Kentucky, Lexington, Kentucky, USA
| | - Richard J Kryscio
- Department of Statistics and School of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Yizhao Li
- Jinan Great Wall Hospital, Jinan, Shandong, PR China
| | | |
Collapse
|
32
|
Genovese T, Mazzon E, Esposito E, Di Paola R, Caminiti R, Meli R, Bramanti P, Cuzzocrea S. Effect of thalidomide on signal transduction pathways and secondary damage in experimental spinal cord trauma. Shock 2008; 30:231-40. [PMID: 18197140 DOI: 10.1097/shk.0b013e318162d290] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TNF-alpha seems to play a central role in the inflammatory process of spinal cord injury. We tested the neuroprotective effects of thalidomide, an immunomodulatory agent that inhibits TNF-alpha production, which have not been investigated so far. The aim of our study was to evaluate the therapeutic efficacy of thalidomide in an experimental model of spinal cord trauma, which was induced by the application of vascular clips (force of 24 g) to the dura via a 4-level T5 to T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and cytokine production that is followed by recruitment of other inflammatory cells, production of a range of inflammation mediators, tissue damage, apoptosis, and disease. Thalidomide treatment significantly reduced the degree of: 1) spinal cord inflammation and tissue injury (histological score); 2) neutrophil infiltration (myeloperoxidase evaluation); 3) iNOS, nitrotyrosine, lipid peroxidation, and cytokine expression (TNF-alpha and IL-1beta); 4) apoptosis (terminal deoxynucleotidyltransferase-mediated UTP end labeling staining, and Bax and Bcl-2 expression); and 5) nuclear factor-kappaB activation. In a separate set of experiments, we have also clearly demonstrated that thalidomide significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with thalidomide reduces the development of inflammation and tissue injury events associated with spinal cord trauma.
Collapse
Affiliation(s)
- Tiziana Genovese
- Istituto di Ricovero e Cura a Carattere Scientifico, Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muià C, Esposito E, Bramanti P, Cuzzocrea S. TNF-α BLOCKAGE IN A MOUSE MODEL OF SCI. Shock 2008; 29:32-41. [PMID: 17621255 DOI: 10.1097/shk.0b013e318059053a] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of our study was to evaluate in vivo the therapeutic efficacy of genetic inhibition of TNF-alpha using TNF-R1 knockout mice in an experimental model of spinal cord trauma. Spinal cord injury was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. To elucidate whether the observed anti-inflammatory status is related to the inhibition of TNF-alpha, we also investigated the effect of infliximab, a TNF-alpha-soluble receptor construct, on spinal cord damage. Pharmacological and genetic TNF-alpha inhibition significantly reduced the degree of (1) spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (evaluated by myeloperoxidase activity), (3) cytokine expression (TNF-alpha), (4) and apoptosis (terminal deoxynucleotidyltransferase-mediated uridine triphosphate end labeling staining, Bax, Bcl-2, and Fas-L expression). In a separate set of experiments, we have also demonstrated that TNF-alpha inhibition significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results demonstrate that inhibition of TNF-alpha reduces the development of inflammation and tissue injury associated with spinal cord trauma, suggesting a possible role of TNF-alpha on the pathogenesis of spinal cord injury.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Genovese T, Mazzon E, Crisafulli C, Esposito E, Di Paola R, Muià C, Di Bella P, Meli R, Bramanti P, Cuzzocrea S. Combination of dexamethasone and etanercept reduces secondary damage in experimental spinal cord trauma. Neuroscience 2007; 150:168-81. [PMID: 17945432 DOI: 10.1016/j.neuroscience.2007.06.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/11/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022]
Abstract
The aim of our study was to evaluate the therapeutic efficacy of combination therapy with etanercept and dexamethasone (DEX) in vivo in experimental murine model of spinal cord trauma, which was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and cytokine production followed by recruitment of other inflammatory cells, production of inflammation mediators, tissue damage, apoptosis and disease. Treatment of the mice with etanercept (1.25 mg/kg) and DEX (0.025 mg/kg) when administered as a combination therapy but not as a single treatment significantly reduced the degree of (1) spinal cord inflammation and tissue injury (histological score), (2) infiltration of neutrophils (MPO evaluation), (3) inducible nitric oxide synthase, nitrotyrosine, and cytokines expression (tumor necrosis factor-alpha and interleukin-1 beta), (4) and apoptosis (Terminal deoxynucleotidyltransferase-mediated UTP end labeling staining, Fas-ligand expression and Bax and Bcl-2 expression). In a separate set of experiments we have also clearly demonstrated that the combination therapy significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate for the first time that strategies targeting multiple proinflammatory pathways may be more effective than a single effector molecule for the treatment of spinal cord trauma.
Collapse
Affiliation(s)
- T Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica, Policlinico Universitario Via C. Valeria, Gazzi, 98100 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Francés R, Chiva M, Sánchez E, González-Navajas JM, Llovet T, Zapater P, Soriano G, Muñoz C, Balanzó J, Pérez-Mateo M, Song XY, Guarner C, Such J. Bacterial translocation is downregulated by anti-TNF-alpha monoclonal antibody administration in rats with cirrhosis and ascites. J Hepatol 2007; 46:797-803. [PMID: 17321632 DOI: 10.1016/j.jhep.2006.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS TNF-alpha is involved in the development of bacterial translocation in rats with cirrhosis. The aim of the current study was to evaluate the effect of anti-TNF-alpha mAb treatment on the incidence of bacterial translocation and systemic infections in rats with cirrhosis and ascites. METHODS Thirty rats with cirrhosis and ascites were randomly assigned to receive two intraperitoneal doses of anti-TNF-alpha mAb, distilled water or immunoglobulin on days 0 and 4. On day 10, a laparotomy was performed. RESULTS One out of 11 animals receiving anti-TNF-alpha mAb treatment, 7 out of 10 of the placebo group (p<0.01), and 5 out of 9 of the IgG group developed bacterial translocation (p<0.05). A significantly reduced number of systemic infections were observed in animals receiving anti TNF-alpha mAb treatment vs animals receiving placebo (p<0.01). TNF-alpha in serum at laparotomy in animals receiving anti-TNF-alpha mAb was higher than that in the rest of groups and was also higher in the overall series of animals showing bacterial translocation. CONCLUSIONS In the experimental model of CCl(4)-induced rat with cirrhosis and ascitic fluid, anti-TNF-alpha mAb administration decreases the incidence of bacterial translocation, in a TNF-alpha/sTNF-alpha receptor-independent manner, without increasing the risk of systemic infections.
Collapse
Affiliation(s)
- Rubén Francés
- CIBER HEPAD, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This special report traces the path of spinal cord injury (SCI) from ancient times through the present and provides an optimistic overview of promising clinical trials and avenues of basic research. The spinal cord injuries of Lord Admiral Sir Horatio Nelson, President James A. Garfield, and General George Patton provide an interesting perspective on the evolution of the standard of care for SCI. The author details the contributions of a wide spectrum of professionals in the United States, Europe, and Australia, as well as the roles of various government and professional organizations, legislation, and overall advances in surgery, anesthesia, trauma care, imaging, pharmacology, and infection control, in the advancement of care for the individual with SCI.
Collapse
Affiliation(s)
- William H Donovan
- The Institute for Rehabilitation and Research, Houston, Texas, Houston, Texas, USA.
| |
Collapse
|
37
|
Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muià C, Bramanti P, Cuzzocrea S. Immunomodulatory effects of etanercept in an experimental model of spinal cord injury. J Pharmacol Exp Ther 2006; 316:1006-16. [PMID: 16303916 DOI: 10.1124/jpet.105.097188] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Etanercept is a tumor necrosis factor antagonist with anti-inflammatory effects. The aim of our study was to evaluate for the first time the therapeutic efficacy of in vivo inhibition of tumor necrosis factor-alpha (TNF-alpha) in experimental model of spinal cord trauma, which was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and cytokine production that it is followed by recruitment of other inflammatory cells, such as production of a range of inflammation mediators, tissue damage, apoptosis, and disease. Treatment of the mice with etanercept significantly reduced the degree of 1) spinal cord inflammation and tissue injury (histological score); 2) neutrophil infiltration (myeloperoxidase evaluation); 3) inducible nitric-oxide synthase, nitrotyrosine, cyclooxygenase-2, and cytokines expression (TNF-alpha and interleukin-1beta); and 4) apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Bax and Bcl-2 expression). In a separate set of experiment, we have also clearly demonstrated that TNF-alpha inhibitor significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with etanercept reduces the development of inflammation and tissue injury events associated with spinal cord trauma.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina Italy
| | | | | | | | | | | | | |
Collapse
|