1
|
Vanacore G, Christensen JB, Bayin NS. Age-dependent regenerative mechanisms in the brain. Biochem Soc Trans 2024; 52:2243-2252. [PMID: 39584473 PMCID: PMC11668278 DOI: 10.1042/bst20230547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Repairing the adult mammalian brain represents one of the greatest clinical challenges in medicine. Injury to the adult brain often results in substantial loss of neural tissue and permanent functional impairment. In contrast with the adult, during development, the mammalian brain exhibits a remarkable capacity to replace lost cells. A plethora of cell-intrinsic and extrinsic factors regulate the age-dependent loss of regenerative potential in the brain. As the developmental window closes, neural stem cells undergo epigenetic changes, limiting their proliferation and differentiation capacities, whereas, changes in the brain microenvironment pose additional challenges opposing regeneration, including inflammation and gliosis. Therefore, studying the regenerative mechanisms during development and identifying what impairs them with age may provide key insights into how to stimulate regeneration in the brain. Here, we will discuss how the mammalian brain engages regenerative mechanisms upon injury or neuron loss. Moreover, we will describe the age-dependent changes that affect these processes. We will conclude by discussing potential therapeutic approaches to overcome the age-dependent regenerative decline and stimulate regeneration.
Collapse
Affiliation(s)
- Giada Vanacore
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Jens Bager Christensen
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - N. Sumru Bayin
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| |
Collapse
|
2
|
Hao P, Yang Z, So KF, Li X. A core scientific problem in the treatment of central nervous system diseases: newborn neurons. Neural Regen Res 2024; 19:2588-2601. [PMID: 38595278 PMCID: PMC11168522 DOI: 10.4103/nrr.nrr-d-23-01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons. Yet over recent decades, numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system, including humans'. This has challenged the long-held scientific consensus that the number of adult neurons remains constant, and that new central nervous system neurons cannot be created or renewed. Herein, we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury, and describe novel treatment strategies that target endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury. Central nervous system injury frequently results in alterations of endogenous neurogenesis, encompassing the activation, proliferation, ectopic migration, differentiation, and functional integration of endogenous neural stem cells. Because of the unfavorable local microenvironment, most activated neural stem cells differentiate into glial cells rather than neurons. Consequently, the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function. Scientists have attempted to enhance endogenous neurogenesis using various strategies, including using neurotrophic factors, bioactive materials, and cell reprogramming techniques. Used alone or in combination, these therapeutic strategies can promote targeted migration of neural stem cells to an injured area, ensure their survival and differentiation into mature functional neurons, and facilitate their integration into the neural circuit. Thus can integration replenish lost neurons after central nervous system injury, by improving the local microenvironment. By regulating each phase of endogenous neurogenesis, endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons. This offers a novel approach for treating central nervous system injury.
Collapse
Affiliation(s)
- Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kwok-Fai So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Hazell AS. Stem Cell Therapy and Thiamine Deficiency-Induced Brain Damage. Neurochem Res 2024; 49:1450-1467. [PMID: 38720090 DOI: 10.1007/s11064-024-04137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
Wernicke's encephalopathy (WE) is a major central nervous system disorder resulting from thiamine deficiency (TD) in which a number of brain regions can develop serious damage including the thalamus and inferior colliculus. Despite decades of research into the pathophysiology of TD and potential therapeutic interventions, little progress has been made regarding effective treatment following the development of brain lesions and its associated cognitive issues. Recent developments in our understanding of stem cells suggest they are capable of repairing damage and improving function in different maladys. This article puts forward the case for the potential use of stem cell treatment as a therapeutic strategy in WE by first examining the effects of TD on brain functional integrity and its consequences. The second half of the paper will address the future benefits of treating TD with these cells by focusing on their nature and their potential to effectively treat neurodegenerative diseases that share some overlapping pathophysiological features with TD. At the same time, some of the obstacles these cells will have to overcome in order to become a viable therapeutic strategy for treating this potentially life-threatening illness in humans will be highlighted.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, 2335 Bennett Avenue, Montreal, QC, H1V 2T6, Canada.
| |
Collapse
|
4
|
Deng T, Ding R, Wang Y, Chen Y, Sun H, Zheng M. Mapping knowledge of the stem cell in traumatic brain injury: a bibliometric and visualized analysis. Front Neurol 2024; 15:1301277. [PMID: 38523616 PMCID: PMC10957745 DOI: 10.3389/fneur.2024.1301277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a brain function injury caused by external mechanical injury. Primary and secondary injuries cause neurological deficits that mature brain tissue cannot repair itself. Stem cells can self-renewal and differentiate, the research of stem cells in the pathogenesis and treatment of TBI has made significant progress in recent years. However, numerous articles must be summarized to analyze hot spots and predict trends. This study aims to provide a panorama of knowledge and research hotspots through bibliometrics. Method We searched in the Web of Science Core Collection (WoSCC) database to identify articles pertaining to TBI and stem cells published between 2000 and 2022. Visualization knowledge maps, including co-authorship, co-citation, and co-occurrence analysis were generated by VOSviewer, CiteSpace, and the R package "bibliometrix." Results We retrieved a total of 459 articles from 45 countries. The United States and China contributed the majority of publications. The number of publications related to TBI and stem cells is increasing yearly. Tianjin Medical University was the most prolific institution, and Professor Charles S. Cox, Jr. from the University of Texas Health Science Center at Houston was the most influential author. The Journal of Neurotrauma has published the most research articles on TBI and stem cells. Based on the burst references, "immunomodulation," "TBI," and "cellular therapy" have been regarded as research hotspots in the field. The keywords co-occurrence analysis revealed that "exosomes," "neuroinflammation," and "microglia" were essential research directions in the future. Conclusion Research on TBI and stem cells has shown a rapid growth trend in recent years. Existing studies mainly focus on the activation mechanism of endogenous neural stem cells and how to make exogenous stem cell therapy more effective. The combination with bioengineering technology is the trend in this field. Topics related to exosomes and immune regulation may be the future focus of TBI and stem cell research.
Collapse
Affiliation(s)
- Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yueyang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hongtao Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Attaluri S, Shuai B, Shankar G, Shetty AK. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16:1185883. [PMID: 37284464 PMCID: PMC10239975 DOI: 10.3389/fnmol.2023.1185883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.
Collapse
|
6
|
Cente M, Matyasova K, Csicsatkova N, Tomikova A, Porubska S, Niu Y, Majdan M, Filipcik P, Jurisica I. Traumatic MicroRNAs: Deconvolving the Signal After Severe Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:1061-1075. [PMID: 35852739 PMCID: PMC11414451 DOI: 10.1007/s10571-022-01254-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
Abstract
History of traumatic brain injury (TBI) represents a significant risk factor for development of dementia and neurodegenerative disorders in later life. While histopathological sequelae and neurological diagnostics of TBI are well defined, the molecular events linking the post-TBI signaling and neurodegenerative cascades remain unknown. It is not only due to the brain's inaccessibility to direct molecular analysis but also due to the lack of well-defined and highly informative peripheral biomarkers. MicroRNAs (miRNAs) in blood are promising candidates to address this gap. Using integrative bioinformatics pipeline including miRNA:target identification, pathway enrichment, and protein-protein interactions analysis we identified set of genes, interacting proteins, and pathways that are connected to previously reported peripheral miRNAs, deregulated following severe traumatic brain injury (sTBI) in humans. This meta-analysis revealed a spectrum of genes closely related to critical biological processes, such as neuroregeneration including axon guidance and neurite outgrowth, neurotransmission, inflammation, proliferation, apoptosis, cell adhesion, and response to DNA damage. More importantly, we have identified molecular pathways associated with neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, based on purely peripheral markers. The pathway signature after acute sTBI is similar to the one observed in chronic neurodegenerative conditions, which implicates a link between the post-sTBI signaling and neurodegeneration. Identified key hub interacting proteins represent a group of novel candidates for potential therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Katarina Matyasova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Nikoleta Csicsatkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Adela Tomikova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Sara Porubska
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Yun Niu
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre, Osteoarthritis Research Program, Krembil Research Institute, UHN, Toronto, Canada
| | - Marek Majdan
- Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia.
| | - Igor Jurisica
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia.
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre, Osteoarthritis Research Program, Krembil Research Institute, UHN, Toronto, Canada.
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada.
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada.
| |
Collapse
|
7
|
Mot YY, Moses EJ, Mohd Yusoff N, Ling KH, Yong YK, Tan JJ. Mesenchymal Stromal Cells-Derived Exosome and the Roles in the Treatment of Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:469-489. [PMID: 35103872 PMCID: PMC11415182 DOI: 10.1007/s10571-022-01201-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.
Collapse
Affiliation(s)
- Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Shi RX, Liu C, Xu YJ, Wang YY, He BD, He XC, Du HZ, Hu B, Jiao J, Liu CM, Teng ZQ. The Role and Mechanism of Transglutaminase 2 in Regulating Hippocampal Neurogenesis after Traumatic Brain Injury. Cells 2023; 12:cells12040558. [PMID: 36831225 PMCID: PMC9954100 DOI: 10.3390/cells12040558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Traumatic brain injury usually results in neuronal loss and cognitive deficits. Promoting endogenous neurogenesis has been considered as a viable treatment option to improve functional recovery after TBI. However, neural stem/progenitor cells (NSPCs) in neurogenic regions are often unable to migrate and differentiate into mature neurons at the injury site. Transglutaminase 2 (TGM2) has been identified as a crucial component of neurogenic niche, and significantly dysregulated after TBI. Therefore, we speculate that TGM2 may play an important role in neurogenesis after TBI, and strategies targeting TGM2 to promote endogenous neural regeneration may be applied in TBI therapy. Using a tamoxifen-induced Tgm2 conditional knockout mouse line and a mouse model of stab wound injury, we investigated the role and mechanism of TGM2 in regulating hippocampal neurogenesis after TBI. We found that Tgm2 was highly expressed in adult NSPCs and up-regulated after TBI. Conditional deletion of Tgm2 resulted in the impaired proliferation and differentiation of NSPCs, while Tgm2 overexpression enhanced the abilities of self-renewal, proliferation, differentiation, and migration of NSPCs after TBI. Importantly, injection of lentivirus overexpressing TGM2 significantly promoted hippocampal neurogenesis after TBI. Therefore, TGM2 is a key regulator of hippocampal neurogenesis and a pivotal therapeutic target for intervention following TBI.
Collapse
Affiliation(s)
- Ruo-Xi Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| |
Collapse
|
9
|
Yamaguchi S, Yoshida M, Horie N, Satoh K, Fukuda Y, Ishizaka S, Ogawa K, Morofuji Y, Hiu T, Izumo T, Kawakami S, Nishida N, Matsuo T. Stem Cell Therapy for Acute/Subacute Ischemic Stroke with a Focus on Intraarterial Stem Cell Transplantation: From Basic Research to Clinical Trials. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010033. [PMID: 36671605 PMCID: PMC9854681 DOI: 10.3390/bioengineering10010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Stem cell therapy for ischemic stroke holds great promise for the treatment of neurological impairment and has moved from the laboratory into early clinical trials. The mechanism of action of stem cell therapy includes the bystander effect and cell replacement. The bystander effect plays an important role in the acute to subacute phase, and cell replacement plays an important role in the subacute to chronic phase. Intraarterial (IA) transplantation is less invasive than intraparenchymal transplantation and can provide more cells in the affected brain region than intravenous transplantation. However, transplanted cell migration was reported to be insufficient, and few transplanted cells were retained in the brain for an extended period. Therefore, the bystander effect was considered the main mechanism of action of IA stem cell transplantation. In most clinical trials, IA transplantation was performed during the acute and subacute phases. Although clinical trials of IA transplantation demonstrated safety, they did not demonstrate satisfactory efficacy in improving patient outcomes. To increase efficacy, increased migration of transplanted cells and production of long surviving and effective stem cells would be crucial. Given the lack of knowledge on this subject, we review and summarize the mechanisms of action of transplanted stem cells and recent advancements in preclinical and clinical studies to provide information and guidance for further advancement of acute/subacute phase IA stem cell transplantation therapy for ischemic stroke.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
- Correspondence: ; Tel.: +81-095-819-7375
| | - Michiharu Yoshida
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Hiroshima University, Hiroshima 734-8551, Japan
| | - Katsuya Satoh
- Department of Occupational Therapy Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yuutaka Fukuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shunsuke Ishizaka
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
10
|
Fan H, Duan H, Hao P, Gao Y, Zhao W, Hao F, Li X, Yang Z. Cellular regeneration treatments for traumatic brain injury. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Yu Y, Shen T, Zhong X, Wang LL, Tai W, Zou Y, Qin J, Zhang Z, Zhang CL. NEK6 is an injury-responsive kinase cooperating with STAT3 in regulation of reactive astrogliosis. Glia 2021; 70:273-286. [PMID: 34643969 DOI: 10.1002/glia.24104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022]
Abstract
In response to brain injury, resident astrocytes become reactive and play dynamic roles in neural repair and regeneration. The signaling pathways underlying such reactive astrogliosis remain largely unclear. We here show that NEK6, a NIMA-related serine/threonine protein kinase, is rapidly induced following pathological stimulations and plays critical roles in reactive astrogliosis. Enhanced NEK6 expression promotes reactive astrogliosis and exacerbates brain lesions; and conversely, NEK6 downregulation dampens injury-induced astrocyte reactivity and reduces lesion size. Mechanistically, NEK6 associates with and phosphorylates STAT3. Kinase activity of NEK6 is required for induction of GFAP and PCNA, markers of reactive astrogliosis. Interestingly, NEK6 is also localized in the nucleus and binds to STAT3-responsive genomic elements in astrocytes. These results indicate that NEK6 constitutes a molecular target for the regulation of reactive astrogliosis.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tianjin Shen
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenjiao Tai
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuhua Zou
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Serum Cytokine Profile, Beta-Hexosaminidase A Enzymatic Activity and GM 2 Ganglioside Levels in the Plasma of a Tay-Sachs Disease Patient after Cord Blood Cell Transplantation and Curcumin Administration: A Case Report. Life (Basel) 2021; 11:life11101007. [PMID: 34685379 PMCID: PMC8539434 DOI: 10.3390/life11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder that occurs due to a deficiency of a β hexosaminidase A (HexA) enzyme, resulting in the accumulation of GM2 gangliosides. In this work, we analyzed the effect of umbilical cord blood cell transplantation (UCBCT) and curcumin administration on the course of the disease in a patient with adult TSD. The patient’s serum cytokine profile was determined using multiplex analysis. The level of GM2 gangliosides in plasma was determined using mass spectrometry. The enzymatic activity of HexA in the plasma of the patient was assessed using a fluorescent substrate assay. The HexA α-subunit (HexA) concentration was determined using ELISA. It was shown that both UCBCT and curcumin administration led to a change in the patient’s cytokine profile. The UCBCT resulted in an increase in the concentration of HexA in the patient’s serum and in an improvement in the patient’s neurological status. However, neither UCBCT nor curcumin were able to alter HexA activity and the level of GM2 in patient’s plasma. The data obtained indicate that UCBCT and curcumin administration can alter the immunity of a patient with TSD, reduce the level of inflammatory cytokines and thereby improve the patient’s condition.
Collapse
|
13
|
Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S, Sun D. A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer's Disease Transgenic Mice. J Alzheimers Dis 2021; 82:1769-1783. [PMID: 34219728 DOI: 10.3233/jad-210400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the most common type of dementia. A growing body of evidence has implicated neuroinflammation as an essential player in the etiology of AD. Inflammasomes are intracellular multiprotein complexes and essential components of innate immunity in response to pathogen- and danger-associated molecular patterns. Among the known inflammasomes, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the pathogenesis of AD. OBJECTIVE We recently developed a novel class of small molecule inhibitors that selectively target the NLRP3 inflammasome. One of the lead compounds, JC124, has shown therapeutic efficacy in a transgenic animal model of AD. In this study we tested the preventative efficacy of JC124 in another strain of transgenic AD mice. METHODS In this study, 5-month-old female APP/PS1 and matched wild type mice were treated orally with JC124 for 3 months. After completion of treatment, cognitive functions and AD pathologies, as well as protein expression levels of synaptic proteins, were assessed. RESULTS We found that inhibition of NLRP3 inflammasome with JC124 significantly decreased multiple AD pathologies in APP/PS1 mice, including amyloid-β (Aβ) load, neuroinflammation, and neuronal cell cycle re-entry, accompanied by preserved synaptic plasticity with higher expression of pre- and post-synaptic proteins, increased hippocampal neurogenesis, and improved cognitive functions. CONCLUSION Our study demonstrates the importance of the NLRP3 inflammasome in AD pathological development, and pharmacological inhibition of NLRP3 inflammasome with small molecule inhibitors represents a potential therapy for AD.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Rolfe
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Long Di
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Blevins
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yiming Xu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuehan Sun
- Departments of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Departments of Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
14
|
Li J, Zhang D, Guo S, Zhao C, Wang L, Ma S, Guan F, Yao M. Dual-enzymatically cross-linked gelatin hydrogel promotes neural differentiation and neurotrophin secretion of bone marrow-derived mesenchymal stem cells for treatment of moderate traumatic brain injury. Int J Biol Macromol 2021; 187:200-213. [PMID: 34310990 DOI: 10.1016/j.ijbiomac.2021.07.111] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) is one of the most devastating nervous injuries. Neural tissue engineering based on stem cells and bioactive scaffold is a promising but challenging approach for neural repair. A cutting-edge system with capability to control the fate of encapsulated stem cells is attractive to enhance neural regeneration after TBI. Herein, an injectable gelatin hydrogel dual-enzymatically cross-linked by horse radish peroxidase (HRP) and choline oxidase (ChOx) was performed as the neural scaffold to load murine bone marrow-derived mesenchymal stem cells (BMSC) for TBI treatment. The results of in vitro cellular experiments showed that low cross-linked gelatin hydrogel could obviously promote cellular viability, neural differentiation, and neurotrophins secretion of the loaded BMSC. In vivo tests on a TBI model of C57BL/6 mouse demonstrated that BMSC-laden gelatin hydrogel implants could significantly reduce the damaged area, ameliorate inflammation, attenuate neuronal apoptosis, facilitate survival and proliferation of endogenous neural cells, and promote the neurological function recovery of TBI mice. All data suggest that establishment of this three-dimensional (3D) gelatin hydrogel stem cell-loaded system is a promising therapeutic strategy for TBI or other neurological rehabilitation.
Collapse
Affiliation(s)
- Jinrui Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Dan Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shen Guo
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Chengbin Zhao
- Neurosurgery Department, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Luyu Wang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, PR China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
15
|
Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells. Cells 2021; 10:cells10061339. [PMID: 34071545 PMCID: PMC8229010 DOI: 10.3390/cells10061339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Astrocytes have been associated with the failure of axon regeneration in the central nervous system (CNS), as it undergoes reactive gliosis in response to damages to the CNS and functions as a chemical and physical barrier to axon regeneration. However, beneficial roles of astrocytes have been extensively studied in the spinal cord over the years, and a growing body of evidence now suggests that inducing astrocytes to become more growth-supportive can promote axon regeneration after spinal cord injury (SCI). In retina, astrocytes and Müller cells are known to undergo reactive gliosis after damage to retina and/or optic nerve and are hypothesized to be either detrimental or beneficial to survival and axon regeneration of retinal ganglion cells (RGCs). Whether they can be induced to become more growth-supportive after retinal and optic nerve injury has yet to be determined. In this review, we pinpoint the potential molecular pathways involved in the induction of growth-supportive astrocytes in the spinal cord and suggest that stimulating the activation of these pathways in the retina could represent a new therapeutic approach to promoting survival and axon regeneration of RGCs in retinal degenerative diseases.
Collapse
|
16
|
Kumar Mishra S, Khushu S, Gangenahalli G. Neuroprotective response and efficacy of intravenous administration of mesenchymal stem cells in traumatic brain injury mice. Eur J Neurosci 2021; 54:4392-4407. [PMID: 33932318 DOI: 10.1111/ejn.15261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Cellular transplantation of stem cells can be a beneficial treatment approach for neurodegenerative diseases such as traumatic brain injury (TBI). In this study, we investigated the proliferation and differentiation potential of infused mesenchymal stem cells (MSCs) after localisation at the injury site. We evaluated the appropriate homing of infused MSCs through immunohistochemistry, followed by Y-chromosome-specific polymerase chain reaction and fluorescent in situ hybridisation analyses. The proliferation and differentiation of infused MSCs were analysed using exogenous cell tracer 5'-bromo-2'-deoxyuridine (BrdU) labelling and neuronal specific markers, respectively. Structural and functional recovery in TBI mice were examined by performing magnetic resonance imaging and different behavioural assessments, respectively. Results demonstrated a significantly high number of BrdU-positive cells in the lesion region in the MSC-infused group compared with control and TBI groups. Infused MSCs were well differentiated into neural-like cells and expressed significantly more neural markers (neuronal nuclear antigen [NeuN], microtubule-associated protein 2 [MAP2] and glial fibrillary acid protein [GFAP]). Improved tissue abnormalities as well as functional behaviours were observed in MSC-infused TBI mice, implying the substantial proliferation and differentiation of infused MSCs. Our findings support the neuroprotective response and efficacy of MSCs after transplantation in TBI mice, and MSCs may serve as potential therapeutic candidates in regenerative medicine.
Collapse
Affiliation(s)
- Sushanta Kumar Mishra
- MRI Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Subash Khushu
- MRI Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| |
Collapse
|
17
|
Tunç BS, Toprak F, Toprak SF, Sozer S. In vitro investigation of growth factors including MGF and IGF-1 in neural stem cell activation, proliferation, and migration. Brain Res 2021; 1759:147366. [PMID: 33607046 DOI: 10.1016/j.brainres.2021.147366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Neurogenesis is mainly activated after damage in adult tissues. This destruction activates the neural stem cells (NSCs) by exiting from a quiescent state and initiating proliferation, differentiation, and migration towards the damaged area. Although studies have investigated to clarify the process of NSC biology and neurogenesis, there are still significant artifacts in understanding the primary mechanism. It is known that only a small percentage of NSC become neurons and integrate into the brain tissue after this process. The significant proportion differentiates to become either astrocytes or oligodendrocytes. Furthermore, the quiescent stem cells in the niche are mainly activated by the stimuli affect. In recent years, many studies have been conducted with varying hormones, some of which might provide neuro-stimulation effect and/or involved in the regeneration of the brain tissue and/or neuroprotection from traumatic or ischemic pathologies, including Insulin-like growth factor 1 (IGF-1), Mechano Growth Factor (MGF), Basic Fibroblast Growth Factor (FGF-2), Erythropoietin (EPO), Epidermal Growth Factor (EGF), Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF). In this study, we examined the effects of FGF-2, MGF, IGF-1, EPO, EGF, NGF, and BDNF alone or with various combinations on rat hippocampal NSC by tracking the changes in the expression of Nestin, GFAP, TUBB3, and DCX genes during 24 h (h), 72 h and 168 h time frame. The apoptosis analysis revealed that FGF-2 and FGF-2 coupled growth factors effectively protect NSCs against apoptosis, whereas MGF coupled growth factors failed in this protection. The cell cycle analysis demonstrated that these growth factors had accumulated the NSCs exit from the quiescent phase to the Mitosis phase, mostly without being long in the Synthesis Phase. Neurosphere sizes were increased with MGF, signifying MGF being effective in neural progenitor cells. The combined use of MGF with FGF-2 was more effective in postmitotic neurons than MGF alone. We have comparatively demonstrated the effect of cytokines alone and combined administration on activation, proliferation, and migration of NSCs. Although many issues are still waiting to be investigated in adult neurogenesis, neural regeneration, and adult neural stem cell biology, the results provide vital resources to the researchers that are interested in the varying effect of growth factor on NSC.
Collapse
Affiliation(s)
- Burcu Sarya Tunç
- Department of Genetics, Aziz Sancar Research Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fatih Toprak
- Department of Neurosurgery, Haydarpaşa Numune Training and Research Hospital, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Research Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selcuk Sozer
- Department of Genetics, Aziz Sancar Research Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
18
|
da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz E Silva OAB, Vieira SI. APP Binds to the EGFR Ligands HB-EGF and EGF, Acting Synergistically with EGF to Promote ERK Signaling and Neuritogenesis. Mol Neurobiol 2021; 58:668-688. [PMID: 33009641 DOI: 10.1007/s12035-020-02139-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Collapse
Affiliation(s)
- Joana F da Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Luísa Bastos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
- Roche Sistemas de Diagnósticos, Lda, 2720-413, Amadora, Portugal
| | - Sara C Domingues
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Ana R Bento
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Dash BP, Naumann M, Sterneckert J, Hermann A. Genome Wide Analysis Points towards Subtype-Specific Diseases in Different Genetic Forms of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E6938. [PMID: 32967368 PMCID: PMC7555318 DOI: 10.3390/ijms21186938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Amyotropic lateral sclerosis (ALS) is a lethally progressive and irreversible neurodegenerative disease marked by apparent death of motor neurons present in the spinal cord, brain stem and motor cortex. While more and more gene mutants being established for genetic ALS, the vast majority suffer from sporadic ALS (>90%). It has been challenging, thus, to model sporadic ALS which is one reason why the underlying pathophysiology remains elusive and has stalled the development of therapeutic strategies of this progressive motor neuron disease. To further unravel these pathological signaling pathways, human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from FUS- and SOD1 ALS patients and healthy controls were systematically compared to independent published datasets. Here through this study we created a gene profile of ALS by analyzing the DEGs, the Kyoto encyclopedia of Genes and Genomes (KEGG) pathways, the interactome and the transcription factor profiles (TF) that would identify altered molecular/functional signatures and their interactions at both transcriptional (mRNAs) and translational levels (hub proteins and TFs). Our findings suggest that FUS and SOD1 may develop from dysregulation in several unique pathways and herpes simplex virus (HSV) infection was among the topmost predominant cellular pathways connected to FUS and not to SOD1. In contrast, SOD1 is mainly characterized by alterations in the metabolic pathways and alterations in the neuroactive-ligand-receptor interactions. This suggests that different genetic ALS forms are singular diseases rather than part of a common spectrum. This is important for patient stratification clearly pointing towards the need for individualized medicine approaches in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01069 Dresden, Germany;
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
20
|
Traumatic brain injury and hippocampal neurogenesis: Functional implications. Exp Neurol 2020; 331:113372. [PMID: 32504636 DOI: 10.1016/j.expneurol.2020.113372] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/23/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022]
Abstract
In the adult brain, self-renewing radial-glia like (RGL) progenitor cells have been shown to reside in the subventricular zone and the subgranular zone of the hippocampus. A large body of evidence shows that experiences such as learning, enriched environment and stress can alter proliferation and differentiation of RGL progenitor cells. The progenitor cells present in the subgranular zone of the hippocampus divide to give rise to newborn neurons that migrate to the dentate gyrus where they differentiate into adult granule neurons. These newborn neurons have been found to have a unique role in certain types of hippocampus-dependent learning and memory, including goal-directed behaviors that require pattern separation. Experimental traumatic brain injury (TBI) in rodents has been shown to alter hippocampal neurogenesis, including triggering the acute loss of newborn neurons, as well as progenitor cell hyper-proliferation. In this review, we discuss the role of hippocampal neurogenesis in learning and memory. Furthermore, we review evidence for the molecular mechanisms that contribute to newborn neuron loss, as well as increased progenitor cell proliferation after TBI. Finally, we discuss strategies aimed at enhancing neurogenesis after TBI and their possible therapeutic benefits.
Collapse
|
21
|
Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 2020; 30:839-855. [PMID: 31203262 DOI: 10.1515/revneuro-2019-0002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related mortality and morbidity in the USA and around the world. The survivors may suffer from cognitive and memory deficits, vision and hearing loss, movement disorders, and different psychological problems. The primary insult causes neuronal damage and activates astrocytes and microglia which evokes immune responses causing further damage to the brain. Clinical trials of drugs to recover the neuronal loss are not very successful. Regenerative approaches for TBI using mesenchymal stem cells (MSCs) seem promising. Results of preclinical research have shown that transplantation of MSCs reduced secondary neurodegeneration and neuroinflammation, promoted neurogenesis and angiogenesis, and improved functional outcome in the experimental animals. The functional improvement is not necessarily related to cell engraftment; rather, immunomodulation by molecular factors secreted by MSCs is responsible for the beneficial effects of this therapy. However, MSC therapy has a few drawbacks including tumor formation, which can be avoided by the use of MSC-derived exosomes. This review has focused on the research works published in the field of regenerative therapy using MSCs after TBI and its future direction.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
22
|
He H, Lin D, Sun J, He X, Wang T, Fang Y, Liu Y, Fan K, Chen X, He H, Li X, Ji B, Zhao S, Zheng X, Zhang K, Wang H. An in vitro and in vivo study of the brain-targeting effects of an epidermal growth factor-functionalized cholera toxin-like chimeric protein. J Control Release 2020; 322:509-518. [DOI: 10.1016/j.jconrel.2020.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
|
23
|
Pudełek M, Król K, Catapano J, Wróbel T, Czyż J, Ryszawy D. Epidermal Growth Factor (EGF) Augments the Invasive Potential of Human Glioblastoma Multiforme Cells via the Activation of Collaborative EGFR/ROS-Dependent Signaling. Int J Mol Sci 2020; 21:ijms21103605. [PMID: 32443749 PMCID: PMC7279139 DOI: 10.3390/ijms21103605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Abnormal secretion of epidermal growth factor (EGF) by non-neuronal cells (e.g., glioma-associated microglia) establishes a feedback loop between glioblastoma multiforme (GBM) invasion and a functional disruption of brain tissue. Considering the postulated significance of this vicious circle for GBM progression, we scrutinized mechanisms of EGF-dependent pro-invasive signaling in terms of its interrelations with energy metabolism and reactive oxygen species (ROS) production. The effects of EGF on the invasiveness of human glioblastoma T98G cells were estimated using time-lapse video microscopy, immunocytochemistry, cell cycle assay, immunoblot analyses, and Transwell® assay. These techniques were followed by quantification of the effect of EGFR (Epidermal Growth Factor Receptor) and ROS inhibitors on the EGF-induced T98G invasiveness and intracellular ROS, ATP, and lactate levels and mitochondrial metabolism. The EGF remarkably augmented the proliferation and motility of the T98G cells. Responses of these cells were accompanied by cellular rear–front polarization, translocation of vinculin to the leading lamellae, and increased promptness of penetration of micropore barriers. Erlotinib (the EGFR inhibitor) significantly attenuated the EGF-induced T98G invasiveness and metabolic reprogramming of the T98G cells, otherwise illustrated by the increased mitochondrial activity, glycolysis, and ROS production in the EGF-treated cells. In turn, ROS inhibition by N-acetyl-L-cysteine (NAC) had no effect on T98G morphology, but considerably attenuated EGF-induced cell motility. Our data confirmed the EGFR/ROS-dependent pro-neoplastic and pro-invasive activity of EGF in human GBM. These EGF effects may depend on metabolic reprogramming of GBM cells and are executed by alternative ROS-dependent/-independent pathways. The EGF may thus preserve bioenergetic homeostasis of GBM cells in hypoxic regions of brain tissue.
Collapse
|
24
|
Wang Z, Zheng Y, Zheng M, Zhong J, Ma F, Zhou B, Zhu J. Neurogenic Niche Conversion Strategy Induces Migration and Functional Neuronal Differentiation of Neural Precursor Cells Following Brain Injury. Stem Cells Dev 2020; 29:235-248. [PMID: 31797735 DOI: 10.1089/scd.2019.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glial scars formed after brain injuries provide permissive cues for endogenous neural precursor/stem cells (eNP/SCs) to undergo astrogenesis rather than neurogenesis. Following brain injury, eNP/SCs from the subventricular zone leave their niche, migrate to the injured cortex, and differentiate into reactive astrocytes that contribute to glial scar formation. In vivo neuronal reprogramming, directly converting non-neuronal cells such as reactive astrocytes or NG2 glia into neurons, has greatly improved brain injury repair strategies. However, reprogramming carries a high risk of future clinical applications such as tumorigenicity, involving virus. In this study, we constructed a neural matrix to alter the adverse niche at the injured cortex, enabling eNP/SCs to differentiate into functional neurons. We found that the neural matrix functioned as a "glial trap" that largely concentrated and limited reactive astrocytes to the core of the lesion area, thus altering the adverse niche. The eNP/SCs migrated toward the injured cortex and differentiated into functional neurons. In addition, regenerated neurites extended across the boundary of the injured cortex. Mice treated with the neural matrix demonstrated significant behavioral recovery. For the first time, we induced eNP/SC-derived functional neurons in the cortex after brain injury without the use of viruses, microRNAs, or small molecules. Our novel strategy of applying this "glial trap" to obtain functional neurons in the injured cortex may provide a safer and more natural therapeutic alternative to reprogramming in future clinical applications.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhe Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fukai Ma
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Tang YL, Fang LJ, Zhong LY, Jiang J, Dong XY, Feng Z. Hub genes and key pathways of traumatic brain injury: bioinformatics analysis and in vivo validation. Neural Regen Res 2020; 15:2262-2269. [PMID: 32594047 PMCID: PMC7749465 DOI: 10.4103/1673-5374.284996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms associated with secondary brain damage following traumatic brain injury (TBI) remain unclear; therefore, identifying the critical molecular mechanisms involved in TBI is essential. The mRNA expression microarray GSE2871 was downloaded from the Gene Expression Omnibus (GEO) repository. GSE2871 comprises a total of 31 cerebral cortex samples, including two post-TBI time points. The microarray features eight control and seven TBI samples, from 4 hours post-TBI, and eight control and eight TBI samples from 24 hours post-TBI. In this bioinformatics-based study, 109 and 66 differentially expressed genes (DEGs) were identified in a Sprague-Dawley (SD) rat TBI model, 4 and 24 hours post-TBI, respectively. Functional enrichment analysis showed that the identified DEGs were significantly enriched in several terms, such as positive regulation of nuclear factor-κB transcription factor activity, mitogen-activated protein kinase signaling pathway, negative regulation of apoptotic process, and tumor necrosis factor signaling pathway. Moreover, the hub genes with high connectivity degrees were primarily related to inflammatory mediators. To validate the top five hub genes, a rat model of TBI was established using the weight-drop method, and real-time quantitative polymerase chain reaction analysis of the cerebral cortex was performed. The results showed that compared with control rats, Tnf-α, c-Myc, Spp1, Cxcl10, Ptprc, Egf, Mmp9, and Lcn2 were upregulated, and Fn1 was downregulated in TBI rats. Among these hub genes, Fn1, c-Myc, and Ptprc may represent novel biomarkers or therapeutic targets for TBI. These identified pathways and key genes may provide insights into the molecular mechanisms of TBI and provide potential treatment targets for patients with TBI. This study was approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Nanchang University, China (approval No. 003) in January 2016.
Collapse
Affiliation(s)
- Yun-Liang Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Long-Jun Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ling-Yang Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jian Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Yang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
26
|
Carbonara M, Fossi F, Zoerle T, Ortolano F, Moro F, Pischiutta F, Zanier ER, Stocchetti N. Neuroprotection in Traumatic Brain Injury: Mesenchymal Stromal Cells can Potentially Overcome Some Limitations of Previous Clinical Trials. Front Neurol 2018; 9:885. [PMID: 30405517 PMCID: PMC6208094 DOI: 10.3389/fneur.2018.00885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. In the last 30 years several neuroprotective agents, attenuating the downstream molecular and cellular damaging events triggered by TBI, have been extensively studied. Even though many drugs have shown promising results in the pre-clinical stage, all have failed in large clinical trials. Mesenchymal stromal cells (MSCs) may offer a promising new therapeutic intervention, with preclinical data showing protection of the injured brain. We selected three of the critical aspects identified as possible causes of clinical failure: the window of opportunity for drug administration, the double-edged contribution of mechanisms to damage and recovery, and the oft-neglected role of reparative mechanisms. For each aspect, we briefly summarized the limitations of previous trials and the potential advantages of a newer approach using MSCs.
Collapse
Affiliation(s)
- Marco Carbonara
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Fossi
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabrizio Ortolano
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, Milan University, Milan, Italy
| |
Collapse
|
27
|
He Z, Fang Q, Li H, Shao B, Zhang Y, Zhang Y, Han X, Guo R, Cheng C, Guo L, Shi L, Li A, Yu C, Kong W, Zhao C, Gao X, Chai R. The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 2018; 144:43-57. [PMID: 30336149 DOI: 10.1016/j.neuropharm.2018.10.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
The development of therapeutic interventions for hearing loss requires a detailed understanding of the genes and proteins involved in hearing. The FOXG1 protein plays an important role in early neural development and in a variety of neurodevelopmental disorders. Previous studies have shown that there are severe deformities in the inner ear in Foxg1 knockout mice, but due to the postnatal lethality of Foxg1 knockout mice, the role of FOXG1 in hair cell (HC) development and survival during the postnatal period has not been investigated. In this study, we took advantage of transgenic mice that have a specific knockout of Foxg1 in HCs, thus allowing us to explore the role of FOXG1 in postnatal HC development and survival. In the Foxg1 conditional knockout (CKO) HCs, an extra row of HCs appeared in the apical turn of the cochlea and some parts of the middle turn at postnatal day (P)1 and P7; however, these HCs gradually underwent apoptosis, and the HC number was significantly decreased by P21. Auditory brainstem response tests showed that the Foxg1 CKO mice had lost their hearing by P30. The RNA-Seq results and the qPCR verification both showed that the Wnt, Notch, IGF, EGF, and Hippo signaling pathways were down-regulated in the HCs of Foxg1 CKO mice. The significant down-regulation of the Notch signaling pathway might be the reason for the increased numbers of HCs in the cochleae of Foxg1 CKO mice at P1 and P7, while the down-regulation of the Wnt, IGF, and EGF signaling pathways might lead to subsequent HC apoptosis. Together, these results indicate that knockout of Foxg1 induces an extra row of HCs via Notch signaling inhibition and induces subsequent apoptosis of these HCs by inhibiting the Wnt, IGF, and EGF signaling pathways. This study thus provides new evidence for the function and mechanism of FOXG1 in HC development and survival in mice.
Collapse
Affiliation(s)
- Zuhong He
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaojun Fang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lusen Shi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China; Center of Depression, Beijing Institute for Brain Disorders, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
28
|
Clausen F, Marklund N, Hillered L. Acute Inflammatory Biomarker Responses to Diffuse Traumatic Brain Injury in the Rat Monitored by a Novel Microdialysis Technique. J Neurotrauma 2018; 36:201-211. [PMID: 29790398 DOI: 10.1089/neu.2018.5636] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation is a major contributor to the progressive brain injury process induced by traumatic brain injury (TBI), and may play an important role in the pathophysiology of axonal injury. The immediate neuroinflammatory cascade cannot be characterized in the human setting. Therefore, we used the midline fluid percussion injury model of diffuse TBI in rats and a novel microdialysis (MD) method providing stable diffusion-driven biomarker sampling. Immediately post-injury, bilateral amphiphilic tri-block polymer coated MD probes (100 kDa cut off membrane) were inserted and perfused with Dextran 500 kDa-supplemented artificial cerebrospinal fluid (CSF) to optimize protein capture. Six hourly samples were analyzed for 27 inflammatory biomarkers (9 chemokines, 13 cytokines, and 5 growth factors) using a commercial multiplex biomarker kit. TBI (n = 6) resulted in a significant increase compared with sham-injured controls (n = 6) for five chemokines (eotaxin/CCL11, fractalkine/CX3CL1, LIX/CXCL5, monocyte chemoattractant protein [MCP]1α/CCL2, macrophage inflammatory protein [MIP]1α /CCL3), 10 cytokines (interleukin [IL]-1α, IL-1β, IL-4, IL-6, IL-10, IL-13, IL-17α, IL-18, interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and four growth factors (epidermal growth factor [EGF], granulocyte-macrophage colony-stimulating factor [GM-CSF], leptin, vascular endothelial growth factor [VEGF]). Therefore, diffuse TBI was associated with an increased level of 18 of the 27 inflammatory biomarkers at one through six time points, during the observation period whereas the remaining 9 biomarkers were unaltered. The study shows that diffuse TBI induces an acute increase in a number of inflammatory biomarkers. The novel MD technique provides stable MD sampling suitable for further studies on the early neuroinflammatory cascade in TBI.
Collapse
Affiliation(s)
- Fredrik Clausen
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Chen X, Wu H, Chen H, Wang Q, Xie XJ, Shen J. Astragaloside VI Promotes Neural Stem Cell Proliferation and Enhances Neurological Function Recovery in Transient Cerebral Ischemic Injury via Activating EGFR/MAPK Signaling Cascades. Mol Neurobiol 2018; 56:3053-3067. [PMID: 30088176 DOI: 10.1007/s12035-018-1294-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Radix Astragali (AR) is a commonly used medicinal herb for post-stroke disability in Traditional Chinese Medicine but its active compounds for promoting neurogenic effects are largely unknown. In the present study, we tested the hypothesis that Astragaloside VI could be a promising active compound from AR for adult neurogenesis and brain repair via targeting epidermal growth factor (EGF)-mediated MAPK signaling pathway in post-stroke treatment. By using cultured neural stem cells (NSCs) and experimental stroke rat model, we investigated the effects of Astragaloside VI on inducing NSCs proliferation and self-renewal in vitro, and enhancing neurogenesis for the recovery of the neurological functions in post-ischemic brains in vivo. For animal experiments, rats were undergone 1.5 h middle cerebral artery occlusion (MCAO) plus 7 days reperfusion. Astragaloside VI (2 μg/kg) was daily administrated by intravenous injection (i.v.) for 7 days. Astragaloside VI treatment promoted neurogenesis and astrogenic formation in dentate gyrus zone, subventricular zone, and cortex of the transient ischemic rat brains in vivo. Astragaloside VI treatment enhanced NSCs self-renewal and proliferation in the cultured NSCs in vitro without affecting NSCs differentiation. Western blot analysis showed that Astragaloside VI up-regulated the expression of nestin, p-EGFR and p-MAPK, and increased neurosphere sizes, whose effects were abolished by the co-treatment of EGF receptor inhibitor gefitinib and ERK inhibitor PD98059. Behavior tests revealed that Astragaloside VI promoted the spatial learning and memory and improved the impaired motor function in transient cerebral ischemic rats. Taken together, Astragaloside VI could effectively activate EGFR/MAPK signaling cascades, promote NSCs proliferation and neurogenesis in transient cerebral ischemic brains, and improve the repair of neurological functions in post-ischemic stroke rats. Astragaloside VI could be a new therapeutic drug candidate for post-stroke treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Core Facility, The People's Hospital of Bao-an, Shenzhen, China.,The 8th people's Hospital of Shenzhen, The Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, 518000, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Hao Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xue-Jiao Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiangang Shen
- Department of Core Facility, The People's Hospital of Bao-an, Shenzhen, China. .,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China. .,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Ozturk AM, Sozbilen MC, Sevgili E, Dagci T, Özyalcin H, Armagan G. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury. Injury 2018; 49:1038-1045. [PMID: 29602490 DOI: 10.1016/j.injury.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023]
Abstract
Spinal cord injury (SCI) leads to vascular damage and disruption of blood-spinal cord barrier which participates in secondary nerve injury. Epidermal growth factor (EGF) is an endogenous protein which regulates cell proliferation, growth and differention. Previous studies reported that EGF exerts neuroprotective effect in spinal cord after SCI. However, the molecular mechanisms underlying EGF-mediated protection in different regions of nervous system have not shown yet. In this study, we aimed to examine possible anti-apoptotic and protective roles of EGF not only in spinal cord but also in brain following SCI. Twenty-eight adult rats were divided into four groups of seven animals each as follows: sham, trauma (SCI), SCI + EGF and SCI + methylprednisolone (MP) groups. The functional neurological deficits due to the SCI were assessed by behavioral analysis using the Basso, Beattie and Bresnahan (BBB) open-field locomotor test. The alterations in pro-/anti-apoptotic protein levels and antioxidant enzyme activities were measured in spinal cord and frontal cortex. In our study, EGF promoted locomotor recovery and motor neuron survival of SCI rats. EGF treatment significantly decreased Bax and increased Bcl-2 protein expressions both in spinal cord and brain when compared to SCI group. Moreover, antioxidant enzyme activities including catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were increased following EGF treatment similar to MP treatment. Our experiment also suggests that alteration of the ratio of Bcl-2 to Bax may result from decreased apoptosis following EGF treatment. As a conclusion, these results show, for the first time, that administration of EGF exerts its protection via regulating apoptotic and oxidative pathways in response to spinal cord injury in different regions of central nervous system.
Collapse
Affiliation(s)
- Anil Murat Ozturk
- Department of Orthopaedic Surgery, School of Medicine Hospital, Ege University, Bornova, Izmir, Turkey.
| | - Murat Celal Sozbilen
- Department of Orthopaedics and Traumatology, Dr Behcet Uz Child Diseases and Surgery Research and Training Hospital, Konak, Izmir, Turkey
| | - Elvin Sevgili
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Taner Dagci
- Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey; Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| | - Halit Özyalcin
- Department of Orthopaedic Surgery, School of Medicine Hospital, Ege University, Bornova, Izmir, Turkey
| | - Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
31
|
Habib R, Noureen N, Nadeem N. Decoding Common Features of Neurodegenerative Disorders: From Differentially Expressed Genes to Pathways. Curr Genomics 2018; 19:300-312. [PMID: 29755292 PMCID: PMC5930451 DOI: 10.2174/1389202918666171005100549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurodegeneration is a progressive/irreversible loss of neurons, building blocks of our nervous system. Their degeneration gradually collapses the entire structural and functional system manifesting in myriads of clinical disorders categorized as Neurodegenerative Disorders (NDs) such as Alzheimer's Disease, (AD), Parkinson's Disease (PD), Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). NDs are characterized by a puzzling interplay of molecular and cellular defects affecting subset of neuronal populations in specific affected brain areas. OBJECTIVE In present study, comparative in silico analysis was performed by utilizing gene expression datasets of AD, PD, FTD and ALS to identify potential common features to gain insights into complex molecular pathophysiology of the selected NDs. METHODS Gene expression data of four disorders were subjected to the identification of Differential Gene Expression (DEG) and their mapping on biological processes, KEGG pathways and molecular functions. Detailed comparative analysis was performed to highlight the common grounds of these dis-orders at various stages. RESULTS Astoundingly, 106 DEGs were found to be common across all disorders. Alongwith in total 100 GO terms and 7 KEGG pathways were found to be significantly enriched across all disorders. EGFR, CDC42 and CREBBP have been identified as the significantly interacting nodes in gene-gene in-teraction and in Protein-Protein Interaction (PPI) network as well. Furthermore, interaction of common DEGs targets with miRNA's has been scrutinized. CONCLUSION The complex molecular underpinnings of these disorders are currently elusive. Despite heterogeneous clinical and pathological expressions, common features have been recognized in many NDs which provide evidence of their convergence.
Collapse
Affiliation(s)
| | - Nighat Noureen
- Address correspondence to this author at the Biosciences Department, COMSATS Institute of Information Technology, Islamabad, Pakistan; Tel: + (051) 9247000-6104; E-mail:
| | - Neha Nadeem
- Biosciences Department, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
32
|
Hickey K, Stabenfeldt SE. Using biomaterials to modulate chemotactic signaling for central nervous system repair. Biomed Mater 2018; 13:044106. [PMID: 29411713 PMCID: PMC5991092 DOI: 10.1088/1748-605x/aaad82] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemotaxis enables cellular communication and movement within the body. This review focuses on exploiting chemotaxis as a tool for repair of the central nervous system (CNS) damaged from injury and/or degenerative diseases. Chemokines and factors alone may initiate repair following CNS injury/disease, but exogenous administration may enhance repair and promote regeneration. This review will discuss critical chemotactic molecules and factors that may promote neural regeneration. Additionally, this review highlights how biomaterials can impact the presentation and delivery of chemokines and growth factors to alter the regenerative response.
Collapse
Affiliation(s)
- Kassondra Hickey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | | |
Collapse
|
33
|
Yang T, Guo Q, Shi X, Wu S, Li Y, Sun Y, Zhao Y, Chai L, Gao Y, Lou L, Dong B, Zhu L. Panax notoginseng saponins promotes cerebral recovery from ischemic injury by downregulating LINGO-1 and activating the EGFR/PI3K/AKT signaling pathways in vivo. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Ghazale H, Ramadan N, Mantash S, Zibara K, El-Sitt S, Darwish H, Chamaa F, Boustany RM, Mondello S, Abou-Kheir W, Soueid J, Kobeissy F. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behav Brain Res 2018; 340:1-13. [PMID: 29126932 DOI: 10.1016/j.bbr.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the subventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule-1, IBA-1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI-induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA+NSCs treated animals showed decreased levels of 38kDa GFAP-BDP (breakdown product) and 145kDa αII-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.
Collapse
Affiliation(s)
- Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Sara Mantash
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Hala Darwish
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rose Mary Boustany
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, A.O.U. "Policlinico G. Martino", Via Consolare Valeria, Messina, 98125, Italy
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. RECENT FINDINGS Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.
Collapse
Affiliation(s)
- Nicole M Weston
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
37
|
Traumatic Brain Injury and Stem Cell: Pathophysiology and Update on Recent Treatment Modalities. Stem Cells Int 2017; 2017:6392592. [PMID: 28852409 PMCID: PMC5568618 DOI: 10.1155/2017/6392592] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex condition that presents with a wide spectrum of clinical symptoms caused by an initial insult to the brain through an external mechanical force to the skull. In the United States alone, TBI accounts for more than 50,000 deaths per year and is one of the leading causes of mortality among young adults in the developed world. Pathophysiology of TBI is complex and consists of acute and delayed injury. In the acute phase, brain tissue destroyed upon impact includes neurons, glia, and endothelial cells, the latter of which makes up the blood-brain barrier. In the delayed phase, “toxins” released from damaged cells set off cascades in neighboring cells eventually leading to exacerbation of primary injury. As researches further explore pathophysiology and molecular mechanisms underlying this debilitating condition, numerous potential therapeutic strategies, especially those involving stem cells, are emerging to improve recovery and possibly reverse damage. In addition to elucidating the most recent advances in the understanding of TBI pathophysiology, this review explores two primary pathways currently under investigation and are thought to yield the most viable therapeutic approach for treatment of TBI: manipulation of endogenous neural cell response and administration of exogenous stem cell therapy.
Collapse
|
38
|
Dutta D, Hickey K, Salifu M, Fauer C, Willingham C, Stabenfeldt SE. Spatiotemporal presentation of exogenous SDF-1 with PLGA nanoparticles modulates SDF-1/CXCR4 signaling axis in the rodent cortex. Biomater Sci 2017; 5:1640-1651. [PMID: 28703822 PMCID: PMC5588897 DOI: 10.1039/c7bm00489c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stromal cell-derived factor-1 (SDF-1) and its key receptor CXCR4 have been implicated in directing cellular recruitment for several pathological/disease conditions thus also gained considerable attention for regenerative medicine. One regenerative approach includes sustained release of SDF-1 to stimulate prolonged stem cell recruitment. However, the impact of SDF-1 sustained release on the endogenous SDF-1/CXCR4 signaling axis is largely unknown as auto-regulatory mechanisms typically dictate cytokine/receptor signaling. We hypothesize that spatiotemporal presentation of exogenous SDF-1 is a key factor in achieving long-term manipulation of endogenous SDF-1/CXCR4 signaling. Here in the present study, we sought to probe our hypothesis using a transgenic mouse model to contrast the spatial activation of endogenous SDF-1 and CXCR4 in response to exogenous SDF-1 injected in bolus or controlled release (PLGA nanoparticles) form in the adult rodent cortex. Our data suggests that the manner of SDF-1 presentation significantly affected initial CXCR4 cellular activation/recruitment despite having similar protein payloads over the first 24 h (∼30 ng for both bolus and sustained release groups). Yet, one week post-injection, this response was negligible. Therefore, the transient nature CXCR4 recruitment/activation in response to bolus or controlled release SDF-1 indicated that cytokine/receptor auto-regulatory mechanisms may demand more complex release profiles (i.e. delayed and/or pulsed release) to achieve sustained cellular response.
Collapse
Affiliation(s)
- D Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - K Hickey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - M Salifu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - C Fauer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - C Willingham
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - S E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
39
|
Dekmak A, Mantash S, Shaito A, Toutonji A, Ramadan N, Ghazale H, Kassem N, Darwish H, Zibara K. Stem cells and combination therapy for the treatment of traumatic brain injury. Behav Brain Res 2016; 340:49-62. [PMID: 28043902 DOI: 10.1016/j.bbr.2016.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/30/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI.
Collapse
Affiliation(s)
- AmiraSan Dekmak
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Sarah Mantash
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Amer Toutonji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouhad Kassem
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Laboratory of Cardiovascular Diseases and Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
40
|
Shafi O. Inverse relationship between Alzheimer's disease and cancer, and other factors contributing to Alzheimer's disease: a systematic review. BMC Neurol 2016; 16:236. [PMID: 27875990 PMCID: PMC5120447 DOI: 10.1186/s12883-016-0765-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Background The AD etiology is yet not properly known. Interactions among environmental factors, multiple susceptibility genes and aging, contribute to AD. This study investigates the factors that play role in causing AD and how changes in cellular pathways contribute to AD. Methods PUBMED database, MEDLINE database and Google Scholar were searched with no date restrictions for published articles involving cellular pathways with roles in cancers, cell survival, growth, proliferation, development, aging, and also contributing to Alzheimer’s disease. This research explores inverse relationship between AD and cancer, also investigates other factors behind AD using several already published research literature to find the etiology of AD. Results Cancer and Alzheimer’s disease have inverse relationship in many aspects such as P53, estrogen, neurotrophins and growth factors, growth and proliferation, cAMP, EGFR, Bcl-2, apoptosis pathways, IGF-1, HSV, TDP-43, APOE variants, notch signals and presenilins, NCAM, TNF alpha, PI3K/AKT/MTOR pathway, telomerase, ROS, ACE levels. AD occurs when brain neurons have weakened growth, cell survival responses, maintenance mechanisms, weakened anti-stress responses such as Vimentin, Carbonic anhydrases, HSPs, SAPK. In cancer, these responses are upregulated and maintained. Evolutionarily conserved responses and maintenance mechanisms such as FOXO are impaired in AD. Countermeasures or compensatory mechanisms by AD affected neurons such as Tau, Beta Amyloid, S100, are last attempts for survival which may be protective for certain time, or can speed up AD in Alzheimer’s microenvironment via C-ABL activation, GSK3, neuro-inflammation. Conclusions Alzheimer’s disease and Cancer have inverse relationship; many factors that are upregulated in any cancer to sustain growth and survival are downregulated in Alzheimer’s disease contributing to neuro-degeneration. When aged neurons or genetically susceptible neurons have weakened growth, cell survival and anti-stress responses, age related gene expression changes, altered regulation of cell death and maintenance mechanisms, they contribute to Alzheimer’s disease. Countermeasures by AD neurons such as Beta Amyloid Plaques, NFTs, S100, are last attempts for survival and this provides neuroprotection for certain time and ultimately may become pathological and speed up AD. This study may contribute in developing new potential diagnostic tests, interventions and treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0765-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College, Dow University of Health Sciences, Karachi, Pakistan.
| |
Collapse
|
41
|
Hazell AS. The Vegetative State and Stem Cells: Therapeutic Considerations. Front Neurol 2016; 7:118. [PMID: 27602016 PMCID: PMC4993988 DOI: 10.3389/fneur.2016.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
The vegetative state (VS), also known as “unresponsive wakefulness syndrome,” is considered one of the most devastating outcomes of acquired brain injury. While diagnosis of this condition is generally well-defined clinically, patients often appear to be awake despite an absence of behavioral signs of awareness, which to the family can be confusing, leading them to believe the loved one is aware of their surroundings. This inequality of agreement can be very distressing. Currently, no cure for the VS is available; as a result, patients may remain in this condition for the rest of their lives, which in some cases amount to decades. Recent advances in stem cell approaches for the treatment of other neurological conditions may now provide an opportunity to intervene in this syndrome. This mini review will address the development of VS, its diagnosis, affected cerebral structures, and the underlying basis of how stem cells can offer therapeutic promise that would take advantage of the often long-term features associated with this maladie to effect a repair of the severely damaged circuitry. In addition, current limitations of this treatment strategy, including a lack of animal models, few long-term clinical studies that might identify benefits of stem cell treatment, and the potential for development of tumors are considered.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Programa de Postgrado en Fisiopatología Médica, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Chang EH, Adorjan I, Mundim MV, Sun B, Dizon MLV, Szele FG. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche. Front Neurosci 2016; 10:332. [PMID: 27531972 PMCID: PMC4969304 DOI: 10.3389/fnins.2016.00332] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/30/2016] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI.
Collapse
Affiliation(s)
- Eun Hyuk Chang
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd. Seoul, South Korea
| | - Istvan Adorjan
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK; Department of Anatomy, Histology and Embryology, Semmelweis UniversityBudapest, Hungary
| | - Mayara V Mundim
- Department of Biochemistry, Universidade Federal de São Paulo São Paulo, Brazil
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Maria L V Dizon
- Department of Pediatrics, Prentice Women's Hospital, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
43
|
Vinukonda G, Hu F, Mehdizadeh R, Dohare P, Kidwai A, Juneja A, Naran V, Kierstead M, Chawla R, Kayton R, Ballabh P. Epidermal growth factor preserves myelin and promotes astrogliosis after intraventricular hemorrhage. Glia 2016; 64:1987-2004. [PMID: 27472419 DOI: 10.1002/glia.23037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
Abstract
Intraventricular hemorrhage (IVH) leads to reduced myelination and astrogliosis of the white matter in premature infants. No therapeutic strategy exists to minimize white matter injury in survivors with IVH. Epidermal growth factor (EGF) enhances myelination, astrogliosis, and neurologic recovery in animal models of white matter injury. Here, we hypothesized that recombinant human (rh) EGF treatment would enhance oligodendrocyte precursor cell (OPC) maturation, myelination, and neurological recovery in preterm rabbits with IVH. In addition, rhEGF would promote astrogliosis by inducing astroglial progenitor proliferation and GFAP transcription. We tested these hypotheses in a preterm rabbit model of IVH and evaluated autopsy samples from human preterm infants. We found that EGF and EGFR expression were more abundant in the ganglionic eminence relative to the cortical plate and white matter of human infants and that the development of IVH reduced EGF levels, but not EGFR expression. Accordingly, rhEGF treatment promoted proliferation and maturation of OPCs, preserved myelin in the white matter, and enhanced neurological recovery in rabbits with IVH. rhEGF treatment inhibited Notch signaling, which conceivably contributed to OPC maturation. rhEGF treatment contributed to astrogliosis by increasing astroglial proliferation and upregulating GFAP as well as Sox9 expression. Hence, IVH results in a decline in EGF expression; and rhEGF treatment preserves myelin, restores neurological recovery, and exacerbates astrogliosis by inducing proliferation of astrocytes and enhancing transcription of GFAP and Sox9 in pups with IVH. rhEGF treatment might improve the neurological outcome of premature infants with IVH. GLIA 2016;64:1987-2004.
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Furong Hu
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Rana Mehdizadeh
- Department of Cell Biology and Anatomy, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Preeti Dohare
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Ali Kidwai
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Ankit Juneja
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Vineet Naran
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Maria Kierstead
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Rachit Chawla
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Robert Kayton
- Department of Anatomical Pathology, Oregon Health and Science University, Portland, Oregon
| | - Praveen Ballabh
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York. .,Department of Cell Biology and Anatomy, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York.
| |
Collapse
|
44
|
Patel K, Sun D. Strategies targeting endogenous neurogenic cell response to improve recovery following traumatic brain injury. Brain Res 2016; 1640:104-113. [PMID: 26855258 DOI: 10.1016/j.brainres.2016.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) affects over 1.7 million people in the United States alone and poses many clinical challenges due to the variability of the injuries and complexity of biochemical mechanisms involved. Thus far, there is still no effective therapy for TBI. Failure of preventative therapeutic strategies has led studies focusing on regenerative approaches. Recent studies have shown evidence that mature brains harbors multipotent neural stem cells capable of becoming mature neurons in the neurogenic regions. Following brain insults including TBI, the injured brain has increased level of neurogenic response in the subventricular zone and dentate gyrus of the hippocampus and this endogenous response is associated with cognitive function following injury. In this review, we highlight recent development and strategies aimed at targeting this endogenous cell response to enhance post-TBI functional recovery. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Kaushal Patel
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dong Sun
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
45
|
Banks WA, Dohi K, Hansen K, Thompson HJ. Assessing blood granulocyte colony-stimulating factor as a potential biomarker of acute traumatic brain injury in mice and humans. Brain Behav Immun 2016; 52:81-87. [PMID: 26441136 PMCID: PMC5873950 DOI: 10.1016/j.bbi.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 02/01/2023] Open
Abstract
Previous work has found that serum G-CSF was acutely elevated in mice 24h but not one week after controlled cortical impact (CCI). The purpose of this study was to investigate whether blood G-CSF correlates with the elevated brain cytokines in mice after CCI and also if it correlates with traumatic brain injury (TBI) in humans. Here, we found in mice undergoing CCI, a procedure that induces direct injury to the brain, that serum G-CSF correlated directly or indirectly with several brain cytokines, indicating it is a useful marker for the neuroinflammation of TBI. A pilot study in humans (phase I, n=19) confirmed that plasma G-CSF is acutely elevated on day 1 (p<0.001) of TBI and has returned to baseline by one week. In a second human sample (phase II) (n=80), we found plasma G-CSF peaks about 12h after arriving in the emergency department (41.6+/-5.4 pg/ml). Aging was weakly associated (p<0.05) with a less robust elevation in serum G-CSF, but there was no difference with gender. ISS, a measure of total severity of injury, correlated with the degree of elevation in serum G-CSF (r=.419; p<0.05), but severity of head injury (via AIS) did not. The latter may have been because of the statistically narrow range of head injuries among our cases and the high number of cases diagnosed with closed head injury (a non-codable diagnosis). In conclusion, plasma G-CSF may be a useful biomarker of TBI, correlating with neuroinflammation in the animal model and in the human studies with time since injury and total severity of injury. As such, it may be useful in determining whether TBI has occurred within the last 24h.
Collapse
Affiliation(s)
- William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Corresponding author at: Rm 1/810A, VAPSHCS, 1660 S. Columbian Way, Seattle, WA 98108, USA
| | - Kenji Dohi
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA; Department of Emergency Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Kim Hansen
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| | - Hilaire J. Thompson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Biobehavioral Nursing & Health Systems, School of Nursing, University of Washington, Seattle, WA 98195, USA,Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
46
|
Rocamonde B, Paradells S, Garcia Esparza MA, Vives MS, Sauro S, Ramos CM, Pradas MM, Soria JM. Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury. Brain Inj 2016; 30:208-16. [PMID: 26745450 DOI: 10.3109/02699052.2015.1091505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PRIMARY OBJECTIVE The aim of this study was to investigate the reparative potential of a polymeric scaffold designed for brain tissue repair in combination with lipoic acid. RESEARCH DESIGN Histological, cytological and structural analysis of a combined treatment after a brain cryo-injury model in rats. METHODS AND PROCEDURES Adult Wistar rats were subjected to cryogenic brain injury. A channelled-porous scaffold of ethyl acrylate and hydroxyethylacrylate, p(EA-co-HEA) was grafted into cerebral penumbra alone or combined with intraperitoneal LA administration. Histological and cytological evaluation was performed after 15 and 60 days and structural magnetic resonance (MRI) assessment was performed at 2 and 6 months after the surgery. MAIN OUTCOMES AND RESULTS The scaffold was suitable for the establishment of different cellular types. The results obtained suggest that this strategy promotes blood vessels formation, decreased microglial response and neuron migration, particularly when LA was administrated. CONCLUSIONS These evidences demonstrated that the combination of a channelled polymer scaffold with LA administration may represent a potential treatment for neural tissue repair after brain injury.
Collapse
Affiliation(s)
- Brenda Rocamonde
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | - Sara Paradells
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | | | - Mavi Sánchez Vives
- b Institut D'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS , Barcelona , Spain
| | - Salvatore Sauro
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain
| | - Cristina Martínez Ramos
- c Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia , Valencia , Spain
| | - Manuel Monleón Pradas
- c Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia , Valencia , Spain
| | - José Miguel Soria
- a Facultad Ciencias de la Salud, Universidad CEU-Cardenal Herrera , Valencia , Spain.,d Instituto de Ciencias Biomédicas, Universidad CEU-Cardenal Herrera , Moncada , Valencia , Spain
| |
Collapse
|
47
|
|
48
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
49
|
Ahmed AI, Gajavelli S, Spurlock MS, Chieng LO, Bullock MR. Stem cells for therapy in TBI. J ROY ARMY MED CORPS 2015; 162:98-102. [PMID: 26338987 DOI: 10.1136/jramc-2015-000475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/30/2015] [Indexed: 01/19/2023]
Abstract
While the pace of traumatic brain injury (TBI) research has accelerated, the treatment options remain limited. Clinical trials are yet to yield successful treatment options, leading to innovative strategies to overcome the severe debilitating consequences of TBI. Stem cells may act as a potential treatment option. They have two key characteristics, the ability of self-renewal and the ability to give rise to daughter cells, which in the case of neural stem cells (NSCs) includes neurons, astrocytes and oligodendrocytes. They respond to the injury environment providing trophic support and have been shown to differentiate and integrate into the host brain. In this review, we introduce the notion of an NSC and describe the two neurogenic niches in the mammalian brain. The literature supporting the activation of an NSC in rodent models of TBI, both in vivo and in vitro, is detailed. This endogenous activation of NSCs may be augmented by exogenous transplantation of NSCs. Delivery of NSCs to assist the host nervous system has become an attractive option, with either fetal or adult NSC. This has resulted in cognitive and functional improvement in rodents, and current animal studies are using human NSCs. While no NSC clinical trials are currently ongoing for TBI, this review touches upon other neurological diseases and discuss how this may move forward into TBI.
Collapse
Affiliation(s)
- Aminul Islam Ahmed
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - S Gajavelli
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - M S Spurlock
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - L O Chieng
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - M R Bullock
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
50
|
Abstract
Organotypic hippocampal slice cultures (OHSCs) have been used as a powerful ex vivo model for decades. They have been used successfully in studies of neuronal death, microglial activation, mossy fiber regeneration, neurogenesis, and drug screening. As a pre-animal experimental phase for physiologic and pathologic brain research, OHSCs offer outcomes that are relatively closer to those of whole-animal studies than outcomes obtained from cell culture in vitro. At the same time, mechanisms can be studied more precisely in OHSCs than they can be in vivo. Here, we summarize stroke and traumatic brain injury research that has been carried out in OHSCs and review classic experimental applications of OHSCs and its limitations.
Collapse
|