1
|
Rayfield AC, Wu T, Rifkin JA, Meaney DF. Individualized mouse brain network models produce asymmetric patterns of functional connectivity after simulated traumatic injury. Netw Neurosci 2025; 9:326-351. [PMID: 40161980 PMCID: PMC11949614 DOI: 10.1162/netn_a_00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025] Open
Abstract
The functional and cognitive effects of traumatic brain injury (TBI) are poorly understood, as even mild injuries (concussion) can lead to long-lasting, untreatable symptoms. Simplified brain dynamics models may help researchers better understand the relationship between brain injury patterns and functional outcomes. Properly developed, these computational models provide an approach to investigate the effects of both computational and in vivo injury on simulated dynamics and cognitive function, respectively, for model organisms. In this study, we apply the Kuramoto model and an existing mesoscale mouse brain structural network to develop a simplified computational model of mouse brain dynamics. We explore how to optimize our initial model to predict existing mouse brain functional connectivity collected from mice under various anesthetic protocols. Finally, to determine how strongly the changes in our optimized models' dynamics can predict the extent of a brain injury, we investigate how our simulations respond to varying levels of structural network damage. Results predict a mixture of hypo- and hyperconnectivity after experimental TBI, similar to results in TBI survivors, and also suggest a compensatory remodeling of connections that may have an impact on functional outcomes after TBI.
Collapse
Affiliation(s)
- Adam C. Rayfield
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| | - Taotao Wu
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
- University of Georgia School of Chemical, Material, and Biomedical Engineering
| | - Jared A. Rifkin
- University of Virginia Department of Mechanical and Aerospace Engineering
| | - David F. Meaney
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| |
Collapse
|
2
|
Locskai LF, Gill T, Tan SAW, Burton AH, Alyenbaawi H, Burton EA, Allison WT. A larval zebrafish model of traumatic brain injury: optimizing the dose of neurotrauma for discovery of treatments and aetiology. Biol Open 2025; 14:bio060601. [PMID: 39936823 PMCID: PMC11849975 DOI: 10.1242/bio.060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 02/13/2025] Open
Abstract
Traumatic brain injuries (TBI) are diverse with heterogeneous injury pathologies, which creates challenges for the clinical treatment and prevention of secondary pathologies such as post-traumatic epilepsy and subsequent dementias. To develop pharmacological strategies that treat TBI and prevent complications, animal models must capture the spectrum of TBI severity to better understand pathophysiological events that occur during and after injury. To address such issues, we improved upon our recent larval zebrafish TBI paradigm emphasizing titrating to different injury levels. We observed coordination between an increase in injury level and clinically relevant injury phenotypes including post-traumatic seizures (PTS) and tau aggregation. This preclinical TBI model is simple to implement, allows dosing of injury levels to model diverse pathologies, and can be scaled to medium- or high-throughput screening.
Collapse
Affiliation(s)
- Laszlo F. Locskai
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
| | - Taylor Gill
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
| | - Samantha A. W. Tan
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
| | - Alexander H. Burton
- Departments of Chemical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Edward A. Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA 15213, USA
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
- Department of Medical Genetics, University of Alberta, Edmonton AB, T6G 2H7, Canada
| |
Collapse
|
3
|
Ronchetti S, Labombarda F, Del Core J, Roig P, De Nicola AF, Pietranera L. The phytoestrogen genistein improves hippocampal neurogenesis and cognitive impairment and decreases neuroinflammation in an animal model of metabolic syndrome. J Neuroendocrinol 2025; 37:e13480. [PMID: 39676329 DOI: 10.1111/jne.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Metabolic syndrome (MS) is the medical term for the combination of at least three of the following factors: obesity, hyperlipidemia, hyperglycemia, insulin resistance, and hypertension. The spontaneously hypertensive rat (SHR) is an accepted animal model for the study of human MS that reveals all the features of the syndrome when fed high-fat, high-carbohydrate diets. The intake of high-fat diets in rats has been shown to produce brain neuropathology. In humans, MS increases the risk of cognitive impairment, dementia, and Alzheimer's disease. Genistein (GEN) is a phytoestrogen found in soy that lacks feminizing and carcinogenic effects and was found to have neuroprotective and anti-inflammatory effects in many pathological conditions. Considering that multiple data support that natural phytoestrogens may be therapeutic options for CNS maladies, we aim to elucidate if these properties also apply to a rat model of MS. Thus, GEN effects on neuroinflammation, neurogenesis, and cognition were evaluated in SHR eating a fat/carbohydrate-enriched diet. To characterize the neuropathology and cognitive dysfunction of MS we fed SHR with a high-fat diet (4520 kcal/kg) along with a 20% sucrose solution to drink. MS rats displayed a significant increase in body weight, BMI and obesity indexes along with an increased in fasting glucose levels, glucose intolerance, high blood pressure, and high blood triglyceride levels. MS rats were injected with GEN during 2 weeks a dose of 10 mg/kg. We found that MS rats showed a decreased number of DCX+ neural progenitors in the dentate gyrus and treatment with GEN increased this parameter. Expression of GFAP was increased in the DG and CA1 areas of the hippocampus and treatment decreased astrogliosis in all of them. We measured the expression of IBA1+ microglia in the same regions and classified microglia according to their morphology: we found that MS rats presented an increased proportion of the hypertrophied phenotype and GEN produced a shift in microglial phenotypes toward a ramified type. Furthermore, colocalization of IBA1 with the proinflammatory marker TNFα showed increased proportion of proinflammatory microglia in MS and a reduction with GEN treatment. On the other hand, colocalization with the anti-inflammatory marker Arg1 showed that MS has decreased proportion of anti-inflammatory microglia and GEN treatment increased this parameter. Cognitive dysfunction was evaluated in rats with MS using a battery of behavioral tests that assessed hippocampus-dependent spatial and working memory, such as the novel object recognition test (NOR), the novel object location test (NOL), and the free-movement pattern Y-maze (FMP-YMAZE) and the d-YMAZE. In all of them, MS performed poorly and GEN was able to improve cognitive impairments. These results indicate that GEN was able to exert neuroprotective actions increasing neurogenesis and improving cognitive impairments while decreasing astrogliosis, microgliosis, and neuroinflammatory environment in MS rats. Together, these results open an interesting possibility for proposing this phytoestrogen as a neuroprotective therapy for MS.
Collapse
Affiliation(s)
- Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian Del Core
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Hooshmand M, Sadeghi MR, Asoodeh A, Pourbadie HG, Mehni MK, Sayyah M. Administration of monophosphoryl lipid A shortly after traumatic brain injury blocks the following spatial and avoidance memory loss and neuroinflammation. Sci Rep 2024; 14:29408. [PMID: 39592660 PMCID: PMC11599587 DOI: 10.1038/s41598-024-80331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Traumatic brain injury (TBI) frequently leads to cognitive impairments. The toll-like receptor 4 (TLR4) ligand, Monophosphoryl lipid A (MPL), has shown promise in modulating neuroinflammatory responses after TBI. We investigated the effects of MPL on spatial memory, passive avoidance memory, neuronal survival, and inflammatory/anti-inflammatory cytokines in rat brain following mild-to-moderate TBI. Rats underwent a learning period in the Morris water maze and shuttle box, followed by TBI induction by controlled cortical impact. MPL was administered into the cerebral ventricle 20 min after TBI. Spatial memory was assessed 7 and 28 days later. Passive avoidance memory was assessed 2 and 6 days after TBI. MPL significantly improved the spatial memory deficit at 7 days but not 28 days after TBI. It also improved impairment of the avoidance memory at both 2 and 6 days after TBI. MPL prohibited the TBI-induced TNF-α increase and IL-10 decrease in the injured region at 7 days post-TBI period. MPL prevented the neuronal loss induced by TBI in the hippocampus. A single administration of MPL shortly after TBI alleviates short-term memory deficits, through anti-inflammatory and anti-cell loss activities. Repeated MPL administration may also inhibit the long-term memory deficits after TBI.
Collapse
Affiliation(s)
- Maryam Hooshmand
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biochemistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mahbobeh Kamrani Mehni
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Physiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mohamad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Svirsky SE, Henchir J, Parry M, Holets E, Zhang T, Gittes GK, Carlson SW, Dixon CE. Viral-mediated increased hippocampal neurogranin modulate synapses at one month in a rat model of controlled cortical impact. Sci Rep 2024; 14:28998. [PMID: 39578516 PMCID: PMC11584851 DOI: 10.1038/s41598-024-77682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Reductions of neurogranin (Ng), a calcium-sensitive calmodulin-binding protein, result in significant impairment across various hippocampal-dependent learning and memory tasks. Conversely, increasing levels of Ng facilitates synaptic plasticity, increases synaptogenesis and boosts cognitive abilities. Controlled cortical impact (CCI), an experimental traumatic brain injury (TBI) model, results in significantly reduced hippocampal Ng protein expression up to 4 weeks post-injury, supporting a strategy to increase Ng to improve function. In this study, hippocampal Ng expression was increased in adult, male Sham and CCI injured animals using intraparenchymal injection of adeno-associated virus (AAV) 30 min post-injury, thereby also affording the ability to differentiate endogenous and exogenous Ng. At 4 weeks, molecular, anatomical, and behavioral measures of synaptic plasticity were evaluated to determine the therapeutic potential of Ng modulation post-TBI. Increasing Ng had a TBI-dependent effect on hippocampal expression of synaptic proteins and dendritic spine morphology. Increasing Ng did not improve behavior across all outcomes in both Sham and CCI groups at the 4 week time-point. Overall, increasing Ng expression modulated protein expression and dendritic spine morphology, but exerted limited functional benefit after CCI. This study furthers our understanding of Ng, and mechanisms of cognitive dysfunction within the synapse sub-acutely after TBI.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Madison Parry
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Erik Holets
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Ting Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- V.A. Pittsburgh Healthcare System, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
6
|
Pasam T, Padhy HP, Dandekar MP. Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators. Neurochem Res 2024; 50:3. [PMID: 39541016 DOI: 10.1007/s11064-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Considerable studies augured the potential of gut microbiota-based interventions in brain injury-associated complications. Based on our earlier study results, we envisaged the sex-specific neuroprotective effect of Lactobacillus helveticus by remodeling of gut-brain axis. In this study, we investigated the effect of L. helveticus on neurological complications in a mouse model of controlled cortical impact (CCI). Adult, male and female, C57BL/6 mice underwent CCI surgery and received L. helveticus treatment for six weeks. Sensorimotor function was evaluated via neurological severity score and rotarod test. Long-term effects on anxiety-like behavior and cognition were assessed using the elevated-zero maze (EZM) and novel object recognition test (NORT). Brain perilesional area, blood, colon, and fecal samples were collected post-CCI for molecular biology analysis. CCI-operated mice displayed significant neurological impairments at 1-, 3-, 5-, and 7-days post-injury (dpi) and exhibited altered behavior in EZM and NORT compared to sham-operated mice. However, these behavioral changes were ameliorated in mice receiving L. helveticus. GFAP, Iba-1, TNF-α, and IL-1β expressions and corticotrophin-releasing hormone (CRH) levels were elevated in the perilesional cortex of CCI-operated male/female mice. These elevated biomarkers and decreased BDNF levels in both male/female mice were modified by L. helveticus treatment. Additionally, L. helveticus treatment restored altered short-chain fatty acids (SCFAs) levels in fecal samples and improved intestinal integrity but did not affect decreased plasma levels of progesterone and testosterone in CCI mice. These results indicate that L. helveticus exerts beneficial effects in the CCI mouse model by mitigating inflammation and remodeling of gut microbiota-brain mediators.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
7
|
Zahoor M, Farhat SM, Khan S, Ahmed T. Daidzin improves neurobehavioral outcome in rat model of traumatic brain injury. Behav Brain Res 2024; 472:115158. [PMID: 39047874 DOI: 10.1016/j.bbr.2024.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Traumatic brain injury (TBI) is associated with the etiology of multiple neurological disorders, including neurodegeneration, leading to various cognitive deficits. Daidzin (obtained from kudzu root and soybean leaves) is known for its neuroprotective effects through multiple mechanisms. This study aimed to investigate the pharmacological effects of Daidzin on sensory, and biochemical parameters, cognitive functions, anxiety, and depressive-like behaviors in the TBI rat model. Rats were divided into four groups (Control, TBI, TBI + Ibuprofen (30 mg/kg), and TBI + Daidzin (5 mg/kg)). Rats were subjected to TBI by dropping a 200 g rod from a height of 26 cm, resulting in an impact force of 0.51 J on the exposed crania. Ibuprofen (30 mg/kg) was used as a positive control reference/standard drug and Daidzin (5 mg/kg) as the test drug. Neurological severity score (NSS) assessment was done to determine the intactness of sensory and motor responses. Brain tissue edema and acetylcholine levels were determined in the cortex and hippocampus. Cognitive functions such as hippocampus-dependent memory, novel object recognition, exploration, depressive and anxiety-like behaviors were measured. Treatment with Daidzin improved NSS, reduced hippocampal and cortical edema, and improved levels of acetylcholine in TBI-induced rats. Furthermore, Daidzin treatment improved hippocampus-dependent memory, exploration behavior, and novel object recognition while reducing depressive and anxiety-like behavior. Our study revealed that Daidzin has a therapeutic potential comparable to Ibuprofen and can offer neuroprotection and enhanced cognitive and behavioral outcomes in rats after TBI.
Collapse
Affiliation(s)
- Maryam Zahoor
- Neurobiology Laboratory, Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Syeda Mehpara Farhat
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| |
Collapse
|
8
|
Smith AM, Grayson BE. A strike to the head: Parallels between the pediatric and adult human and the rodent in traumatic brain injury. J Neurosci Res 2024; 102:e25364. [PMID: 38953607 DOI: 10.1002/jnr.25364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Traumatic brain injury (TBI) is a condition that occurs commonly in children from infancy through adolescence and is a global health concern. Pediatric TBI presents with a bimodal age distribution, with very young children (0-4 years) and adolescents (15-19 years) more commonly injured. Because children's brains are still developing, there is increased vulnerability to the effects of head trauma, which results in entirely different patterns of injury than in adults. Pediatric TBI has a profound and lasting impact on a child's development and quality of life, resulting in long-lasting consequences to physical, cognitive, and emotional development. Chronic issues like learning disabilities, behavioral problems, and emotional disturbances can develop. Early intervention and ongoing support are critical for minimizing these long-term deficits. Many animal models of TBI exist, and each varies significantly, displaying different characteristics of clinical TBI. The neurodevelopment differs in the rodent from the human in timing and effect, so TBI outcomes in the juvenile rodent can thus vary from the human child. The current review compares findings from preclinical TBI work in juvenile and adult rodents to clinical TBI research in pediatric and adult humans. We focus on the four brain regions most affected by TBI: the prefrontal cortex, corpus callosum, hippocampus, and hypothalamus. Each has its unique developmental projections and thus is impacted by TBI differently. This review aims to compare the healthy neurodevelopment of these four brain regions in humans to the developmental processes in rodents.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
9
|
Tsai YC, Huang SM, Peng HH, Lin SW, Lin SR, Chin TY, Huang SM. Imbalance of synaptic and extrasynaptic NMDA receptors induced by the deletion of CRMP1 accelerates age-related cognitive decline in mice. Neurobiol Aging 2024; 135:48-59. [PMID: 38176125 DOI: 10.1016/j.neurobiolaging.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Collapsin response mediator protein 1 (CRMP1) is involved in semaphorin 3A signaling pathway, promoting neurite extension and growth cone collapse. It is highly expressed in the nervous system, especially the hippocampus. The crmp1 knockout (KO) mice display impaired spatial learning and memory, and this phenomenon seemingly tends to deteriorate with age. Here we investigated whether CRMP1 is involved in age-related cognitive decline in WT and crmp1 KO mice at adult, middle-aged and older stages. The results revealed that cognitive dysfunction in the Morris water maze task became more severe and decreased glutamate and glutamine level in middle-aged crmp1 KO mice. Additionally, increasing levels of extrasynaptic NMDA receptors and phosphorylation of Tau were observed in middle-aged crmp1 KO mice, leading to synaptic and neuronal loss in the CA3 regions of hippocampus. These findings suggest that deletion of CRMP1 accelerates age-related cognitive decline by disrupting the balance between synaptic and extrasynaptic NMDA receptors, resulting in the loss of synapses and neurons.
Collapse
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
11
|
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley MJ, Cardin JA, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cereb Cortex 2024; 34:bhae038. [PMID: 38365273 PMCID: PMC11486687 DOI: 10.1093/cercor/bhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Collapse
Affiliation(s)
- Samantha Bottom-Tanzer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- MD/PhD Program, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Sofia Corella
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
- MD/PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Luis Bolaños
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sadi Quiñones
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Shane Heiney
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whalen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, United States
| | - Rachel Oren
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, United States
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Farzad Noubary
- Department of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
12
|
Park J, Lee SH, Shin D, Kim Y, Kim YS, Seong MY, Lee JJ, Seo HG, Cho WS, Ro YS, Kim Y, Oh BM. Multiplexed Quantitative Proteomics Reveals Proteomic Alterations in Two Rodent Traumatic Brain Injury Models. J Proteome Res 2024; 23:249-263. [PMID: 38064581 DOI: 10.1021/acs.jproteome.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In many cases of traumatic brain injury (TBI), conspicuous abnormalities, such as scalp wounds and intracranial hemorrhages, abate over time. However, many unnoticeable symptoms, including cognitive, emotional, and behavioral dysfunction, often last from several weeks to years after trauma, even for mild injuries. Moreover, the cause of such persistence of symptoms has not been examined extensively. Recent studies have implicated the dysregulation of the molecular system in the injured brain, necessitating an in-depth analysis of the proteome and signaling pathways that mediate the consequences of TBI. Thus, in this study, the brain proteomes of two TBI models were examined by quantitative proteomics during the recovery period to determine the molecular mechanisms of TBI. Our results show that the proteomes in both TBI models undergo distinct changes. A bioinformatics analysis demonstrated robust activation and inhibition of signaling pathways and core proteins that mediate biological processes after brain injury. These findings can help determine the molecular mechanisms that underlie the persistent effects of TBI and identify novel targets for drug interventions.
Collapse
Affiliation(s)
- Junho Park
- Department of Pharmacology, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Research Institute for Basic Medical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Dongyoon Shin
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Yeongshin Kim
- Department of Life Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Young Sik Kim
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jin Joo Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Sun Ro
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Department of Life Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Institute of Aging, Seoul National University College of Medicine, 71 Ihwajang-gil, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- National Traffic Injury Rehabilitation Hospital, 260 Jungang-ro, Yangpyeong-gun 12564, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Machado CA, Oliveira BDS, Dias TL, Barros JLVMD, Ferreira GMF, Cordeiro TM, Feracin V, Alexandre CH, Abreu LKS, Silva WND, Carvalho BC, Fernandes HDB, Vieira ÉLM, Castro PR, Ferreira RN, Kangussu LM, Franco GR, Guatimosim C, Barcelos LDS, Simões E Silva AC, Toscano ECDB, Rachid MA, Teixeira AL, Miranda ASD. Weight-drop model as a valuable tool to study potential neurobiological processes underlying behavioral and cognitive changes secondary to mild traumatic brain injury. J Neuroimmunol 2023; 385:578242. [PMID: 37951202 DOI: 10.1016/j.jneuroim.2023.578242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
The pathophysiology of post-traumatic brain injury (TBI) behavioral and cognitive changes is not fully understood, especially in its mild presentation. We designed a weight drop TBI model in mice to investigate the role of neuroinflammation in behavioral and cognitive sequelae following mild TBI. C57BL/6 mice displayed depressive-like behavior at 72 h after mild TBI compared with controls, as indicated by a decrease in the latency to first immobility and climbing time in the forced swim test. Additionally, anxiety-like behavior and hippocampal-associated spatial learning and memory impairment were found in the elevated plus maze and in the Barnes maze, respectively. Levels of a set of inflammatory mediators and neurotrophic factors were analyzed at 6 h, 24 h, 72 h, and 30 days after injury in ipsilateral and contralateral hemispheres of the prefrontal cortex and hippocampus. Principal components analysis revealed two principal components (PC), which represented 59.1% of data variability. PC1 (cytokines and chemokines) expression varied between both hemispheres, while PC2 (neurotrophic factors) expression varied only across the investigated brain areas. Our model reproduces mild TBI-associated clinical signs and pathological features and might be a valuable tool to broaden the knowledge regarding mild TBI pathophysiology as well as to test potential therapeutic targets.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruna da Silva Oliveira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thomaz Lüscher Dias
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Thiago Macedo Cordeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Feracin
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristian Henrique Alexandre
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Larissa Katharina Sabino Abreu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison Nunes da Silva
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Brener Cunha Carvalho
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana de Barros Fernandes
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Novaes Ferreira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Miranda Kangussu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gloria Regina Franco
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucíola da Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Milene Alvarenga Rachid
- Department of Pathology, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX.
| | - Aline Silva de Miranda
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
14
|
Rajizadeh MA, Khaksari M, Bejeshk MA, Amirkhosravi L, Jafari E, Jamalpoor Z, Nezhadi A. The Role of Inhaled Estradiol and Myrtenol, Alone and in Combination, in Modulating Behavioral and Functional Outcomes Following Traumatic Experimental Brain Injury: Hemodynamic, Molecular, Histological and Behavioral Study. Neurocrit Care 2023; 39:478-498. [PMID: 37100976 DOI: 10.1007/s12028-023-01720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important and growing cause of disability worldwide, and its cognitive consequences may be particularly significant. This study assessed the neuroprotective impacts of estradiol (E2), myrtenol (Myr), and the combination of the two on the neurological outcome, hemodynamic parameters, learning and memory, brain-derived neurotrophic factor (BDNF) level, phosphoinositide 3-kinases (PI3K/AKT) signaling, and inflammatory and oxidative factors in the hippocampus after TBI. METHODS Eighty-four adult male Wistar rats were randomly divided into 12 groups with seven rats in each (six groups to measure intracranial pressure, cerebral perfusion pressure, brain water content, and veterinary coma scale, and six groups for behavioral and molecular studies): sham, TBI, TBI/vehicle, TBI/Myr, TBI/E2, and TBI/Myr + E2 (Myr 50 mg/kg and E2 33.3 μg/kg via inhalation for 30 min after TBI induction). Brain injury was induced by using Marmarou's method. Briefly, a 300-g weight was dropped down from a 2-m height through a free-falling tube onto the head of the anesthetized animals. RESULTS Veterinary coma scale, learning and memory, brain water content, intracranial pressure, and cerebral perfusion pressure were impaired following TBI, and inflammation and oxidative stress were raised in the hippocampus after TBI. The BDNF level and PI3K/AKT signaling were impaired due to TBI. Inhalation of Myr and E2 had protective effects against all negative consequences of TBI by decreasing brain edema and the hippocampal content of inflammatory and oxidant factors and also by improving BDNF and PI3K/AKT in the hippocampus. Based on these data, there were no differences between alone and combination administrations. CONCLUSIONS Our results propose that Myr and E2 have neuroprotective effects on cognition impairments due to TBI.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Khaksari
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Pathology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Lassarén P, Conley G, Boucher ML, Conley AN, Morriss NJ, Qiu J, Mannix RC, Thelin EP. Optimizing Choice and Timing of Behavioral Outcome Tests After Repetitive Mild Traumatic Brain Injury: A Machine Learning-Based Approach on Multiple Pre-Clinical Experiments. J Neurotrauma 2023; 40:1762-1778. [PMID: 36738227 PMCID: PMC10458377 DOI: 10.1089/neu.2022.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI) is a potentially debilitating condition with long-term sequelae. Animal models are used to study rmTBI in a controlled environment, but there is currently no established standard battery of behavioral tests used. Primarily, we aimed to identify the best combination and timing of behavioral tests to distinguish injured from uninjured animals in rmTBI studies, and secondarily, to determine whether combinations of independent experiments have better behavioral outcome prediction accuracy than individual experiments. Data from 1203 mice from 58 rmTBI experiments, some of which have already been published, were used. In total, 11 types of behavioral tests were measured by 37 parameters at 13 time points during the first 6 months after injury. Univariate regression analyses were used to identify optimal combinations of behavioral tests and whether the inclusion of multiple heterogenous experiments improved accuracy. k-means clustering was used to determine whether a combination of multiple tests could distinguish mice with rmTBI from uninjured mice. We found that a combination of behavioral tests outperformed individual tests alone when distinguishing animals with rmTBI from uninjured animals. The best timing for most individual behavioral tests was 3-4 months after first injury. Overall, Morris water maze (MWM; hidden and probe frequency) was the behavioral test with the best capability of detecting injury effects (area under the curve [AUC] = 0.98). Combinations of open field tests and elevated plus mazes also performed well (AUC = 0.92), as did the forced swim test alone (AUC = 0.90). In summary, multiple heterogeneous experiments tended to predict outcome better than individual experiments, and MWM 3-4 months after injury was the optimal test, also several combinations also performed well. In order to design future pre-clinical rmTBI trials, we have included an interactive application available online utilizing the data from the study via the Supplementary URL.
Collapse
Affiliation(s)
- Philipp Lassarén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Grace Conley
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Masen L. Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ashley N. Conley
- School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Nicholas J. Morriss
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rebekah C. Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Hegdekar N, Sarkar C, Bustos S, Ritzel RM, Hanscom M, Ravishankar P, Philkana D, Wu J, Loane DJ, Lipinski MM. Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy 2023:1-19. [PMID: 36652438 DOI: 10.1080/15548627.2023.2167689] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Excessive and prolonged neuroinflammation following traumatic brain injury (TBI) contributes to long-term tissue damage and poor functional outcomes. However, the mechanisms contributing to exacerbated inflammatory responses after brain injury remain poorly understood. Our previous work showed that macroautophagy/autophagy flux is inhibited in neurons following TBI in mice and contributes to neuronal cell death. In the present study, we demonstrate that autophagy is also inhibited in activated microglia and infiltrating macrophages, and that this potentiates injury-induced neuroinflammatory responses. Macrophage/microglia-specific knockout of the essential autophagy gene Becn1 led to overall increase in neuroinflammation after TBI. In particular, we observed excessive activation of the innate immune responses, including both the type-I interferon and inflammasome pathways. Defects in microglial and macrophage autophagy following injury were associated with decreased phagocytic clearance of danger/damage-associated molecular patterns (DAMP) responsible for activation of the cellular innate immune responses. Our data also demonstrated a role for precision autophagy in targeting and degradation of innate immune pathways components, such as the NLRP3 inflammasome. Finally, inhibition of microglial/macrophage autophagy led to increased neurodegeneration and worse long-term cognitive outcomes after TBI. Conversely, increasing autophagy by treatment with rapamycin decreased inflammation and improved outcomes in wild-type mice after TBI. Overall, our work demonstrates that inhibition of autophagy in microglia and infiltrating macrophages contributes to excessive neuroinflammation following brain injury and in the long term may prevent resolution of inflammation and tissue regeneration.Abbreviations: Becn1/BECN1, beclin 1, autophagy related; CCI, controlled cortical impact; Cybb/CYBB/NOX2: cytochrome b-245, beta polypeptide; DAMP, danger/damage-associated molecular patterns; Il1b/IL1B/Il-1β, interleukin 1 beta; LAP, LC3-associated phagocytosis; Map1lc3b/MAP1LC3/LC3, microtubule-associated protein 1 light chain 3 beta; Mefv/MEFV/TRIM20: Mediterranean fever; Nos2/NOS2/iNOS: nitric oxide synthase 2, inducible; Nlrp3/NLRP3, NLR family, pyrin domain containing 3; Sqstm1/SQSTM1/p62, sequestosome 1; TBI, traumatic brain injury; Tnf/TNF/TNF-α, tumor necrosis factor; Ulk1/ULK1, unc-51 like kinase 1.
Collapse
Affiliation(s)
- Nivedita Hegdekar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sabrina Bustos
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, McGovern Medical School, University of Texas, Houston, Tx, USA
| | - Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prarthana Ravishankar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deepika Philkana
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Marta M Lipinski
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Danis A, Baranoglu Kilinc Y, Torun IE, Hanci F, Kilinc E, Ankarali H. Esculetin alleviates pentylenetetrazole-induced seizures, cognitive impairment and pro-inflammatory cytokines and suppresses penicillin-induced epileptiform activity in rats. Life Sci 2023; 313:121300. [PMID: 36535399 DOI: 10.1016/j.lfs.2022.121300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS To investigate the effects of different doses of esculetin on epileptiform activity, behavioral seizures, memory impairment, and cortical and hippocampal NF-κB, as a mediator of pro-inflammatory gene induction, and pro-inflammatory cytokines in penicillin- and pentylenetetrazole(PTZ)-induced seizure models in rats. MAIN METHODS Different doses of esculetin (5, 10, and 20 mg/kg), and diazepam (5 mg/kg) as a positive control, were tested in penicillin- and pentylenetetrazole(PTZ)-induced seizure models. In the PTZ model, cognitive function, behavioral seizures, and cortical and hippocampal pro-inflammatory biomarkers and survival factor was evaluated. In the penicillin model, the frequency and amplitude of electrophysiological epileptiform activity were assessed. KEY FINDINGS In the PTZ model, the 10 mg/kg esculetin displayed anticonvulsant effects by extending onset-times of myoclonic-jerk and generalized tonic-clonic seizure, and by diminishing seizure severity and duration of generalized tonic-clonic seizure. It also ameliorated PTZ-induced cognitive impairment, and cortical and hippocampal activin-A, IL-1β, IL-6 and NF-κB levels. In the penicillin model, the 10 mg/kg esculetin decreased the frequency of spikes without changing the amplitude of spikes. As a positive-control, diazepam reversed all changes induced by both PTZ and penicillin. SIGNIFICANCE Esculetin exhibits anticonvulsant and memory-improving effects by alleviating the behavioral and electrophysiological characteristics of epileptic seizures. Additionally, esculetin exerts anti-neuroinflammatory actions in the PTZ-induced seizures model. Thus, esculetin may be a multi-targeted promising agent with anticonvulsant and anti-neuroinflammatory effects in the treatment of epilepsy.
Collapse
Affiliation(s)
- Aysegul Danis
- Department of Child Neurology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | | | - Ibrahim Ethem Torun
- Department of Physiology, Bolu Abant Izzet Baysal University, Medical Faculty, Bolu, Turkey
| | - Fatma Hanci
- Department of Child Neurology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Erkan Kilinc
- Department of Physiology, Bolu Abant Izzet Baysal University, Medical Faculty, Bolu, Turkey.
| | - Handan Ankarali
- Department of Biostatistics and Medical Informatics, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
18
|
Ronchetti S, Labombarda F, Roig P, De Nicola AF, Pietranera L. Beneficial effects of the phytoestrogen genistein on hippocampal impairments of spontaneously hypertensive rats (SHR). J Neuroendocrinol 2023; 35:e13228. [PMID: 36690381 DOI: 10.1111/jne.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Hippocampal neuropathology is a recognized feature of the spontaneously hypertensive rat (SHR). The hippocampal alterations associate with cognitive impairment. We have shown that hippocampal abnormalities are reversed by 17β-estradiol, a steroid binding to intracellular receptors (estrogen receptor α and β subtypes) or the membrane-located G-protein coupled estradiol receptor. Genistein (GEN) is a neuroprotective phytoestrogen which binds to estrogen receptor β and G-protein coupled estradiol receptor. Here, we investigated whether GEN neuroprotection extends to SHR. For this purpose, we treated 5-month-old SHR for 2 weeks with 10 mg kg-1 daily s.c injections of GEN. We analyzed the expression of doublecortin+ neuronal progenitors, glial fibrillary acidic protein+ astrocytes and ionized calcium-binding adapter molecule 1+ microglia in the CA1 region and dentate gyrus of the hippocampus using immunocytochemistry, whereas a quantitative real-time polymerase chain reaction was used to measure the expression of pro- and anti-inflammatory factors tumor necrosis factor α, cyclooxygenase-2 and transforming growth factor β. We also evaluated hippocampal dependent memory using the novel object recognition test. The results showed a decreased number of doublecortin+ neural progenitors in the dentate gyrus of SHR that was reversed with GEN. The number of glial fibrillary acidic protein+ astrocytes in the dentate gyrus and CA1 was increased in SHR but significantly decreased by GEN treatment. Additionally, GEN shifted microglial morphology from the predominantly activated phenotype present in SHR, to the more surveillance phenotype found in normotensive rats. Furthermore, treatment with GEN decreased the mRNA of the pro-inflammatory factors tumor necrosis factor α and cyclooxygenase-2 and increased the mRNA of the anti-inflammatory factor transforming growth factor β. Discrimination index in the novel object recognition test was decreased in SHR and treatment with GEN increased this parameter. Our results indicate important neuroprotective effects of GEN at the neurochemical and behavioral level in SHR. Our data open an interesting possibility for proposing this phytoestrogen as an alternative therapy in hypertensive encephalopathy.
Collapse
Affiliation(s)
- Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Involvement of Microbiome Gut–Brain Axis in Neuroprotective Effect of Quercetin in Mouse Model of Repeated Mild Traumatic Brain Injury. Neuromolecular Med 2022:10.1007/s12017-022-08732-z. [DOI: 10.1007/s12017-022-08732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
|
20
|
Ma B, Shan X, Yu J, Zhu T, Li R, Lv H, Cheng H, Zhang T, Wang L, Wei F, Meng B, Yuan X, Mei B, Zhang XY, Li WG, Li F. Social deficits via dysregulated Rac1-dependent excitability control of prefrontal cortical neurons and increased GABA/glutamate ratios. Cell Rep 2022; 41:111722. [PMID: 36450249 DOI: 10.1016/j.celrep.2022.111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Identifying symptom-specific convergent mechanisms for neurodevelopmental disorders is a promising strategy in advancing therapies. Here, we show that bidirectional dysregulation of Rac1 activity in the medial prefrontal cortex (mPFC) dictates shared social deficits in mice. Selective upregulation or downregulation of Rac1 activity in glutamatergic or fast-spiking GABAergic neurons results in excessive or inadequate control of excitability combined with a decrease in glutamate or an increase in GABA concentrations and an increase in the GABA/glutamate ratio, which is responsible for social deficits. Notably, the autism model of Shank3B knockout mice exhibits aberrantly enhanced Rac1 activity, reduced glutamate concentrations, and pyramidal neuron excitability in mPFC accompanied with social deficits, which were corrected by either excitatory-neuron-specific downregulation of Rac1 activity or upregulation of neuronal excitability. Thus, this work shows a convergence between genetic autism risk factors, dysregulation of Rac1 signaling, and excitation-inhibition imbalance, enabling mechanism-based stratification of patients with social deficits.
Collapse
Affiliation(s)
- Bingke Ma
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Xingyue Shan
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Juehua Yu
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China; Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Tailin Zhu
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Ren Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education - Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Hui Lv
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Haidi Cheng
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Tiantian Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Lihua Wang
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Feiyang Wei
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Bo Meng
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xiaobing Yuan
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Bing Mei
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education - Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Fei Li
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China.
| |
Collapse
|
21
|
Badea A, Li D, Niculescu AR, Anderson RJ, Stout JA, Williams CL, Colton CA, Maeda N, Dunson DB. Absolute Winding Number Differentiates Mouse Spatial Navigation Strategies With Genetic Risk for Alzheimer's Disease. Front Neurosci 2022; 16:848654. [PMID: 35784847 PMCID: PMC9247395 DOI: 10.3389/fnins.2022.848654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spatial navigation and orientation are emerging as promising markers for altered cognition in prodromal Alzheimer's disease, and even in cognitively normal individuals at risk for Alzheimer's disease. The different APOE gene alleles confer various degrees of risk. The APOE2 allele is considered protective, APOE3 is seen as control, while APOE4 carriage is the major known genetic risk for Alzheimer's disease. We have used mouse models carrying the three humanized APOE alleles and tested them in a spatial memory task in the Morris water maze. We introduce a new metric, the absolute winding number, to characterize the spatial search strategy, through the shape of the swim path. We show that this metric is robust to noise, and works for small group samples. Moreover, the absolute winding number better differentiated APOE3 carriers, through their straighter swim paths relative to both APOE2 and APOE4 genotypes. Finally, this novel metric supported increased vulnerability in APOE4 females. We hypothesized differences in spatial memory and navigation strategies are linked to differences in brain networks, and showed that different genotypes have different reliance on the hippocampal and caudate putamen circuits, pointing to a role for white matter connections. Moreover, differences were most pronounced in females. This departure from a hippocampal centric to a brain network approach may open avenues for identifying regions linked to increased risk for Alzheimer's disease, before overt disease manifestation. Further exploration of novel biomarkers based on spatial navigation strategies may enlarge the windows of opportunity for interventions. The proposed framework will be significant in dissecting vulnerable circuits associated with cognitive changes in prodromal Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandra Badea
- Department of Radiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- Biomedical Engineering, Duke University, Durham, NC, United States
| | - Didong Li
- Department of Computer Science, Princeton University, Princeton, NJ, United States
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States
| | | | | | - Jacques A. Stout
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Christina L. Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Carol A. Colton
- Department of Neurology, Duke University, Durham, NC, United States
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
| | - David B. Dunson
- Department of Statistical Science, Duke University, Durham, NC, United States
| |
Collapse
|
22
|
Hippocampal Mitochondrial Abnormalities Induced the Dendritic Complexity Reduction and Cognitive Decline in a Rat Model of Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9253916. [PMID: 35571236 PMCID: PMC9095360 DOI: 10.1155/2022/9253916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Spinal cord injury (SCI) is a progressive neurodegenerative disease in addition to a traumatic event. Cognitive dysfunction following SCI has been widely reported in patients and animal models. However, the neuroanatomical changes affecting cognitive function after SCI, as well as the mechanisms behind these changes, have so far remained elusive. Herein, we found that SCI accelerates oxidative stress damage of hippocampal neuronal mitochondria. Then, for the first time, we presented a three-dimensional morphological atlas of rat hippocampal neurons generated using a fluorescence Micro-Optical Sectioning Tomography system, a method that accurately identifies the spatial localization of neurons and trace neurites. We showed that the number of dendritic branches and dendritic length was decreased in late stage of SCI. Western blot and transmission electron microscopy analyses also showed a decrease in synaptic communication. In addition, a battery of behavioral tests in these animals revealed hippocampal based cognitive dysfunction, which could be attributed to changes in the dendritic complexity of hippocampal neurons. Taken together, these results suggested that mitochondrial abnormalities in hippocampal neurons induced the dendritic complexity reduction and cognitive decline following SCI. Our study highlights the neuroanatomical basis and importance of mitochondria in brain degeneration following SCI, which might contribute to propose new therapeutic strategies.
Collapse
|
23
|
Redell JB, Maynard ME, Hood KN, Moore AN, Zhao J, Dash PK. Insulin-Like Growth Factor-2 (IGF-2) Does Not Improve Memory in the Chronic Stage of Traumatic Brain Injury in Rodents. Neurotrauma Rep 2021; 2:453-460. [PMID: 34901941 PMCID: PMC8655797 DOI: 10.1089/neur.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Persistent cognitive impairment(s) can be a significant consequence of traumatic brain injury (TBI) and can markedly compromise quality of life. Unfortunately, identifying effective treatments to alleviate memory impairments in the chronic stage of TBI has proven elusive. Several studies have demonstrated that insulin-like growth factor-2 (IGF-2) can enhance memory in both normal animals and in experimental models of disease. In this study, we questioned whether IGF-2, when administered before learning, could enhance memory performance in the chronic stage of TBI. Male C57BL/6 mice (n = 7 per group) were injured using an electronic cortical impact injury device. Four months later, mice were tested for their cognitive performance in the fear memory extinction, novel object recognition (NOR), and Morris water maze tasks. Twenty minutes before each day of training, mice received a subcutaneous injection of either 30 μg/kg of IGF-2 or an equal volume of vehicle. Memory testing was carried out 24 h after training in the absence of the drug. Uninjured sham animals treated with IGF-2 (or vehicle) were trained and tested in the fear memory extinction task as a positive control. Our data show that although IGF-2 (30 μg/kg) improved memory extinction in uninjured mice, it was ineffective at improving fear memory extinction in the chronic stage of TBI. Similarly, IGF-2 administration to chronically injured animals did not improve TBI-related deficits in either NOR or spatial memory. Our results indicate that IGF-2, administered in the chronic stage of injury, is ineffective at enhancing memory performance and therefore may not be a beneficial treatment option for lingering cognitive impairments after a TBI.
Collapse
Affiliation(s)
- John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
24
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
25
|
Barrett JP, Knoblach SM, Bhattacharya S, Gordish-Dressman H, Stoica BA, Loane DJ. Traumatic Brain Injury Induces cGAS Activation and Type I Interferon Signaling in Aged Mice. Front Immunol 2021; 12:710608. [PMID: 34504493 PMCID: PMC8423402 DOI: 10.3389/fimmu.2021.710608] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Aging adversely affects inflammatory processes in the brain, which has important implications in the progression of neurodegenerative disease. Following traumatic brain injury (TBI), aged animals exhibit worsened neurological function and exacerbated microglial-associated neuroinflammation. Type I Interferons (IFN-I) contribute to the development of TBI neuropathology. Further, the Cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING) pathway, a key inducer of IFN-I responses, has been implicated in neuroinflammatory activity in several age-related neurodegenerative diseases. Here, we set out to investigate the effects of TBI on cGAS/STING activation, IFN-I signaling and neuroinflammation in young and aged C57Bl/6 male mice. Using a controlled cortical impact model, we evaluated transcriptomic changes in the injured cortex at 24 hours post-injury, and confirmed activation of key neuroinflammatory pathways in biochemical studies. TBI induced changes were highly enriched for transcripts that were involved in inflammatory responses to stress and host defense. Deeper analysis revealed that TBI increased expression of IFN-I related genes (e.g. Ifnb1, Irf7, Ifi204, Isg15) and IFN-I signaling in the injured cortex of aged compared to young mice. There was also a significant age-related increase in the activation of the DNA-recognition pathway, cGAS, which is a key mechanism to propagate IFN-I responses. Finally, enhanced IFN-I signaling in the aged TBI brain was confirmed by increased phosphorylation of STAT1, an important IFN-I effector molecule. This age-related activation of cGAS and IFN-I signaling may prove to be a mechanistic link between microglial-associated neuroinflammation and neurodegeneration in the aged TBI brain.
Collapse
Affiliation(s)
- James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, United States
| | - Heather Gordish-Dressman
- Center for Translational Science, Children's Research Institute, Children's National Health System, Washington, DC, United States.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Affairs (VA) Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, United States
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Bakoyiannis I, Kitraki E, Stamatakis A. Endocrine-disrupting chemicals and behaviour: A high risk to take? Best Pract Res Clin Endocrinol Metab 2021; 35:101517. [PMID: 33744126 DOI: 10.1016/j.beem.2021.101517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Early life exposure to endocrine-disrupting chemicals (EDCs) is considered a potential risk factor for aberrant brain development and the emergence of behavioral deficits. The purpose of this review is to summarize the toxic effects of bisphenol-A (BPA) and phthalate exposure during pre-, -post- or perinatal life on different types of behaviour in male and female rodents. Despite results not being always consistent, most probably due to methodological issues, it is highly probable that early life exposure to BPA or/and phthalates, affects various aspects of behaviour in the offspring. Adverse effects include: Increased levels of anxiety, altered exploratory behaviour, reduced social interaction or increased aggression and deficits in spatial or recognition learning and memory. These effects have been observed with a wide range of doses, in some cases even below the currently employed Tolerable Daily Intake dose for either BPA or phthalates.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efthymia Kitraki
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
27
|
IGF1 Gene Therapy Reversed Cognitive Deficits and Restored Hippocampal Alterations After Chronic Spinal Cord Injury. Mol Neurobiol 2021; 58:6186-6202. [PMID: 34463925 DOI: 10.1007/s12035-021-02545-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
The hippocampus is implicated in the generation of memory and learning, processes which involve extensive neuroplasticity. The generation of hippocampal adult-born neurons is particularly regulated by glial cells of the neurogenic niche and the surrounding microenvironment. Interestingly, recent evidence has shown that spinal cord injury (SCI) in rodents leads to hippocampal neuroinflammation, neurogenesis reduction, and cognitive impairments. In this scenario, the aim of this work was to evaluate whether an adenoviral vector expressing IGF1 could reverse hippocampal alterations and cognitive deficits after chronic SCI. SCI caused neurogenesis reduction and impairments of both recognition and working memories. We also found that SCI increased the number of hypertrophic arginase-1 negative microglia concomitant with the decrease of the number of ramified surveillance microglia in the hilus, molecular layer, and subgranular zone of the dentate gyrus. RAd-IGF1 treatment restored neurogenesis and improved recognition and working memory impairments. In addition, RAd-IGF1 gene therapy modulated differentially hippocampal regions. In the hilus and molecular layer, IGF1 gene therapy recovered the number of surveillance microglia coincident with a reduction of hypertrophic microglia cell number. However, in the neurogenic niche, IGF1 reduced the number of ramified microglia and increased the number of hypertrophic microglia, which as a whole expressed arginase-1. In summary, RAd-IGF1 gene therapy might surge as a new therapeutic strategy for patients with hippocampal microglial alterations and cognitive deficits such as those with spinal cord injury and other neurodegenerative diseases.
Collapse
|
28
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
29
|
Zhang R, Wang J, Huang L, Wang TJ, Huang Y, Li Z, He J, Sun C, Wang J, Chen X, Wang J. The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurol Res 2021; 44:65-89. [PMID: 34308784 DOI: 10.1080/01616412.2021.1956290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a medical emergency with high morbidity and mortality. Motor, memory, and emotion-related deficits are common symptoms following TBI, yet treatment is very limited. To develop new drugs and find new therapeutic avenues, a wide variety of TBI models have been established to mimic the heterogeneity of TBI. In this regard, along with histologic measures, behavioral functional outcomes provide valuable insight into the underlying neuropathology and guide neurorehabilitation efforts for neuropsychiatric impairment after TBI. Development, characterization, and application of behavioral tests that can assess functional neurologic deficits are essential to the development of translational therapies. This comprehensive review aims to summarize 19 common behavioral tests from three aspects (motor, memory, and emotion-related) that are associated with TBI pathology. Discussion covers the apparatus, the test steps, the evaluation indexes, data collection and analysis, animal performance and applications, advantages and disadvantages as well as precautions to eliminate bias wherever possible. We discussed recent studies on TBI-related preconditioning, biomarkers, and optimized behavioral protocols. The neuropsychologic tests employed in clinics were correlated with those used in mouse TBI models. In summary, this review provides a comprehensive, up-to-date reference for TBI researchers to choose the right neurobehavioral protocol according to the research objectives of their translational investigation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junming Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Yinrou Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zefu Li
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Hegdekar N, Lipinski MM, Sarkar C. N-Acetyl-L-leucine improves functional recovery and attenuates cortical cell death and neuroinflammation after traumatic brain injury in mice. Sci Rep 2021; 11:9249. [PMID: 33927281 PMCID: PMC8084982 DOI: 10.1038/s41598-021-88693-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and long-term disability around the world. Even mild to moderate TBI can lead to lifelong neurological impairment due to acute and progressive neurodegeneration and neuroinflammation induced by the injury. Thus, the discovery of novel treatments which can be used as early therapeutic interventions following TBI is essential to restrict neuronal cell death and neuroinflammation. We demonstrate that orally administered N-acetyl-l-leucine (NALL) significantly improved motor and cognitive outcomes in the injured mice, led to the attenuation of cell death, and reduced the expression of neuroinflammatory markers after controlled cortical impact (CCI) induced experimental TBI in mice. Our data indicate that partial restoration of autophagy flux mediated by NALL may account for the positive effect of treatment in the injured mouse brain. Taken together, our study indicates that treatment with NALL would be expected to improve neurological function after injury by restricting cortical cell death and neuroinflammation. Therefore, NALL is a promising novel, neuroprotective drug candidate for the treatment of TBI.
Collapse
Affiliation(s)
- Nivedita Hegdekar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marta M Lipinski
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Chinmoy Sarkar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
31
|
Sanchez CM, Titus DJ, Wilson NM, Freund JE, Atkins CM. Early Life Stress Exacerbates Outcome after Traumatic Brain Injury. J Neurotrauma 2021; 38:555-565. [PMID: 32862765 PMCID: PMC8020564 DOI: 10.1089/neu.2020.7267] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neurocognitive impairments associated with mild traumatic brain injury (TBI) often resolve within 1-2 weeks; however, a subset of people exhibit persistent cognitive dysfunction for weeks to months after injury. The factors that contribute to these persistent deficits are unknown. One potential risk factor for worsened outcome after TBI is a history of stress experienced by a person early in life. Early life stress (ELS) includes maltreatment such as neglect, and interferes with the normal construction of cortical and hippocampal circuits. We hypothesized that a history of ELS contributes to persistent learning and memory dysfunction following a TBI. To explore this interaction, we modeled ELS by separating Sprague Dawley pups from their nursing mothers from post-natal days 2-14 for 3 h daily. At 2 months of age, male rats received sham surgery or mild to moderate parasagittal fluid-percussion brain injury. We found that the combination of ELS with TBI in adulthood impaired hippocampal-dependent learning, as assessed with contextual fear conditioning, the water maze task, and spatial working memory. Cortical atrophy was significantly exacerbated in TBI animals exposed to ELS compared with normal-reared TBI animals. Changes in corticosterone in response to restraint stress were prolonged in TBI animals that received ELS compared with TBI animals that were normally reared or sham animals that received ELS. Our findings indicate that ELS is a risk factor for worsened outcome after TBI, and results in persistent learning and memory deficits, worsened cortical pathology, and an exacerbation of the hormonal stress response.
Collapse
Affiliation(s)
- Chantal M. Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David J. Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicole M. Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julie E. Freund
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Coleen M. Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
32
|
Li F, Huo S, Song W. Multidimensional review of cognitive impairment after spinal cord injury. Acta Neurol Belg 2021; 121:37-46. [PMID: 32989706 DOI: 10.1007/s13760-020-01507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022]
Abstract
Cognitive impairment is highly prevalent in the population with spinal cord injury (SCI) and exerts a significant impact on functional independence and quality of life in this population. A number of neuroscientists have conducted preliminary investigations of cognitive deficits after SCI, but achieved marginally contradictory results due to some limitations such as the heterogeneity in the sample population, sample size, types of tests utilized, study design, and time since SCI. Therefore, this review mainly focuses on the characteristics, assessments, potential causality and treatment of cognitive impairment for better understanding such deficits in the SCI population.
Collapse
Affiliation(s)
- Fang Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, People's Republic of China
| | - Su Huo
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, People's Republic of China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, People's Republic of China.
| |
Collapse
|
33
|
Hanscom M, Loane DJ, Aubretch T, Leser J, Molesworth K, Hedgekar N, Ritzel RM, Abulwerdi G, Shea-Donohue T, Faden AI. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. J Neuroinflammation 2021; 18:24. [PMID: 33461596 PMCID: PMC7814749 DOI: 10.1186/s12974-020-02067-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Disruptions of brain-gut axis have been implicated in the progression of a variety of gastrointestinal (GI) disorders and central nervous system (CNS) diseases and injuries, including traumatic brain injury (TBI). TBI is a chronic disease process characterized by persistent secondary injury processes which can be exacerbated by subsequent challenges. Enteric pathogen infection during chronic TBI worsened cortical lesion volume; however, the pathophysiological mechanisms underlying the damaging effects of enteric challenge during chronic TBI remain unknown. This preclinical study examined the effect of intestinal inflammation during chronic TBI on associated neurobehavioral and neuropathological outcomes, systemic inflammation, and dysautonomia. METHODS Dextran sodium sulfate (DSS) was administered to adult male C57BL/6NCrl mice 28 days following craniotomy (Sham) or TBI for 7 days to induce intestinal inflammation, followed by a return to normal drinking water for an additional 7 to 28 days for recovery; uninjured animals (Naïve) served as an additional control group. Behavioral testing was carried out prior to, during, and following DSS administration to assess changes in motor and cognitive function, social behavior, and mood. Electrocardiography was performed to examine autonomic balance. Brains were collected for histological and molecular analyses of injury lesion, neurodegeneration, and neuroinflammation. Blood, colons, spleens, mesenteric lymph nodes (mLNs), and thymus were collected for morphometric analyses and/or immune characterization by flow cytometry. RESULTS Intestinal inflammation 28 days after craniotomy or TBI persistently induced, or exacerbated, respectively, deficits in fine motor coordination, cognition, social behavior, and anxiety-like behavior. Behavioral changes were associated with an induction, or exacerbation, of hippocampal neuronal cell loss and microglial activation in Sham and TBI mice administered DSS, respectively. Acute DSS administration resulted in a sustained systemic immune response with increases in myeloid cells in blood and spleen, as well as myeloid cells and lymphocytes in mesenteric lymph nodes. Dysautonomia was also induced in Sham and TBI mice administered DSS, with increased sympathetic tone beginning during DSS administration and persisting through the first recovery week. CONCLUSION Intestinal inflammation during chronic experimental TBI causes a sustained systemic immune response and altered autonomic balance that are associated with microglial activation, increased neurodegeneration, and persistent neurological deficits.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA.
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Taryn Aubretch
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Jenna Leser
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Kara Molesworth
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Nivedita Hedgekar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Terez Shea-Donohue
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| |
Collapse
|
34
|
Henry RJ, Meadows VE, Stoica BA, Faden AI, Loane DJ. Longitudinal Assessment of Sensorimotor Function after Controlled Cortical Impact in Mice: Comparison of Beamwalk, Rotarod, and Automated Gait Analysis Tests. J Neurotrauma 2020; 37:2709-2717. [PMID: 32484024 PMCID: PMC8024371 DOI: 10.1089/neu.2020.7139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) patients are reported to experience long-term sensorimotor dysfunction, with gait deficits evident up to 2 years after the initial brain trauma. Experimental TBI including rodent models of penetrating ballistic-like brain injury and severe controlled cortical impact (CCI) can induce impairments in static and dynamic gait parameters. It is reported that the majority of deficits in gait-related parameters occur during the acute phase post-injury, as functional outcomes return toward baseline levels at chronic time points. In the present study, we carried out a longitudinal analysis of static, temporal and dynamic gait patterns following moderate-level CCI in adult male C57Bl/6J mice using the automated gait analysis apparatus, CatWalk. For comparison, we also performed longitudinal assessment of fine-motor coordination and function in CCI mice using more traditional sensorimotor behavioral tasks such as the beamwalk and accelerating rotarod tasks. We determined that longitudinal CatWalk analysis did not detect TBI-induced deficits in static, temporal, or dynamic gait parameters at acute or chronic time points. In contrast, the rotarod and beamwalk tasks showed that CCI mice had significant motor function impairments as demonstrated by deficits in balance and fine-motor coordination through 28 days post-injury. Stereological analysis confirmed that CCI produced a significant lesion in the parietal cortex at 28 days post-injury. Overall, these findings demonstrate that CatWalk analysis of gait parameters is not useful for assessment of long-term sensorimotor dysfunction after CCI, and that more traditional neurobehavioral tests should be used to quantify acute and chronic deficits in sensorimotor function.
Collapse
Affiliation(s)
- Rebecca J. Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Victoria E. Meadows
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bogdan A. Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
35
|
Ritzel RM, He J, Li Y, Cao T, Khan N, Shim B, Sabirzhanov B, Aubrecht T, Stoica BA, Faden AI, Wu LJ, Wu J. Proton extrusion during oxidative burst in microglia exacerbates pathological acidosis following traumatic brain injury. Glia 2020; 69:746-764. [PMID: 33090575 PMCID: PMC7819364 DOI: 10.1002/glia.23926] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023]
Abstract
Acidosis is among the least studied secondary injury mechanisms associated with neurotrauma. Acute decreases in brain pH correlate with poor long‐term outcome in patients with traumatic brain injury (TBI), however, the temporal dynamics and underlying mechanisms are unclear. As key drivers of neuroinflammation, we hypothesized that microglia directly regulate acidosis after TBI, and thereby, worsen neurological outcomes. Using a controlled cortical impact model in adult male mice we demonstrate that intracellular pH in microglia and extracellular pH surrounding the lesion site are significantly reduced for weeks after injury. Microglia proliferation and production of reactive oxygen species (ROS) were also increased during the first week, mirroring the increase in extracellular ROS levels seen around the lesion site. Microglia depletion by a colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622, markedly decreased extracellular acidosis, ROS production, and inflammation in the brain after injury. Mechanistically, we identified that the voltage‐gated proton channel Hv1 promotes oxidative burst activity and acid extrusion in microglia. Compared to wildtype controls, microglia lacking Hv1 showed reduced ability to generate ROS and extrude protons. Importantly, Hv1‐deficient mice exhibited reduced pathological acidosis and inflammation after TBI, leading to long‐term neuroprotection and functional recovery. Our data therefore establish the microglial Hv1 proton channel as an important link that integrates inflammation and acidosis within the injury microenvironment during head injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Niaz Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bosung Shim
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Taryn Aubrecht
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Saffarpour S, Nasirinezhad F. The CA1 hippocampal serotonin alterations involved in anxiety-like behavior induced by sciatic nerve injury in rats. Scand J Pain 2020; 21:135-144. [PMID: 32892185 DOI: 10.1515/sjpain-2020-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Several clinical and experimental studies reported the anxiety as one of the neuropathic pain comorbidities; however, the mechanisms involved in this comorbidity are incompletely cleared. The current study investigated the consequence of pain induced by peripheral neuropathy on the serotonin (5-HT) level of the CA1 region of the hippocampus, which is known as a potential reason, for anxiety associated with neuropathic pain. METHODS In this manner, 72 male rats were inconstantly subdivided into three experimental groups as follows: control, sham, and chronic constriction injury (CCI). Neuropathic pain was initiated by the CCI of the sciatic nerve, and then, mechanical allodynia, thermal hyperalgesia, and anxiety-like behavior were evaluated using the von Frey filaments, radiant heat, open field test (OFT), and elevated plus maze (EPM) respectively. To investigate the probable mechanisms, the in vivo extracellular levels of 5-HT were assessed by microdialysis and using reverse-phase high-pressure liquid chromatography (HPLC) in the CA1 region of hippocampus on days 16 and 30 post-CCI. RESULTS Our data suggested that CCI caused anxiety-like behavior in OFT and EPM test. 5-HT concentration in the CA1 region of the hippocampus significantly (F=43.8, p=0.000) reduced in CCI rats, when the pain threshold was minimum. Nevertheless, these alterations reversed while the pain threshold innate increased. CONCLUSIONS Neuropathic pain, initiated by constriction of the sciatic nerve can induce anxiety-like behavior in rats. This effect accompanies the reduction in 5-HT concentration in the CA1 region of the hippocampus. When the pain spontaneously alleviated, 5-HT level increased and anxiety-like behavior relieved.
Collapse
Affiliation(s)
- Sepideh Saffarpour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Physiological Research Center, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Doran SJ, Henry RJ, Shirey KA, Barrett JP, Ritzel RM, Lai W, Blanco JC, Faden AI, Vogel SN, Loane DJ. Early or Late Bacterial Lung Infection Increases Mortality After Traumatic Brain Injury in Male Mice and Chronically Impairs Monocyte Innate Immune Function. Crit Care Med 2020; 48:e418-e428. [PMID: 32149839 PMCID: PMC7541908 DOI: 10.1097/ccm.0000000000004273] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Respiratory infections in the postacute phase of traumatic brain injury impede optimal recovery and contribute substantially to overall morbidity and mortality. This study investigated bidirectional innate immune responses between the injured brain and lung, using a controlled cortical impact model followed by secondary Streptococcus pneumoniae infection in mice. DESIGN Experimental study. SETTING Research laboratory. SUBJECTS Adult male C57BL/6J mice. INTERVENTIONS C57BL/6J mice were subjected to sham surgery or moderate-level controlled cortical impact and infected intranasally with S. pneumoniae (1,500 colony-forming units) or vehicle (phosphate-buffered saline) at 3 or 60 days post-injury. MAIN RESULTS At 3 days post-injury, S. pneumoniae-infected traumatic brain injury mice (TBI + Sp) had a 25% mortality rate, in contrast to no mortality in S. pneumoniae-infected sham (Sham + Sp) animals. TBI + Sp mice infected 60 days post-injury had a 60% mortality compared with 5% mortality in Sham + Sp mice. In both studies, TBI + Sp mice had poorer motor function recovery compared with TBI + PBS mice. There was increased expression of pro-inflammatory markers in cortex of TBI + Sp compared with TBI + PBS mice after both early and late infection, indicating enhanced post-traumatic neuroinflammation. In addition, monocytes from lungs of TBI + Sp mice were immunosuppressed acutely after traumatic brain injury and could not produce interleukin-1β, tumor necrosis factor-α, or reactive oxygen species. In contrast, after delayed infection monocytes from TBI + Sp mice had higher levels of interleukin-1β, tumor necrosis factor-α, and reactive oxygen species when compared with Sham + Sp mice. Increased bacterial burden and pathology was also found in lungs of TBI + Sp mice. CONCLUSIONS Traumatic brain injury causes monocyte functional impairments that may affect the host's susceptibility to respiratory infections. Chronically injured mice had greater mortality following S. pneumoniae infection, which suggests that respiratory infections even late after traumatic brain injury may pose a more serious threat than is currently appreciated.
Collapse
Affiliation(s)
- Sarah J Doran
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | | | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
38
|
Sarkar C, Jones JW, Hegdekar N, Thayer JA, Kumar A, Faden AI, Kane MA, Lipinski MM. PLA2G4A/cPLA2-mediated lysosomal membrane damage leads to inhibition of autophagy and neurodegeneration after brain trauma. Autophagy 2020; 16:466-485. [PMID: 31238788 PMCID: PMC6999646 DOI: 10.1080/15548627.2019.1628538] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Lysosomal membrane permeabilization (LMP) is observed under many pathological conditions, leading to cellular dysfunction and death. However, the mechanisms by which lysosomal membranes become leaky in vivo are not clear. Our data demonstrate that LMP occurs in neurons following controlled cortical impact induced (CCI) traumatic brain injury (TBI) in mice, leading to impaired macroautophagy (autophagy) and neuronal cell death. Comparison of LC-MS/MS lysosomal membrane lipid profiles from TBI and sham animals suggested a role for PLA2G4A/cPLA2 (phospholipase A2, group IVA [cytosolic, calcium-dependent]) in TBI-induced LMP. Activation of PLA2G4A caused LMP and inhibition of autophagy flux in cell lines and primary neurons. In vivo pharmacological inhibition of PLA2G4A attenuated TBI-induced LMP, as well as subsequent impairment of autophagy and neuronal loss, and was associated with improved neurological outcomes. Inhibition of PLA2G4A in vitro limited amyloid-β-induced LMP and inhibition of autophagy. Together, our data indicate that PLA2G4A -mediated lysosomal membrane damage is involved in neuronal cell death following CCI-induced TBI and potentially in other neurodegenerative disorders.Abbreviations: AACOCF3, arachidonyl trifluoromethyl ketone; ACTB/β-actin, actin, beta; AD, Alzheimer disease; ATG5, autophagy related 5; ATG7, autophagy related 7; ATG12, autophagy related 12; BECN1, beclin 1, autophagy related; C1P, ceramide-1-phosphate; CCI, controlled cortical impact; CTSD, cathepsin D; CTSL, cathepsin L; GFP, green fluorescent protein; IF, immunofluorescence; LAMP1, lysosomal-associated membrane protein 1; LAMP2, lysosomal-associated membrane protein 2; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LMP, Lysosomal membrane permeabilization; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; MAP1LC3/LC3, microtuble-associated protein 1 light chain 3; NAGLU, alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB); PC, diacyl glycerophosphatidylcholine; PE, diacyl glycerophosphatidylethanolamine; PE-O, plasmanyl glycerophosphatidylethanolamine; PE-P, plasmenyl glycerophosphatidylethanolamine; PLA2G4A/cPLA2, phospholipase A2, group IVA (cytosolic, calcium-dependent); RBFOX3, RNA binding protein, fox-1 homolog (C. elegans) 3; RFP, red fluorescent protein; ROS, reactive oxygen species; SQSTM1, sequestosome 1; TUBA1/α-tubulin, tubulin, alpha; TBI, traumatic brain injury; TFEB, transcription factor EB; ULK1, unc-51 like kinase 1.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Nivedita Hegdekar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julia A. Thayer
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alok Kumar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow-U.P., India
| | - Alan I. Faden
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Marta M. Lipinski
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. J Neurosci 2020; 40:2960-2974. [PMID: 32094203 DOI: 10.1523/jneurosci.2402-19.2020] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/03/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic neuroinflammation with sustained microglial activation occurs following severe traumatic brain injury (TBI) and is believed to contribute to subsequent neurodegeneration and neurological deficits. Microglia, the primary innate immune cells in brain, are dependent on colony stimulating factor 1 receptor (CSF1R) signaling for their survival. In this preclinical study, we examined the effects of delayed depletion of chronically activated microglia on functional recovery and neurodegeneration up to 3 months postinjury. A CSF1R inhibitor, Plexxikon (PLX) 5622, was administered to adult male C57BL/6J mice at 1 month after controlled cortical impact to remove chronically activated microglia, and the inhibitor was withdrawn 1-week later to allow for microglial repopulation. Following TBI, the repopulated microglia displayed a ramified morphology similar to that of Sham uninjured mice, whereas microglia in vehicle-treated TBI mice showed the typical chronic posttraumatic hypertrophic morphology. PLX5622 treatment limited TBI-associated neuropathological changes at 3 months postinjury; these included a smaller cortical lesion, reduced hippocampal neuron cell death, and decreased NOX2- and NLRP3 inflammasome-associated neuroinflammation. Furthermore, delayed depletion of chronically activated microglia after TBI led to widespread changes in the cortical transcriptome and altered gene pathways involved in neuroinflammation, oxidative stress, and neuroplasticity. Using a variety of complementary neurobehavioral tests, PLX5622-treated TBI mice also had improved long-term motor and cognitive function recovery through 3 months postinjury. Together, these studies demonstrate that chronic phase removal of neurotoxic microglia after TBI using CSF1R inhibitors markedly reduce chronic neuroinflammation and associated neurodegeneration, as well as related motor and cognitive deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a debilitating neurological disorder that can seriously impact the patient's quality of life. Microglial-mediated neuroinflammation is induced after severe TBI and contributes to neurological deficits and on-going neurodegenerative processes. Here, we investigated the effect of breaking the neurotoxic neuroinflammatory loop at 1-month after controlled cortical impact in mice by pharmacological removal of chronically activated microglia using a colony stimulating factor 1 receptor (CSF1R) inhibitor, Plexxikon 5622. Overall, we show that short-term elimination of microglia during the chronic phase of TBI followed by repopulation results in long-term improvements in neurological function, suppression of neuroinflammatory and oxidative stress pathways, and a reduction in persistent neurodegenerative processes. These studies are clinically relevant and support new concepts that the therapeutic window for TBI may be far longer than traditionally believed if chronic and evolving microglial-mediated neuroinflammation can be inhibited or regulated in a precise manner.
Collapse
|
40
|
Zhang Y, Shi Q, Li X, Xia C. Fasciculation and Elongation Protein Zeta-1 Expression in Reactive Astrocytes in a Rat Model of Frontal Lobe Injury. J Neuropathol Exp Neurol 2020; 79:194-208. [PMID: 31774489 DOI: 10.1093/jnen/nlz113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/05/2019] [Indexed: 11/12/2022] Open
Abstract
There are reports that depression induced by frontal lobe injury (FLI) has a devastating effect on human mental health. We previously reported that fasciculation and elongation protein zeta-1 (FEZ1) was essential for astrocytic protection of dopamine neurons. Studies of glutamate-glutamine cycle in mental illness have been reported, whereas not from the perspective of astrocytes. This study was designed to investigate the roles of astrocytic FEZ1 and glutamate-glutamine cycle after FLI. A model of FLI was established by inserting a blade into the right frontal lobe of rats. Behavioral tests were used to observe the behavioral changes of FLI rats. Neuropathologic examinations, including immunohistochemistry, were conducted. Behavioral tests showed that FLI decreased exploratory activity. Western blot analysis revealed that the expression of astroglial proteins overall decreased in the initial injury stage, as well as FEZ1. Immunohistochemistry showed a shift of FEZ1 localization from neurons in sham-lesioned rats to astrocytes in FLI rats, and showed the expression profile of glutamate transporter 1 and glutamine synthetase (GS) was consistent with Western blot observation. Our results indicate that astrocytic FEZ1 and glutamate-glutamine cycle dysfunction may be involved in the pathogenesis of depression after FLI.
Collapse
Affiliation(s)
- Ye Zhang
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qing Shi
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiwen Li
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chunlin Xia
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
41
|
Montroull LE, Rothbard DE, Kanal HD, D’Mello V, Dodson V, Troy CM, Zanin JP, Levison SW, Friedman WJ. Proneurotrophins Induce Apoptotic Neuronal Death After Controlled Cortical Impact Injury in Adult Mice. ASN Neuro 2020; 12:1759091420930865. [PMID: 32493127 PMCID: PMC7273561 DOI: 10.1177/1759091420930865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) can regulate multiple cellular functions including proliferation, survival, and apoptotic cell death. The p75NTR is widely expressed in the developing brain and is downregulated as the nervous system matures, with only a few neuronal subpopulations retaining expression into adulthood. However, p75NTR expression is induced following damage to the adult brain, including after traumatic brain injury, which is a leading cause of mortality and disability worldwide. A major consequence of traumatic brain injury is the progressive neuronal loss that continues secondary to the initial trauma, which ultimately contributes to cognitive decline. Understanding mechanisms governing this progressive neuronal death is key to developing targeted therapeutic strategies to provide neuroprotection and salvage cognitive function. In this study, we demonstrate that a cortical impact injury to the sensorimotor cortex elicits p75NTR expression in apoptotic neurons in the injury penumbra, confirming previous studies. To establish whether preventing p75NTR induction or blocking the ligands would reduce the extent of secondary neuronal cell death, we used a noninvasive intranasal strategy to deliver either siRNA to block the induction of p75NTR, or function-blocking antibodies to the ligands pro-nerve growth factor and pro-brain-derived neurotrophic factor. We demonstrate that either preventing the induction of p75NTR or blocking the proneurotrophin ligands provides neuroprotection and preserves sensorimotor function.
Collapse
Affiliation(s)
- Laura E. Montroull
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Deborah E. Rothbard
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Hur D. Kanal
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Veera D’Mello
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Vincent Dodson
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Carol M. Troy
- Department of Pathology and
Cell Biology, Columbia University Medical Center, New York, NY, United
States
| | - Juan P. Zanin
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Steven W. Levison
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Wilma J. Friedman
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| |
Collapse
|
42
|
Ritzel RM, Li Y, He J, Khan N, Doran SJ, Faden AI, Wu J. Sustained neuronal and microglial alterations are associated with diverse neurobehavioral dysfunction long after experimental brain injury. Neurobiol Dis 2019; 136:104713. [PMID: 31843705 PMCID: PMC7155942 DOI: 10.1016/j.nbd.2019.104713] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) can cause progressive neurodegeneration, sustained neuroinflammation and chronic neurological dysfunction. Few experimental studies have explored the long-term neurobehavioral and functional cellular changes beyond several months. The present study examined the effects of a single moderate-level TBI on functional outcome 8 months after injury. Male C57BL/6 mice were subjected to controlled cortical impact injury and followed for changes in motor performance, learning and memory, as well as depressive-like and social behavior. We also used a novel flow cytometry approach to assess cellular functions in freshly isolated neurons and microglia from the injured tissue. There were marked and diverse, sustained neurobehavioral changes in injured mice. Compared to sham controls, chronic TBI mice showed long-term deficits in gait dynamics, nest building, spatial working memory and recognition memory. The tail suspension, forced swim, and sucrose consumption tests showed a marked depressive-like phenotype that was associated with impaired sociability. At the cellular level, there were lower numbers of Thy1+Tuj1+ neurons and higher numbers of activated CD45loCD11b+ microglia. Functionally, both neurons and microglia exhibited significantly higher levels of oxidative stress after injury. Microglia exhibited chronic deficits in phagocytosis of E. coli bacteria, and increased uptake of myelin and dying neurons. Living neurons showed decreased expression of synaptophysin and postsynaptic density (PSD)-95, along with greater numbers of microtubule-associated protein light chain 3 (LC3)-positive autophagosomes and increased mitochondrial mass that suggest dysregulation of autophagy. In summary, the late neurobehavioral changes found after murine TBI are similar to those found chronically after moderate-severe human head injury. Importantly, such changes are associated with microglial dysfunction and changes in neuronal activity.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Niaz Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Sarah J Doran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA; University of Maryland, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA; University of Maryland, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
43
|
Motor Effects of Minimal Traumatic Brain Injury in Mice. J Mol Neurosci 2019; 70:365-377. [PMID: 31820347 DOI: 10.1007/s12031-019-01422-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is considered to be the leading cause of disability and death among young people. Up to 30% of mTBI patients report motor impairments, such as altered coordination and impaired balance and gait. The objective of the present study was to characterize motor performance and motor learning changes, in order to achieve a more thorough understanding of the possible motor consequences of mTBI in humans. Mice were exposed to traumatic brain injury using the weight-drop model and subsequently subjected to a battery of behavioral motor tests. Immunohistochemistry was conducted in order to evaluate neuronal survival and synaptic connectivity. TBI mice showed a different walking pattern on the Erasmus ladder task, without any significant impairment in motor performance and motor learning. In the running wheels, mTBI mice showed reduced activity during the second dark phase and increased activity during the second light phase compared to the control mice. There was no difference in the sum of wheel revolutions throughout the experiment. On the Cat-Walk paradigm, the mice showed a wider frontal base of support post mTBI. The same mice spent a significantly greater percent of time standing on three paws post mTBI compared with controls. mTBI mice also showed a decrease in the number of neurons in the temporal cortex compared with the control group. In summary, mTBI mice suffered from mild motor impairments, minor changes in the circadian clock, and neuronal damage. A more in-depth examination of the mechanisms by which mTBI compensate for motor deficits is necessary.
Collapse
|
44
|
NRG1-ErbB4 signaling promotes functional recovery in a murine model of traumatic brain injury via regulation of GABA release. Exp Brain Res 2019; 237:3351-3362. [PMID: 31720762 DOI: 10.1007/s00221-019-05680-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a serious health problem in the world. However, little is known about the pathogenesis and molecular mechanisms of TBI. Here, we show that TBI activates neuregulin 1 (NRG1)-ErbB4 signaling, with an increased expression of NRG1 and ErbB4 in the traumatic region. Specifically knocking out ErbB4 in parvalbumin-positive (PV+) interneurons exacerbates motor function deficits in mice after TBI. Consistently, PV-ErbB4-/- mice showed larger necrotic area and more edema when compared with PV-ErbB4+/+ mice. Replenishment of NRG1 through intranasal application of the recombinant protein in PV-ErbB4+/+ mice enhanced neurological function. Moreover, using an in vitro neuronal culture system, we found that NRG1-ErbB4 signaling protects neurons from glutamate-induced death, and such protective effects could be diminished by GABA receptor antagonist. These results indicate that NRG-ErbB4 signaling protects cortical neurons from TBI-induced damage, and such effect is probably mediated by promoting GABA activity. Taken together, these findings unveil a previously unappreciated role for NRG1-ErB4 signaling in preventing neuronal cell death during functional recovery after TBI.
Collapse
|
45
|
Teng S, Palmieri A, Maita I, Zheng C, Das G, Park J, Zhou R, Alder J, Thakker-Varia S. Inhibition of EphA/Ephrin-A signaling using genetic and pharmacologic approaches improves recovery following traumatic brain injury in mice. Brain Inj 2019; 33:1385-1401. [DOI: 10.1080/02699052.2019.1641622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Isabella Maita
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gitanjali Das
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Juyeon Park
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
46
|
Ritzel RM, Doran SJ, Glaser EP, Meadows VE, Faden AI, Stoica BA, Loane DJ. Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiol Aging 2019; 77:194-206. [PMID: 30904769 PMCID: PMC6486858 DOI: 10.1016/j.neurobiolaging.2019.02.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/10/2023]
Abstract
After traumatic brain injury (TBI), individuals aged over 65 years show increased mortality and worse functional outcomes compared with younger persons. As neuroinflammation is a key pathobiological mechanism of secondary injury after TBI, we examined how aging affects post-traumatic microglial responses and functional outcomes. Young (3-month-old) and aged (18-month-old) male C57Bl/6 mice were subjected to moderate-level controlled cortical impact or sham surgery, and neurological function was evaluated. At 72 hours after injury, brain, blood, and spleen leukocyte counts were assessed ex vivo using flow cytometry. Aged mice demonstrated more severe deficits in forelimb grip strength, balance and motor coordination, spontaneous locomotor activity, and anxiety-like behavior. These animals also exhibited more robust microglial proliferation and significantly higher numbers of brain-infiltrating leukocytes. Microglia in aged mice showed impairments in phagocytic activity and higher production of interleukin-1β (IL-1β). Infiltrating myeloid cells in aged TBI mice also had deficits in phagocytosis but showed diminished proinflammatory cytokine production and greater reactive oxygen species production. Expression of several senescence markers (Bcl-2, p16ink4a, p21cip1a, lipofuscin, and H2AX [pS139]) was increased with age and/or TBI in both microglia and injured cortex. Although there was no difference in the number of circulating blood neutrophils as a function of age, young mice exhibited more pronounced TBI-induced splenomegaly and splenic myeloid cell expansion. Thus, worse post-traumatic behavioral outcomes in aged animals are associated with exaggerated microglial responses, increased leukocyte invasion, and upregulation of senescence markers.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah J Doran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ethan P Glaser
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victoria E Meadows
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Baker EW, Kinder HA, Hutcheson JM, Duberstein KJJ, Platt SR, Howerth EW, West FD. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:61-73. [DOI: 10.1089/neu.2017.5551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Emily W. Baker
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Holly A. Kinder
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jessica M. Hutcheson
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kylee Jo J. Duberstein
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Simon R. Platt
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth W. Howerth
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
48
|
Jaiswal S, Hockenbury N, Pan H, Knutsen A, Dardzinski BJ, Byrnes KR. Alteration of FDG uptake by performing novel object recognition task in a rat model of Traumatic Brain Injury. Neuroimage 2018; 188:419-426. [PMID: 30576849 DOI: 10.1016/j.neuroimage.2018.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/09/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022] Open
Abstract
Traumatic Brain Injury (TBI) affects approximately 2.5 million people in the United States, of which 80% are considered to be mild (mTBI). Previous studies have shown that cerebral glucose uptake and metabolism are altered after brain trauma and functional metabolic deficits observed following mTBI are associated with changes in cognitive performance. Imaging of glucose uptake using [18F] Fluorodeoxyglucose (FDG) based Positron Emission Tomography (PET) with anesthesia during the uptake period demonstrated limited variability in results, but may have depressed uptake. Anesthesia has been found to interfere with blood glucose levels, and hence, FDG uptake. Conversely, forced cognitive testing during uptake may increase glucose demand in targeted regions, such as hippocampus, allowing for better differentiation of outcomes. Therefore, the objective of this study was to investigate the influence of a directed cognitive function task during the FDG uptake period on uptake measurements both in naïve rats and at 2 days after mild lateral fluid percussion (mLFP) TBI. Adult male Sprague Dawley rats underwent FDG uptake with either cognitive testing with the Novel Object Recognition (NOR) test or No Novel Object (NNO), followed by PET scans at baseline (prior to injury) and at 2days post mLFP. At baseline, FDG uptake in the right hippocampus was elevated in rats completing the NOR in comparison to the NNO (control group). Further, the NNO group rats demonstrated a greater fold change in the FDG uptake between baseline and post injury scans than the NOR group. Overall, these data suggest that cognitive activity during FDG uptake affects the regional uptake pattern in the brain, increasing uptake at baseline and suppressing the effects of injury.
Collapse
Affiliation(s)
- Shalini Jaiswal
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Nicole Hockenbury
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Hongna Pan
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Andrew Knutsen
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Bernard J Dardzinski
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Department of Radiology and Radiological Sciences, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Neuroscience Program, Uniformed Services University, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Neuroscience Program, Uniformed Services University, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
49
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
50
|
Angiopoietin/Tie2 Axis Regulates the Age-at-Injury Cerebrovascular Response to Traumatic Brain Injury. J Neurosci 2018; 38:9618-9634. [PMID: 30242049 DOI: 10.1523/jneurosci.0914-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/15/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Although age-at-injury influences chronic recovery from traumatic brain injury (TBI), the differential effects of age on early outcome remain understudied. Using a male murine model of moderate contusion injury, we investigated the underlying mechanism(s) regulating the distinct response between juvenile and adult TBI. We demonstrate similar biomechanical and physical properties of naive juvenile and adult brains. However, following controlled cortical impact (CCI), juvenile mice displayed reduced cortical lesion formation, cell death, and behavioral deficits at 4 and 14 d. Analysis of high-resolution laser Doppler imaging showed a similar loss of cerebral blood flow (CBF) in the ipsilateral cortex at 3 and 24 h post-CCI, whereas juvenile mice showed enhanced subsequent restoration at 2-4 d compared with adults. These findings correlated with reduced blood-brain barrier (BBB) disruption and increased perilesional vessel density. To address whether an age-dependent endothelial cell (EC) response affects vessel stability and tissue outcome, we magnetically isolated CD31+ ECs from sham and injured cortices and evaluated mRNA expression. Interestingly, we found increased transcripts for BBB stability-related genes and reduced expression of BBB-disrupting genes in juveniles compared with adults. These differences were concomitant with significant changes in miRNA-21-5p and miR-148a levels. Accompanying these findings was robust GFAP immunoreactivity, which was not resolved by day 35. Importantly, pharmacological inhibition of EC-specific Tie2 signaling abolished the juvenile protective effects. These findings shed new mechanistic light on the divergent effects that age plays on acute TBI outcome that are both spatial and temporal dependent.SIGNIFICANCE STATEMENT Although a clear "window of susceptibility" exists in the developing brain that could deter typical developmental trajectories if exposed to trauma, a number of preclinical models have demonstrated evidence of early recovery in younger patients. Our findings further demonstrate acute neuroprotection and improved restoration of cerebral blood flow in juvenile mice subjected to cortical contusion injury compared with adults. We also demonstrate a novel role for endothelial cell-specific Tie2 signaling in this age-related response, which is known to promote barrier stability, is heightened in the injured juvenile vasculature, and may be exploited for therapeutic interventions across the age spectrum following traumatic brain injury.
Collapse
|