1
|
Barbour MA, Whitehead B, Gumbo C, Karelina K, Weil ZM. Traumatic brain injury persistently increases the incidence of both ischemic and hemorrhagic strokes: Potential mechanisms. Prog Neurobiol 2025; 248:102749. [PMID: 40113130 PMCID: PMC12021558 DOI: 10.1016/j.pneurobio.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Traumatic brain injuries (TBI) significantly increase the risk of both ischemic and hemorrhagic strokes, with effects persisting for years after the initial injury. The mechanisms underlying this increased stroke risk are complex, multifactorial, and incompletely understood but likely include chronic cerebrovascular dysfunction, blood-brain barrier disruption, and inflammatory responses. Epidemiological studies consistently show that TBI is an independent risk factor for stroke, with more severe injuries associated with greater risk, especially for hemorrhagic strokes. Traditional risk factors for stroke, such as hypertension, poor diet, and sedentary lifestyle, further elevate the risk in TBI survivors. Modifiable lifestyle factors, such as improving sleep, increasing physical activity, and adopting heart-healthy diets, offer potential intervention points to mitigate stroke risk. Pharmacological considerations, including the use of antidepressants, anticoagulants, and statins, also influence stroke risk, particularly with regard to hemorrhagic complications. This review explores the pathophysiological mechanisms linking TBI and stroke, emphasizing the need for future research to identify specific biomarkers and imaging techniques to predict stroke vulnerability in TBI patients. Addressing the gaps in understanding, particularly regarding small vessel pathology, will be essential to developing targeted therapies for reducing stroke incidence in TBI survivors.
Collapse
Affiliation(s)
- Mikaela A Barbour
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA.
| | - Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| | - Claymore Gumbo
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| | - Zachary M Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| |
Collapse
|
2
|
Osterman C, Hamlin D, Suter CM, Affleck AJ, Gloss BS, Turner CP, Faull RLM, Stein TD, McKee A, Buckland ME, Curtis MA, Murray HC. Perivascular glial reactivity is a feature of phosphorylated tau lesions in chronic traumatic encephalopathy. Acta Neuropathol 2025; 149:16. [PMID: 39921702 PMCID: PMC11807024 DOI: 10.1007/s00401-025-02854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head injuries, is characterised by perivascular hyperphosphorylated tau (p-tau) accumulations within the depths of cortical sulci. Although the majority of CTE literature focuses on p-tau pathology, other pathological features such as glial reactivity, vascular damage, and axonal damage are relatively unexplored. In this study, we aimed to characterise these other pathological features, specifically in CTE p-tau lesion areas, to better understand the microenvironment surrounding the lesion. We utilised multiplex immunohistochemistry to investigate the distribution of 32 different markers of cytoarchitecture and pathology that are relevant to both traumatic brain injury and neurodegeneration. We qualitatively assessed the multiplex images and measured the percentage area of labelling for each marker in the lesion and non-lesion areas of CTE cases. We identified perivascular glial reactivity as a prominent feature of CTE p-tau lesions, largely driven by increases in astrocyte reactivity compared to non-lesion areas. Furthermore, we identified astrocytes labelled for both NAD(P)H quinone dehydrogenase 1 (NQO1) and L-ferritin, indicating that lesion-associated glial reactivity may be a compensatory response to iron-induced oxidative stress. Our findings demonstrate that perivascular inflammation is a consistent feature of the CTE pathognomonic lesion and may contribute to the pathogenesis of brain injury-related neurodegeneration.
Collapse
Affiliation(s)
- Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Danica Hamlin
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Catherine M Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew J Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Clinton P Turner
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
- Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, 2 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ann McKee
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand.
| |
Collapse
|
3
|
Jia X, Zhao W, Zhang H, Zhang X, Ji Q, Li X, Pan Y, Jiang X, Zhang J, Bai L. Cell-Specific Gene Expressions Underlie Selective White Matter Loss Vulnerability in Mild Traumatic Brain Injury. J Neurotrauma 2025; 42:118-130. [PMID: 39453870 DOI: 10.1089/neu.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Traumatic brain injury (TBI), a risk factor for later-life dementia, leads to salient brain atrophy, particularly in the white matter. It is not clear how white matter atrophy progresses or why some brain regions are damaged while others are spared. We hypothesized that spatial variations of cell-specific gene expression contributed to the selective white matter loss vulnerability following mild TBI (mTBI). Gene expression data were sourced from the publicly available Allen Human Brain Atlas, which comprises microarray data spanning nearly the entire brain, derived from six neurologically normal adult donors. A total of 100 patients with acute stage (within 7 days post-injury) mTBI were enrolled. Of these, 60 patients were followed up at 3 months post-injury and 37 were followed up at 6-12 months post-injury. In addition, 59 healthy controls (HCs), matched for age, gender, and education, were included for comparative analysis. White matter volume changes were analyzed at both the acute stage, 3 months, and 6-12 months follow-up in mTBI patients compared with HCs. Patients with mTBI exhibited significant white matter atrophy in the frontal, parietal, and temporal cortices at 3 months post-injury, which even persisted at 6-12 months follow-up. In addition, mTBI patients with cognitive deficits showed more severe brain atrophy compared with those without cognitive deficits. Crucially, the gene expression marking endothelial cells and S1 pyramidal neurons were associated with increased brain atrophy, whereas the gene expression marking microglia and CA1 pyramidal neurons were associated with decreased brain atrophy in mTBI patients at 3 months post-injury. Microglia and endothelial cells can explain 23.6% of regional variations in the white matter atrophy. These findings suggested that modulating cellular activation, especially by promoting microglial activation at 3 months post-injury, might be a promising approach to prevent white matter atrophy, enhance cognitive outcomes, and reduce the risk of later-life dementia.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Haonan Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiang Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Power L, Shuhmaher R, Houtz P, Chen J, Rudolph S, Yuen J, Machour M, Levy E, Wu L, Levenberg S, Whalen M, Chen Y, Kaplan DL. 3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury. J Biomed Mater Res A 2025; 113:e37816. [PMID: 39440483 DOI: 10.1002/jbm.a.37816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The neurovascular unit (NVU) is a critical interface in the central nervous system that links vascular interactions with glial and neural tissue. Disruption of the NVU has been linked to the onset and progression of neurodegenerative diseases. Despite its significance the NVU remains challenging to study in a physiologically relevant manner. Here, a 3D cell triculture model of the NVU is developed that incorporates human primary brain microvascular endothelial cells, astrocytes, and pericytes into a tissue system that can be sustained in vitro for several weeks. This tissue model helps recapitulate the complexity of the NVU and can be used to interrogate the mechanisms of disease and cell-cell interactions. The NVU tissue model displays elevated cell death and inflammatory responses following mechanical damage, to emulate traumatic brain injury (TBI) under controlled laboratory conditions, including lactate dehydrogenase (LDH) release, elevated inflammatory markers TNF-α and monocyte chemoattractant cytokines MCP-2 and MCP-3 and reduced expression of the tight junction marker ZO-1. This 3D tissue model serves as a tool for deciphering mechanisms of TBIs and immune responses associated with the NVU.
Collapse
Affiliation(s)
- Liam Power
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Rita Shuhmaher
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philip Houtz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jinpeng Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - John Yuen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Emily Levy
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michael Whalen
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
5
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
6
|
Lu J, Zuo X, Cai A, Xiao F, Xu Z, Wang R, Miao C, Yang C, Zheng X, Wang J, Ding X, Xiong W. Cerebral small vessel injury in mice with damage to ACE2-expressing cerebral vascular endothelial cells and post COVID-19 patients. Alzheimers Dement 2024; 20:7971-7988. [PMID: 39352003 PMCID: PMC11567838 DOI: 10.1002/alz.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION The angiotensin-converting enzyme 2 (ACE2), which is expressed in cerebral vascular endothelial cells (CVECs), has been currently identified as a functional receptor for SARS-CoV-2. METHODS We specifically induced injury to ACE2-expressing CVECs in mice and evaluated the effects of such targeted damage through magnetic resonance imaging (MRI) and cognitive behavioral tests. In parallel, we recruited a single-center cohort of COVID-19 survivors and further assessed their brain microvascular injury based on cognition and emotional scales, cranial MRI scans, and blood proteomic measurements. RESULTS Here, we show an array of pathological and behavioral alterations characteristic of cerebral small vessel disease (CSVD) in mice that targeted damage to ACE2-expressing CVECs, and COVID-19 survivors. These CSVD-like manifestations persist for at least 7 months post-recovery from COVID-19. DISCUSSION Our findings suggest that SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae, underscoring the imperative for heightened clinical vigilance in mitigating or treating SARS-CoV-2-mediated cerebral endothelial injury throughout infection and convalescence. HIGHLIGHTS Cerebral small vessel disease-associated changes were observed after targeted damage to angiotensin-converting enzyme 2-expressing cerebral vascular endothelial cells. SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae. Clinical vigilance is needed in preventing SARS-CoV-2-induced cerebral endothelial damage during infection and recovery.
Collapse
Affiliation(s)
- Jieping Lu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xin Zuo
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical UniversityChangzhou Second People's HospitalChangzhou Medical CenterNanjing Medical UniversityChangzhouChina
| | - Fang Xiao
- Department of RadiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhenyu Xu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Rui Wang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chenjian Miao
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chen Yang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xingxing Zheng
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoling Ding
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Wei Xiong
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
- Anhui Province Key Laboratory of Biomedical Aging ResearchHefeiChina
- CAS Key Laboratory of Brain Function and DiseaseHefeiChina
| |
Collapse
|
7
|
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int J Mol Sci 2024; 25:11708. [PMID: 39519259 PMCID: PMC11546226 DOI: 10.3390/ijms252111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroplasticity and neuroinflammation are variables seen during recovery from traumatic brain injury (TBI), while biomarkers are useful in monitoring injury and guiding rehabilitation efforts. This systematic review examines how neuroinflammation affects neuroplasticity and recovery following TBI in animal models and humans. Studies were identified from an online search of the PubMed, Web of Science, and Embase databases without any search time range. This review has been registered on Open OSF (n) UDWQM. Recent studies highlight the critical role of biomarkers like serum amyloid A1 (SAA1) and Toll-like receptor 4 (TLR4) in predicting TBI patients' injury severity and recovery outcomes, offering the potential for personalized treatment and improved neurorehabilitation strategies. Additionally, insights from animal studies reveal how neuroinflammation affects recovery, emphasizing targets such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) and microglia for enhancing therapeutic interventions. This review emphasizes the central role of neuroinflammation in TBI, and its adverse impact on neuroplasticity and recovery, and suggests that targeted anti-inflammatory treatments and biomarker-based personalized approaches hold the key to improvement. Such approaches will need further development in future research by integrating neuromodulation and pharmacological interventions, along with biomarker validation, to optimize management in TBI.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
8
|
Joseph CR. Assessing Mild Traumatic Brain Injury-Associated Blood-Brain Barrier (BBB) Damage and Restoration Using Late-Phase Perfusion Analysis by 3D ASL MRI: Implications for Predicting Progressive Brain Injury in a Focused Review. Int J Mol Sci 2024; 25:11522. [PMID: 39519073 PMCID: PMC11547134 DOI: 10.3390/ijms252111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence around the world, associated with a variety of blunt force and torsion injuries affecting all age groups. Most never reach medical attention, and the identification of acute injury and later clearance to return to usual activities is relegated to clinical evaluation-particularly in sports injuries. Advanced structural imaging is rarely performed due to the usual absence of associated acute anatomic/hemorrhagic changes. This review targets physiologic imaging techniques available to identify subtle blood-brain barrier dysfunction and white matter tract shear injury and their association with chronic traumatic encephalopathy. These techniques provide needed objective measures to assure recovery from injury in those patients with persistent cognitive/emotional symptoms and in the face of repetitive mTBI.
Collapse
Affiliation(s)
- Charles R Joseph
- Department of Neurology and Internal Medicine, College of Osteopathic Medicine, Liberty University, Lynchburg, VA 24502, USA
| |
Collapse
|
9
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Du D, Zheng T, Wang Z, Chen Y, Wu S, Yang L, Lu J, Liu L. Evaluating the therapeutic effect of LIPUS in the early stage of traumatic brain injury using FA and T2 * in rats. Aging (Albany NY) 2024; 16:11744-11754. [PMID: 39137314 PMCID: PMC11346775 DOI: 10.18632/aging.206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
To evaluate the protective effect of LIPUS at the early stage of brain trauma in rats, 45 rats were randomly divided into 3 groups: sham (n = 15), TBI (n = 15) and LIPUS treatment groups (n = 15). Ipsilateral and contralateral cortical and thalamic parameters obtained by diffusion tensor imaging (DTI) and fast low-angle shot magnetic resonance imaging (FLASH-MRI) were measured at different times after trauma. For fractional anisotropy (FA) and T2* values, two-way repeated measures ANOVA with Tukey's post hoc was used for intergroup comparisons. With observation time prolonged, the FA values of the ipsilateral cortex in the TBI group gradually increased and were significantly higher than those in the LIPUS treatment group on Day 7 (adjusted P = 0.0067). FA values in the contralateral cortex decreased at this time and were significantly lower than those in the LIPUS treatment group (adjusted P = 0.0192). Meanwhile, compared with LIPUS group, FA values were significantly higher in the injured thalamus (adjusted P = 0.0025). Combined with correlation analysis, FA values were positively correlated with neuronal damage (P = 0.0148, r2 = 0.895). At 7 days after trauma, T2* values in the ipsilateral cortex of the TBI group were significantly lower. After analysis of ferritin content and correlation, we found that T2* values were negatively correlated with ferritin (P = 0.0259, r2 = -0.849). By measuring post-traumatic changes in FA and T2* values, it is possible to demonstrate a neuronal protective effect of LIPUS in the early phase of TBI rats and promote brain rehabilitation.
Collapse
Affiliation(s)
- Dan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yansheng Chen
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Linsha Yang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
11
|
Wang Y, Hu Y, Zhao R, Wang Q, Xu J, Yuan J, Dong S, Liu M, Wu C, Jiang R. Cerebral microbleeds in patients with COVID-19: is there an inevitable connection? Brain Commun 2024; 6:fcae236. [PMID: 39229491 PMCID: PMC11369825 DOI: 10.1093/braincomms/fcae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024] Open
Abstract
The COVID-19 pandemic has underscored the critical interplay between systemic infections and neurological complications, notably cerebral microbleeds. This comprehensive review meticulously aggregates and analyses current evidence on cerebral microbleeds' prevalence, pathophysiological underpinnings and clinical implications within COVID-19 cohorts. Our findings reveal a pronounced correlation between cerebral microbleeds and increased severity of COVID-19, emphasizing the role of direct viral effects, inflammatory responses and coagulation disturbances. The documented association between cerebral microbleeds and elevated risks of morbidity and mortality necessitates enhanced neurological surveillance in managing COVID-19 patients. Although variability in study methodologies presents challenges, the cumulative evidence substantiates cerebral microbleeds as a critical illness manifestation rather than mere coincidence. This review calls for harmonization in research methodologies to refine our understanding and guide targeted interventions. Prioritizing the detection and study of neurological outcomes, such as cerebral microbleeds, is imperative for bolstering pandemic response strategies and mitigating the long-term neurological impact on survivors.
Collapse
Affiliation(s)
- Yuchang Wang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuetao Hu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruichen Zhao
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qi Wang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiarui Xu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
12
|
Ho JW, Dawood ZS, Taylor ME, Liggett MR, Jin G, Jaishankar D, Nadig SN, Bharat A, Alam HB. THE NEUROENDOTHELIAL AXIS IN TRAUMATIC BRAIN INJURY: MECHANISMS OF MULTIORGAN DYSFUNCTION, NOVEL THERAPIES, AND FUTURE DIRECTIONS. Shock 2024; 61:346-359. [PMID: 38517237 DOI: 10.1097/shk.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Collapse
Affiliation(s)
- Jessie W Ho
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zaiba Shafik Dawood
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meredith E Taylor
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Marjorie R Liggett
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang Jin
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dinesh Jaishankar
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Satish N Nadig
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hasan B Alam
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Chandrasekaran S, Santibanez F, Long T, Nichols T, Kait J, Bruegge RV, 'Dale' Bass CR, Pinton G. Shear shock wave injury in vivo: High frame-rate ultrasound observation and histological assessment. J Biomech 2024; 166:112021. [PMID: 38479150 DOI: 10.1016/j.jbiomech.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Using high frame-rate ultrasound and ¡1μm sensitive motion tracking we previously showed that shear waves at the surface of ex vivo and in situ brains develop into shear shock waves deep inside the brain, with destructive local accelerations. However post-mortem tissue cannot develop injuries and has different viscoelastodynamic behavior from in vivo tissue. Here we present the ultrasonic measurement of the high-rate shear shock biomechanics in the in vivo porcine brain, and histological assessment of the resulting axonal pathology. A new biomechanical model of brain injury was developed consisting of a perforated mylar surface attached to the brain and vibrated using an electromechanical shaker. Using a custom sequence with 8 interleaved wide beam emissions, brain imaging and motion tracking were performed at 2900 images/s. Shear shock waves were observed for the first time in vivo wherein the shock acceleration was measured to be 2.6 times larger than the surface acceleration ( 95g vs. 36g). Histopathology showed axonal damage in the impacted side of the brain from the brain surface, accompanied by a local shock-front acceleration of >70g. This shows that axonal injury occurs deep in the brain even though the shear excitation was at the brain surface, and the acceleration measurements support the hypothesis that shear shock waves are responsible for deep traumatic brain injuries.
Collapse
Affiliation(s)
| | - Francisco Santibanez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, USA
| | - Tyler Long
- Departments of Medicine and Pathology and Laboratory Medicine at University of North Carolina at Chapel Hill, USA
| | - Tim Nichols
- Departments of Medicine and Pathology and Laboratory Medicine at University of North Carolina at Chapel Hill, USA
| | - Jason Kait
- Department of Biomedical Engineering, Duke University, USA
| | - Ruth Vorder Bruegge
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, USA
| | | | - Gianmarco Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, USA.
| |
Collapse
|
14
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
15
|
Asano K, Hosoyama S, Takeuchi Y. [Two cases of cerebral amyloid angiopathy in which white matter lesions appearing after brain biopsy got improvement without immunotherapy]. Rinsho Shinkeigaku 2024; 64:23-27. [PMID: 38072444 DOI: 10.5692/clinicalneurol.cn-001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The first case was a 75-year-old woman with intermittent sensory impairment of the left hand. FLAIR of the head MRI revealed hyperintensity along the pia mater in the right parieto-temporal lobe with few microbleeds. Our second case was a 78-year-old man who presented with motor aphasia. His MRI showed swollen cortex on FLAIR and cortical hemosiderosis on T2* weighted imaging of the right cerebral hemisphere. Pathological findings indicated the first case as cerebral amyloid angiopathy (CAA)-related inflammation and the second case as CAA. Additionally, after brain biopsy, widespread white matter lesions were detected in the area surrounding the biopsy site. However, both patients showed improvement without immunotherapy. Therefore, it is important to consider whether immunotherapy is required when white matter lesions appear in the area surrounding the biopsy site.
Collapse
Affiliation(s)
- Kohei Asano
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital
- Department of Neurology, Nagoya Ekisaikai Hospital
| | | | - Yuko Takeuchi
- Department of Neurology, Nagoya Ekisaikai Hospital
- Department of Neurology, Masuko Memorial Hospital
| |
Collapse
|
16
|
Litvinenko IV, Naumov KM, Lobzin VY, Emelin AY, Dynin PS, Kolmakova KA, Nikishin VO. [Traumatic brain injury as risk factor of Alzheimer's disease and possibilities of pathogenetic therapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:45-54. [PMID: 38261283 DOI: 10.17116/jnevro202412401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The article examines the potential role of brain mechanical damage as a trigger for the development of neurodegenerative changes. Attention is paid to dysfunction of the neurovascular unit, and disruption of the functional and compensatory capabilities of blood flow. The importance of microhemorrhages that occur in the acute period of injury and the formation of first focal and then diffuse neuroinflammation is emphasized. The importance of mitochondrial dysfunction was separately determined as a significant factor in increasing the risk of developing Alzheimer's disease (AD) in patients after traumatic brain injury (TBI). In TBI, there is a decrease in the expression of tight junction (TC) proteins of endothelial cells, such as occludin, claudin, JP, which leads to increased permeability of the blood-brain barrier. TBI, provoking endothelial dysfunction, contributes to the development of metabolic disorders of β-amyloid and tau protein, which in turn leads to worsening vascular damage, resulting in a vicious circle that can ultimately lead to the development of AD and dementia. Age-related changes in cerebral arteries, which impair perivascular transport of interstitial fluid, are currently considered as an important part of the «amyloid cascade», especially against the background of genetically mediated disorders of glial membranes associated with defective aquaporin-4 (encoded by the APOE4). Studies in animal models of TBI have revealed an increase in tau protein immunoreactivity and its phosphorylation, which correlates with the severity of injury. A comprehensive analysis of research results shows that the cascade of reactions triggered by TBI includes all the main elements of the pathogenesis of AD: disorders of energy metabolism, microcirculation and clearance of cerebral metabolic products. This leads to a disruption in the metabolism of amyloid protein and its accumulation in brain tissue with the subsequent development of tauopathy. Cerebrolysin, by modulating the permeability of the blood-brain barrier, blocks the development of neuroinflammation, reduces the accumulation of pathological forms of proteins and may be slow down the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - K M Naumov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V Yu Lobzin
- Kirov Military Medical Academy, St. Petersburg, Russia
- Mechnikov North-Western State Medical University, St. Petersburg, Russia
| | - A Yu Emelin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - P S Dynin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - K A Kolmakova
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V O Nikishin
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
17
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Schwerdtfeger K, Oertel J. Prolonged course of brain edema and neurological recovery in a translational model of decompressive craniectomy after closed head injury in mice. Front Neurol 2023; 14:1308683. [PMID: 38053795 PMCID: PMC10694459 DOI: 10.3389/fneur.2023.1308683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Background The use of decompressive craniectomy in traumatic brain injury (TBI) remains a matter of debate. According to the DECRA trial, craniectomy may have a negative impact on functional outcome, while the RescueICP trial revealed a positive effect of surgical decompression, which is evolving over time. This ambivalence of craniectomy has not been studied extensively in controlled laboratory experiments. Objective The goal of the current study was to investigate the prolonged effects of decompressive craniectomy (both positive and negative) in an animal model. Methods Male mice were assigned to the following groups: sham, decompressive craniectomy, TBI and TBI followed by craniectomy. The analysis of functional outcome was performed at time points 3d, 7d, 14d and 28d post trauma according to the Neurological Severity Score and Beam Balance Score. At the same time points, magnetic resonance imaging was performed, and brain edema was analyzed. Results Animals subjected to both trauma and craniectomy presented the exacerbation of the neurological impairment that was apparent mostly in the early course (up to 7d) after injury. Decompressive craniectomy also caused a significant increase in brain edema volume (initially cytotoxic with a secondary shift to vasogenic edema and gliosis). Notably, delayed edema plus gliosis appeared also after decompression even without preceding trauma. Conclusion In prolonged outcomes, craniectomy applied after closed head injury in mice aggravates posttraumatic brain edema, leading to additional functional impairment. This effect is, however, transient. Treatment options that reduce brain swelling after decompression may accelerate neurological recovery and should be explored in future experiments.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Instutute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Medical Sciences, University of Rzeszów, Rzeszow, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Interventional and Diagnostic Radiology, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
18
|
Tessier M, Garcia MS, Goubert E, Blasco E, Consumi A, Dehapiot B, Tian L, Molinari F, Laurin J, Guillemot F, Hübner CA, Pellegrino C, Rivera C. Bumetanide induces post-traumatic microglia-interneuron contact to promote neurogenesis and recovery. Brain 2023; 146:4247-4261. [PMID: 37082944 PMCID: PMC10545516 DOI: 10.1093/brain/awad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI). Here, we found that bumetanide rescues parvalbumin-positive interneurons by increasing interneuron-microglia contacts shortly after injury. The longitudinal phenotypic changes in microglia were significantly modified by bumetanide, including an increase in the expression of microglial-derived BDNF. These effects were accompanied by the prevention of CCI-induced decrease in hippocampal neurogenesis. Treatment with bumetanide during the first week post-CCI resulted in significant recovery of working and episodic memory as well as changes in theta band oscillations 1 month later. These results disclose a novel mechanism for the neuroprotective action of bumetanide mediated by an acceleration of microglial activation dynamics that leads to an increase in parvalbumin interneuron survival following CCI, possibly resulting from increased microglial BDNF expression and contact with interneurons. Salvage of interneurons may normalize ambient GABA, resulting in the preservation of adult neurogenesis processes as well as contributing to bumetanide-mediated improvement of cognitive performance.
Collapse
Affiliation(s)
- Marine Tessier
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | - Marta Saez Garcia
- Neuroscience Center, 00014 University of Helsinki, Helsinki, Finland
| | | | - Edith Blasco
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | | | - Benoit Dehapiot
- Aix Marseille Univ, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13288 Marseille, France
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | | | - Jerome Laurin
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | | | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, 07747 Jena, Germany
| | | | - Claudio Rivera
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
- Neuroscience Center, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
20
|
Ziechmann R, Pathak SM, Welch J, Villanueva P. Delayed Traumatic Intracerebral Hematoma: A Pathophysiological Classification and Literature Review. Cureus 2023; 15:e42987. [PMID: 37671206 PMCID: PMC10476546 DOI: 10.7759/cureus.42987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Delayed traumatic intracerebral hematoma (DTICH) is a relatively common occurrence after a traumatic brain injury (TBI). Several case series have been performed to study DTICH, many of which offer different definitions of DTICH. Some definitions involve a delayed progression of an existing hemorrhage, and others involve a de novo intracerebral hematoma that was not evident on the initial trauma evaluation. We propose a classification system for DTICH that accounts for the subtleties in the clinical manifestation and pathophysiology of the different types of DTICH, with the ultimate goal of providing strategies to prevent and manage DTICH. Based on the senior author's clinical experience, we generated a classification system for DTICH, and each type of DTICH was illustrated with a case. We defined type 1A (case 1A), the classic presentation of DTICH as predominantly characterized in the literature, as an intracerebral hematoma unseen on initial computed tomography imaging that typically develops five days to one week following blunt or penetrating head trauma. We defined type 1B (case 1B) as a hematoma that forms after at least one week following trauma in areas of the brain initially hemorrhage-free. We defined type 2 (case 2) as a hematoma that develops rapidly following a surgical evacuation of a different hematoma. We defined type 3 (case 3) as a hematoma that develops after a traumatic head injury in areas of non-hemorrhagic contusion, usually frontal or temporal. A literature review was performed using select terms on PubMed to find articles related to DTICH, excluding articles describing DTICH from an underlying vascular injury. After performing the literature review and screening articles by title and/or abstract, a total of 79 articles were found to meet the inclusion and exclusion criteria. We recorded which type of DTICH from our classification system best correlated with the articles in our literature review. Taken together with results from the literature, the proposed classification system is based on the senior author's clinical experience. Overall, DTICH is a relatively common occurrence after head trauma, and our pathophysiologic classification has the potential to help outline future studies to recognize and prevent the development of DTICH.
Collapse
Affiliation(s)
| | - Sami M Pathak
- Neurosurgery, Temple University Hospital, Philadelphia, USA
| | - Jonathan Welch
- Neurosurgery, Temple University Hospital, Philadelphia, USA
| | | |
Collapse
|
21
|
Ahluwalia M, Mcmichael H, Kumar M, Espinosa MP, Bosomtwi A, Lu Y, Khodadadi H, Jarrahi A, Khan MB, Hess DC, Rahimi SY, Vender JR, Vale FL, Braun M, Baban B, Dhandapani KM, Vaibhav K. Altered endocannabinoid metabolism compromises the brain-CSF barrier and exacerbates chronic deficits after traumatic brain injury in mice. Exp Neurol 2023; 361:114320. [PMID: 36627040 PMCID: PMC9904276 DOI: 10.1016/j.expneurol.2023.114320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hannah Mcmichael
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mario P Espinosa
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Asamoah Bosomtwi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - David C Hess
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Scott Y Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States of America; VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
22
|
Whitehead B, Velazquez-Cruz R, Albowaidey A, Zhang N, Karelina K, Weil ZM. Mild Traumatic Brain Injury Induces Time- and Sex-Dependent Cerebrovascular Dysfunction and Stroke Vulnerability. J Neurotrauma 2023; 40:578-591. [PMID: 36322789 PMCID: PMC9986031 DOI: 10.1089/neu.2022.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mild traumatic brain injury (mTBI) produces subtle cerebrovascular impairments that persist over time and promote increased ischemic stroke vulnerability. We recently established a role for vascular impairments in exacerbating stroke outcomes 1 week after TBI, but there is a lack of research regarding long-term impacts of mTBI-induced vascular dysfunction, as well as a significant need to understand how mTBI promotes stroke vulnerability in both males and females. Here, we present data using a mild closed head TBI model and an experimental stroke occurring either 7 or 28 days later in both male and female mice. We report that mTBI induces larger stroke volumes 7 days after injury, however, this increased vulnerability to stroke persists out to 28 days in female but not male mice. Importantly, mTBI-induced changes in blood-brain barrier permeability, intravascular coagulation, angiogenic factors, total vascular area, and glial expression were differentially altered across time and by sex. Taken together, these data suggest that mTBI can result in persistent cerebrovascular dysfunction and increased susceptibility to worsened ischemic outcomes, although these dysfunctions occur differently in male and female mice.
Collapse
Affiliation(s)
- Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ruth Velazquez-Cruz
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ali Albowaidey
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ning Zhang
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
23
|
White Matter Injury: An Emerging Potential Target for Treatment after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3842493. [PMID: 36798684 PMCID: PMC9928519 DOI: 10.1155/2023/3842493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) refers to vascular brain injury mainly from a ruptured aneurysm, which has a high lifetime risk and imposes a substantial burden on patients, families, and society. Previous studies on SAH mainly focused on neurons in gray matter (GM). However, according to literature reports in recent years, in-depth research on the mechanism of white matter (WM) is of great significance to injury and recovery after SAH. In terms of functional recovery after SAH, all kinds of cells in the central nervous system (CNS) should be protected. In other words, it is necessary to protect not only GM but also WM, not only neurons but also glial cells and axons, and not only for the lesion itself but also for the prevention and treatment of remote damage. Clarifying the mechanism of white matter injury (WMI) and repair after SAH is of great importance. Therefore, this present review systematically summarizes the current research on WMI after SAH, which might provide therapeutic targets for treatment after SAH.
Collapse
|
24
|
Chojnowski K, Opiełka M, Gozdalski J, Radziwon J, Dańczyszyn A, Aitken AV, Biancardi VC, Winklewski PJ. The Role of Arginine-Vasopressin in Stroke and the Potential Use of Arginine-Vasopressin Type 1 Receptor Antagonists in Stroke Therapy: A Narrative Review. Int J Mol Sci 2023; 24:ijms24032119. [PMID: 36768443 PMCID: PMC9916514 DOI: 10.3390/ijms24032119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke is a life-threatening condition in which accurate diagnoses and timely treatment are critical for successful neurological recovery. The current acute treatment strategies, particularly non-invasive interventions, are limited, thus urging the need for novel therapeutical targets. Arginine vasopressin (AVP) receptor antagonists are emerging as potential targets to treat edema formation and subsequent elevation in intracranial pressure, both significant causes of mortality in acute stroke. Here, we summarize the current knowledge on the mechanisms leading to AVP hyperexcretion in acute stroke and the subsequent secondary neuropathological responses. Furthermore, we discuss the work supporting the predictive value of measuring copeptin, a surrogate marker of AVP in stroke patients, followed by a review of the experimental evidence suggesting AVP receptor antagonists in stroke therapy. As we highlight throughout the narrative, critical gaps in the literature exist and indicate the need for further research to understand better AVP mechanisms in stroke. Likewise, there are advantages and limitations in using copeptin as a prognostic tool, and the translation of findings from experimental animal models to clinical settings has its challenges. Still, monitoring AVP levels and using AVP receptor antagonists as an add-on therapeutic intervention are potential promises in clinical applications to alleviate stroke neurological consequences.
Collapse
Affiliation(s)
- Karol Chojnowski
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Mikołaj Opiełka
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Jacek Gozdalski
- Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| | - Jakub Radziwon
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Aleksandra Dańczyszyn
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Paweł Jan Winklewski
- Department of Human Physiology, Medical University of Gdansk, 15 Tuwima Street, 80-210 Gdansk, Poland
- 2nd Department of Radiology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| |
Collapse
|
25
|
Lacalle-Aurioles M, Iturria-Medina Y. Fornix degeneration in risk factors of Alzheimer's disease, possible trigger of cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100158. [PMID: 36703699 PMCID: PMC9871745 DOI: 10.1016/j.cccb.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Corresponding author at: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada,McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| |
Collapse
|
26
|
Elchaninova EY, Afanas'eva AI, Smagina IV, Elchaninova SA. [Traumatic brain injury before the multiple sclerosis onset: a relationship with the progression of neurological disorders and pathobiochemical markers of the cerebrospinal fluid]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:72-76. [PMID: 37560837 DOI: 10.17116/jnevro202312307272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To evaluate the association of traumatic brain injury (TBI) before the multiple sclerosis (MS) onset with the rate of progression of neurological disorders and cerebrospinal fluid markers of blood-brain barrier permeability, inflammation, demyelination, and gliosis. MATERIAL AND METHODS Patients with relapsing-remitting MS in the Altai region of Russia with/without TBI before the MS onset (n=44; 19 men, 25 women in each group) participated in a prospective, controlled, randomized study. Disability rate was assessed retrospectively. Pleocytosis, levels of protein, albumin, C-reactive protein, TNF-alpha, myelin basic protein, S100 protein were measured in the cerebrospinal fluid in subgroups of patients (n=14 in each group) in MS remission and exacerbation. RESULTS Concussion and mild brain contusion were documented in the group of patients with TBI before the MS onset in 35 (79.5%) and 9 (20.5%) patients, respectively. Traumatic brain injury was over the age of 15 in 72.5% of patients. The rate of MS progression was higher in the group with TBI compared to the group without TBI (0.76±1.28 and 0.40±0.43 EDSS points per year, respectively; p=0.014). TBI before the MS onset increases the risk of disability by more than 0.25 EDSS points per year (OR 2.74; 95 CI 1.10-6.85; p=0.029). Intergroup differences in cerebrospinal fluid parameters were not found either during MS exacerbation or remission. CONCLUSION Concussion or mild brain contusion before the MS onset may be factors influencing the progression of neurological deficit in MS. It seems relevant to study the mechanisms of adverse effects of TBI on the MS progression.
Collapse
Affiliation(s)
| | | | - I V Smagina
- Altai State Medical University, Barnaul, Russia
| | | |
Collapse
|
27
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
28
|
Irimia A, Ngo V, Chaudhari NN, Zhang F, Joshi SH, Penkova AN, O'Donnell LJ, Sheikh-Bahaei N, Zheng X, Chui HC. White matter degradation near cerebral microbleeds is associated with cognitive change after mild traumatic brain injury. Neurobiol Aging 2022; 120:68-80. [PMID: 36116396 PMCID: PMC9759713 DOI: 10.1016/j.neurobiolaging.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
To explore how cerebral microbleeds (CMBs) accompanying mild traumatic brain injury (mTBI) reflect white matter (WM) degradation and cognitive decline, magnetic resonance images were acquired from 62 mTBI adults (imaged ∼7 days and ∼6 months post-injury) and 203 matched healthy controls. On average, mTBI participants had a count of 2.7 ± 2.6 traumatic CMBs in WM, located 6.1 ± 4.4 mm from cortex. At ∼6-month follow-up, 97% of CMBs were associated with significant reductions (34% ± 11%, q < 0.05) in the fractional anisotropy of WM streamlines within ∼1 cm of CMB locations. Male sex and older age were significant risk factors for larger reductions (q < 0.05). For CMBs in the corpus callosum, cingulum bundle, inferior and middle longitudinal fasciculi, fractional anisotropy changes were significantly and positively associated with changes in cognitive functions mediated by these structures (q < 0.05). Our findings distinguish traumatic from non-traumatic CMBs by virtue of surrounding WM alterations and challenge the assumption that traumatic CMBs are neurocognitively silent. Thus, mTBI with CMB findings can be described as a clinical endophenotype warranting longitudinal cognitive assessment.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Fan Zhang
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shantanu H Joshi
- Ahmanson Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anita N Penkova
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lauren J O'Donnell
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaoyu Zheng
- Department of Materials Science & Engineering, University of California, Berkeley, CA, USA
| | - Helena C Chui
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
30
|
Li S, Wernersbach I, Harms GS, Schäfer MKE. Microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. Front Immunol 2022. [PMID: 36105813 DOI: 10.3389/fimmu.2022b.945485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Microglia are phagocytosis-competent CNS cells comprising a spectrum of subtypes with beneficial and/or detrimental functions in acute and chronic neurodegenerative disorders. The heterogeneity of microglia suggests differences in phagocytic activity and phenotype plasticity between microglia subtypes. To study these issues, primary murine glial cultures were cultivated in the presence of serum, different growth factors and cytokines to obtain M0-like, M1-like, and M2-like microglia as confirmed by morphology, M1/M2 gene marker expression, and nitric oxide assay. Single-cell analysis after 3 hours of phagocytosis of E.coli particles or IgG-opsonized beads showed equal internalization by M0-like microglia, whereas M1-like microglia preferably internalized E.coli particles and M2-like microglia preferably internalized IgG beads, suggesting subtype-specific preferences for different phagocytosis substrates. Time-lapse live-cells imaging over 16 hours revealed further differences between microglia subtypes in phagocytosis preference and internalization dynamics. M0- and, more efficiently, M1-like microglia continuously internalized E.coli particles for 16 hours, whereas M2-like microglia discontinued internalization after approximately 8 hours. IgG beads were continuously internalized by M0- and M1-like microglia but strikingly less by M2-like microglia. M2-like microglia initially showed continuous internalization similar to M0-like microglia but again discontinuation of internalization after 8 hours suggesting that the time of substrate exposure differently affect microglia subtypes. After prolonged exposure to E.coli particles or IgG beads for 5 days all microglia subtypes showed increased internalization of E.coli particles compared to IgG beads, increased nitric oxide release and up-regulation of M1 gene markers, irrespectively of the phagocytosis substrate, suggesting phenotype plasticity. In summary, microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. The results suggest that prolonged phagocytosis substrate exposure enhances M1-like profiles and M2-M1 repolarization of microglia. Similar processes may also take place in conditions of acute and chronic brain insults when microglia encounter different types of phagocytic substrates.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gregory S Harms
- Cell Biology Unit, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Departments of Biology and Physics, Wilkes University, Wilkes Barre, PA, United States
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
31
|
Sriram S, Lucke-Wold B. Advances Research in Traumatic Encephalopathy. Biomedicines 2022; 10:2287. [PMID: 36140388 PMCID: PMC9496579 DOI: 10.3390/biomedicines10092287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Though there are an abundance of chronic traumatic encephalopathy (CTE) cases worldwide [...].
Collapse
Affiliation(s)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, McKnight Brain Institute Room L2-100, 1149 South Newell Drive, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Li S, Wernersbach I, Harms GS, Schäfer MKE. Microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. Front Immunol 2022; 13:945485. [PMID: 36105813 PMCID: PMC9465456 DOI: 10.3389/fimmu.2022.945485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Microglia are phagocytosis-competent CNS cells comprising a spectrum of subtypes with beneficial and/or detrimental functions in acute and chronic neurodegenerative disorders. The heterogeneity of microglia suggests differences in phagocytic activity and phenotype plasticity between microglia subtypes. To study these issues, primary murine glial cultures were cultivated in the presence of serum, different growth factors and cytokines to obtain M0-like, M1-like, and M2-like microglia as confirmed by morphology, M1/M2 gene marker expression, and nitric oxide assay. Single-cell analysis after 3 hours of phagocytosis of E.coli particles or IgG-opsonized beads showed equal internalization by M0-like microglia, whereas M1-like microglia preferably internalized E.coli particles and M2-like microglia preferably internalized IgG beads, suggesting subtype-specific preferences for different phagocytosis substrates. Time-lapse live-cells imaging over 16 hours revealed further differences between microglia subtypes in phagocytosis preference and internalization dynamics. M0- and, more efficiently, M1-like microglia continuously internalized E.coli particles for 16 hours, whereas M2-like microglia discontinued internalization after approximately 8 hours. IgG beads were continuously internalized by M0- and M1-like microglia but strikingly less by M2-like microglia. M2-like microglia initially showed continuous internalization similar to M0-like microglia but again discontinuation of internalization after 8 hours suggesting that the time of substrate exposure differently affect microglia subtypes. After prolonged exposure to E.coli particles or IgG beads for 5 days all microglia subtypes showed increased internalization of E.coli particles compared to IgG beads, increased nitric oxide release and up-regulation of M1 gene markers, irrespectively of the phagocytosis substrate, suggesting phenotype plasticity. In summary, microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. The results suggest that prolonged phagocytosis substrate exposure enhances M1-like profiles and M2-M1 repolarization of microglia. Similar processes may also take place in conditions of acute and chronic brain insults when microglia encounter different types of phagocytic substrates.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gregory S. Harms
- Cell Biology Unit, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Departments of Biology and Physics, Wilkes University, Wilkes Barre, PA, United States
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- *Correspondence: Michael K. E. Schäfer,
| |
Collapse
|
33
|
Liu Y, Liu X, Chen Z, Wang Y, Li J, Gong J, He A, Zhao M, Yang C, Yang W, Wang Z. Evaluation of decompressive craniectomy in mice after severe traumatic brain injury. Front Neurol 2022; 13:898813. [PMID: 35959411 PMCID: PMC9360741 DOI: 10.3389/fneur.2022.898813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Decompressive craniectomy (DC) is of great significance for relieving acute intracranial hypertension and saving lives after traumatic brain injury (TBI). In this study, a severe TBI mouse model was created using controlled cortical impact (CCI), and a surgical model of DC was established. Furthermore, a series of neurological function assessments were performed to better understand the pathophysiological changes after DC. In this study, mice were randomly allocated into three groups, namely, CCI group, CCI+DC group, and Sham group. The mice in the CCI and CCI+DC groups received CCI after opening a bone window, and after brain injury, immediately returned the bone window to simulate skull condition after a TBI. The CCI+DC group underwent DC and contused tissue removal 6 h after CCI. The mice in the CCI group underwent the same anesthesia process; however, no further treatment of the bone window and trauma was performed. The mice in the Sham group underwent anesthesia and the process of opening the skin and bone window, but not in the CCI group. Changes in Modified Neurological Severity Score, rotarod performance, Morris water maze, intracranial pressure (ICP), cerebral blood flow (CBF), brain edema, blood–brain barrier (BBB), inflammatory factors, neuronal apoptosis, and glial cell expression were evaluated. Compared with the CCI group, the CCI+DC group had significantly lower ICP, superior neurological and motor function at 24 h after injury, and less severe BBB damage after injury. Most inflammatory cytokine expressions and the number of apoptotic cells in the brain tissue of mice in the CCI+DC group were lower than in the CCI group at 3 days after injury, with markedly reduced astrocyte and microglia expression. However, the degree of brain edema in the CCI+DC group was greater than in the CCI group, and neurological and motor functions, as well as spatial cognitive and learning ability, were significantly poorer at 14 days after injury.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanzhi Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Weidong Yang
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- *Correspondence: Zengguang Wang
| |
Collapse
|
34
|
Wang D, Zhang S, Ge X, Yin Z, Li M, Guo M, Hu T, Han Z, Kong X, Li D, Zhao J, Wang L, Liu Q, Chen F, Lei P. Mesenchymal stromal cell treatment attenuates repetitive mild traumatic brain injury-induced persistent cognitive deficits via suppressing ferroptosis. J Neuroinflammation 2022; 19:185. [PMID: 35836233 PMCID: PMC9281149 DOI: 10.1186/s12974-022-02550-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
The incidence of repetitive mild traumatic brain injury (rmTBI), one of the main risk factors for predicting neurodegenerative disorders, is increasing; however, its underlying mechanism remains unclear. As suggested by several studies, ferroptosis is possibly related to TBI pathophysiology, but its effect on rmTBI is rarely studied. Mesenchymal stromal cells (MSCs), the most studied experimental cells in stem cell therapy, exert many beneficial effects on diseases of the central nervous system, yet evidence regarding the role of MSCs in ferroptosis and post-rmTBI neurodegeneration is unavailable. Our study showed that rmTBI resulted in time-dependent alterations in ferroptosis-related biomarker levels, such as abnormal iron metabolism, glutathione peroxidase (GPx) inactivation, decrease in GPx4 levels, and increase in lipid peroxidation. Furthermore, MSC treatment markedly decreased the aforementioned rmTBI-mediated alterations, neuronal damage, pathological protein deposition, and improved cognitive function compared with vehicle control. Similarly, liproxstatin-1, a ferroptosis inhibitor, showed similar effects. Collectively, based on the above observations, MSCs ameliorate cognitive impairment following rmTBI, partially via suppressing ferroptosis, which could be a therapeutic target for rmTBI.
Collapse
Affiliation(s)
- Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shishuang Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaodong Kong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
35
|
Weil ZM, White B, Whitehead B, Karelina K. The role of the stress system in recovery after traumatic brain injury: A tribute to Bruce S. McEwen. Neurobiol Stress 2022; 19:100467. [PMID: 35720260 PMCID: PMC9201063 DOI: 10.1016/j.ynstr.2022.100467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major public health concern. Although the majority of individuals that suffer mild-moderate TBI recover relatively quickly, a substantial subset of individuals experiences prolonged and debilitating symptoms. An exacerbated response to physiological and psychological stressors after TBI may mediate poor functional recovery. Individuals with TBI can suffer from poor stress tolerance, impairments in the ability to evaluate stressors, and poor initiation (and cessation) of neuroendocrine stress responses, all of which can exacerbate TBI-mediated dysfunction. Here, we pay tribute to the pioneering neuroendocrinologist Dr. Bruce McEwen by discussing the ways in which his work on stress physiology and allostatic loading impacts the TBI patient population both before and after their injuries. Specifically, we will discuss the modulatory role of hypothalamic-pituitary-adrenal axis responses immediately after TBI and later in recovery. We will also consider the impact of stressors and stress responses in promoting post-concussive syndrome and post-traumatic stress disorders, two common sequelae of TBI. Finally, we will explore the role of early life stressors, prior to brain injuries, as modulators of injury outcomes.
Collapse
Affiliation(s)
- Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Brishti White
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| |
Collapse
|
36
|
Swanson RL, Acharya NK, Cifu DX. Cerebral Microvascular Pathology Is a Common Endophenotype Between Traumatic Brain Injury, Cardiovascular Disease, and Dementia: A Hypothesis and Review. Cureus 2022; 14:e25318. [PMID: 35774720 PMCID: PMC9236636 DOI: 10.7759/cureus.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Traumatic brain injury (TBI) exposure has been associated with an increased risk of age-related cognitive decline or dementia in multiple epidemiological studies. Current therapeutic interventions in the field of Brain Injury Medicine focus largely on episodic symptom management during the chronic phase of TBI recovery, rather than targeting specific underlying pathological processes. This approach may be especially problematic for secondary age-related cognitive decline or dementia following TBI exposure. Although there are likely multiple pathophysiological mechanisms involved, a growing body of literature demonstrates that cerebral microvascular pathology is a common endophenotype across the spectrum of TBI severity. Similarly, a combination of pre-clinical and clinical research over the past two decades has implicated cerebral microvascular pathology in the initiation and progression of multiple neurodegenerative diseases, including Alzheimer’s disease and other dementias. We hypothesize that cerebral microvascular pathology is a common endophenotype between TBI, cardiovascular disease (CVD), and dementia, which can be targeted through modifiable cardiovascular risk factor reductions during the chronic phase of TBI recovery. We posit that our hypothesis is supported by the currently available scientific literature, as detailed in our review.
Collapse
|
37
|
Huang J, Lan H, Xie C, Wei C, Liu Z, Huang Z, Zhou Z, Chen L. Pramipexole Protects Against Traumatic Brain Injury-Induced Blood-Brain Barrier (BBB) Dysfunction. Neurotox Res 2022; 40:1020-1028. [PMID: 35524855 DOI: 10.1007/s12640-022-00495-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Traumatic brain injury (TBI) is a severe disease of brain damage accompanied by blood-brain barrier (BBB) dysfunction. The BBB is composed of brain microvascular endothelial cells (BMECs), astrocyte terminus, pericytes, and a basement membrane. Tight junction proteins expressed by BMECs play important roles in preserving BBB integrity. Pramipexole is a selective dopamine agonist applied for treating Parkinson's disease and has been recently claimed with neuroprotective capacity. This study will further explore the impact of Pramipexole on tight junctions and BBB integrity to provide the potential treatment strategy for TBI-induced BBB damage. The TBI model was established in mice and was identified by the promoted brain water content, declined Garcia scores, reduced latency of the rotarod test, aggravated pathological changes in the brain cortex, and excessively released inflammatory factors. After treatment with Pramipexole, the neurofunctional deficits, behavioral disability, and aggravated pathological changes were dramatically reversed, accompanied by the alleviated BBB permeability, and upregulated occludin, an important tight junction protein. TBI model cells were established by the scratching bEnd.3 cells method. Cells were stimulated with 10 and 20 μM Pramipexole, followed by exposure to TBI. Increased fluorescence intensity of FITC-dextran, reduced value of TEER, and downregulated occludin and KLF2 were observed in TBI-exposed cells, all of which were greatly reversed by 10 and 20 μM Pramipexole. Furthermore, in KLF2-silenced bEnd.3 cells, the protective ability of Pramipexole against endothelial permeability and the expression level of occludin were dramatically abolished. Collectively, our results suggest that Pramipexole protected against TBI-induced BBB dysfunction by mediating KLF2.
Collapse
Affiliation(s)
- Junping Huang
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Huan Lan
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Changji Xie
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Chengcong Wei
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Zhen Liu
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Zhixi Huang
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Zhiyu Zhou
- Department of Neurosurgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China.
| | - Lei Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, Guangdong, China.
| |
Collapse
|
38
|
Duckworth H, Azor A, Wischmann N, Zimmerman KA, Tanini I, Sharp DJ, Ghajari M. A Finite Element Model of Cerebral Vascular Injury for Predicting Microbleeds Location. Front Bioeng Biotechnol 2022; 10:860112. [PMID: 35519616 PMCID: PMC9065595 DOI: 10.3389/fbioe.2022.860112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Finite Element (FE) models of brain mechanics have improved our understanding of the brain response to rapid mechanical loads that produce traumatic brain injuries. However, these models have rarely incorporated vasculature, which limits their ability to predict the response of vessels to head impacts. To address this shortcoming, here we used high-resolution MRI scans to map the venous system anatomy at a submillimetre resolution. We then used this map to develop an FE model of veins and incorporated it in an anatomically detailed FE model of the brain. The model prediction of brain displacement at different locations was compared to controlled experiments on post-mortem human subject heads, yielding over 3,100 displacement curve comparisons, which showed fair to excellent correlation between them. We then used the model to predict the distribution of axial strains and strain rates in the veins of a rugby player who had small blood deposits in his white matter, known as microbleeds, after sustaining a head collision. We hypothesised that the distribution of axial strain and strain rate in veins can predict the pattern of microbleeds. We reconstructed the head collision using video footage and multi-body dynamics modelling and used the predicted head accelerations to load the FE model of vascular injury. The model predicted large axial strains in veins where microbleeds were detected. A region of interest analysis using white matter tracts showed that the tract group with microbleeds had 95th percentile peak axial strain and strain rate of 0.197 and 64.9 s−1 respectively, which were significantly larger than those of the group of tracts without microbleeds (0.163 and 57.0 s−1). This study does not derive a threshold for the onset of microbleeds as it investigated a single case, but it provides evidence for a link between strain and strain rate applied to veins during head impacts and structural damage and allows for future work to generate threshold values. Moreover, our results suggest that the FE model has the potential to be used to predict intracranial vascular injuries after TBI, providing a more objective tool for TBI assessment and improving protection against it.
Collapse
Affiliation(s)
- Harry Duckworth
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, London, United Kingdom
| | - Adriana Azor
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, London, United Kingdom
| | - Nikolaus Wischmann
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
| | - Karl A. Zimmerman
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, London, United Kingdom
| | - Ilaria Tanini
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- Industrial Engineering Department, University of Florence, Florence, Italy
| | - David J. Sharp
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, London, United Kingdom
- Care Research and Technology Centre, Dementia Research Institute, London, United Kingdom
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- *Correspondence: Mazdak Ghajari,
| |
Collapse
|
39
|
Cosgrove ME, Saadon JR, Mikell CB, Stefancin PL, Alkadaa L, Wang Z, Saluja S, Servider J, Razzaq B, Huang C, Mofakham S. Thalamo-Prefrontal Connectivity Correlates With Early Command-Following After Severe Traumatic Brain Injury. Front Neurol 2022; 13:826266. [PMID: 35250829 PMCID: PMC8895046 DOI: 10.3389/fneur.2022.826266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Recovery of consciousness after traumatic brain injury (TBI) is heterogeneous and difficult to predict. Structures such as the thalamus and prefrontal cortex are thought to be important in facilitating consciousness. We sought to investigate whether the integrity of thalamo-prefrontal circuits, assessed via diffusion tensor imaging (DTI), was associated with the return of goal-directed behavior after severe TBI. We classified a cohort of severe TBI patients (N = 25, 20 males) into Early and Late/Never outcome groups based on their ability to follow commands within 30 days post-injury. We assessed connectivity between whole thalamus, and mediodorsal thalamus (MD), to prefrontal cortex (PFC) subregions including dorsolateral PFC (dlPFC), medial PFC (mPFC), anterior cingulate (ACC), and orbitofrontal (OFC) cortices. We found that the integrity of thalamic projections to PFC subregions (L OFC, L and R ACC, and R mPFC) was significantly associated with Early command-following. This association persisted when the analysis was restricted to prefrontal-mediodorsal (MD) thalamus connectivity. In contrast, dlPFC connectivity to thalamus was not significantly associated with command-following. Using the integrity of thalamo-prefrontal connections, we created a linear regression model that demonstrated 72% accuracy in predicting command-following after a leave-one-out analysis. Together, these data support a role for thalamo-prefrontal connectivity in the return of goal-directed behavior following TBI.
Collapse
Affiliation(s)
- Megan E. Cosgrove
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Jordan R. Saadon
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Charles B. Mikell
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | | | - Leor Alkadaa
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Zhe Wang
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Sabir Saluja
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - John Servider
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Bayan Razzaq
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Chuan Huang
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Sima Mofakham
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Sima Mofakham
| |
Collapse
|
40
|
Blast-induced injury responsive relative gene expression of traumatic brain injury biomarkers in human brain microvascular endothelial cells. Brain Res 2021; 1770:147642. [PMID: 34474000 DOI: 10.1016/j.brainres.2021.147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
Disruption of the blood-brain barrier (BBB) is a critical component of traumatic brain injury (TBI) progression. However, further research into the mechanism of BBB disruption and its specific role in TBI pathophysiology is necessary. To help make progress in elucidating TBI affected BBB pathophysiology, we report herein relative gene expression of eleven TBI biomarkers and other factors of neuronal function in human brain microvascular cells (HBMVEC), one of the main cell types in the BBB. Our in-vitro blast TBI model employs a custom acoustic shock tube to deliver injuries of varying intensities to HBMVECs in culture. Each of the investigated genes exhibit a significant change in expression as a response to TBI, which is dependent on both the injury intensity and time following the injury. This data suggests that cell signaling of HBMVECs could be essential to understanding the interaction of the BBB and TBI pathophysiology, warranting future investigation.
Collapse
|
41
|
Zhao YT, Fallas JA, Saini S, Ueda G, Somasundaram L, Zhou Z, Xavier Raj I, Xu C, Carter L, Wrenn S, Mathieu J, Sellers DL, Baker D, Ruohola-Baker H. F-domain valency determines outcome of signaling through the angiopoietin pathway. EMBO Rep 2021; 22:e53471. [PMID: 34698433 DOI: 10.15252/embr.202153471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Angiopoietins 1 and 2 (Ang1 and Ang2) regulate angiogenesis through their similar F-domains by activating Tie2 receptors on endothelial cells. Despite the similarity in the underlying receptor-binding interaction, the two angiopoietins have opposite effects: Ang1 induces phosphorylation of AKT, strengthens cell-cell junctions, and enhances endothelial cell survival while Ang2 can antagonize these effects, depending on cellular context. To investigate the molecular basis for the opposing effects, we examined the phenotypes of a series of computationally designed protein scaffolds presenting the Ang1 F-domain in a wide range of valencies and geometries. We find two broad phenotypic classes distinguished by the number of presented F-domains: Scaffolds presenting 3 or 4 F-domains have Ang2-like activity, upregulating pFAK and pERK but not pAKT, while scaffolds presenting 6, 8, 12, 30, or 60 F-domains have Ang1-like activity, upregulating pAKT and inducing migration and vascular stability. The scaffolds with 6 or more F-domains display super-agonist activity, producing stronger phenotypes at lower concentrations than Ang1. Tie2 super-agonist nanoparticles reduced blood extravasation and improved blood-brain barrier integrity four days after a controlled cortical impact injury.
Collapse
Affiliation(s)
- Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
| | - Jorge A Fallas
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shally Saini
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Logeshwaran Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ziben Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Infencia Xavier Raj
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Chunfu Xu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Drew L Sellers
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Barretto TA, Park E, Telliyan T, Liu E, Gallagher D, Librach C, Baker A. Vascular Dysfunction after Modeled Traumatic Brain Injury Is Preserved with Administration of Umbilical Cord Derived Mesenchymal Stromal Cells and Is Associated with Modulation of the Angiogenic Response. J Neurotrauma 2021; 38:2747-2762. [PMID: 33899499 DOI: 10.1089/neu.2021.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vascular dysfunction arising from blood-brain barrier (BBB) breakdown after traumatic brain injury (TBI) can adversely affect neuronal health and behavioral outcome. Pericytes and endothelial cells of the neurovascular unit (NVU) function collectively to maintain strict regulation of the BBB through tight junctions. Secondary injury mechanisms, such as pro-angiogenic signals that contribute to pericyte loss, can prolong and exacerbate primary vascular injury. Human umbilical cord perivascular cells (HUCPVCs) are a source of mesenchymal stromal cells (MSCs) that have been shown to reduce vascular dysfunction after neurotrauma. We hypothesized that the perivascular properties of HUCPVCs can reduce vascular dysfunction after modeled TBI by preserving the pericyte-endothelial interactions. Rats were subjected to a moderate fluid percussion injury (FPI) and intravenously infused with 1,500,000 HUCPVCs post-injury. At acute time points (24 h and 48 h) quantitative polymerase chain reaction (qPCR) analysis demonstrated that the gene expression of angiopoietin-2 was increased with FPI and reduced with HUCPVCs. Immunofluorescent assessment of RECA-1 (endothelial cells) and platelet-derived growth factor receptors (PDGFR-β) (pericytes) revealed that capillary and pericyte densities as well as the co-localization of the two cells were decreased with FPI and preserved with HUCPVC administration. These acute HUCPVC-mediated protective effects were associated with less permeability to Evan's blue dye and increased expression of the tight junction occludin, suggesting less vascular leakage. Further, at 4 weeks post-injury, HUCPVC administration was associated with reduced anxiety and decreased β-amyloid precursor protein (β-APP) accumulation. In summary, HUCPVCs promoted pericyte-endothelial barrier function that was associated with improved long-term outcome.
Collapse
Affiliation(s)
- Tanya A Barretto
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eugene Park
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | - Tamar Telliyan
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | - Elaine Liu
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
| | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Baker
- Keenan Research Centre, St. Michaels's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
44
|
Wehn AC, Khalin I, Duering M, Hellal F, Culmsee C, Vandenabeele P, Plesnila N, Terpolilli NA. RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathol Commun 2021; 9:138. [PMID: 34404478 PMCID: PMC8369637 DOI: 10.1186/s40478-021-01236-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) causes acute and subacute tissue damage, but is also associated with chronic inflammation and progressive loss of brain tissue months and years after the initial event. The trigger and the subsequent molecular mechanisms causing chronic brain injury after TBI are not well understood. The aim of the current study was therefore to investigate the hypothesis that necroptosis, a form a programmed cell death mediated by the interaction of Receptor Interacting Protein Kinases (RIPK) 1 and 3, is involved in this process. Neuron-specific RIPK1- or RIPK3-deficient mice and their wild-type littermates were subjected to experimental TBI by controlled cortical impact. Posttraumatic brain damage and functional outcome were assessed longitudinally by repetitive magnetic resonance imaging (MRI) and behavioral tests (beam walk, Barnes maze, and tail suspension), respectively, for up to three months after injury. Thereafter, brains were investigated by immunohistochemistry for the necroptotic marker phosphorylated mixed lineage kinase like protein(pMLKL) and activation of astrocytes and microglia. WT mice showed progressive chronic brain damage in cortex and hippocampus and increased levels of pMLKL after TBI. Chronic brain damage occurred almost exclusively in areas with iron deposits and was significantly reduced in RIPK1- or RIPK3-deficient mice by up to 80%. Neuroprotection was accompanied by a reduction of astrocyte and microglia activation and improved memory function. The data of the current study suggest that progressive chronic brain damage and cognitive decline after TBI depend on the expression of RIPK1/3 in neurons. Hence, inhibition of necroptosis signaling may represent a novel therapeutic target for the prevention of chronic post-traumatic brain damage.
Collapse
|
45
|
Pitkänen A, Paananen T, Kyyriäinen J, Das Gupta S, Heiskanen M, Vuokila N, Bañuelos-Cabrera I, Lapinlampi N, Kajevu N, Andrade P, Ciszek R, Lara-Valderrábano L, Ekolle Ndode-Ekane X, Puhakka N. Biomarkers for posttraumatic epilepsy. Epilepsy Behav 2021; 121:107080. [PMID: 32317161 DOI: 10.1016/j.yebeh.2020.107080] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools). The seven BEST biomarker categories include the following: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. We hypothesize some potential overlap between the reported biomarkers of traumatic brain injury (TBI), epilepsy, and posttraumatic epilepsy (PTE). Here, we tested this hypothesis by reviewing studies focusing on biomarker discovery for posttraumatic epileptogenesis and epilepsy. The biomarker modalities reviewed here include plasma/serum and cerebrospinal fluid molecular biomarkers, imaging biomarkers, and electrophysiologic biomarkers. Most of the reported biomarkers have an area under the receiver operating characteristic curve greater than 0.800, suggesting both high sensitivity and high specificity. Our results revealed little overlap in the biomarker candidates between TBI, epilepsy, and PTE. In addition to using single parameters as biomarkers, machine learning approaches have highlighted the potential for utilizing patterns of markers as biomarkers. Although published data suggest the possibility of identifying biomarkers for PTE, we are still in the early phase of the development curve. Many of the seven biomarker categories lack PTE-related biomarkers. Thus, further exploration using proper, statistically powered, and standardized study designs with validation cohorts, and by developing and applying novel analytical methods, is needed for PTE biomarker discovery.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jenni Kyyriäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Ivette Bañuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Natallie Kajevu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Leonardo Lara-Valderrábano
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
46
|
Zimmerman KA, Laverse E, Samra R, Yanez Lopez M, Jolly AE, Bourke NJ, Graham NSN, Patel MC, Hardy J, Kemp S, Morris HR, Sharp DJ. White matter abnormalities in active elite adult rugby players. Brain Commun 2021; 3:fcab133. [PMID: 34435188 PMCID: PMC8381344 DOI: 10.1093/braincomms/fcab133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Etienne Laverse
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - Ravjeet Samra
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of
Biomedical Engineering and Imaging Sciences, King’s College
London, London SE1 7EH, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Neil S N Graham
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Maneesh C Patel
- Imaging Department, Imperial College Healthcare NHS
Trust, Charing Cross Hospital, London W6 8RF, UK
| | - John Hardy
- Department of Neurodegenerative Disease, Reta Lila
Weston Laboratories, Queen Square Genomics, UCL Dementia Research
Institute, London WC1N 3BG, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham,
London TW2 7BA, UK
- Faculty of Epidemiology and Public Health, London
School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
- The Royal British Legion Centre for Blast Injury
Studies, Imperial College London SW7 2AZ, UK
| |
Collapse
|
47
|
Castaño-Leon AM, Cicuendez M, Navarro-Main B, Paredes I, Munarriz PM, Hilario A, Ramos A, Gomez PA, Lagares A. Traumatic axonal injury: is the prognostic information produced by conventional MRI and DTI complementary or supplementary? J Neurosurg 2021; 136:242-256. [PMID: 34214979 DOI: 10.3171/2020.11.jns203124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A traumatic axonal injury (TAI) diagnosis has traditionally been based on conventional MRI, especially on those sequences with a higher sensitivity to edema and blood degradation products. A more recent technique, diffusion tensor imaging (DTI), can infer the microstructure of white matter (WM) due to the restricted diffusion of water in organized tissues. However, there is little information regarding the correlation of the findings obtained by both methods and their use for outcome prognosis. The main objectives of this study were threefold: 1) study the correlation between DTI metrics and conventional MRI findings; 2) evaluate whether the prognostic information provided by the two techniques is supplementary or complementary; and 3) determine the incremental value of the addition of these variables compared to a traditional prognostic model. METHODS The authors studied 185 patients with moderate to severe traumatic brain injury (TBI) who underwent MRI with DTI study during the subacute stage. The number and volume of lesions in hemispheric subcortical WM, corpus callosum (CC), basal ganglia, thalamus, and brainstem in at least four conventional MRI sequences (T1-weighted, T2-weighted, FLAIR, T2* gradient recalled echo, susceptibility-weighted imaging, and diffusion-weighted imaging) were determined. Fractional anisotropy (FA) was measured in 28 WM bundles using the region of interest method. Nonparametric tests were used to evaluate the colocalization of macroscopic lesions and FA. A multivariate logistic regression analysis was performed to assess the independent prognostic value of each neuroimaging modality after adjustment for relevant clinical covariates, and the internal validation of the model was evaluated in a contemporary cohort of 92 patients. RESULTS Differences in the lesion load between patients according to their severity and outcome were found. Colocalization of macroscopic nonhemorrhagic TAI lesions (not microbleeds) and lower FA was limited to the internal and external capsule, corona radiata, inferior frontooccipital fasciculus, CC, and brainstem. However, a significant association between the FA value and the identification of macroscopic lesions in distant brain regions was also detected. Specifically, lower values of FA of some hemispheric WM bundles and the splenium of the CC were related to a higher number and volume of hyperintensities in the brainstem. The regression analysis revealed that age, motor score, hypoxia, FA of the genu of the CC, characterization of TAI lesions in the CC, and the presence of thalamic/basal ganglia lesions were independent prognostic factors. The performance of the proposed model was higher than that of the IMPACT (International Mission on Prognosis and Analysis of Clinical Trials in TBI) model in the validation cohort. CONCLUSIONS Very limited colocalization of hyperintensities (none for microbleeds) with FA values was discovered. DTI and conventional MRI provide complementary prognostic information, and their combination can improve the performance of traditional prognostic models.
Collapse
Affiliation(s)
| | - Marta Cicuendez
- 2Department of Neurosurgery, Hospital Universitario Vall d'Hebron, Universidad de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| | | | - Igor Paredes
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| | - Pablo M Munarriz
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| | - Amaya Hilario
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Avda de Cordoba SN, Madrid; and
| | - Ana Ramos
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Avda de Cordoba SN, Madrid; and
| | - Pedro A Gomez
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| | - Alfonso Lagares
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| |
Collapse
|
48
|
Schwerin SC, Chatterjee M, Hutchinson EB, Djankpa FT, Armstrong RC, McCabe JT, Perl DP, Juliano SL. Expression of GFAP and Tau Following Blast Exposure in the Cerebral Cortex of Ferrets. J Neuropathol Exp Neurol 2021; 80:112-128. [PMID: 33421075 DOI: 10.1093/jnen/nlaa157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Blast exposures are a hallmark of contemporary military conflicts. We need improved preclinical models of blast traumatic brain injury for translation of pharmaceutical and therapeutic protocols. Compared with rodents, the ferret brain is larger, has substantial sulci, gyri, a higher white to gray matter ratio, and the hippocampus in a ventral position; these attributes facilitate comparison with the human brain. In this study, ferrets received compressed air shock waves and subsequent evaluation of glia and forms of tau following survival of up to 12 weeks. Immunohistochemistry and Western blot demonstrated altered distributions of astrogliosis and tau expression after blast exposure. Many aspects of the astrogliosis corresponded to human pathology: increased subpial reactivity, gliosis at gray-white matter interfaces, and extensive outlining of blood vessels. MRI analysis showed numerous hypointensities occurring in the 12-week survival animals, appearing to correspond to luminal expansions of blood vessels. Changes in forms of tau, including phosphorylated tau, and the isoforms 3R and 4R were noted using immunohistochemistry and Western blot in specific regions of the cerebral cortex. Of particular interest were the 3R and 4R isoforms, which modified their ratio after blast. Our data strongly support the ferret as an animal model with highly translational features to study blast injury.
Collapse
Affiliation(s)
- Susan C Schwerin
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | | | - Elizabeth B Hutchinson
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis T Djankpa
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Physiology, School of Medical Sciences, University of Cape Coast, Ghana
| | - Regina C Armstrong
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Daniel P Perl
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Sharon L Juliano
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Farajzadeh Khosroshahi S, Yin X, K Donat C, McGarry A, Yanez Lopez M, Baxan N, J Sharp D, Sastre M, Ghajari M. Multiscale modelling of cerebrovascular injury reveals the role of vascular anatomy and parenchymal shear stresses. Sci Rep 2021; 11:12927. [PMID: 34155289 PMCID: PMC8217506 DOI: 10.1038/s41598-021-92371-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023] Open
Abstract
Neurovascular injury is often observed in traumatic brain injury (TBI). However, the relationship between mechanical forces and vascular injury is still unclear. A key question is whether the complex anatomy of vasculature plays a role in increasing forces in cerebral vessels and producing damage. We developed a high-fidelity multiscale finite element model of the rat brain featuring a detailed definition of the angioarchitecture. Controlled cortical impacts were performed experimentally and in-silico. The model was able to predict the pattern of blood-brain barrier damage. We found strong correlation between the area of fibrinogen extravasation and the brain area where axial strain in vessels exceeds 0.14. Our results showed that adjacent vessels can sustain profoundly different axial stresses depending on their alignment with the principal direction of stress in parenchyma, with a better alignment leading to larger stresses in vessels. We also found a strong correlation between axial stress in vessels and the shearing component of the stress wave in parenchyma. Our multiscale computational approach explains the unrecognised role of the vascular anatomy and shear stresses in producing distinct distribution of large forces in vasculature. This new understanding can contribute to improving TBI diagnosis and prevention.
Collapse
Affiliation(s)
| | - Xianzhen Yin
- Shanghai Institute of Materia Medica, Shanghai, China
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Blast Injury Studies, Imperial College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Nicoleta Baxan
- Biological Imaging Centre, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London, UK
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, London, UK
| |
Collapse
|
50
|
Zhang M, Hamblin MH, Yin KJ. Long non-coding RNAs mediate cerebral vascular pathologies after CNS injuries. Neurochem Int 2021; 148:105102. [PMID: 34153353 DOI: 10.1016/j.neuint.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Central nervous system (CNS) injuries are one of the leading causes of morbidity and mortality worldwide, accompanied with high medical costs and a decreased quality of life. Brain vascular disorders are involved in the pathological processes of CNS injuries and might play key roles for their recovery and prognosis. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs), which comprise a very heterogeneous group of non-protein-coding RNAs greater than 200 nucleotides, have emerged as functional mediators in the regulation of vascular homeostasis under pathophysiological conditions. Remarkably, lncRNAs can regulate gene transcription and translation, thus interfering with gene expression and signaling pathways by different mechanisms. Hence, a deeper insight into the function and regulatory mechanisms of lncRNAs following CNS injury, especially cerebrovascular-related lncRNAs, could help in establishing potential therapeutic strategies to improve or inhibit neurological disorders. In this review, we highlight recent advancements in understanding of the role of lncRNAs and their application in mediating cerebrovascular pathologies after CNS injury.
Collapse
Affiliation(s)
- Mengqi Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA, 70112, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|