1
|
Ma J, Zhang J, Xi L, Qu J, Ma S, Yao S, Liu J, Ren W. Tertiary butylhydroquinone regulates oxidative stress in spleen injury induced by gas explosion via the Nrf2/HO-1 signaling pathway. Sci Rep 2025; 15:11987. [PMID: 40200066 PMCID: PMC11978986 DOI: 10.1038/s41598-025-97096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/02/2025] [Indexed: 04/10/2025] Open
Abstract
Gas explosion is a recurrent event in coal mining that cause severe spleen damage. This study aimed to investigate the role and mechanism of oxidative stress in gas explosion-induced spleen injury. 120 male Sprague-Dawley (SD) rats were randomly divided into a control group (NC), a gas explosion-induced spleen injury model group (Model), an Nrf2 inhibitor group (Model + ATRA), and an Nrf2 induction group (Model + TBHQ). After explosion, the rats of the inhibitor group and induction group were immediately given intraperitoneal injection of all-trans-retinoicacid (ATRA, 5 mg/kg) or tertiary butylhydro-quinone (TBHQ, 1 mg/kg) once. Then, the rats were anesthetized with blood taken from the abdominal aorta at 24 h, 72 h and 7 days. The results showed that gas explosion reduced the spleen index. The expression of oxidative stress-related genes and proteins Nrf2, HO-1, COX2 and GPX4 were increased significantly (P < 0.05) after gas explosion. Compared with the model group, TBHQ improved the spleen index, and reduced inflammation. Moreover, the expression of inflammatory factor IL-6 and ROS was decreased (P < 0.05), HMOX1 and the expression of oxidative stress-related genes and proteins were increased (P < 0.05), but the opposite results were observed in the inhibitor group. Taken together, we firstly found that TBHQ may regulate the degree of oxidative stress in spleen injury induced by gas explosion through the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jing Ma
- The Third Affiliated Hospital of Xinxiang Medical University, No. 83 Hualan Road, Xinxiang, 453003, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Junhe Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, No. 83 Hualan Road, Xinxiang, 453003, Henan, China.
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Lingling Xi
- The Third Affiliated Hospital of Xinxiang Medical University, No. 83 Hualan Road, Xinxiang, 453003, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Junxing Qu
- The Third Affiliated Hospital of Xinxiang Medical University, No. 83 Hualan Road, Xinxiang, 453003, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Shuangping Ma
- The Third Affiliated Hospital of Xinxiang Medical University, No. 83 Hualan Road, Xinxiang, 453003, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, No. 83 Hualan Road, Xinxiang, 453003, Henan, China.
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Rhind SG, Shiu MY, Vartanian O, Tenn C, Nakashima A, Jetly R, Yang Z, Wang KK. Circulating Brain-Reactive Autoantibody Profiles in Military Breachers Exposed to Repetitive Occupational Blast. Int J Mol Sci 2024; 25:13683. [PMID: 39769446 PMCID: PMC11728191 DOI: 10.3390/ijms252413683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers (n = 18) with extensive blast exposure against unexposed military controls (n = 19). Using high-sensitivity immunoassays, we quantified IgG and IgM autoantibodies targeting glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and pituitary (PIT) antigens. Breachers exhibited significantly elevated levels of anti-GFAP IgG (p < 0.001) and anti-PIT IgG (p < 0.001) compared to controls, while anti-MBP autoantibody levels remained unchanged. No significant differences were observed for any IgM autoantibody measurements. These patterns suggest that repetitive blast exposure induces a chronic, adaptive immune response rather than a short-lived acute phase. The elevated IgG autoantibodies highlight the vulnerability of astrocytes, myelin, and the hypothalamic-pituitary axis to ongoing immune-mediated injury following repeated blast insults, likely reflecting sustained blood-brain barrier disruption and neuroinflammatory processes. Our findings underscore the potential of CNS-targeted IgG autoantibodies as biomarkers of cumulative brain injury and immune dysregulation in blast-exposed populations. Further research is warranted to validate these markers in larger, more diverse cohorts, and to explore their utility in guiding interventions aimed at mitigating neuroinflammation, neuroendocrine dysfunction, and long-term neurodegenerative risks in military personnel and similarly exposed groups.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | - Zhihui Yang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
| | - Kevin K. Wang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, The Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
3
|
Kobeissy F, Arja RD, Munoz JC, Shear DA, Gilsdorf J, Zhu J, Yadikar H, Haskins W, Tyndall JA, Wang KK. The game changer: UCH-L1 and GFAP-based blood test as the first marketed in vitro diagnostic test for mild traumatic brain injury. Expert Rev Mol Diagn 2024; 24:67-77. [PMID: 38275158 DOI: 10.1080/14737159.2024.2306876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Major organ-based in vitro diagnostic (IVD) tests like ALT/AST for the liver and cardiac troponins for the heart are established, but an approved IVD blood test for the brain has been missing, highlighting a gap in medical diagnostics. AREAS COVERED In response to this need, Abbott Diagnostics secured FDA clearance in 2021 for the i-STAT Alinity™, a point-of-care plasma blood test for mild traumatic brain injury (TBI). BioMerieux VIDAS, also approved in Europe, utilizes two brain-derived protein biomarkers: neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP). These biomarkers, which are typically present in minimal amounts in healthy individuals, are instrumental in diagnosing mild TBI with potential brain lesions. The study explores how UCH-L1 and GFAP levels increase significantly in the bloodstream following traumatic brain injury, aiding in early and accurate diagnosis. EXPERT OPINION The introduction of the i-STAT Alinity™ and the Biomerieux VIDAS TBI blood tests mark a groundbreaking development in TBI diagnosis. It paves the way for the integration of TBI biomarker tools into clinical practice and therapeutic trials, enhancing the precision medicine approach by generating valuable data. This advancement is a critical step in addressing the long-standing gap in brain-related diagnostics and promises to revolutionize the management and treatment of mild TBI.
Collapse
Affiliation(s)
- Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rawad Daniel Arja
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jennifer C Munoz
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jiepei Zhu
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | | | | | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Muresanu DF, Sharma A, Tian ZR, Lafuente JV, Nozari A, Feng L, Buzoianu AD, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells Attenuates Heat Stress-Induced Exacerbation of Neuropathology Following Brain Blast Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:231-270. [PMID: 37480463 DOI: 10.1007/978-3-031-32997-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Blast brain injury (bBI) following explosive detonations in warfare is one of the prominent causes of multidimensional insults to the central nervous and other vital organs injury. Several military personnel suffered from bBI during the Middle East conflict at hot environment. The bBI largely occurs due to pressure waves, generation of heat together with release of shrapnel and gun powders explosion with penetrating and/or impact head trauma causing multiple brain damage. As a result, bBI-induced secondary injury causes breakdown of the blood-brain barrier (BBB) and edema formation that further results in neuronal, glial and axonal injuries. Previously, we reported endocrine imbalance and influence of diabetes on bBI-induced brain pathology that was significantly attenuated by nanowired delivery of cerebrolysin in model experiments. Cerebrolysin is a balanced composition of several neurotrophic factors, and active peptide fragment is capable of neuroprotection in several neurological insults. Exposure to heat stress alone causes BBB damage, edema formation and brain pathology. Thus, it is quite likely that hot environment further exacerbates the consequences of bBI. Thus, novel therapeutic strategies using nanodelivery of stem cell and cerebrolysin may further enhance superior neuroprotection in bBI at hot environment. Our observations are the first to show that combined nanowired delivery of mesenchymal stem cells (MSCs) and cerebrolysin significantly attenuated exacerbation of bBI in hot environment and induced superior neuroprotection, not reported earlier. The possible mechanisms of neuroprotection with MSCs and cerebrolysin in bBI are discussed in the light of current literature.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Harper MM, Gramlich OW, Elwood BW, Boehme NA, Dutca LM, Kuehn MH. Immune responses in mice after blast-mediated traumatic brain injury TBI autonomously contribute to retinal ganglion cell dysfunction and death. Exp Eye Res 2022; 225:109272. [PMID: 36209837 DOI: 10.1016/j.exer.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI). METHODS C57BL/6J and B6.129S7-Rag1tm1Mom/J (Rag-/-) mice were exposed to one blast injury of 140 kPa. A separate cohort of C57BL/6J mice was exposed to sham-blast. Four weeks following bTBI mice were euthanized, and splenocytes were collected. Adoptive transfer (AT) of splenocytes into naïve C57BL/6J recipient mice was accomplished via tail vein injection. Three groups of mice were analyzed: those receiving AT of splenocytes from C57BL/6J mice exposed to blast (AT-TBI), those receiving AT of splenocytes from C57BL/6J mice exposed to sham (AT-Sham), and those receiving AT of splenocytes from Rag-/- mice exposed to blast (AT-Rag-/-). The visual function of recipient mice was analyzed with the pattern electroretinogram (PERG), and the optomotor response (OMR). The structure of the retina was evaluated using optical coherence tomography (OCT), and histologically using BRN3A-antibody staining. RESULTS Analysis of the PERG showed a decreased amplitude two months post-AT that persisted for the duration of the study in AT-TBI mice. We also observed a significant decrease in the retinal thickness of AT-TBI mice two months post-AT compared to sham, but not at four or six months post-AT. The OMR response was significantly decreased in AT-TBI mice 5- and 6-months post-AT. BRN3A staining showed a loss of RGCs in AT-TBI and AT-Rag-/- mice. CONCLUSION These results suggest that the immune system contributes to chronic RGC dysfunction following bTBI.
Collapse
Affiliation(s)
- Matthew M Harper
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Biology, And Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA.
| | - Oliver W Gramlich
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Benjamin W Elwood
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Nickolas A Boehme
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Laura M Dutca
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Markus H Kuehn
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
6
|
Zhang M, Sun Y, Ding C, Hong S, Li N, Guan Y, Zhang L, Dong X, Cao J, Yao W, Ren W, Yao S. Metformin mitigates gas explosion‑induced blast lung injuries through AMPK‑mediated energy metabolism and NOX2‑related oxidation pathway in rats. Exp Ther Med 2022; 24:529. [PMID: 35837050 PMCID: PMC9257965 DOI: 10.3892/etm.2022.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gas explosions are a recurrent event in coal mining that cause severe pulmonary damage due to shock waves, and there is currently no effective targeted treatment. To illustrate the mechanism of gas explosion-induced lung injury and to explore strategies for blast lung injury (BLI) treatment, the present study used a BLI rat model and supplementation with metformin (MET), an AMP-activated protein kinase (AMPK) activator, at a dose of 10 mg/kg body weight by intraperitoneal injection. Protein expression levels were detected by western blotting. Significantly decreased expression of phosphorylated (p)-AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and metabolic activity were observed in the BLI group compared with those in the control group. However, the mitochondrial stability, metabolic activity and expression of p-AMPK and PGC1α were elevated following MET treatment. These results suggested that MET could attenuate gas explosion-induced BLI by improving mitochondrial homeostasis. Meanwhile, high expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX2) and low expression of catalase (CAT) were observed in the BLI group. The expression levels of NOX2 and CAT were restored in the BLI + MET group relative to changes in the BLI group, and the accumulation of oxidative stress was successfully reversed following MET treatment. Overall, these findings revealed that MET could alleviate BLI by activating the AMPK/PGC1α pathway and inhibiting oxidative stress caused by NOX2 activation.
Collapse
Affiliation(s)
- Miao Zhang
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yunzhe Sun
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chunjie Ding
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shan Hong
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ning Li
- Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yi Guan
- Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology, National Health Commission of China, Maternal and Child Care Hospital of Shandong Province, Shandong University, Jinan, Shandong 250001, P.R. China
| | - Xinwen Dong
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, P.R. China
| | - Wu Yao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wenjie Ren
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Sanqiao Yao
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
7
|
Flanagan G, Velez T, Gu W, Singman E. The Relationship Between Severe Visual Acuity Loss, Traumatic Brain Injuries, and Ocular Injuries in American Service Members From 2001 to 2015. Mil Med 2021; 185:e1576-e1583. [PMID: 32627822 DOI: 10.1093/milmed/usaa154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Although traumatic brain injury (TBI) is known to cause many visual problems, the correlation between the extent of severe visual acuity loss (SVAL) and severity of TBI has not been widely explored. In this retrospective analysis, combined information from Department of Defense (DoD)/Veterans Affairs ocular injury and TBI repositories were used to evaluate the relationship between chronic SVAL, TBI, ocular injuries, and associated ocular sequelae for U.S. service members serving between 2001 and 2015. MATERIALS AND METHODS The Defense and Veterans Eye Injury and Vision Registry (DVEIVR) is an initiative led by the DoD and Veterans Affairs that consists of clinical and related data for service members serving in theater since 2001. The Defense and Veterans Brain Injury Center (DVBIC) is the DoD's office for tracking TBI data in the military and maintains data on active-duty service members with a TBI diagnosis since 2000. Longitudinal data from these 2 resources for encounters between February 2001 and October 2015 were analyzed to understand the relation between SVAL, and TBI while adjusting for ocular covariates such as open globe injury (OGI), disorders of the anterior segment and disorders of the posterior segment in a logistic regression model. TBI cases in DVEIVR were identified using DVBIC data and classified according to International Statistical Classification of Diseases criteria established by DVBIC. Head trauma and other open head wounds (OOHW) were also included. SVAL cases in DVEIVR were identified using both International Statistical Classification of Diseases criteria for blindness and low vision as well as visual acuity test data recorded in DVEIVR. RESULTS Data for a total of 25,193 unique patients with 88,996 encounters were recorded in DVEIVR from February, 2001 to November, 2015. Of these, 7,217 TBI and 1,367 low vision cases were identified, with 638 patients experiencing both. In a full logistic model, neither UTBI nor differentiated TBI (DTBI, ie, mild, moderate, severe, penetrating, or unclassified) were significant risk factors for SVAL although ocular injuries (disorders of the anterior segment, disorders of the posterior segment, and OGI) and OOHW were significant. CONCLUSION Any direct injury to the eye or head risks SVAL but the location and severity will modify that risk. After adjusting for OGIs, OOHW and their sequelae, TBI was found to not be a significant risk factor for SVAL in patients recorded in DVEIVR. Further research is needed to explore whether TBI is associated with more moderate levels of vision acuity loss.
Collapse
Affiliation(s)
- Gerald Flanagan
- Computer Technology Associates, Inc. 543 W. Graaf Ave, Ridgecrest, CA 93555
| | - Tom Velez
- Computer Technology Associates, Inc. 543 W. Graaf Ave, Ridgecrest, CA 93555
| | - Weidong Gu
- Vision Center of Excellence Defense Health Agency Research and Development, Directorate Defense Health Agency, 1335 East-West Highway, SSMC1 Suite 9-100, Silver Spring, MD 20910
| | - Eric Singman
- Wilmer Eye Institute Johns Hopkins Hospital Wilmer B29 @ Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287
| |
Collapse
|
8
|
Vartanian O, Tenn C, Rhind SG, Nakashima A, Di Battista AP, Sergio LE, Gorbet DJ, Fraser DD, Colantonio A, King K, Lam Q, Saunders D, Jetly R. Blast in Context: The Neuropsychological and Neurocognitive Effects of Long-Term Occupational Exposure to Repeated Low-Level Explosives on Canadian Armed Forces' Breaching Instructors and Range Staff. Front Neurol 2020; 11:588531. [PMID: 33343492 PMCID: PMC7744759 DOI: 10.3389/fneur.2020.588531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Currently, there is strong interest within the military to better understand the effects of long-term occupational exposure to repeated low-level blast on health and performance. To gain traction on the chronic sequelae of blast, we focused on breaching—a tactical technique for gaining entry into closed/blocked spaces by placing explosives and maintaining a calculated safe distance from the detonation. Using a cross-sectional design, we compared the neuropsychological and neurocognitive profiles of breaching instructors and range staff to sex- and age-matched Canadian Armed Forces (CAF) controls. Univariate tests demonstrated that breaching was associated with greater post-concussive symptoms (Rivermead Post Concussion Symptoms Questionnaire) and lower levels of energy (RAND SF-36). In addition, breaching instructors and range staff were slower on a test that requires moving and thinking simultaneously (i.e., cognitive-motor integration). Next, using a multivariate approach, we explored the impact of other possible sources of injury, including concussion and prior war-zone deployment on the same outcomes. Concussion history was associated with higher post-concussive scores and musculoskeletal problems, whereas deployment was associated with higher post-concussive scores, but lower energy and greater PTSD symptomatology (using PCL-5). Our results indicate that although breaching, concussion, and deployment were similarly correlated with greater post-concussive symptoms, concussion history appears to be uniquely associated with altered musculoskeletal function, whereas deployment history appears to be uniquely associated with lower energy and risk of PTSD. We argue that the broader injury context must, therefore, be considered when studying the impact of repetitive low-level explosives on health and performance in military members.
Collapse
Affiliation(s)
- Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Alex P Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Douglas D Fraser
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | | | - Kristen King
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Quan Lam
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Saunders
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Rakesh Jetly
- Canadian Forces Health Services, Ottawa, ON, Canada
| |
Collapse
|
9
|
Miansari M, Mehta MD, Schilling JM, Kurashina Y, Patel HH, Friend J. Inducing Mild Traumatic Brain Injury in C. elegans via Cavitation-Free Surface Acoustic Wave-Driven Ultrasonic Irradiation. Sci Rep 2019; 9:12775. [PMID: 31485018 PMCID: PMC6726767 DOI: 10.1038/s41598-019-47295-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury is an all-too-common outcome from modern warfare and sport, and lacks a reproducible model for assessment of potential treatments and protection against it. Here we consider the use of surface acoustic wave (SAW) irradiation of C. elegans worms—without cavitation—as a potential, ethically reasonable animal-on-a-chip model for inducing traumatic brain injury in an animal, producing significant effects on memory and learning that could prove useful in a model that progress from youth to old age in but a few weeks. We show a significant effect by SAW on the ability of worms to learn post-exposure through associative learning chemotaxis. At higher SAW intensity, we find immediate, thorough, but temporary paralysis of the worms. We further explore the importance of homogeneous exposure of the worms to the SAW-driven ultrasound, an aspect poorly controlled in past efforts, if at all, and demonstrate the absence of cavitation through a change in fluids from a standard media for the worms to the exceedingly viscous polyvinyl alcohol. Likewise, we demonstrate that acoustic streaming, when present, is not directly responsible for paralysis nor learning disabilities induced in the worm, but is beneficial at low amplitudes to ensuring homogeneous ultrasound exposure.
Collapse
Affiliation(s)
- Morteza Miansari
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive MC0411, La Jolla, 92093, CA, United States of America.,Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol, Iran.,Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol, Iran
| | - Meghna D Mehta
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr MC0801, La Jolla, 92093, California, USA
| | - Jan M Schilling
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr MC0801, La Jolla, 92093, California, USA
| | - Yuta Kurashina
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive MC0411, La Jolla, 92093, CA, United States of America.,School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuta, Yokohama, 4259, Japan
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr MC0801, La Jolla, 92093, California, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive MC0411, La Jolla, 92093, CA, United States of America.
| |
Collapse
|
10
|
Cheng Y, Pereira M, Raukar N, Reagan JL, Queseneberry M, Goldberg L, Borgovan T, LaFrance WC, Dooner M, Deregibus M, Camussi G, Ramratnam B, Quesenberry P. Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. J Cell Physiol 2019; 234:14377-14388. [PMID: 30644102 PMCID: PMC6478516 DOI: 10.1002/jcp.28139] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of death and acquired disability in adults and children. Identifying biomarkers for mild TBI (mTBI) that can predict functional impairments on neuropsychiatric and neurocognitive testing after head trauma is yet to be firmly established. Extracellular vesicles (EVs) are known to traffic from the brain to the oral cavity and can be detected in saliva. We hypothesize the genetic profile of salivary EVs in patients who have suffered head trauma will differ from normal healthy controls, thus constituting a unique expression signature for mTBI. We enrolled a total of 54 subjects including for saliva sampling, 23 controls with no history of head traumas, 16 patients enrolled from an outpatient concussion clinic, and 15 patients from the emergency department who had sustained a head trauma within 24 hr. We performed real‐time PCR of the salivary EVs of the 54 subjects profiling 96 genes from the TaqMan Human Alzheimer's disease array. Real‐time PCR analysis revealed 57 (15 genes, p < 0.05) upregulated genes in emergency department patients and 56 (14 genes,
p < 0.05) upregulated genes in concussion clinic patients when compared with controls. Three genes were upregulated in both the emergency department patients and concussion clinic patients: CDC2, CSNK1A1, and CTSD (
p < 0.05). Our results demonstrate that salivary EVs gene expression can serve as a viable source of biomarkers for mTBI. This study shows multiple Alzheimer's disease genes present after an mTBI.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mandy Pereira
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Neha Raukar
- Department of Emergency Medicine, Rhode Island Hospital, Providence, Rhode Island
| | - John L Reagan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mathew Queseneberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Laura Goldberg
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Theodor Borgovan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - W Curt LaFrance
- Department of Psychiatry/Neurology, Rhode Island Hospital, Providence, Rhode Island
| | - Mark Dooner
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Maria Deregibus
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Bharat Ramratnam
- Department of Medicine Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island
| | - Peter Quesenberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
11
|
Ojo JO, Crynen G, Reed JM, Ajoy R, Vallabhaneni P, Algamal M, Leary P, Rafi NG, Mouzon B, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Unique and Coincidental Plasma Biomarkers in Repetitive mTBI and AD Pathogenesis. Front Aging Neurosci 2018; 10:405. [PMID: 30618712 PMCID: PMC6305374 DOI: 10.3389/fnagi.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between repetitive mild traumatic brain injury (r-mTBI) and Alzheimer's disease (AD) is well-recognized. However, the precise nature of how r-mTBI leads to or precipitates AD pathogenesis is currently not understood. Plasma biomarkers potentially provide non-invasive tools for detecting neurological changes in the brain, and can reveal overlaps between long-term consequences of r-mTBI and AD. In this study we address this by generating time-dependent molecular profiles of response to r-mTBI and AD pathogenesis in mouse models using unbiased proteomic analyses. To model AD, we used the well-validated hTau and PSAPP(APP/PS1) mouse models that develop age-related tau and amyloid pathological features, respectively, and our well-established model of r-mTBI in C57BL/6 mice. Plasma were collected at different ages (3, 9, and 15 months-old for hTau and PSAPP mice), encompassing pre-, peri- and post-"onset" of the cognitive and neuropathological phenotypes, or at different timepoints after r-mTBI (24 h, 3, 6, 9, and 12 months post-injury). Liquid chromatography/mass spectrometry (LC-MS) approaches coupled with Tandem Mass Tag labeling technology were applied to develop molecular profiles of protein species that were significantly differentially expressed as a consequence of mTBI or AD. Mixed model ANOVA after Benjamini-Hochberg correction, and a stringent cut-off identified 31 proteins significantly changing in r-mTBI groups over time and, when compared with changes over time in sham mice, 13 of these were unique to the injured mice. The canonical pathways predicted to be modulated by these changes were LXR/RXR activation, production of nitric oxide and reactive oxygen species and complement systems. We identified 18 proteins significantly changing in PSAPP mice and 19 proteins in hTau mice compared to their wild-type littermates with aging. Six proteins were found to be significantly regulated in all three models, i.e., r-mTBI, hTau, and PSAPP mice compared to their controls. The top canonical pathways coincidently changing in all three models were LXR/RXR activation, and production of nitric oxide and reactive oxygen species. This work suggests potential biomarkers for TBI and AD pathogenesis and for the overlap between these two, and warrant targeted investigation in human populations. Data are available via ProteomeXchange with identifier PXD010664.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Rosa Ajoy
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Prashanthi Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Naomi G. Rafi
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
12
|
Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2018; 145:133-144. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Most areas of medicine use biomarkers in some capacity to aid in understanding how personal biology informs clinical care. This article draws upon the Rehabilomics research model as a translational framework for programs of precision rehabilitation and intervention research focused on linking personal biology to treatment response using biopsychosocial constructs that broadly represent function and that can be applied to many clinical populations with disability. The summary applies the Rehabilomics research framework to the population with traumatic brain injury (TBI) and emphasizes a broad vision for biomarker inclusion, beyond typical brain-derived biomarkers, to capture and/or reflect important neurological and non-neurological pathology associated with TBI as a chronic condition. Humoral signaling molecules are explored as important signaling and regulatory drivers of these chronic conditions and their impact on function. Importantly, secondary injury cascades involved in the humoral triad are influenced by the systemic response to TBI and the development of non-neurological organ dysfunction (NNOD). Biomarkers have been successfully leveraged in other medical fields to inform pre-randomization patient selection for clinical trials, however, this practice largely has not been utilized in TBI research. As such, the applicability of the Rehabilomics research model to contemporary clinical trials and comparative effectiveness research designs for neurological and rehabilitation populations is emphasized. Potential points of intervention to modify inflammation, hormonal, or neurotrophic support through rehabilitation interventions are discussed. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- A K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Neuroscience, University of Pittsburgh, USA; Center for Neuroscience, University of Pittsburgh, USA.
| | - R G Kumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Epidemiology, University of Pittsburgh, USA
| |
Collapse
|
13
|
Hansen KR, DeWalt GJ, Mohammed AI, Tseng HA, Abdulkerim ME, Bensussen S, Saligrama V, Nazer B, Eldred WD, Han X. Mild Blast Injury Produces Acute Changes in Basal Intracellular Calcium Levels and Activity Patterns in Mouse Hippocampal Neurons. J Neurotrauma 2018; 35:1523-1536. [PMID: 29343209 PMCID: PMC5998839 DOI: 10.1089/neu.2017.5029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) represents a serious public health concern. Although much is understood about long-term changes in cell signaling and anatomical pathologies associated with mTBI, little is known about acute changes in neuronal function. Using large scale Ca2+ imaging in vivo, we characterized the intracellular Ca2+ dynamics in thousands of individual hippocampal neurons using a repetitive mild blast injury model in which blasts were directed onto the cranium of unanesthetized mice on two consecutive days. Immediately following each blast event, neurons exhibited two types of changes in Ca2+ dynamics at different time scales. One was a reduction in slow Ca2+ dynamics that corresponded to shifts in basal intracellular Ca2+ levels at a time scale of minutes, suggesting a disruption of biochemical signaling. The second was a reduction in the rates of fast transient Ca2+ fluctuations at the sub-second time scale, which are known to be closely linked to neural activity. Interestingly, the blast-induced changes in basal Ca2+ levels were independent of the changes in the rates of fast Ca2+ transients, suggesting that blasts had heterogeneous effects on different cell populations. Both types of changes recovered after ∼1 h. Together, our results demonstrate that mTBI induced acute, heterogeneous changes in neuronal function, altering intracellular Ca2+ dynamics across different time scales, which may contribute to the initiation of longer-term pathologies.
Collapse
Affiliation(s)
- Kyle R. Hansen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Ali I. Mohammed
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Moona E. Abdulkerim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Venkatesh Saligrama
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Bobak Nazer
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | | | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
14
|
Di Pietro V, Yakoub KM, Scarpa U, Di Pietro C, Belli A. MicroRNA Signature of Traumatic Brain Injury: From the Biomarker Discovery to the Point-of-Care. Front Neurol 2018; 9:429. [PMID: 29963002 PMCID: PMC6010584 DOI: 10.3389/fneur.2018.00429] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious problem that causes high morbidity and mortality around the world. Currently, no reliable biomarkers are used to assess the severity and predict the recovery. Many protein biomarkers were extensively studied for diagnosis and prognosis of different TBI severities such as S-100β, glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), neurofilament light chain (NFL), cleaved tau protein (C-tau), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, none of these candidates is currently used in the clinical practice, due to relatively low sensitivity, for the diagnosis of mild TBI (mTBI) or mild to moderate TBI (MMTBI) patients who are clinically well and do not have a detectable intracranial pathology on the scans. MicroRNAs (miRNAs or miRs) are a class of small endogenous molecular regulators, which showed to be altered in different pathologies, including TBI and for this reason, their potential role in diagnosis, prognosis and therapeutic applications, is explored. Promising miRNAs such as miR-21, miR-16 or let-7i were identified as suitable candidate biomarkers for TBI and can differentiate mild from severe TBI. Also, they might represent new potential therapeutic targets. Identification of miRNA signature in tissue or biofluids, for several pathological conditions, is now possible thanks to the introduction of new high-throughput technologies such as microarray platform, Nanostring technologies or Next Generation Sequencing. This review has the aim to describe the role of microRNA in TBI and to explore the most commonly used techniques to identify microRNA profile. Understanding the strengths and limitations of the different methods can aid in the practical use of miRNA profiling for diverse clinical applications, including the development of a point-of-care device.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, IL, United States
| | - Kamal M Yakoub
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ugo Scarpa
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
15
|
Sandlin DS, Yu Y, Huang J, Zhang C, Arteaga AA, Lippincott JK, Peeden EO, Guyton RR, Chen L, Beneke LL, Allison JC, Zhu H, Zhou W. Autonomic responses to blast overpressure can be elicited by exclusively exposing the ear in rats. J Otol 2018; 13:44-53. [PMID: 30559764 PMCID: PMC6291641 DOI: 10.1016/j.joto.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022] Open
Abstract
Blast overpressure has become an increasing cause of brain injuries in both military and civilian populations. Though blast's direct effects on the cochlea and vestibular organs are active areas of study, little attention has been given to the ear's contribution to the overall spectrum of blast injury. Acute autonomic responses to blast exposure, including bradycardia and hypotension, can cause hypoxia and contribute to blast-induced neurotrauma. Existing literature suggests that these autonomic responses are elicited through blast impacting the thorax and lungs. We hypothesize that the unprotected ear also provides a vulnerable locus for blast to cause autonomic responses. We designed a blast generator that delivers controlled overpressure waves into the ear canal without impacting surrounding tissues in order to study the ear's specific contribution to blast injury. Anesthetized adult rats' left ears were exposed to a single blast wave ranging from 0 to 110 PSI (0-758 kPa). Blast exposed rats exhibited decreased heart rates and blood pressures with increased blast intensity, similar to results gathered using shock tubes and whole-body exposure in the literature. While rats exposed to blasts below 50 PSI (345 kPa) exhibited increased respiratory rate with increased blast intensity, some rats exposed to blasts higher than 50 PSI (345 kPa) stopped breathing immediately and ultimately died. These autonomic responses were significantly reduced in vagally denervated rats, again similar to whole-body exposure literature. These results support the hypothesis that the unprotected ear contributes to the autonomic responses to blast.
Collapse
Affiliation(s)
- David S. Sandlin
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yue Yu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jun Huang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chunming Zhang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, 85 Jiefang S Rd, Yingze Qu, Taiyuan Shi, Shanxi Sheng, China
| | - Alberto A. Arteaga
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - John K. Lippincott
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Erin O.H. Peeden
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ryan R. Guyton
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lan Chen
- Summer Undergraduate Research Experience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura L.S. Beneke
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome C. Allison
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wu Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
16
|
DeWalt GJ, Eldred WD. Visual system pathology in humans and animal models of blast injury. J Comp Neurol 2017; 525:2955-2967. [PMID: 28560719 DOI: 10.1002/cne.24252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Injury from blast exposure is becoming a more prevalent cause of death and disability worldwide. The devastating neurological impairments that result from blasts are significant and lifelong. Progress in the development of effective therapies to treat injury has been slowed by its heterogeneous pathology and the dearth of information regarding the cellular mechanisms involved. Within the last decade, a number of studies have documented visual dysfunction following injury. This brief review examines damage to the visual system in both humans and animal models of blast injury. The in vivo use of the retina as a surrogate to evaluate brain injury following exposure to blast is also highlighted.
Collapse
Affiliation(s)
- Gloria J DeWalt
- Department of Biology, Boston University, Boston, Massachusetts
| | | |
Collapse
|
17
|
Could B-type natriuretic peptides be a biomarker for trauma brain injury? A systematic review and meta-analysis. Am J Emerg Med 2017; 35:1695-1701. [PMID: 28596033 DOI: 10.1016/j.ajem.2017.05.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/02/2017] [Accepted: 05/28/2017] [Indexed: 01/11/2023] Open
|
18
|
Chen HJ, Xu C, Li Y, Chen ZQ, Li GH, Duan ZX, Li XX, Zhang JY, Wang Z, Feng H, Li BC. An open air research study of blast-induced traumatic brain injury to goats. Chin J Traumatol 2017; 18:267-74. [PMID: 26777709 DOI: 10.1016/j.cjtee.2015.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE We once reported blast-induced traumatic brain injury (bTBI) in confined space. Here, bTBI was studied again on goats in the open air using 3.0 kg trinitrotoluene. METHODS The goats were placed at 2, 4, 6 and 8 m far from explosion center. Trinitrotoluene (TNT) was used as the source of the blast wave and the pressure at each distance was recorded. The systemic physiology, electroencephalogram, serum level of S-100 beta, and neuron specific enolase (NSE) were determined pre and post the exposure. Neuroanatomy and neuropathology were observed 4 h after the exposure. RESULTS Simple blast waveforms were recorded with parameters of 702.8 kPa-0.442 ms, 148.4 kPa-2.503 ms, 73.9 kPa-3.233 ms, and 41.9 kPa-5.898 ms at 2, 4, 6 and 8 m respectively. Encephalic blast overpressure was on the first time recorded in the literature by us at 104.2 kPa-0.60 ms at 2 m, where mortality and burn rate were 44% and 44%. Gross examination showed that bTBI was mainly manifested as congestive expansion of blood vessels and subarachnoid hemorrhage, which had a total incidence of 25% and 19% in 36 goats. Microscopical observation found that the main pathohistological changes were enlarged perivascular space (21/36, 58%), small hemorrhages (9/36, 25%), vascular dilatation and congestion (8/36, 22%), and less subarachnoid hemorrhage (2/36, 6%). After explosion, serum levels of S-100b and NSE were elevated, and EEG changed into slow frequency with declined amplitude. The results indicated that severity and incidence of bTBI is related to the intensity of blast overpressure. CONCLUSION Blast wave can pass through the skull to directly injure brain tissue.
Collapse
Affiliation(s)
- Hui-Jun Chen
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Smith M, Piehler T, Benjamin R, Farizatto KL, Pait MC, Almeida MF, Ghukasyan VV, Bahr BA. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures. Exp Neurol 2016; 286:107-115. [PMID: 27720798 DOI: 10.1016/j.expneurol.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022]
Abstract
Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology.
Collapse
Affiliation(s)
- Marquitta Smith
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Richard Benjamin
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Karen L Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Morgan C Pait
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Vladimir V Ghukasyan
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
20
|
Zou J, Wang M, Uchiumi O, Shui Y, Ishigaki Y, Liu X, Tajima N, Akai T, Iizuka H, Kato N. Learning impairment by minimal cortical injury in a mouse model of Alzheimer׳s disease. Brain Res 2016; 1637:56-63. [DOI: 10.1016/j.brainres.2016.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 11/17/2022]
|
21
|
Sajja VSSS, Hlavac N, VandeVord PJ. Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction. Front Integr Neurosci 2016; 10:7. [PMID: 26973475 PMCID: PMC4770450 DOI: 10.3389/fnint.2016.00007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/05/2016] [Indexed: 12/15/2022] Open
Abstract
Historically, glial cells have been recognized as a structural component of the brain. However, it has become clear that glial cells are intimately involved in the complexities of neural networks and memory formations. Astrocytes, microglia, and oligodendrocytes have dynamic responsibilities which substantially impact neuronal function and activities. Moreover, the importance of glia following brain injury has come to the forefront in discussions to improve axonal regeneration and functional recovery. The numerous activities of glia following injury can either promote recovery or underlie the pathobiology of memory deficits. This review outlines the pathological states of glial cells which evolve from their positive supporting roles to those which disrupt synaptic function and neuroplasticity following injury. Evidence suggests that glial cells interact extensively with neurons both chemically and physically, reinforcing their role as pivotal for higher brain functions such as learning and memory. Collectively, this mini review surveys investigations of how glial dysfunction following brain injury can alter mechanisms of synaptic plasticity and how this may be related to an increased risk for persistent memory deficits. We also include recent findings, that demonstrate new molecular avenues for clinical biomarker discovery.
Collapse
Affiliation(s)
- Venkata S S S Sajja
- Cellular Imaging Section and Vascular Biology Program, Department of Radiology and Radiological Science, Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MA, USA
| | - Nora Hlavac
- Department of Biomedical Engineering and Mechanics, Virginia Tech University Blacksburg, VA, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech University Blacksburg, VA, USA
| |
Collapse
|
22
|
Guley NH, Rogers JT, Del Mar NA, Deng Y, Islam RM, D'Surney L, Ferrell J, Deng B, Hines-Beard J, Bu W, Ren H, Elberger AJ, Marchetta JG, Rex TS, Honig MG, Reiner A. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice. J Neurotrauma 2016; 33:403-22. [PMID: 26414413 PMCID: PMC4761824 DOI: 10.1089/neu.2015.3886] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25-40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50-60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits.
Collapse
Affiliation(s)
- Natalie H. Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joshua T. Rogers
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nobel A. Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rafiqul M. Islam
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Lauren D'Surney
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Ferrell
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Bowei Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Hines-Beard
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Wei Bu
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Huiling Ren
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrea J. Elberger
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Tonia S. Rex
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
23
|
Kallakuri S, Purkait HS, Dalavayi S, VandeVord P, Cavanaugh JM. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord. J Neurosci Rural Pract 2016; 6:481-7. [PMID: 26752889 PMCID: PMC4692002 DOI: 10.4103/0976-3147.169767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s) of blast overpressure (OP) induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM) tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L) chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.
Collapse
Affiliation(s)
- Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Heena S Purkait
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Satya Dalavayi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Pamela VandeVord
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - John M Cavanaugh
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
24
|
Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol 2016; 275 Pt 3:334-352. [PMID: 25981889 PMCID: PMC4699183 DOI: 10.1016/j.expneurol.2015.05.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023]
Abstract
Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA,; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA,; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
25
|
Gao J, Zheng Z. Development of prognostic models for patients with traumatic brain injury: a systematic review. Int J Clin Exp Med 2015; 8:19881-19885. [PMID: 26884899 PMCID: PMC4723744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Outcome prediction following traumatic brain injury (TBI) is a widely investigated field of research. Several outcome prediction models have been developed for prognosis after TBI. There are two main prognostic models: International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury (IMPACT) prognosis calculator and the Corticosteroid Randomization after Significant Head Injury (CRASH) prognosis calculator. The prognosis model has three or four levels: (1) model A included age, motor GCS, and pupil reactivity; (2) model B included predictors from model A with CT characteristics; and (3) model C included predictors from model B with laboratory parameters. In consideration of the fact that interventions after admission, such as ICP management also have prognostic value for outcome predictions and may improve the models' performance, Yuan F et al developed another prediction model (model D) which includes ICP. With the development of molecular biology, a handful of brain injury biomarkers were reported that may improve the predictive power of prognostic models, including neuron-specific enolase (NSE), glial fibrillary acid protein (GFAP), S-100β protein, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), myelin basic protein (MBP), cleaved tau protein (C-tau), spectrin breakdown products (SBDPs), and ubiquitin C-terminal hydrolase-L1 (UCH-L1), and sex hormones. A total of 40 manuscripts reporting 11 biomarkers were identified in the literature. Many substances have been implicated as potential biomarkers for TBI; however, no single biomarker has shown the necessary sensitivity and specificity for predicting outcome. The limited number of publications in this field underscores the need for further investigation. Through fluid biomarker analysis, the advent of multi-analyte profiling technology has enabled substantial advances in the diagnosis and treatment of a variety of conditions. Application of this technology to create a bio-signature for TBI using multiple biomarkers in combination will hopefully facilitate much-needed advances. We believe that further investigations about brain injury biomarkers may improve the predictive power of the contemporary outcome calculators and prognostic models, and eventually improve the care of patients with TBI.
Collapse
Affiliation(s)
- Jinxi Gao
- Department of Neurosurgery, Fuzhou General Hospital Fuzhou 350025, China
| | - Zhaocong Zheng
- Department of Neurosurgery, Fuzhou General Hospital Fuzhou 350025, China
| |
Collapse
|
26
|
Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: a review. J ROY ARMY MED CORPS 2015; 162:103-8. [PMID: 26527607 DOI: 10.1136/jramc-2015-000517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/11/2015] [Indexed: 12/23/2022]
Abstract
Biomarkers allow physiological processes to be monitored, in both health and injury. Multiple attempts have been made to use biomarkers in traumatic brain injury (TBI). Identification of such biomarkers could allow improved understanding of the pathological processes involved in TBI, diagnosis, prognostication and development of novel therapies. This review article aims to cover both established and emerging TBI biomarkers along with their benefits and limitations. It then discusses the potential value of TBI biomarkers to military, civilian and sporting populations and the future hopes for developing a role for biomarkers in head injury management.
Collapse
Affiliation(s)
- Emma Toman
- Major Trauma Service, Queen Elizabeth Hospital, Birmingham, UK
| | - S Harrisson
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - T Belli
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
Walls MK, Race N, Zheng L, Vega-Alvarez SM, Acosta G, Park J, Shi R. Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma. J Neurosurg 2015; 124:675-86. [PMID: 26295915 DOI: 10.3171/2015.1.jns141571] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Blast-induced neurotrauma (BINT), if not fatal, is nonetheless potentially crippling. It can produce a wide array of acute symptoms in moderate-to-severe exposures, but mild BINT (mBINT) is characterized by the distinct absence of acute clinical abnormalities. The lack of observable indications for mBINT is particularly alarming, as these injuries have been linked to severe long-term psychiatric and degenerative neurological dysfunction. Although the long-term sequelae of BINT are extensively documented, the underlying mechanisms of injury remain poorly understood, impeding the development of diagnostic and treatment strategies. The primary goal of this research was to recapitulate primary mBINT in rodents in order to facilitate well-controlled, long-term investigations of blast-induced pathological neurological sequelae and identify potential mechanisms by which ongoing damage may occur postinjury. METHODS A validated, open-ended shock tube model was used to deliver blast overpressure (150 kPa) to anesthetized rats with body shielding and head fixation, simulating the protective effects of military-grade body armor and isolating a shock wave injury from confounding systemic injury responses, head acceleration, and other elements of explosive events. Evans Blue-labeled albumin was used to visualize blood-brain barrier (BBB) compromise at 4 hours postinjury. Iba1 staining was used to visualize activated microglia and infiltrating macrophages in areas of peak BBB compromise. Acrolein, a potent posttraumatic neurotoxin, was quantified in brain tissue by immunoblotting and in urine through liquid chromatography with tandem mass spectrometry at 1, 2, 3, and 5 days postinjury. Locomotor behavior, motor performance, and short-term memory were assessed with open field, rotarod, and novel object recognition (NOR) paradigms at 24 and 48 hours after the blast. RESULTS Average speed, maximum speed, and distance traveled in an open-field exploration paradigm did not show significant differences in performance between sham-injured and mBINT rats. Likewise, rats with mBINT did not exhibit deficits in maximum revolutions per minute or total run time in a rotarod paradigm. Short-term memory was also unaffected by mBINT in an NOR paradigm. Despite lacking observable motor or cognitive deficits in the acute term, blast-injured rats displayed brain acrolein levels that were significantly elevated for at least 5 days, and acrolein's glutathione-reduced metabolite, 3-HPMA, was present in urine for 2 days after injury. Additionally, mBINT brain tissue demonstrated BBB damage 4 hours postinjury and colocalized neuroinflammatory changes 24 hours postinjury. CONCLUSIONS This model highlights mBINT's potential for underlying detrimental physical and biochemical alterations despite the lack of apparent acute symptoms and, by recapitulating the human condition, represents an avenue for further examining the pathophysiology of mBINT. The sustained upregulation of acrolein for days after injury suggests that acrolein may be an upstream player potentiating ongoing postinjury damage and neuroinflammation. Ultimately, continued research with this model may lead to diagnostic and treatment mechanisms capable of preventing or reducing the severity of long-term neurological dysfunction following mBINT.
Collapse
Affiliation(s)
- Michael K Walls
- Department of Basic Medical Sciences, College of Veterinary Medicine; and
| | - Nicholas Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Lingxing Zheng
- Department of Basic Medical Sciences, College of Veterinary Medicine; and.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | | | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine; and
| | - Jonghyuck Park
- Department of Basic Medical Sciences, College of Veterinary Medicine; and.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine; and.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
28
|
Taylor DD, Gercel-Taylor C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0503. [PMID: 25135964 DOI: 10.1098/rstb.2013.0503] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression.
Collapse
Affiliation(s)
- Douglas D Taylor
- Exosome Sciences, Inc., 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| | - Cicek Gercel-Taylor
- Exosome Sciences, Inc., 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| |
Collapse
|
29
|
Zander NE, Piehler T, Boggs ME, Banton R, Benjamin R. In vitro studies of primary explosive blast loading on neurons. J Neurosci Res 2015; 93:1353-63. [PMID: 25914380 DOI: 10.1002/jnr.23594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022]
Abstract
In a military setting, traumatic brain injury (TBI) is frequently caused by blast waves that can trigger a series of neuronal biochemical changes. Although many animal models have been used to study the effects of primary blast waves, elucidating the mechanisms of damage in a whole-animal model is extremely complex. In vitro models of primary blast, which allow for the deconvolution of mechanisms, are relatively scarce. It is largely unknown how structural damage at the cellular level impacts the functional activity at variable time scales after the TBI event. A novel in vitro system was developed to probe the effects of explosive blast (ranging from ∼25 to 40 psi) on dissociated neurons. PC12 neurons were cultured on laminin-coated substrates, submerged underwater, and subjected to single and multiple blasts in a controlled environment. Changes in cell membrane permeability, viability, and cell morphology were evaluated. Significant increases in axonal beading were observed in the injured cells. In addition, although cell death was minimal after a single insult, cell viability decreased significantly following repeated blast exposure.
Collapse
Affiliation(s)
- Nicole E Zander
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Thuvan Piehler
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Mary E Boggs
- Department of Biology, University of Delaware, Newark, Delaware
| | - Rohan Banton
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Richard Benjamin
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| |
Collapse
|
30
|
Robinson ME, Lindemer ER, Fonda JR, Milberg WP, McGlinchey RE, Salat DH. Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure. Hum Brain Mapp 2014; 36:911-22. [PMID: 25366378 DOI: 10.1002/hbm.22675] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
Although there is emerging data on the effects of blast-related concussion (or mTBI) on cognition, the effects of blast exposure itself on the brain have only recently been explored. Toward this end, we examine functional connectivity to the posterior cingulate cortex, a primary region within the default mode network (DMN), in a cohort of 134 Iraq and Afghanistan Veterans characterized for a range of common military-associated comorbidities. Exposure to a blast at close range (<10 meters) was associated with decreased connectivity of bilateral primary somatosensory and motor cortices, and these changes were not different from those seen in participants with blast-related mTBI. These results remained significant when clinical factors such as sleep quality, chronic pain, or post traumatic stress disorder were included in the statistical model. In contrast, differences in functional connectivity based on concussion history and blast exposures at greater distances were not apparent. Despite the limitations of a study of this nature (e.g., assessments long removed from injury, self-reported blast history), these data demonstrate that blast exposure per se, which is prevalent among those who served in Iraq and Afghanistan, may be an important consideration in Veterans' health. It further offers a clinical guideline for determining which blasts (namely, those within 10 meters) are likely to lead to long-term health concerns and may be more accurate than using concussion symptoms alone.
Collapse
Affiliation(s)
- Meghan E Robinson
- Neuroimaging Research for Veterans Center (NeRVe), VA Boston Healthcare System, Boston, Massachusetts; Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
31
|
Stawicki SP, Stoltzfus JC, Aggarwal P, Bhoi S, Bhatt S, Kalra OP, Bhalla A, Hoey BA, Galwankar SC, Paladino L, Papadimos TJ. Academic College of Emergency Experts in India's INDO-US Joint Working Group and OPUS12 Foundation Consensus Statement on Creating A Coordinated, Multi-Disciplinary, Patient-Centered, Global Point-of-Care Biomarker Discovery Network. Int J Crit Illn Inj Sci 2014; 4:200-8. [PMID: 25337481 PMCID: PMC4200545 DOI: 10.4103/2229-5151.141398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biomarker science brings great promise to clinical medicine. This is especially true in the era of technology miniaturization, rapid dissemination of knowledge, and point-of-care (POC) implementation of novel diagnostics. Despite this tremendous progress, the journey from a candidate biomarker to a scientifically validated biomarker continues to be an arduous one. In addition to substantial financial resources, biomarker research requires considerable expertise and a multidisciplinary approach. Investigational designs must also be taken into account, with the randomized controlled trial remaining the “gold standard”. The authors present a condensed overview of biomarker science and associated investigational methods, followed by specific examples from clinical areas where biomarker development and/or implementation resulted in tangible enhancements in patient care. This manuscript also serves as a call to arms for the establishment of a truly global, well-coordinated infrastructure dedicated to biomarker research and development, with focus on delivery of the latest discoveries directly to the patient via point-of-care technology.
Collapse
Affiliation(s)
- Stanislaw P Stawicki
- Department of Research and Innovation, Research Institute, Bethlehem, Pennsylvania ; Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA
| | - Jill C Stoltzfus
- Department of Research and Innovation, Research Institute, Bethlehem, Pennsylvania ; Department of Research and Innovation, Research Institute, Bethlehem, Pennsylvania
| | - Praveen Aggarwal
- Department of Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Bhoi
- Department of Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Bhatt
- Department of Anesthesiology, University of Toledo, College of Medicine, Toledo, USA
| | - O P Kalra
- Department of Medicine, University College of Medical Sciences, New Delhi, India
| | - Ashish Bhalla
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Brian A Hoey
- Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA ; Department of Surgery, St Luke's University Health Network, Bethlehem, Pennsylvania
| | - Sagar C Galwankar
- Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA ; Department of Emergency Medicine, University of Florida and Winter Haven Hospital, Florida, USA
| | - Lorenzo Paladino
- Department of Emergency Medicine, SUNY Downstate Medical Center, Long Island College Hospital, New York, USA
| | - Thomas J Papadimos
- Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA ; Department of Anesthesiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
32
|
Zhang J, Carnduff L, Norman G, Josey T, Wang Y, Sawyer TW, Martyniuk CJ, Langlois VS. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury. PLoS One 2014; 9:e104518. [PMID: 25136963 PMCID: PMC4138085 DOI: 10.1371/journal.pone.0104518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023] Open
Abstract
With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Lisa Carnduff
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Grant Norman
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Tyson Josey
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Yushan Wang
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Thomas W. Sawyer
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | | | - Valerie S. Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Rodrigues Filho EM, Simon D, Ikuta N, Klovan C, Dannebrock FA, Oliveira de Oliveira C, Regner A. Elevated cell-free plasma DNA level as an independent predictor of mortality in patients with severe traumatic brain injury. J Neurotrauma 2014; 31:1639-46. [PMID: 24827371 DOI: 10.1089/neu.2013.3178] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Trauma is the leading cause of death in individuals less than 45 years old worldwide, and up to 50% of trauma fatalities are because of brain injury. Prediction of outcome is one of the major problems associated with severe traumatic brain injury (TBI), and research efforts have focused on the investigation of biomarkers with prognostic value after TBI. Therefore, our aim was to investigate whether cell-free DNA concentrations correlated to short-term primary outcome (survival or death) and Glasgow Coma Scale (GCS) scores after severe TBI. A total of 188 patients with severe TBI were enrolled in this prospective study; outcome variables comprised survival and neurological assessment using the GCS at intensive care unit (ICU) discharge. Control blood samples were obtained from 25 healthy volunteers. Peripheral venous blood was collected at admission to the ICU. Plasma DNA was measured using a real-time quantitative polymerase chain reaction (PCR) assay for the β-globin gene. There was correlation between higher DNA levels and both fatal outcome and lower hospital admission GCS scores. Plasma DNA concentrations at the chosen cutoff point (≥171,381 kilogenomes-equivalents/L) predicted mortality with a specificity of 90% and a sensitivity of 43%. Logistic regression analysis showed that elevated plasma DNA levels were independently associated with death (p<0.001). In conclusion, high cell-free DNA concentration was a predictor of short-term mortality after severe TBI.
Collapse
|
34
|
|
35
|
Li BC, Li Y, Xu C, Wang J, Chen Z, Li G, Zhang J, Hu S, Wang L, Feng H. Blast-induced traumatic brain injury of goats in confined space. Neurol Res 2014; 36:974-82. [PMID: 24730755 DOI: 10.1179/1743132813y.0000000314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To study blast-induced traumatic brain injury (bTBI) characteristics in confined space. METHODS The goats were placed at the column-like buildings with trinitrotoluene (TNT) as the source of the blast wave. The pressure was recorded at 2-8 m from the explosion center. The systemic physiology, electroencephalogram (EEG), serum level of S-100beta, and neuron specific enolase (NSE) were determined pre and post the exposure. Neuroanatomy and neuropathology were observed 4 hours after the exposure. RESULTS The blast waveform was composed of two peaks from the incident and reflection wave with a range of pressure-duration from 555/913 kPa-0.663 milliseconds at 2 m to 45/71 kPa-2.7/2.367 milliseconds at 8 m. At 2 m, the goats experienced brain depression while the heart rate and respiratory rate concomitantly increased with bloody foam fluid emission from the nose and the mouth. Of the goats, 88.89% were burned. The distinctive gross neuroanatomical changes were congestive expansion of surface vessels on the hemisphere cerebellum and brainstem along with subarachnoid hemorrhage on the frontal lobe, mesencephalon, and brainstem. Subarachnoid hemorrhage, enlarged perivascular space, vascular dilatation and congestion, and parenchymal hemorrhagic could be easily observed microscopically. High amplitude and low frequency of waveforms appeared in the EEG. The serum concentration of S-100beta and NSE were elevated. Although these pathophysiological changes diminished with increasing distance from the explosive center, these changes existed for the 8 m subjects. CONCLUSIONS Blast-induced traumatic brain injury can be induced by a complex blast wave with a pressure and duration of 45/71 kPa and 2.7/2.367 milliseconds. Its severity is related to the features and waveforms of the blast.
Collapse
|
36
|
Cho H, Sajja V, VandeVord P, Lee Y. Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience 2013; 253:9-20. [DOI: 10.1016/j.neuroscience.2013.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/06/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
|
37
|
Kobeissy F, Mondello S, Tümer N, Toklu HZ, Whidden MA, Kirichenko N, Zhang Z, Prima V, Yassin W, Anagli J, Chandra N, Svetlov S, Wang KKW. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury. Front Neurol 2013; 4:186. [PMID: 24312074 PMCID: PMC3836009 DOI: 10.3389/fneur.2013.00186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/02/2013] [Indexed: 01/10/2023] Open
Abstract
Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the “distinct” but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Psychiatry, Center of Neuroproteomics & Biomarker Research, University of Florida , Gainesville, FL , USA ; Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Du X, Ewert DL, Cheng W, West MB, Lu J, Li W, Floyd RA, Kopke RD. Effects of antioxidant treatment on blast-induced brain injury. PLoS One 2013; 8:e80138. [PMID: 24224042 PMCID: PMC3818243 DOI: 10.1371/journal.pone.0080138] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Blast-induced traumatic brain injury has dramatically increased in combat troops in today’s military operations. We previously reported that antioxidant treatment can provide protection to the peripheral auditory end organ, the cochlea. In the present study, we examined biomarker expression in the brains of rats at different time points (3 hours to 21 days) after three successive 14 psi blast overpressure exposures to evaluate antioxidant treatment effects on blast-induced brain injury. Rats in the treatment groups received a combination of antioxidants (2,4-disulfonyl α-phenyl tertiary butyl nitrone and N-acetylcysteine) one hour after blast exposure and then twice a day for the following two days. The biomarkers examined included an oxidative stress marker (4-hydroxy-2-nonenal, 4-HNE), an immediate early gene (c-fos), a neural injury marker (glial fibrillary acidic protein, GFAP) and two axonal injury markers [amyloid beta (A4) precursor protein, APP, and 68 kDa neurofilament, NF-68]. The results demonstrate that blast exposure induced or up-regulated the following: 4-HNE production in the dorsal hippocampus commissure and the forceps major corpus callosum near the lateral ventricle; c-fos and GFAP expression in most regions of the brain, including the retrosplenial cortex, the hippocampus, the cochlear nucleus, and the inferior colliculus; and NF-68 and APP expression in the hippocampus, the auditory cortex, and the medial geniculate nucleus (MGN). Antioxidant treatment reduced the following: 4-HNE in the hippocampus and the forceps major corpus callosum, c-fos expression in the retrosplenial cortex, GFAP expression in the dorsal cochlear nucleus (DCN), and APP and NF-68 expression in the hippocampus, auditory cortex, and MGN. This preliminary study indicates that antioxidant treatment may provide therapeutic protection to the central auditory pathway (the DCN and MGN) and the non-auditory central nervous system (hippocampus and retrosplenial cortex), suggesting that these compounds have the potential to simultaneously treat blast-induced injuries in the brain and auditory system.
Collapse
Affiliation(s)
- Xiaoping Du
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Donald L. Ewert
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Weihua Cheng
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Matthew B. West
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Jianzhong Lu
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Wei Li
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Robert A. Floyd
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Richard D. Kopke
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ho L, Zhao W, Dams-O'Connor K, Tang CY, Gordon W, Peskind ER, Yemul S, Haroutunian V, Pasinetti GM. Elevated plasma MCP-1 concentration following traumatic brain injury as a potential "predisposition" factor associated with an increased risk for subsequent development of Alzheimer's disease. J Alzheimers Dis 2013; 31:301-13. [PMID: 22543850 DOI: 10.3233/jad-2012-120598] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We explored whether changes in the expression profile of peripheral blood plasma proteins may provide a clinical, readily accessible "window" into the brain, reflecting molecular alterations following traumatic brain injury (TBI) that might contribute to TBI complications. We recruited fourteen TBI and ten control civilian participants for the study, and also analyzed banked plasma specimens from 20 veterans with TBI and 20 control cases. Using antibody arrays and ELISA assays, we explored differentially-regulated protein species in the plasma of TBI compared to healthy controls from the two independent cohorts. We found three protein biomarker species, monocyte chemotactic protein-1 (MCP-1), insulin-like growth factor-binding protein-3, and epidermal growth factor receptor, that are differentially regulated in plasma specimens of the TBI cases. A three-biomarker panel using all three proteins provides the best potential criterion for separating TBI and control cases. Plasma MCP-1 contents are correlated with the severity of TBI and the index of compromised axonal fiber integrity in the frontal cortex. Based on these findings, we evaluated postmortem brain specimens from 7 mild cognitive impairment (MCI) and 7 neurologically normal cases. We found elevated MCP-1 expression in the frontal cortex of MCI cases that are at high risk for developing Alzheimer's disease. Our findings suggest that additional application of the three-biomarker panel to current diagnostic criteria may lead to improved TBI detection and more sensitive outcome measures for clinical trials. Induction of MCP-1 in response to TBI might be a potential predisposing factor that may increase the risk for development of Alzheimer's disease.
Collapse
Affiliation(s)
- Lap Ho
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guingab-Cagmat JD, Cagmat EB, Hayes RL, Anagli J. Integration of proteomics, bioinformatics, and systems biology in traumatic brain injury biomarker discovery. Front Neurol 2013; 4:61. [PMID: 23750150 PMCID: PMC3668328 DOI: 10.3389/fneur.2013.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/12/2013] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their efficacy as TBI biomarkers. However, several hurdles have to be overcome even during the discovery phase which is only the first step in the long process of biomarker development. The high-throughput nature of MS-based proteomic experiments generates a massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data. These tools provide a way to convert data sets to biologically interpretable results and functional outcomes. A strategy that has promise in advancing biomarker development involves the triad of proteomics, bioinformatics, and systems biology. In this review, a brief overview of how bioinformatics and systems biology tools analyze, transform, and interpret complex MS datasets into biologically relevant results is discussed. In addition, challenges and limitations of proteomics, bioinformatics, and systems biology in TBI biomarker discovery are presented. A brief survey of researches that utilized these three overlapping disciplines in TBI biomarker discovery is also presented. Finally, examples of TBI biomarkers and their applications are discussed.
Collapse
|
41
|
Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, Agoston D. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis 2013; 33:3705-11. [PMID: 23161535 DOI: 10.1002/elps.201200299] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023]
Abstract
Time-dependent changes of protein biomarkers in the cerebrospinal fluid (CSF) can be used to identify the pathological processes in traumatic brain injury (TBI) as well as to follow the progression of the disease. We obtained CSF from a large animal model (swine) of blast-induced traumatic brain injury prior to and at 6, 24, 72 h, and 2 wk after a single exposure to blast overpressure, and determined changes in the CSF levels of neurofilament-heavy chain, neuron-specific enolase, brain-specific creatine kinase, glial fibrillary acidic protein, calcium-binding protein β (S100β), Claudin-5, vascular endothelial growth factor, and von Willebrand factor using reverse phase protein microarray. We detected biphasic temporal patterns in the CSF concentrations of all tested protein markers except S100β. The CSF levels of all markers were significantly increased 6 h after the injury compared to preinjury levels. Values were then decreased at 24 h, prior to a second increase in all markers but S100β at 72 h. At 2 wk postinjury, the CSF concentrations of all biomarkers were decreased once again; brain-specific creatine kinase, Claudin-5, von Willebrand factor, and S100β levels were no longer significantly higher than their preinjury values while neurofilament-heavy chain, neuron-specific enolase, vascular endothelial growth factor, and glial fibrillary acidic protein levels remained significantly elevated compared to baseline. Our findings implicate neuronal and glial cell damage, compromised vascular permeability, and inflammation in blast-induced traumatic brain injury, as well as demonstrate the value of determining the temporal pattern of biomarker changes that may be of diagnostic value.
Collapse
Affiliation(s)
- Farid Ahmed
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Graner J, Oakes TR, French LM, Riedy G. Functional MRI in the investigation of blast-related traumatic brain injury. Front Neurol 2013; 4:16. [PMID: 23460082 PMCID: PMC3586697 DOI: 10.3389/fneur.2013.00016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/09/2013] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries.
Collapse
Affiliation(s)
- John Graner
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center Bethesda, MD, USA ; National Capital Neuroimaging Consortium, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | | | | |
Collapse
|
43
|
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4:18. [PMID: 23459929 PMCID: PMC3586682 DOI: 10.3389/fneur.2013.00018] [Citation(s) in RCA: 518] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 12/18/2022] Open
Abstract
Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.
Collapse
Affiliation(s)
- Thomas Woodcock
- Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | | |
Collapse
|
44
|
|
45
|
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4:18. [PMID: 23459929 DOI: 10.3389/fneur.2013.00018.ecollection2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 05/19/2023] Open
Abstract
Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.
Collapse
Affiliation(s)
- Thomas Woodcock
- Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | | |
Collapse
|
46
|
Sajja VSSS, Galloway MP, Ghoddoussi F, Thiruthalinathan D, Kepsel A, Hay K, Bir CA, VandeVord PJ. Blast-induced neurotrauma leads to neurochemical changes and neuronal degeneration in the rat hippocampus. NMR IN BIOMEDICINE 2012; 25:1331-1339. [PMID: 22549883 DOI: 10.1002/nbm.2805] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/08/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Blast-induced neurotrauma is a major concern because of the complex expression of neuropsychiatric disorders after exposure. Disruptions in neuronal function, proximal in time to blast exposure, may eventually contribute to the late emergence of clinical deficits. Using magic angle spinning ¹H MRS and a rodent model of blast-induced neurotrauma, we found acute (24-48 h) decreases in succinate, glutathione, glutamate, phosphorylethanolamine and γ-aminobutyric acid, no change in N-acetylaspartate and increased glycerophosphorylcholine, alterations consistent with mitochondrial distress, altered neurochemical transmission and increased membrane turnover. Increased levels of the apoptotic markers Bax and caspase-3 suggested active cell death, consistent with increased FluoroJade B staining in the hippocampus. Elevated levels of glial fibrillary acidic protein suggested ongoing inflammation without diffuse axonal injury measured by no change in β-amyloid precursor protein. In conclusion, blast-induced neurotrauma induces a metabolic cascade associated with neuronal loss in the hippocampus in the acute period following exposure.
Collapse
|
47
|
Lagraoui M, Latoche JR, Cartwright NG, Sukumar G, Dalgard CL, Schaefer BC. Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Front Neurol 2012; 3:155. [PMID: 23118733 PMCID: PMC3484408 DOI: 10.3389/fneur.2012.00155] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/09/2012] [Indexed: 11/13/2022] Open
Abstract
An immediate consequence of traumatic brain injury (TBI) is the induction of an inflammatory response. Mounting data suggest that inflammation is a major contributor to TBI-induced brain damage. However, much remains unknown regarding the induction and regulation of the inflammatory response to TBI. In this study we compared the TBI-induced inflammatory response to severe parenchymal injury (controlled cortical impact) vs. mild brain injury (craniotomy) over a 21-day period. Our data show that both severe and mild brain injury induce a qualitatively similar inflammatory response, involving highly overlapping sets of effector molecules. However, kinetic analysis revealed that the inflammatory response to mild brain injury is of much shorter duration than the response to severe TBI. Specifically, the inflammatory response to severe brain injury persists for at least 21 days, whereas the response to mild brain injury returns to near baseline values within 10 days post-injury. Our data therefore imply that the development of accurate diagnostic tests of TBI severity that are based on imaging or biomarker analysis of the inflammatory response may require repeated measures over at least a 10-day period, post-injury.
Collapse
Affiliation(s)
- Mouna Lagraoui
- Department of Microbiology and Immunology, Uniformed Services University Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
48
|
Cullen DK, Browne KD, Xu Y, Adeeb S, Wolf JA, McCarron RM, Yang S, Chavko M, Smith DH. Blast-induced color change in photonic crystals corresponds with brain pathology. J Neurotrauma 2012; 28:2307-18. [PMID: 22082449 DOI: 10.1089/neu.2011.1718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A high incidence of blast exposure is a 21st century reality in counter-insurgency warfare. However, thresholds for closed-head blast-induced traumatic brain injury (bTBI) remain unknown. Moreover, without objective information about relative blast exposure, warfighters with bTBI may not receive appropriate medical care and may remain in harm's way. Accordingly, we have engineered a blast injury dosimeter (BID) using a photonic crystalline material that changes color following blast exposure. The photonic crystals are fabricated using SU-8 via multi-beam interference laser lithography. The final BID is similar in appearance to an array of small colored stickers that may be affixed to uniforms or helmets in multiple locations. Although durable under normal conditions, the photonic crystalline micro- and nano-structure are precisely altered by blast to create a color change. These BIDs were evaluated using a rat model of bTBI, for which blast shockwave exposure was generated via a compressed air-driven shock tube. With prototype BID arrays affixed to the animals, we found that BID color changes corresponded with subtle brain pathologies, including neuronal degeneration and reactive astrocytosis. These subtle changes were most notable in the dentate gyrus of the hippocampus, cerebral cortex, and cerebellum. These data demonstrate the feasibility of using a materials-based, power-free colorimetric BID as the first self-contained blast sensor calibrated to correspond with brain pathology.
Collapse
Affiliation(s)
- D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Czeiter E, Mondello S, Kovacs N, Sandor J, Gabrielli A, Schmid K, Tortella F, Wang KKW, Hayes RL, Barzo P, Ezer E, Doczi T, Buki A. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J Neurotrauma 2012; 29:1770-8. [PMID: 22435839 DOI: 10.1089/neu.2011.2127] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Outcome prediction following severe traumatic brain injury (sTBI) is a widely investigated field of research. A major breakthrough is represented by the IMPACT prognostic calculator based on admission data of more than 8500 patients. A growing body of scientific evidence has shown that clinically meaningful biomarkers, including glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and αII-spectrin breakdown product (SBDP145), could also contribute to outcome prediction. The present study was initiated to assess whether the addition of biomarkers to the IMPACT prognostic calculator could improve its predictive power. Forty-five sTBI patients (GCS score≤8) from four different sites were investigated. We utilized the core model of the IMPACT calculator (age, GCS motor score, and reaction of pupils), and measured the level of GFAP, UCH-L1, and SBDP145 in serum and cerebrospinal fluid (CSF). The forecast and actual 6-month outcomes were compared by logistic regression analysis. The results of the core model itself, as well as serum values of GFAP and CSF levels of SBDP145, showed a significant correlation with the 6-month mortality using a univariate analysis. In the core model, the Nagelkerke R(2) value was 0.214. With multivariate analysis we were able to increase this predictive power with one additional biomarker (GFAP in CSF) to R(2)=0.476, while the application of three biomarker levels (GFAP in CSF, GFAP in serum, and SBDP145 in CSF) increased the Nagelkerke R(2) to 0.700. Our preliminary results underline the importance of biomarkers in outcome prediction, and encourage further investigation to expand the predictive power of contemporary outcome calculators and prognostic models in TBI.
Collapse
Affiliation(s)
- Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Balakathiresan N, Bhomia M, Chandran R, Chavko M, McCarron RM, Maheshwari RK. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma 2012; 29:1379-87. [PMID: 22352906 DOI: 10.1089/neu.2011.2146] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blast-induced traumatic brain injury (TBI) is of significant concern in soldiers returning from the current conflicts in Iraq and Afghanistan. Incidents of TBI have increased significantly in the current conflicts compared to previous wars, and a majority of these injuries are caused by improvised explosive devices. Currently, no specific technique or biomarker is available for diagnosing TBI when no obvious clinical symptoms are present. Micro-RNAs are small RNA (~ 22nts) molecules that are expressed endogenously and play an important role in regulating gene expression. MicroRNAs have emerged as novel serum diagnostic biomarkers for various diseases. In this study, we studied the effect of blast overpressure injury on the microRNA signatures in the serum of rats. Rats were exposed to three serial 120-kPa blast overpressure exposures through a shockwave tube. Blood and cerebrospinal fluid were collected at various time points after injury, and microRNA modulation was analyzed using real-time PCR. Five microRNAs were significantly modulated in the serum samples of these animals at three time points post-injury. Further, we also found that the levels of microRNA let-7i are also elevated in cerebrospinal fluid post-blast wave exposure. The presence of microRNA in both serum and cerebrospinal fluid immediately after injury makes microRNA let-7i an ideal candidate for further studies of biomarkers in TBI.
Collapse
Affiliation(s)
- Nagaraja Balakathiresan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|