1
|
Huang Y, Su T. Dysregulation of LINC01094 is involved in the pathogenesis of pulpitis by regulating the miR-340-5p expression. Odontology 2025:10.1007/s10266-024-01046-5. [PMID: 39786709 DOI: 10.1007/s10266-024-01046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Pulpitis seriously affects people's living standards and dental health, so identifying effective therapeutic targets is crucial for pulpitis. The research aimed to explore the underlying regulatory mechanism of LINC01094 and miR-340-5p in pulpitis. The study involved a total of 173 subjects (97 pulpitis and 76 healthy individuals). The expression of LINC01094 and miR-340-5p were evaluated through the polymerase chain reaction (PCR). The association linking LINC01094 and miR-340-5p expression was assessed by Pearson correlation analysis. The Human dental pulp cells (HDPCs) injury model was conducted by lipopolysaccharide (LPS). Cell proliferation was examined through the Cell Counting Kit-8 assay and flow cytometry. Cell apoptosis was also evaluated by flow cytometry. The caspase-3 levels and inflammatory cytokines were quantified using an enzyme-linked immunosorbent assay (ELISA). Upregulated LINC01094 and downregulated miR-340-5p expression were observed in pulpitis and LPS-induced HDPC injury models. A negative correlation was observed between miR-340-5p and LINC01094 expression in pulpitis. LPS could suppress proliferation and promote apoptosis of HDPCs. The TNF-α, IL-6, and IL-1β levels in LPS-induced HDPCs were also elevated. The HDPC injury induced by LPS could be aggravated by the LINC01094 overexpression. MiR-340-5p showed a relieved effect on HDPC injury and could alleviate the HDPC injury aggravated by LINC01094 overexpression. In summary, upregulated LINC01094 and downregulated miR-340-5p expression was observed in pulpitis. LINC01094 could accelerate the pulpitis progression via targeting miR-340-5p.
Collapse
Affiliation(s)
- Yuao Huang
- Jinzhou Medical University Graduate Training Base (Central Hospital of Fengxian District, Shanghai), Shanghai, 201499, China
- Department of Stomatology, Shanghai Fengxian District Traditional Chinese Medicine Hospital, Shanghai, 201499, China
| | - Tao Su
- Department of Stomatology, Shanghai Fengxian District Central Hospital, No.6600 Nanfeng Highway, Shanghai, 201400, China.
| |
Collapse
|
2
|
Ismail M, Fadul MM, Taha R, Siddig O, Elhafiz M, Yousef BA, Jiang Z, Zhang L, Sun L. Dynamic role of exosomal long non-coding RNA in liver diseases: pathogenesis and diagnostic aspects. Hepatol Int 2024; 18:1715-1730. [PMID: 39306594 DOI: 10.1007/s12072-024-10722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Liver disease has emerged as a significant health concern, characterized by high rates of morbidity and mortality. Circulating exosomes have garnered attention as important mediators of intercellular communication, harboring protein and stable mRNAs, microRNAs, and long non-coding RNAs (lncRNA). This review highlights the involvement of exosomal lncRNA in the pathogenesis and diagnosis of various liver diseases. Notably, exosomal lncRNAs exhibit therapeutic potential as targets for conditions including hepatic carcinoma, hepatic fibrosis, and hepatic viral infections. METHOD An online screening process was employed to identify studies investigating the association between exosomal lncRNA and various liver diseases. RESULT Our study revealed a diverse array of lncRNAs carried by exosomes, including H19, Linc-ROR, VLDLR, MALAT1, DANCR, HEIH, ENSG00000248932.1, ENST00000457302.2, ZSCAN16-AS1, and others, exhibiting varied levels across different liver diseases compared to normal liver tissue. These exosomal-derived lncRNAs are increasingly recognized as pivotal biomarkers for diagnosing and prognosticating liver diseases, supported by emerging evidence. However, the precise mechanisms underlying the involvement of certain exosomal lncRNAs remain incompletely understood. Furthermore, the combined analysis of serum exosomes using ENSG00000258332.1, LINC00635, and serum AFP may serve as novel and valuable biomarker for HCC. Clinically, exosomal ATB expression is upregulated in HCC, while exosomal HEIH and RP11-513I15.6 have shown potential for distinguishing HCC related to HCV infection. CONCLUSION The lack of reliable biomarkers for liver diseases, coupled with the high specificity and sensitivity of exosomal lncRNA and its non-invasive detection, promotes exploring their role in pathogenesis and biomarker for diagnosis, prognosis, and response to treatment liver diseases.
Collapse
Affiliation(s)
- Mohammed Ismail
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Missaa M Fadul
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Reham Taha
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Muhanad Elhafiz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lixin Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Zhao C, Li X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Sense and anti-sense: Role of FAM83A and FAM83A-AS1 in Wnt, EGFR, PI3K, EMT pathways and tumor progression. Biomed Pharmacother 2024; 173:116372. [PMID: 38432129 DOI: 10.1016/j.biopha.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
An increasing number of studies have shown that FAM83A, a member of the family with sequence similarity 83 (FAM83), which consists of eight members, is a key tumor therapeutic target involved in multiple signaling pathways. It has been reported that FAM83A plays essential roles in the regulation of Wnt/β-catenin, EGFR, MAPK, EMT, and other signaling pathways and physiological processes in models of pancreatic cancer, lung cancer, breast cancer, and other malignant tumors. Moreover, the expression of FAM83A could be significantly affected by multiple noncoding RNAs that are dysregulated in malignant tumors, the dysregulation of which is essential for the malignant process. Among these noncoding RNAs, the most noteworthy is the antisense long noncoding (Lnc) RNA of FAM83A itself (FAM83A-AS1), indicating an outstanding synergistic carcinogenic effect between FAM83A and FAM83A-AS1. In the present study, the specific mechanisms by which FAM83A and FAM83A-AS1 cofunction in the Wnt/β-catenin and EGFR signaling pathways were reviewed in detail, which will guide subsequent research. We also described the applications of FAM83A and FAM83A-AS1 in tumor therapy and provided a certain theoretical basis for subsequent drug target development and combination therapy strategies.
Collapse
Affiliation(s)
- Chenshu Zhao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiaowen Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
5
|
Ding Y, Zhang C, Zuo Q, Jin K, Li B. lncCPSET1 acts as a scaffold for MLL2/COMPASS to regulate Bmp4 and promote the formation of chicken primordial germ cells. Mol Genet Genomics 2024; 299:41. [PMID: 38551742 DOI: 10.1007/s00438-024-02127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/15/2024] [Indexed: 04/02/2024]
Abstract
Primordial germ cells (PGCs) are the ancestors of female and male germ cells. Recent studies have shown that long non-coding RNA (lncRNA) and histone methylation are key epigenetic factors affecting PGC formation; however, their joint regulatory mechanisms have rarely been studied. Here, we explored the mechanism by which lncCPSET1 and H3K4me2 synergistically regulate the formation of chicken PGCs for the first time. Combined with chromatin immunoprecipitation (CHIP) sequencing and RNA-seq of PGCs transfected with the lncCPSET1 overexpression vector, GO annotation and KEGG enrichment analysis revealed that Wnt and TGF-β signaling pathways were significantly enriched, and Fzd2, Id1, Id4, and Bmp4 were identified as candidate genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that ASH2L, DPY30, WDR5, and RBBP5 overexpression significantly increased the expression of Bmp4, which was up-regulated after lncCPSET1 overexpression as well. It indicated that Bmp4 is a target gene co-regulated by lncCPSET1 and MLL2/COMPASS. Interestingly, co-immunoprecipitation results showed that ASH2L, DPY30 and WDR5 combined and RBBP5 weakly combined with DPY30 and WDR5. lncCPSET1 overexpression significantly increased Dpy30 expression and co-immunoprecipitation showed that interference/overexpression of lncCPSET1 did not affect the binding between the proteins in the complexes, but interference with lncCPSET1 inhibited DPY30 expression, which was confirmed by RNA immunoprecipitation that lncCPSET1 binds to DPY30. Additionally, CHIP-qPCR results showed that DPY30 enriched in the Bmp4 promoter region promoted its transcription, thus promoting the formation of PGCs. This study demonstrated that lncCPSET1 and H3K4me2 synergistically promote PGC formation, providing a reference for the study of the regulatory mechanisms between lncRNA and histone methylation, as well as a molecular basis for elucidating the formation mechanism of PGCs in chickens.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chen Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- RNA Medicine Center, International Institutes of Medicine, Zhejiang University, Hangzhou, China
| | - Qisheng Zuo
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Bichun Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Hosseinzadeh S, Masoudi AA. Investigating the expression of fertility-regulating LncRNAs in multiparous and uniparous Shal ewe's ovaries. Genome 2024; 67:78-89. [PMID: 37983732 DOI: 10.1139/gen-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sheep is the primary source of animal protein in Iran. Birth type is one of the significant features that determine total meat output. Little is known about how long non-coding RNAs (LncRNAs) affect litter size. The purpose of this research is to investigate the DE-LncRNAs in ovarian tissue between multiparous and uniparous Shal ewes. Through bioinformatics analyses, LncRNAs with variable expression levels between ewes were discovered. Target genes were annotated using the DAVID database, and STRING and Cytoscape software were used to evaluate their interactions. The expression levels of 148 LncRNAs were different in the multiparous and uniparous ewe groups (false discovery rate (FDR) < 0.05). Eight biological process terms, nine cellular component terms, 10 molecular function terms, and 38 KEGG pathways were significant (FDR < 0.05) in the GO analysis. One of the most significant processes impacting fertility is mitogen-activated protein kinase (MAPK) signaling pathway, followed by oocyte meiosis, gonadotropin-releasing hormone signaling pathway, progesterone-mediated oocyte maturation, oxytocin signaling pathway, and cAMP signaling pathway. ENSOARG00000025710, ENSOARG00000025667, ENSOARG00000026034, and ENSOARG00000026632 are LncRNAs that may affect litter size and fertility. The most crucial hub genes include MAPK1, BRD2, GAK, RAP1B, FGF2, RAP1B, and RAP1B. We hope that this study will encourage researchers to further investigate the effect of LncRNAs on fertility.
Collapse
Affiliation(s)
- Shahram Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Zhou L, Li H, Sun T, Wen X, Niu C, Li M, Li W, Esteban MA, Hoffman AR, Hu JF, Cui J. Profiling mitochondria-polyribosome lncRNAs associated with pluripotency. Sci Data 2023; 10:755. [PMID: 37919270 PMCID: PMC10622415 DOI: 10.1038/s41597-023-02649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Pluripotent stem cells (PSCs) provide unlimited resources for regenerative medicine because of their potential for self-renewal and differentiation into many different cell types. The pluripotency of these PSCs is dynamically regulated at multiple cellular organelle levels. To delineate the factors that coordinate this inter-organelle crosstalk, we profiled those long non-coding RNAs (lncRNAs) that may participate in the regulation of multiple cellular organelles in PSCs. We have developed a unique strand-specific RNA-seq dataset of lncRNAs that may interact with mitochondria (mtlncRNAs) and polyribosomes (prlncRNAs). Among the lncRNAs differentially expressed between induced pluripotent stem cells (iPSCs), fibroblasts, and positive control H9 human embryonic stem cells, we identified 11 prlncRNAs related to stem cell reprogramming and exit from pluripotency. In conjunction with the total RNA-seq data, this dataset provides a valuable resource to examine the role of lncRNAs in pluripotency, particularly for studies investigating the inter-organelle crosstalk network involved in germ cell development and human reproduction.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China.
| | - Hui Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China
| | - Tingge Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China
| | - Chao Niu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China
| | - Min Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China.
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130061, P.R. China.
| |
Collapse
|
8
|
Maharati A, Samsami Y, Latifi H, Tolue Ghasaban F, Moghbeli M. Role of the long non-coding RNAs in regulation of Gemcitabine response in tumor cells. Cancer Cell Int 2023; 23:168. [PMID: 37580768 PMCID: PMC10426205 DOI: 10.1186/s12935-023-03004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM resistant cancer patients and define a suitable therapeutic strategy among these patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Hong H, Zeng K, Zhou C, Chen X, Xu Z, Li M, Liu L, Zeng Q, Tao Q, Wei X. The pluripotent factor OCT4A enhances the self-renewal of human dental pulp stem cells by targeting lncRNA FTX in an LPS-induced inflammatory microenvironment. Stem Cell Res Ther 2023; 14:109. [PMID: 37106382 PMCID: PMC10142416 DOI: 10.1186/s13287-023-03313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Regulating the pluripotency of human dental pulp stem cells (hDPSCs) is key for the self-repair of injured dental pulp. We previously found that OCT4A promotes the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs). Recent studies have shown the interaction between OCT4A and lncRNAs in pluripotency maintenance of various stem cells. The aim of this study was to explore the underlying roles and mechanisms of OCT4A and its related lncRNAs in the proliferation and multidirectional differentiation of hDPSCs in an inflammatory microenvironment. METHODS Human lncRNA microarrays were applied to screen out the differentially expressed lncRNAs in hDPSCs between the OCT4A-overexpressing and vector groups. Lipopolysaccharide (LPS) was used to simulate the inflammatory microenvironment. The effects of OCT4A and the lncRNA FTX on the proliferation and multidifferentiation of hDPSCs were observed by the CCK-8 assay, EdU staining, real-time PCR, western blotting, and Alizarin red and oil red O staining. Bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays were performed to clarify the targeted mechanism of OCT4A on FTX. The regulation by FTX of the expression of OCT4A and its downstream pluripotent transcription factors SOX2 and c-MYC was further detected by real-time PCR and western blotting. RESULTS The microarray results showed that 978 lncRNAs (250 of which were upregulated and 728 downregulated) were potentially differentially expressed genes (fold change ≥ 2, P < 0.05). LPS stimulation attenuated the self-renewal of hDPSCs. OCT4A enhanced the cell proliferation and multidifferentiation capacities of hDPSCs in an inflammatory microenvironment, while FTX exhibited the opposite effects. OCT4A negatively regulated FTX function by binding to specific regions on the FTX promoter, thereby inhibiting the transcription of FTX. Moreover, overexpression of FTX downregulated the expression of OCT4A, SOX2 and c-MYC, whereas knockdown of FTX facilitated their expression. CONCLUSIONS OCT4A was found to be a crucial factor maintaining the self-renewal of hDPSCs by transcriptionally targeting FTX in an inflammatory microenvironment. Moreover, we proposed a novel function of FTX in negatively regulating the pluripotency and multilineage differentiation capacity of hDPSCs. The hierarchical organization between OCT4A and FTX expanded the understanding of the network between transcription factors and lncRNAs in fine-tuning the pluripotency/differentiation balance of adult stem cells, and provided prospective targets for optimizing dental-derived stem cell sources for regenerative endodontics.
Collapse
Affiliation(s)
- Hong Hong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Kai Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Can Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Xiaochuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Lu Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Qian Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Qian Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
10
|
Li X, Xu W, Lin X, Wu J, Wu B. Effect of LncRNA-MALAT1 on mineralization of dental pulp cells in a high-glucose microenvironment. Front Cell Dev Biol 2022; 10:921364. [PMID: 36035997 PMCID: PMC9402893 DOI: 10.3389/fcell.2022.921364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the long non-coding RNA (LncRNA) family. LncRNA-MALAT1 is expressed in a variety of tissues and is involved in a variety of diseases and biological processes. Although LncRNA-MALAT1 is upregulated in a high-glucose microenvironment and may participate in odontogenic differentiation, the underlying mechanism is not yet well elucidated. Here, we show that MALAT1 was mainly expressed in the cytoplasm of dental pulp cells (DPCs) in situ hybridization. In addition, high levels of mineralization-related factors, namely, tumor growth factors β 1 and 2 (TGFβ-1 and TGFβ-2), bone morphogenetic proteins 2 and 4 (BMP2 and BMP4), bone morphogenetic protein receptor 1 (BMPR1), SMAD family member 2 (SMAD2), runt-related transcription factor 2 (RUNX2), Msh homeobox 2 (MSX2), transcription factor SP7 (SP7), alkaline phosphatase (ALP), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP), were expressed, and MALAT1 was significantly overexpressed in DPCs 7 and 14 days after mineralization induction in a high-glucose microenvironment, but only TGFβ-1, BMP2, MSX2, SP7, ALP, and DSPP were significantly downregulated in DPCs after MALAT1 inhibition. MALAT1 may participate in the mineralization process of DPCs by regulating multiple factors (TGFβ-1, BMP2, MSX2, SP7, ALP, and DSPP).
Collapse
Affiliation(s)
- Xinzhu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenan Xu
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Xiaoyu Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyi Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- *Correspondence: Buling Wu,
| |
Collapse
|
11
|
Wang C, Zhao Y, Yuan Z, Wu Y, Zhao Z, Wu C, Hou J, Zhang M. Genome-Wide Identification of mRNAs, lncRNAs, and Proteins, and Their Relationship With Sheep Fecundity. Front Genet 2022; 12:750947. [PMID: 35211149 PMCID: PMC8861438 DOI: 10.3389/fgene.2021.750947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
The exploration of multiple birth-related genes has always been a significant focus in sheep breeding. This study aimed to find more genes and proteins related to the litter size in sheep. Ovarian specimens of Small Tail Han sheep (multiple births) and Xinji Fine Wool sheep (singleton) were collected during the natural estrus cycle. Transcriptome and proteome of ovarian specimens were analyzed. The transcriptome results showed that "steroid hormone biosynthesis" and "ovarian steroidogenesis" were significantly enriched, in which HSD17B1 played an important role. The proteome data also confirmed that the differentially expressed proteins (DEPs) were enriched in the ovarian steroidogenesis pathway, and the CYP17A1 was the candidate DEP. Furthermore, lncRNA MSTRG.28645 was highly expressed in Small Tailed Han sheep but lowly expressed in Xinji fine wool sheep. In addition, MSTRG.28645, a hub gene in the co-expression network between mRNAs and lncRNAs, was selected as one of the candidate genes for subsequent verification. Expectedly, the overexpression and interference of HSD17B1 and MSTRG.28645 showed a significant effect on hormone secretion in granulosa cells. Therefore, this study confirmed that HSD17B1 and MSTRG.28645 might be potential genes related to the fecundity of sheep. It was concluded that both HSD17B1 and MSTRG.28645 were critical regulators in the secretion of hormones that affect the fecundity of the sheep.
Collapse
Affiliation(s)
- Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunhui Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - ZhiYu Yuan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yujin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Cuiling Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mingxin Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
12
|
OUP accepted manuscript. Eur J Orthod 2022; 44:669-678. [DOI: 10.1093/ejo/cjac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Shao W, Bi X, Pan Y, Gao B, Wu J, Yin Y, Liu Z, Peng M, Zhang W, Jiang X, Ren W, Xu Y, Wu Z, Wang K, Zhan G, Lu JY, Han X, Li T, Wang J, Li G, Deng H, Li B, Shen X. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol 2022; 18:70-80. [PMID: 34916619 DOI: 10.1038/s41589-021-00904-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023]
Abstract
An RNA-involved phase-separation model has been proposed for transcription control. However, the molecular links that connect RNA to the transcription machinery remain missing. Here we find that RNA-binding proteins (RBPs) constitute half of the chromatin proteome in embryonic stem cells (ESCs), some being colocalized with RNA polymerase (Pol) II at promoters and enhancers. Biochemical analyses of representative RBPs show that the paraspeckle protein PSPC1 inhibits the RNA-induced premature release of Pol II, and makes use of RNA as multivalent molecules to enhance the formation of transcription condensates and subsequent phosphorylation and release of Pol II. This synergistic interplay enhances polymerase engagement and activity via the RNA-binding and phase-separation activities of PSPC1. In ESCs, auxin-induced acute degradation of PSPC1 leads to genome-wide defects in Pol II binding and nascent transcription. We propose that promoter-associated RNAs and their binding proteins synergize the phase separation of polymerase condensates to promote active transcription.
Collapse
Affiliation(s)
- Wen Shao
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Xianju Bi
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Yixuan Pan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boyang Gao
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Jun Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Yin
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Zhimin Liu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Mengyuan Peng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhao Zhang
- Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Jiang
- Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenlin Ren
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Yanhui Xu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Zhongyang Wu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Kaili Wang
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Ge Zhan
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - J Yuyang Lu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Xue Han
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Tong Li
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haiteng Deng
- Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaohua Shen
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
14
|
Liu S, Hou J, Gu X, Weng R, Zhong Z. Characterization of LncRNA expression profile and identification of functional LncRNAs associated with unstable angina. J Clin Lab Anal 2021; 35:e24036. [PMID: 34609019 PMCID: PMC8605166 DOI: 10.1002/jcla.24036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background Increasing evidences suggest that long noncoding RNAs (lncRNAs) play critical roles in the pathogenesis of coronary artery disease (CAD). However, the association between lncRNAs expression profiles and unstable angina (UA) remained poorly known. Thus, the present study aims to investigate expression patterns, biological functions, and diagnostic value of lncRNAs in UA. Methods The present study explored the lncRNA and mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) of UA patients and normal coronary artery (NCA) controls using RNA‐seq. The biological function of differentially expressed lncRNAs was analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The expression of the selected lncRNAs was validated in another 44 UA patients and 46 NCA controls. Receiver operating characteristic curve (ROC) was performed to evaluate the diagnostic value of lncRNAs for UA. Results A total of 98 lncRNAs and 615 mRNAs were observed differentially expressed in PBMCs of UA patients as compared to NCA controls. The 10 most upregulated lncRNAs were LNC_000226, DANCR, RP1‐167A14.2, LNC_002091, LNC_001526, LNC_001165, LNC_002772, LNC_000088, LNC_001226, and FAM157C, and the 10 most downregulated lncRNAs were RP11‐734I18.1, RP11‐185E8.1, RP11‐360I2.1, LNC_001302, LNC_001287, RN7SL471P, LNC_000914, LINC01506, RP11‐160E2.6, and LNC_000995. LNC_000226 and MALAT1 have high area under the curve values (AUC) for distinguishing UA from NCA patients (0.810 and 0.799, respectively), and the combination of MALAT1 and LNC_000226 increased the AUC value to 0.878. Conclusions The present study added our understanding about the lncRNA expression profile in UA patients and provided potential biomarkers for the diagnosis of UA.
Collapse
Affiliation(s)
- Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Jingyuan Hou
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| |
Collapse
|
15
|
Wu Y, Gu W, Han X, Jin Z. LncRNA PVT1 promotes the progression of ovarian cancer by activating TGF-β pathway via miR-148a-3p/AGO1 axis. J Cell Mol Med 2021; 25:8229-8243. [PMID: 34288373 PMCID: PMC8419181 DOI: 10.1111/jcmm.16700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is a lethal gynaecologic malignancy with poor diagnosis and prognosis. The long non-coding RNA plasmacytoma variant translocation1 (PVT1) and argonaute 1 (AGO1) are associated with carcinogenesis and chemoresistance; however, the relationship between PVT1 and AGO1 and the downstream mechanisms in ovarian cancer remains poorly known. PVT1 and AGO1 expression was assessed through RT-qPCR and Western blotting in both human tissues and cell lines. The viability and proliferation of ovarian cancer cells were determined by CCK-8 assay and TUNEL assay in vitro and immunohistochemistry in vivo. Cell invasion and migration were investigated through transwell and wound-healing assays. The roles and mechanisms of AGO1 on cell functions were further probed via gain- and loss-of-function analysis. We reveal that PVT1 expression was significantly increased in ovarian cancer tissues which is associated with advanced FIGO stage, lymph-node metastasis, poor survival rate, and high expression of AGO1. PVT1 or AGO1 knockdown significantly reduced the cell viability and increased the cell apoptosis and inhibited ovarian tumour growth and proliferation. Furthermore, we discovered that PVT1 up-regulated the expression of AGO1 and thus regulated the transforming growth factor-β (TGF-β) pathway to promote ovarian cancer progression through sponging miR-148a-3p. Additionally, the activation of ERK1/2, smad2 and smad4 is observed to be related to the PVT1/miR-148a-3p/AGO1/TGF-β pathway-induced cascades. Taken together, the present study reveals that PVT1/miR-148a/AGO1 axis plays an important role in the progression of ovarian cancer and emphasize the potential as a target of value for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yuxian Wu
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Wenqian Gu
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Xiao Han
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Zhijun Jin
- Department of Obstetrics and GynaecologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
16
|
Zhu Y, You J, Wei W, Gu J, Xu C, Gu X. Downregulated lncRNA RCPCD promotes differentiation of embryonic stem cells into cardiac pacemaker-like cells by suppressing HCN4 promoter methylation. Cell Death Dis 2021; 12:667. [PMID: 34215719 PMCID: PMC8253811 DOI: 10.1038/s41419-021-03949-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022]
Abstract
Long non-coding RNA (lncRNA) is receiving increasing attention in embryonic stem cells (ESCs) research. However, the roles of lncRNA in the differentiation of ESCs into pacemaker-like cells are still unclear. Therefore, the present study aims to explore the roles and mechanisms of lncRNA in the differentiation of ESCs into pacemaker-like cells. ESCs were cultured and induced differentiation to pacemaker-like cells. RNA sequencing was used to identify the differential expression lncRNAs during the differentiation of ESCs into pacemaker-like cells. Cell morphology observation, flow cytometry, quantitative real-time polymerase chain reaction, western blot, and immunofluorescence were used to detect the differentiation of ESCs into pacemaker-like cells. LncRNA and genes overexpression or knockdown through transfected adenovirus in the differentiation process. The fluorescence in situ hybridization (FISH) detected the lncRNA location in the differentiated ESCs. Luciferase reporter gene assay, methylation-specific PCR, chromatin immunoprecipitation assay, and RNA immunoprecipitation assay were performed to reveal the mechanism of lncRNA-regulating HCN4 expression. Rescue experiments were used to confirm that lncRNA regulates the differentiation of ESCs into pacemaker-like cells through HCN4. We cultured the ESCs and induced the differentiation of ESCs into pacemaker-like cells successfully. The expression of lncRNA RCPCD was significantly decreased in the differentiation of ESCs into pacemaker-like cells. Overexpression of RCPCD inhibited the differentiation of ESCs into pacemaker-like cells. RCPCD inhibited the expression of HCN4 by increasing HCN4 methylation at the promoter region through DNMT1, DNMT2, and DNMT3. RCPCD inhibited the differentiation of ESCs into pacemaker-like cells by inhibiting the expression of HCN4. Our results confirm the roles and mechanism of lncRNA RCPCD in the differentiation of ESCs into pacemaker-like cells, which could pave the path for the development of a cell-based biological pacemaker.
Collapse
Affiliation(s)
- Ye Zhu
- Clinical Medical College of Yangzhou University, Yangzhou, China. .,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child Health Care Hospital, Yangzhou, Jiangsu, 225001, China
| | - Wei Wei
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jianjun Gu
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, US
| | - Xiang Gu
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
17
|
The Role of Long Non-Coding RNAs in Trophoblast Regulation in Preeclampsia and Intrauterine Growth Restriction. Genes (Basel) 2021; 12:genes12070970. [PMID: 34201957 PMCID: PMC8305149 DOI: 10.3390/genes12070970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are two pregnancy-specific placental disorders with high maternal, fetal, and neonatal morbidity and mortality rates worldwide. The identification biomarkers involved in the dysregulation of PE and IUGR are fundamental for developing new strategies for early detection and management of these pregnancy pathologies. Several studies have demonstrated the importance of long non-coding RNAs (lncRNAs) as essential regulators of many biological processes in cells and tissues, and the placenta is not an exception. In this review, we summarize the importance of lncRNAs in the regulation of trophoblasts during the development of PE and IUGR, and other placental disorders.
Collapse
|
18
|
Jiao H, Shuai X, Luo Y, Zhou Z, Zhao Y, Li B, Gu G, Li W, Li M, Zeng H, Guo X, Xiao Y, Song Z, Gan L, Huang Q. Deep Insight Into Long Non-coding RNA and mRNA Transcriptome Profiling in HepG2 Cells Expressing Genotype IV Swine Hepatitis E Virus ORF3. Front Vet Sci 2021; 8:625609. [PMID: 33996960 PMCID: PMC8116512 DOI: 10.3389/fvets.2021.625609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Swine hepatitis E (swine HE) is a new type of zoonotic infectious disease caused by the swine hepatitis E virus (swine HEV). Open reading frame 3 (ORF3) is an important virulent protein of swine HEV, but its function still is mainly unclear. In this study, we generated adenoviruses ADV4-ORF3 and ADV4 negative control (ADV4-NC), which successfully mediated overexpression of enhanced green fluorescent protein (EGFP)-ORF3 and EGFP, respectively, in HepG2 cells. High-throughput sequencing was used to screen for differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs). The cis-target genes of lncRNAs were predicted, functional enrichment (Gene Ontology [GO] and Kyoto Encyclopedia of Genes and Genomes [KEGG]) was performed, and 12 lncRNAs with statistically significant different expressions (p ≤ 0.05 and q ≤ 1) were selected for further quantitative real-time reverse transcription (qRT-PCR) validation. In HepG2 cells, we identified 62 significantly differentially expressed genes (DEGs) (6,564 transcripts) and 319 lncRNAs (124 known lncRNAs and 195 novel lncRNAs) that were affected by ORF3, which were involved in systemic lupus erythematosus, Staphylococcus aureus infection, signaling pathways pluripotency regulation of stem cells, the peroxisome proliferator-activated receptor (PPAR) signaling pathway, and platinum drug resistance pathways. Cis-target gene prediction identified 45 lncRNAs corresponding to candidate mRNAs, among which eight were validated by qRT-PCR: LINC02476 (two transcripts), RAP2C-AS1, AC016526, AL139099, and ZNF337-AS1 (3 transcripts). Our results revealed that the lncRNA profile in host cells affected by ORF3, swine HEV ORF3, might affect the pentose and glucuronate interconversions and mediate the formation of obstructive jaundice by influencing bile secretion, which will help to determine the function of ORF3 and the infection mechanism and treatment of swine HE.
Collapse
Affiliation(s)
- Hanwei Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Xuehong Shuai
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Yichen Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Wenjie Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Qingzhou Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Cho YD, Kim WJ, Ryoo HM, Kim HG, Kim KH, Ku Y, Seol YJ. Current advances of epigenetics in periodontology from ENCODE project: a review and future perspectives. Clin Epigenetics 2021; 13:92. [PMID: 33902683 PMCID: PMC8077755 DOI: 10.1186/s13148-021-01074-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Encyclopedia of DNA Elements (ENCODE) project has advanced our knowledge of the functional elements in the genome and epigenome. The aim of this article was to provide the comprehension about current research trends from ENCODE project and establish the link between epigenetics and periodontal diseases based on epigenome studies and seek the future direction. MAIN BODY Global epigenome research projects have emphasized the importance of epigenetic research for understanding human health and disease, and current international consortia show an improved interest in the importance of oral health with systemic health. The epigenetic studies in dental field have been mainly conducted in periodontology and have focused on DNA methylation analysis. Advances in sequencing technology have broadened the target for epigenetic studies from specific genes to genome-wide analyses. CONCLUSIONS In line with global research trends, further extended and advanced epigenetic studies would provide crucial information for the realization of comprehensive dental medicine and expand the scope of ongoing large-scale research projects.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyoung-Hwa Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Yeongeon-dong, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
20
|
LncRNA KLK8 modulates stem cell characteristics in colon cancer. Pathol Res Pract 2021; 224:153437. [PMID: 34271345 DOI: 10.1016/j.prp.2021.153437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Colon cancer, one of the most common and aggressive human malignancies, is the third leading cause of cancer-related death worldwide. Despite advances in systemic therapy, the 5-year survival rate of colon cancer patients remains at 30 % due to recurrence and metastasis. The poor prognosis is related to the presence of cancer stem cells (CSCs), and long non-coding RNAs (lncRNAs) play a significant role in CSCs. Thus, understanding of the correlation between CSCs and lncRNA in colon cancer is of it is of great clinical significance. METHOD The expression of KLK8 expression in colon cancer tissues was determined by qRT-PCR. Colon cancer-derived CSCs could form sphere-like cell aggregates after 10 days of culturing in a serum-free medium. In addition, qRT-PCR and Western blotting were performed to assess the expression of CD44, Sox2, Oct4, and Nanog. RESULTS KLK8 was markedly upregulated in colon cancer tissues in comparison with normal tissues, and its expression was related to tumor size, TNM stage, and metastasis, and positively correlated with the expression of CSCs-related genes in colon cancer tissues. CONCLUSIONS Thus, KLK8 may serve as a potential prognostic and diagnostic biomarker in colon cancer patients.
Collapse
|
21
|
Hansen J, von Melchner H, Wurst W. Mutant non-coding RNA resource in mouse embryonic stem cells. Dis Model Mech 2021; 14:14/2/dmm047803. [PMID: 33729986 PMCID: PMC7875499 DOI: 10.1242/dmm.047803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Gene trapping is a high-throughput approach that has been used to introduce insertional mutations into the genome of mouse embryonic stem (ES) cells. It is performed with generic gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA sequence tag for the rapid identification of the disrupted gene. Large-scale international efforts assembled a gene trap library of 566,554 ES cell lines with single gene trap integrations distributed throughout the genome. Here, we re-investigated this unique library and identified mutations in 2202 non-coding RNA (ncRNA) genes, in addition to mutations in 12,078 distinct protein-coding genes. Moreover, we found certain types of gene trap vectors preferentially integrating into genes expressing specific long non-coding RNA (lncRNA) biotypes. Together with all other gene-trapped ES cell lines, lncRNA gene-trapped ES cell lines are readily available for functional in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jens Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Harald von Melchner
- Department of Molecular Hematology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany .,Technische Universität München-Weihenstephan, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, D-81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, D-81377 München, Germany
| |
Collapse
|
22
|
Du YJ, Yu QQ, Zheng XF, Wang SP. LncRNA TUG1 positively regulates osteoclast differentiation by targeting v-maf musculoaponeurotic fibrosarcoma oncogene homolog B. Autoimmunity 2020; 53:443-449. [PMID: 33146047 DOI: 10.1080/08916934.2020.1839891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Osteoclast differentiation-mediates bone resorption is the key biological basis of orthodontic treatment while the specific mechanism of osteoclastogenesis remains unclear. This study aims to explore the underlying mechanism of the osteoclast differentiation from the perspective of long non-coding RNA (LncRNA). In the present study, the osteoclast differentiation of CD14+ peripheral blood mononuclear cells (PBMCs) was induced by recombinant human macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL), and LncRNA TUG1 expression was dramatically elevated during this process. Functionally, the silence of TUG1 in CD14+ PBMCs decreased tartrate-resistant acid phosphatase (TRAP)-positive cell numbers and the protein levels of TRAP, nuclear factor of activated T cell c1 (NFATc1), and osteoclast-associated receptor (OSCAR), whereas increased V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB) protein level. The subsequent experiments confirmed that TUG1 lessened the MafB protein level via accelerating its degradation. Then, the interference of MafB reversed the inhibitory effect of si-TUG1 on osteoclastogenesis, including increased the TRAP-positive cell numbers and up-regulated the protein levels of osteoclast markers. Finally, the in vivo experiments displayed that the increased TUG1 levels could promote tooth movement and bone resorption via facilitating osteoclast differentiation in the rat model of orthodontic tooth movement. In summary, TUG1 overexpressed during the process of osteoclast differentiation and positively regulated osteoclast differentiation by targeting MafB.
Collapse
Affiliation(s)
- Ya-Jing Du
- Department of Oral Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong-Qiong Yu
- Department of Oral Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Fei Zheng
- Department of Oral Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su-Ping Wang
- Department of Oral Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, Zhang X, Huang Y, Zhang R, Wei J, Ali DW, Michalak M, Chen XZ, Tang J. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer 2020; 19:118. [PMID: 32727463 PMCID: PMC7389684 DOI: 10.1186/s12943-020-01237-y] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies and has an extremely poor diagnosis and prognosis. The development of resistance to gemcitabine is still a major challenge. The long noncoding RNA PVT1 was reported to be involved in carcinogenesis and chemoresistance; however, the mechanism by which PVT1 regulates the sensitivity of pancreatic cancer to gemcitabine remains poorly understood. METHODS The viability of pancreatic cancer cells was assessed by MTT assay in vitro and xenograft tumor formation assay in vivo. The expression levels of PVT1 and miR-619-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blotting analysis and qRT-PCR were performed to assess the protein and mRNA levels of Pygo2 and ATG14, respectively. Autophagy was explored via autophagic flux detection under confocal microscopy and autophagic vacuole investigation under transmission electron microscopy (TEM). The functional role and mechanism of PVT1 were further investigated by gain- and loss-of-function assays in vitro. RESULTS In the present study, we demonstrated that PVT1 was up-regulated in gemcitabine-resistant pancreatic cancer cell lines. Gain- and loss-of-function assays revealed that PVT1 impaired sensitivity to gemcitabine in vitro and in vivo. We further found that PVT1 up-regulated the expression of both Pygo2 and ATG14 and thus regulated Wnt/β-catenin signaling and autophagic activity to overcome gemcitabine resistance through sponging miR-619-5p. Moreover, we discovered three TCF/LEF binding elements (TBEs) in the promoter region of PVT1, and activation of Wnt/β-catenin signaling mediated by the up-regulation of Pygo2 increased PVT1 expression by direct binding to the TBE region. Furthermore, PVT1 was discovered to interact with ATG14, thus promoting assembly of the autophagy specific complex I (PtdIns3K-C1) and ATG14-dependent class III PtdIns3K activity. CONCLUSIONS These data indicate that PVT1 plays a critical role in the sensitivity of pancreatic cancer to gemcitabine and highlight its potential as a valuable target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Changhua Yi
- Nanjing Clinical Medical Center for Infectious Diseases, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, China
| | - Yongxiang Yi
- Nanjing Clinical Medical Center for Infectious Diseases, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, China
| | - Wenying Qin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Yanan Yan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Xueying Dong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Xuewen Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Jie Wei
- Nanjing Clinical Medical Center for Infectious Diseases, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China.
| |
Collapse
|
24
|
Which long noncoding RNAs and circular RNAs contribute to inflammatory bowel disease? Cell Death Dis 2020; 11:456. [PMID: 32541691 PMCID: PMC7295799 DOI: 10.1038/s41419-020-2657-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), a chronic relapsing gastrointestinal inflammatory disease, mainly comprises ulcerative colitis (UC) and Crohn’s disease (CD). Although the mechanisms and pathways of IBD have been widely examined in recent decades, its exact pathogenesis remains unclear. Studies have focused on the discovery of new therapeutic targets and application of precision medicine. Recently, a strong connection between IBD and noncoding RNAs (ncRNAs) has been reported. ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). The contributions of lncRNAs and circRNAs in IBD are less well-studied compared with those of miRNAs. However, lncRNAs and circRNAs are likely to drive personalized therapy for IBD. They will enable accurate diagnosis, prognosis, and prediction of therapeutic responses and promote IBD therapy. Herein, we briefly describe the molecular functions of lncRNAs and circRNAs and provide an overview of the current knowledge of the altered expression profiles of lncRNAs and circRNAs in patients with IBD. Further, we discuss how these RNAs are involved in the nosogenesis of IBD and are emerging as biomarkers.
Collapse
|
25
|
Wang F, Rong L, Zhang Z, Li M, Ma L, Ma Y, Xie X, Tian X, Yang Y. LncRNA H19-Derived miR-675-3p Promotes Epithelial-Mesenchymal Transition and Stemness in Human Pancreatic Cancer Cells by targeting the STAT3 Pathway. J Cancer 2020; 11:4771-4782. [PMID: 32626524 PMCID: PMC7330704 DOI: 10.7150/jca.44833] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: The functional role and mechanism of the long noncoding RNA (lncRNA) H19 in regulating human pancreatic cancer (PC) cell stemness and invasion have not been completely elucidated. This study aimed to evaluate the role of H19 in regulating the stemness, epithelial-mesenchymal transition (EMT), invasion and chemosensitivity of PC cells. Methods: The sphere-forming ability was assessed using serum-free floating-culture systems. Chemosensitivity was evaluated via CCK-8 and flow cytometry assays in vitro. Migration and invasion were evaluated by transwell assays. The expression of stemness and EMT markers was detected by flow cytometry, qRT-PCR and western blot analyses. Xenograft initiation, growth and sensitivity were examined; Ki-67 nuclear staining intensity was evaluated by immunohistochemistry; and in situ apoptosis was evaluated by a TUNEL assay. Results: H19 played an important role in maintaining PC cell stemness. Upregulated H19 expression in CAPAN-1 cells promoted tumor cell migration, invasion, EMT and chemoresistance. In contrast, downregulated H19 expression in PANC-1 cells yielded the opposite results. These effects were mediated by positively modulating the STAT3 pathway. Furthermore, SOCS5, an endogenous inhibitor of the STAT3 pathway, was a direct target of miR-675-3p, which was positively regulated by H19 in PC cells. Conclusions: The H19/miR-675-3p signaling axis plays a critical role in maintaining the EMT process and stemness of PC cells by directly targeting SOCS5 to activate the STAT3 pathway. These data provide new insights into the oncogenic function of H19 in human PC and reveal potential targets for the development of optimal treatment approaches for this disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China.,Department of Endoscopy Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Long Rong
- Department of Endoscopy Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhengkui Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Mingzhe Li
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Ling Ma
- Department of Surgical Oncology, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing 100038, People's Republic of China
| | - Yongsu Ma
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xuehai Xie
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| |
Collapse
|
26
|
Liao J, Xiao H, Dai G, He T, Huang W. Recombinant adenovirus (AdEasy system) mediated exogenous expression of long non-coding RNA H19 (lncRNA H19) biphasic regulating osteogenic differentiation of mesenchymal stem cells (MSCs). Am J Transl Res 2020; 12:1700-1713. [PMID: 32509170 PMCID: PMC7269984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND We previously constructed AdEasy system for rapid generation of recombinant adenovirus expressing coding genes. However, it is unclear if AdEasy system could be used for exogenously expression of long noncoding RNAs (lncRNAs). Here we investigated how to overexpress lncRNA H19 with AdEasy system and identified the effect of overexpression H19 on mesenchymal stem cells (MSCs) osteogenic differentiation. METHODS H19 fragment 1 and H19 fragment 2 were amplified from mouse genomic DNA separately and then connected for full-length H19. H19 was firstly subcloned to homemade pMOK plasmid, then H19 was cut off from pMOK-H19 and subcloned to recombinant adenovirus plasmid. After homologous recombination in AdEasier cells (BJ5183 cell), packing in mammalian packaging cell line and amplification in 293pTP cells, high titer AdH19 was obtained. Immortalized mouse adipose-derived progenitors (iMADs) were infected by AdH19 with different infection rate, the expression of H19, H19 related microRNAs (miRs) and osteogenic differentiation markers were determined by TqPCR. Alkaline phosphatase (ALP) activities and matrix mineralization were determined by ALP assays and Alizarin red S staining respectively. RESULTS AdEasy system was suitable for rapid generation and production of H19, AdH19 can effectively overexpress H19 and serve as functional lncRNA in mesenchymal stem cells (MSCs). Higher dosage of AdH19 inhibited osteogenic differentiation of MSCs, however, lower dosage of AdH19 promoted osteogenic differentiation of MSCs. CONCLUSIONS We firstly reported the method for the generation of functional lncRNA with AdEasy system, and identified the biphasic effect of H19 on MSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical CenterChicago, IL 60737, USA
| | - Haozhuo Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Guangming Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Tongchuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical CenterChicago, IL 60737, USA
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
27
|
Zhu Y, Yan Z, Du Z, Zhang S, Fu C, Meng Y, Wen X, Wang Y, Hoffman AR, Hu JF, Cui J, Li W. Osblr8 orchestrates intrachromosomal loop structure required for maintaining stem cell pluripotency. Int J Biol Sci 2020; 16:1861-1875. [PMID: 32398955 PMCID: PMC7211171 DOI: 10.7150/ijbs.45112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs), derived from reprogramming of somatic cells by a cocktail of transcription factors, have the capacity for unlimited self-renewal and the ability to differentiate into all of cell types present in the body. iPSCs may have therapeutic potential in regenerative medicine, replacing injured tissues or even whole organs. In this study, we examine epigenetic factors embedded in the specific 3-dimensional intrachromosomal architecture required for the activation of endogenous pluripotency genes. Using chromatin RNA in situ reverse transcription sequencing (CRIST-seq), we identified an Oct4-Sox2 binding long noncoding RNA, referred as to Osblr8, that is present in association with pluripotency status. Osblr8 was highly expressed in iPSCs and E14 embryonic stem cells, but it was silenced in fibroblasts. By using shRNA to knock down Osblr8, we found that this lncRNA was required for the maintenance of pluripotency. Overexpression of Osblr8 activated endogenous stem cell core factor genes. Mechanistically, Osblr8 participated in the formation of an intrachromosomal looping structure that is required to activate stem cell core factors during reprogramming. In summary, we have demonstrated that lncRNA Osblr8 is a chromatin architecture modulator of pluripotency-associated master gene promoters, highlighting its critical epigenetic role in reprogramming.
Collapse
Affiliation(s)
- Yanbo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zi Yan
- Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Changhao Fu
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ying Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yizhuo Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
28
|
Differential expression of long noncoding RNAs from dental pulp stem cells in the microenvironment of the angiogenesis. Arch Oral Biol 2020; 113:104691. [PMID: 32247880 DOI: 10.1016/j.archoralbio.2020.104691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/28/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Angiogenesis is important in pulp-dentin formation. Among the regulatory factors, long noncoding RNA (LncRNA) is a class of functional RNA molecules that are not translated into protein and involved in regulating multiple physiological processes. The different expression of LncRNA and its target gene in dental pulp stem cells (DPSCs) were explored and may provide a theoretical basis for future regulation of dental pulp angiogenesis. METHODS In this study, we cultured DPSCs from healthy dental pulp tissues and divided them into two groups: the normal DPSCs and the DPSCs cultured in vascular induction medium. In total, 40,173 LncRNA probes and 20,730 protein coding mRNAs were detected through microarray, which were then verified by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. RESULTS The result of differential expressions measured in LncRNA through microarray showed that 376 LncRNAs increased significantly and 426 were downregulated among the two groups of cells. Moreover, the mRNA microarray in normal cultured DPSCs showed that 629 LncRNAs were significantly upregulated, while 529 of them were downregulated compared with the DPSCs that were cultured in vascular induction medium. Gene ontology (GO) analysis inferred the molecular function of mRNAs. Pathway analysis showed that 52 signaling pathways were involved in the differentiation process of DPSCs. qRT-PCR analysis, conducted for validation, showed results consistent with the microarray analysis. CONCLUSIONS We found that a number of different regulators are involved in inducing vascular differentiation of DPSCs, which provides a foundation for subsequent experiments.
Collapse
|
29
|
Abstract
Embryonic Stem cells are widely studied to elucidate the disease and developmental processes because of their capability to differentiate into cells of any lineage, Pervasive transcription is a distinct feature of all multicellular organisms and genomic elements such as enhancers and bidirectional or unidirectional promoters regulate these processes. Thousands of loci in each species produce a class of transcripts called noncoding RNAs (ncRNAs), that are well known for their influential regulatory roles in multiple biological processes including stem cell pluripotency and differentiation. The number of lncRNA species increases in more complex organisms highlighting the importance of RNA-based control in the evolution of multicellular organisms. Over the past decade, numerous studies have shed light on lncRNA biogenesis and functional significance in the cell and the organism. In this review, we focus primarily on lncRNAs affecting the stem cell state and developmental pathways.
Collapse
Affiliation(s)
- Meghali Aich
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research, New Delhi, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research, New Delhi, India.
| |
Collapse
|
30
|
Ghosal S, Das S, Pang Y, Gonzales MK, Huynh TT, Yang Y, Taieb D, Crona J, Shankavaram UT, Pacak K. Long intergenic noncoding RNA profiles of pheochromocytoma and paraganglioma: A novel prognostic biomarker. Int J Cancer 2019; 146:2326-2335. [PMID: 31469413 DOI: 10.1002/ijc.32654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Many long intergenic noncoding RNAs (lincRNAs) serve as cancer biomarkers for diagnosis or prognostication. To understand the role of lincRNAs in the rare neuroendocrine tumors pheochromocytoma and paraganglioma (PCPG), we performed first time in-depth characterization of lincRNA expression profiles and correlated findings to clinical outcomes of the disease. RNA-Seq data from patients with PCPGs and 17 other tumor types from The Cancer Genome Atlas and other published sources were obtained. Differential expression analysis and a machine-learning model were used to identify transcripts specific to PCPGs, as well as established PCPG molecular subtypes. Similarly, lincRNAs specific to aggressive PCPGs were identified, and univariate and multivariate analysis was performed for metastasis-free survival. The results were validated in independent samples using RT-PCR. From a pan-cancer context, PCPGs had a specific and unique lincRNA profile. Among PCPGs, five different molecular subtypes were identified corresponding to the established molecular classification. Upregulation of 13 lincRNAs was found to be associated with aggressive/metastatic PCPGs. RT-PCR validation confirmed the overexpression of four lincRNAs in metastatic compared to non-metastatic PCPGs. Kaplan-Meier analysis identified five lincRNAs as prognostic markers for metastasis-free survival of patients in three subtypes of PCPGs. Stratification of PCPG patients with a risk-score formulated using multivariate analysis of lincRNA expression profiles, presence of key driver mutations, tumor location, and hormone secretion profiles showed significant differences in metastasis-free survival. PCPGs thus exhibit a specific lincRNA expression profile that also corresponds to the established molecular subgroups and can be potential marker for the aggressive/metastatic PCPGs.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ying Pang
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Melissa K Gonzales
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Yanqin Yang
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France.,European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Joakim Crona
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Li L, van Breugel PC, Loayza-Puch F, Ugalde AP, Korkmaz G, Messika-Gold N, Han R, Lopes R, Barbera EP, Teunissen H, de Wit E, Soares RJ, Nielsen BS, Holmstrøm K, Martínez-Herrera DJ, Huarte M, Louloupi A, Drost J, Elkon R, Agami R. LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS. Nucleic Acids Res 2019; 46:4213-4227. [PMID: 29481642 PMCID: PMC5934637 DOI: 10.1093/nar/gky087] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogene-induced senescence (OIS), provoked in response to oncogenic activation, is considered an important tumor suppressor mechanism. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated lncRNA expression promote tumorigenesis and metastasis and that lncRNAs may exhibit tumor-suppressive and oncogenic function. Here, we first identified lncRNAs that were differentially expressed between senescent and non-senescent human fibroblast cells. Using RNA interference, we performed a loss-function screen targeting the differentially expressed lncRNAs, and identified lncRNA-OIS1 (lncRNA#32, AC008063.3 or ENSG00000233397) as a lncRNA required for OIS. Knockdown of lncRNA-OIS1 triggered bypass of senescence, higher proliferation rate, lower abundance of the cell-cycle inhibitor CDKN1A and high expression of cell-cycle-associated genes. Subcellular inspection of lncRNA-OIS1 indicated nuclear and cytosolic localization in both normal culture conditions as well as following oncogene induction. Interestingly, silencing lncRNA-OIS1 diminished the senescent-associated induction of a nearby gene (Dipeptidyl Peptidase 4, DPP4) with established role in tumor suppression. Intriguingly, similar to lncRNA-OIS1, silencing DPP4 caused senescence bypass, and ectopic expression of DPP4 in lncRNA-OIS1 knockdown cells restored the senescent phenotype. Thus, our data indicate that lncRNA-OIS1 links oncogenic induction and senescence with the activation of the tumor suppressor DPP4.
Collapse
Affiliation(s)
- Li Li
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Pieter C van Breugel
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Fabricio Loayza-Puch
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Alejandro Pineiro Ugalde
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Gozde Korkmaz
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Naama Messika-Gold
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, 69978, Tel Aviv University, Tel Aviv, Israel
| | - Ruiqi Han
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Rui Lopes
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Eric P Barbera
- Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | | | - Kim Holmstrøm
- Bioneer A/S, Kogle Allé 2, DK-2970 Hørsholm, Denmark
| | | | - Maite Huarte
- Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Annita Louloupi
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jarno Drost
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, 69978, Tel Aviv University, Tel Aviv, Israel
| | - Reuven Agami
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.,Erasmus MC, Rotterdam University, 3000 CA Rotterdam, The Netherlands.,Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
32
|
Wang Y, Guo B, Xiao Z, Lin H, Zhang X, Song Y, Li Y, Gao X, Yu J, Shao Z, Li X, Luo Y, Li S. Long noncoding RNA CCDC144NL-AS1 knockdown induces naïve-like state conversion of human pluripotent stem cells. Stem Cell Res Ther 2019; 10:220. [PMID: 31358062 PMCID: PMC6664583 DOI: 10.1186/s13287-019-1323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Human naïve pluripotency state cells can be derived from direct isolation of inner cell mass or primed-to-naïve resetting of human embryonic stem cells (hESCs) through different combinations of transcription factors, small molecular inhibitors, and growth factors. Long noncoding RNAs (lncRNAs) have been identified to be crucial in diverse biological processes, including pluripotency regulatory circuit of mouse pluripotent stem cells (PSCs), but few are involved in human PSCs' regulation of pluripotency and naïve pluripotency derivation. This study initially planned to discover more lncRNAs possibly playing significant roles in the regulation of human PSCs' pluripotency, but accidently identified a lncRNA whose knockdown in human PSCs induced naïve-like pluripotency conversion. METHODS Candidate lncRNAs tightly correlated with human pluripotency were screened from 55 RNA-seq data containing human ESC, human induced pluripotent stem cell (iPSC), and somatic tissue samples. Then loss-of-function experiments in human PSCs were performed to investigate the function of these candidate lncRNAs. The naïve-like pluripotency conversion caused by CCDC144NL-AS1 knockdown (KD) was characterized by quantitative real-time PCR, immunofluorescence staining, western blotting, differentiation of hESCs in vitro and in vivo, RNA-seq, and chromatin immunoprecipitation. Finally, the signaling pathways in CCDC144NL-AS1-KD human PSCs were examined through western blotting and analysis of RNA-seq data. RESULTS The results indicated that knockdown of CCDC144NL-AS1 induces naïve-like state conversion of human PSCs in the absence of additional transcription factors or small molecular inhibitors. CCDC144NL-AS1-KD human PSCs reveal naïve-like pluripotency features, such as elevated expression of naïve pluripotency-associated genes, increased developmental capacity, analogous transcriptional profiles to human naïve PSCs, and global reduction of repressive chromatin modification marks. Furthermore, CCDC144NL-AS1-KD human PSCs display inhibition of MAPK (ERK), accumulation of active β-catenin, and upregulation of some LIF/STAT3 target genes, and all of these are concordant with previously reported traits of human naïve PSCs. CONCLUSIONS Our study unveils an unexpected role of a lncRNA, CCDC144NL-AS1, in the naïve-like state conversion of human PSCs, providing a new perspective to further understand the regulation process of human early pluripotency states conversion. It is suggested that CCDC144NL-AS1 can be potentially valuable for future research on deriving higher quality naïve state human PSCs and promoting their therapeutic applications.
Collapse
Affiliation(s)
- Yingying Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Baosen Guo
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zengrong Xiao
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Haijun Lin
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xi Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yueqiang Song
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yalei Li
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xuehu Gao
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jinjun Yu
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhihua Shao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
33
|
Afshar S, Seyedabadi S, Saidijam M, Samadi P, Mazaherilaghab H, Mahdavinezhad A. Long Non-coding Ribonucleic Acid as a Novel Diagnosis and Prognosis Biomarker of Bladder Cancer. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long non-coding ribonucleic acids (lncRNAs) are the largest group of non-coding RNAs and supposedly have a broad spectrum of diverse functions in normal cellular processes. This study was carried out to review the biological functions of candidate lncRNAs (i.e., H19, MALAT-1, TUG1, UCA-1, MEG-3, HOTAIR, CCAT2, AATBC, and the like) with aberrant expressions that play critical roles in bladder cancer (BC) initiation, progression, and metastasis. A formal narrative review was performed by searching the PubMed database for English articles using a combination of keywords such as "long non-coding RNA", "lncRNA", "cancer", "bladder cancer", "screening", "prognosis", "diagnosis", and "response to therapy". In addition, the existing literature was studied on biological function, aberrant expression, and the clinical applications of candidate lncRNAs in BC. By a better understanding of the molecular mechanisms of lncRNAs, they can be used as biomarkers for tumor signatures in urologic malignancies, which can improve screening, prognosis, diagnosis, and the treatment of BC.
Collapse
Affiliation(s)
- Saeid Afshar
- PhD, Assistant Professor, Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Seyedabadi
- MSc, Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- PhD,Full Professor in Medical Biothecnology, Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- PhD Student in Medical Biothecnology,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamzeh Mazaherilaghab
- PhD, Assistant Professor ,School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- MD, Phd, Assistant Professor, Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
34
|
Wu L, Deng L, Hong H, Peng C, Zhang X, Chen Z, Ling J. Comparison of long non‑coding RNA expression profiles in human dental follicle cells and human periodontal ligament cells. Mol Med Rep 2019; 20:939-950. [PMID: 31173189 PMCID: PMC6625187 DOI: 10.3892/mmr.2019.10308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
The dental follicle develops into the periodontal ligament, cementum and alveolar bone. Human dental follicle cells (hDFCs) are the precursor cells of periodontal development. Long non-coding RNAs (lncRNAs) have been revealed to be crucial factors that regulate a variety of biological processes; however, whether lncRNAs serve a role in human periodontal development remains unknown. Therefore, the present study used microarrays to detect the differentially expressed lncRNAs and mRNAs between hDFCs and human periodontal ligament cells (hPDLCs). A total of 845 lncRNAs and 1,012 mRNAs were identified to be differentially expressed in hDFCs and hPDLCs (fold change >2.0 or <-2.0; P<0.05). Microarray data were validated by reverse transcription-quantitative polymerase chain reaction. Bioinformatics analyses, including gene ontology, pathway analysis and coding-non-coding gene co-expression network analysis, were performed to determine the functions of the differentially expressed lncRNAs and mRNAs. Bioinformatics analysis identified that a number of pathways may be associated with periodontal development, including the p53 and calcium signaling pathways. This analysis also revealed a number of lncRNAs, including NR_033932, T152410, ENST00000512129, ENST00000540293, uc021sxs.1 and ENST00000609146, which may serve important roles in the biological process of hDFCs. In addition, the lncRNA termed maternally expressed 3 (MEG3) was identified to be differentially expressed in hDFCs by reverse transcription-quantitative polymerase chain reaction. The knockdown of MEG3 was associated with a reduction of pluripotency makers in hDFCs. In conclusion, for the first time, to the best of our knowledge, the current study determined the different expression profiles of lncRNAs and mRNAs between hDFCs and hPDLCs. The observations made may provide a solid foundation for further research into the molecular mechanisms of lncRNAs in human periodontal development.
Collapse
Affiliation(s)
- Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hong Hong
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Caixia Peng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
35
|
Lu W, Yu J, Shi F, Zhang J, Huang R, Yin S, Songyang Z, Huang J. The long non-coding RNA Snhg3 is essential for mouse embryonic stem cell self-renewal and pluripotency. Stem Cell Res Ther 2019; 10:157. [PMID: 31151411 PMCID: PMC6545032 DOI: 10.1186/s13287-019-1270-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Small nucleolar RNA host gene 3 (Snhg3) is a long non-coding RNA (lncRNA) that was shown to participate in the tumorigenesis of certain cancers. However, little is known about its role in embryonic stem cells (ESCs). Methods Here, we investigated the role of Snhg3 in mouse ESCs (mESCs) through both loss-of-function (knockdown) and gain-of-function (overexpression) approaches. Alkaline phosphatase staining, secondary colony formation, propidium iodide staining, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to access self-renewal capacity, whereas immunofluorescence, qRT-PCR, and embryoid body formation were performed to examine pluripotency. In addition, the effect of Snhg3 on mouse embryonic development was determined based on the morphological changes, blastocyst rate, and altered pluripotency marker (Nanog, Oct4) expression. Moreover, the relationship between Snhg3 and key pluripotency factors was evaluated by chromatin immunoprecipitation qPCR, qRT-PCR, subcellular fractionation, and RNA immunoprecipitation. Finally, RNA pull-down and mass spectrometry were applied to explore the potential interacting proteins of Snhg3 in mESCs. Results We demonstrated that Snhg3 is essential for self-renewal and pluripotency maintenance in mESCs. In addition, Snhg3 knockdown disrupted mouse early embryo development. Mechanistically, Snhg3 formed a positive feedback network with Nanog and Oct4, and 126 Snhg3-interacting proteins were identified in mESCs. Conclusions Snhg3 is essential for mESC self-renewal and pluripotency, as well as mouse early embryo development. Electronic supplementary material The online version of this article (10.1186/s13287-019-1270-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weisi Lu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jianping Yu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fengtao Shi
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, V5Z 4E8, Canada
| | - Jianing Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rui Huang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shanshan Yin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhou Songyang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China. .,MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Junjiu Huang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China. .,MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
36
|
He YH, Deng YS, Peng PX, Wang N, Wang JF, Ding ZS, Chen X, Zhou XF. A novel messenger RNA and long noncoding RNA signature associated with the progression of nonmuscle invasive bladder cancer. J Cell Biochem 2019; 120:8101-8109. [PMID: 30426560 DOI: 10.1002/jcb.28089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
AIM To explore the molecular mechanism of nonmuscle invasive bladder cancer (NMIBC), matched normal, and cancer tissues of 10 NMIBC were examined for RNA sequencing. METHODS We profiled the messenger RNA (mRNA) and long noncoding RNA (lncRNA) expression of patients with NMIBC. Differentially expressed mRNAs and lncRNAs were screened between cancer and normal tissues and validated by quantitative polymerase chain reaction (qPCR), and lncRNA-mRNA-miRNA interaction network was constructed. RESULTS A total of 91 upregulated and 190 downregulated genes and 34 upregulated and 58 downregulated lncRNAs were screened from the sequencing result. The differentially expressed mRNAs were enriched in focal adhesion, rap1 signaling pathway, Hippo signaling pathway, PI3K-Akt signaling pathway, extracellular matrix (ECM)-receptor interaction, Ras signaling pathway, and mitogen-activated protein kinases signaling pathway, of which some pathways were involved in the cancer development. In the RNA sequencing, KIT and laminin subunitγ γ3 (LAMC3) were significantly downregulated in the NMIBC group compared with the normal group. The results of quantitative reverse transcription PCR showed that the expression of LAMC3 and KIT were significantly decreased in the NMIBC group compared with the normal group. The lncRNA-mRNA-miRNA interaction network was constructed by Cytoscape software to further investigate the interaction correlations. The results implied that KIT and LAMC3 might regulate the lncRNAs (such as ENST00000445707, ENST00000501122, ENST00000505254, ENST00000528986, ENST00000557661, ENST00000602964, ENST00000614517, ENST00000620864, and ENST00000623414) by the miRNAs (such as hsa-let-7f-2-3p, hsa-miR-125a-3p, hsa-miR-134-3p, hsa-miR-191-5p, hsa-miR-210-5p, hsa-miR-30a-5p, hsa-miR-30d-5p, hsa-miR-30e-5p, hsa-miR-92a-2-5p, and hsa-miR-95-3p), and finally played a role in the development of NMIBC cancer. CONCLUSION Altogether, our study preliminarily indicated that KIT and LAMC3 might play a crucial role in the development of NMIBC cancer via a complex mRNA-lncRNA-miRNA regulatory network.
Collapse
Affiliation(s)
- Yu-Hui He
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Yi-Sen Deng
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Pan-Xin Peng
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Ning Wang
- College of Psychology, North China University of Science and Technology, Tangshan, China
| | - Jian-Feng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Zhen-Shan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xing Chen
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-Feng Zhou
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
37
|
Zheng J, Wang Z, Yang H, Yao X, Yang P, Ren C, Wang F, Zhang Y. Pituitary Transcriptomic Study Reveals the Differential Regulation of lncRNAs and mRNAs Related to Prolificacy in Different FecB Genotyping Sheep. Genes (Basel) 2019; 10:genes10020157. [PMID: 30781725 PMCID: PMC6410156 DOI: 10.3390/genes10020157] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (LncRNA) have been identified as important regulators in the hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, their expression pattern and potential roles in the pituitary are yet unclear. To explore the potential mRNAs and lncRNAs that regulate the expression of the genes involved in sheep prolificacy, we used stranded specific RNA-seq to profile the pituitary transcriptome (lncRNA and mRNA) in high prolificacy (genotype FecB BB, litter size = 3; H) and low prolificacy sheep (genotype FecB B+; litter size = 1; L). Our results showed that 57 differentially expressed (DE) lncRNAs and 298 DE mRNAs were found in the pituitary between the two groups. The qRT-PCR results correlated well with the RNA-seq results. Moreover, functional annotation analysis showed that the target genes of the DE lncRNAs were significantly enriched in pituitary function, hormone-related pathways as well as response to stimulus and some other terms related to reproduction. Furthermore, a co-expression network of lncRNAs and target genes was constructed and reproduction related genes such as SMAD2, NMB and EFNB3 were included. Lastly, the interaction of candidate lncRNA MSTRG.259847.2 and its target gene SMAD2 were validated in vitro of sheep pituitary cells. These differential mRNA and lncRNA expression profiles provide a valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.
Collapse
Affiliation(s)
- Jian Zheng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhibo Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hua Yang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pengcheng Yang
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - CaiFang Ren
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - YanLi Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Yuan H, Xu X, Feng X, Zhu E, Zhou J, Wang G, Tian L, Wang B. A novel long noncoding RNA PGC1β-OT1 regulates adipocyte and osteoblast differentiation through antagonizing miR-148a-3p. Cell Death Differ 2019; 26:2029-2045. [PMID: 30728459 DOI: 10.1038/s41418-019-0296-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) have been implicated in the regulation of adipocyte and osteoblast differentiation. However, the functional contributions of LncRNAs to adipocyte or osteoblast differentiation remain largely unexplored. In the current study we have identified a novel LncRNA named peroxisome proliferator-activated receptor γ coactivator-1β-OT1 (PGC1β-OT1). The expression levels of PGC1β-OT1 were altered during adipogenic and osteogenic differentiation from progenitor cells. 5'- and 3'-rapid amplification of cDNA ends (RACE) revealed that PGC1β-OT1 is 1759 nt in full length. Overexpression of PGC1β-OT1 in progenitor cells inhibited adipogenic differentiation, whereas silencing of endogenous PGC1β-OT1 induced adipogenic differentiation. By contrast, overexpression of PGC1β-OT1 in progenitor cells stimulated, whereas silencing of PGC1β-OT1 inhibited osteogenic differentiation. In vivo experiment showed that silencing of endogenous PGC1β-OT1 in marrow stimulated fat accumulation and decreased osteoblast differentiation in mice. Mechanism investigations revealed that PGC1β-OT1 contains a functional miR-148a-3p binding site. Overexpression of the mutant PGC1β-OT1 with mutation at the binding site failed to regulate either adipogenic or osteogenic differentiation. In vivo crosslinking combined with affinity purification studies demonstrated that PGC1β-OT1 physically associated with miR-148a-3p through the functional miR-148a-3p binding site. Furthermore, PGC1β-OT1 affected the expression of endogenous miR-148a-3p and its target gene lysine-specific demethylase 6b (KDM6B). Supplementation of miR-148a-3p in progenitor cells blocked the inhibitory effect of PGC1β-OT1 on adipocyte formation. Moreover, overexpression of Kdm6b restored the osteoblast differentiation which was inhibited by silencing of endogenous PGC1β-OT. Our studies provide evidences that the novel LncRNA PGC1β-OT1 reciprocally regulates adipogenic and osteogenic differentiation through antagonizing miR-148a-3p and enhancing KDM6B effect.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaowei Xu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Xue Feng
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Guannan Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
39
|
Decoding epigenetic cell signaling in neuronal differentiation. Semin Cell Dev Biol 2019; 95:12-24. [PMID: 30578863 DOI: 10.1016/j.semcdb.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Neurogenesis is the process by which new neurons are generated in the brain. Neural stem cells (NSCs) are differentiated into neurons, which are integrated into the neural network. Nowadays, pluripotent stem cells, multipotent stem cells, and induced pluripotent stem cells can be artificially differentiated into neurons utilizing several techniques. Specific transcriptional profiles from NSCs during differentiation are frequently used to approach and observe phenotype alteration and functional determination of neurons. In this context, the role of non-coding RNA, transcription factors and epigenetic changes in neuronal development and differentiation has gained importance. Epigenetic elucidation has become a field of intense research due to distinct patterns of normal conditions and different neurodegenerative disorders, which can be explored to develop new diagnostic methods or gene therapies. In this review, we discuss the complexity of transcription factors, non-coding RNAs, and extracellular vesicles that are responsible for guiding and coordinating neural development.
Collapse
|
40
|
Li L, Zhuang Y, Zhao X, Li X. Long Non-coding RNA in Neuronal Development and Neurological Disorders. Front Genet 2019; 9:744. [PMID: 30728830 PMCID: PMC6351443 DOI: 10.3389/fgene.2018.00744] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts which are usually more than 200 nt in length, and which do not have the protein-coding capacity. LncRNAs can be categorized based on their generation from distinct DNA elements, or derived from specific RNA processing pathways. During the past several decades, dramatic progress has been made in understanding the regulatory functions of lncRNAs in diverse biological processes, including RNA processing and editing, cell fate determination, dosage compensation, genomic imprinting and development etc. Dysregulation of lncRNAs is involved in multiple human diseases, especially neurological disorders. In this review, we summarize the recent progress made with regards to the function of lncRNAs and associated molecular mechanisms, focusing on neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Ling Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingliang Zhuang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingsen Zhao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Yang Q, Jia L, Li X, Guo R, Huang Y, Zheng Y, Li W. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2018; 14:297-308. [PMID: 29464508 DOI: 10.1007/s12015-018-9801-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are an important population of multipotent stem cells that differentiate into multiple lineages and display great potential in bone regeneration and repair. Although the role of protein-coding genes in the osteogenic differentiation of MSCs has been extensively studied, the functions of noncoding RNAs in the osteogenic differentiation of MSCs are unclear. The recent application of next-generation sequencing to MSC transcriptomes has revealed that long noncoding RNAs (lncRNAs) are associated with the osteogenic differentiation of MSCs. LncRNAs are a class of non-coding transcripts of more than 200 nucleotides in length. Noncoding RNAs are thought to play a key role in osteoblast differentiation through various regulatory mechanisms including chromatin modification, transcription factor binding, competent endogenous mechanism, and other post-transcriptional mechanisms. Here, we review the roles of lncRNAs in the osteogenic differentiation of bone marrow- and adipose-derived stem cells and provide a theoretical foundation for future research.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
42
|
Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 Knockout Strategies to Ablate CCAT1 lncRNA Gene in Cancer Cells. Biol Proced Online 2018; 20:21. [PMID: 30410426 PMCID: PMC6211572 DOI: 10.1186/s12575-018-0086-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/11/2018] [Indexed: 02/01/2023] Open
Abstract
Background With the increasing discovery of long noncoding RNAs (lncRNAs), the application of functional techniques that could have very specific, efficient, and robust effects and readouts is necessary. Here, we have applied and analyzed three gene knockout (KO) strategies to ablate the CCAT1 gene in different colorectal adenocarcinoma cell lines. We refer to these strategies as “CRISPR excision”, “CRISPR HDR”, and “CRISPR du-HITI”. Results In order to obstruct the transcription of lncRNA or to alter its structure, in these strategies either a significant segment of the gene is removed, or a transcription termination signal is inserted in the target gene. We use RT-qPCR, RNA-seq, MTT, and colony formation assay to confirm the functional effects of CCAT1 gene ablation in knockout colorectal adenocarcinoma cell lines. We applied three different CRISPR/Cas9 mediated knockout strategies to abolish the transcription of CCAT1 lncRNA. CCAT1 knockout cells displayed dysregulation of genes involved in several biological processes, and a significant reduction for anchorage-independent growth. The du-HITI strategy introduced in this study removes a gene segment and inserts a reporter and a transcription termination signal in each of the two target alleles. The preparation of donor vector for this strategy is much easier than that in “CRISPR HDR”, and the selection of cells in this strategy is also much more practical than that in “CRISPR excision”. In addition, use of this technique in the first attempt of transfection, generates single cell knockouts for both alleles. Conclusions The strategies applied and introduced in this study can be used for the generation of CCAT1 knockout cell lines and in principle can be applied to the deletion of other lncRNAs for the study of their function. Electronic supplementary material The online version of this article (10.1186/s12575-018-0086-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khadijeh Zare
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Milad Shademan
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Mohammad M Ghahramani Seno
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Hesam Dehghani
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,3Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| |
Collapse
|
43
|
Yu CY, Chuang CY, Kuo HC. Trans-spliced long non-coding RNA: an emerging regulator of pluripotency. Cell Mol Life Sci 2018; 75:3339-3351. [PMID: 29961157 PMCID: PMC11105688 DOI: 10.1007/s00018-018-2862-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
With dual capacities for unlimited self-renewal and pluripotent differentiation, pluripotent stem cells (PSCs) give rise to many cell types in our body and PSC culture systems provide an unparalleled opportunity to study early human development and disease. Accumulating evidence indicates that the molecular mechanisms underlying pluripotency maintenance in PSCs involve many factors. Among these regulators, recent studies have shown that long non-coding RNAs (lncRNAs) can affect the pluripotency circuitry by cooperating with master pluripotency-associated factors. Additionally, trans-spliced RNAs, which are generated by combining two or more pre-mRNA transcripts to produce a chimeric RNA, have been identified as regulators of various biological processes, including human pluripotency. In this review, we summarize and discuss current knowledge about the roles of lncRNAs, including trans-spliced lncRNAs, in controlling pluripotency.
Collapse
Affiliation(s)
- Chun-Ying Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Ching-Yu Chuang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
- College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
44
|
Long noncoding RNA MIAT regulates apoptosis and the apoptotic response to chemotherapeutic agents in breast cancer cell lines. Biosci Rep 2018; 38:BSR20180704. [PMID: 29914974 PMCID: PMC6435567 DOI: 10.1042/bsr20180704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
The long noncoding RNA myocardial infarction associated transcript (MIAT) is involved in a number of diseases, including myocardial infarction and diabetic retinopathy. Emerging evidence suggests that MIAT expression levels are increased in different type of cancers, including breast cancer. In the present study, we further evaluated the role of MIAT in breast cancer and investigated the consequences of its silencing on breast cancer response to chemotherapeutic agents. Expression levels of MIAT mRNA in breast cancer were determined using TissueScan™ Breast Cancer cDNA Arrays. Breast cancer cell lines were transfected with MIAT specific siRNAs, with silencing confirmed using RT-qPCR and the effects on breast cancer cell survival and response to different apoptotic stimuli determined. MIAT transcript levels were significantly elevated in breast cancer samples. Such increase was specific to the early stages of the disease, ER, PR +ve, HER –ve, and triple negative breast cancer samples. Silencing of MIAT induced growth arrest and increased basal apoptosis. Reduced levels of MIAT augmented the apoptotic response of breast cancer cells to a wide range of apoptotic stimuli. Our results also showed that MIAT down-regulation was associated with a decrease in OCT4 mRNA, suggesting the existence of a MIAT/OCT4 regulatory loop, similar to that observed in malignant mature B cells. Taken together with the recent demonstration of oncogene characteristics, our observations suggest that MIAT plays an important role in breast tumorigenesis. Strategies to decrease MIAT expression levels may improve sensitivity to therapy in breast cancer by enhancing the apoptotic responses to conventional chemotherapies.
Collapse
|
45
|
Chen G, Zhang D, Zhang L, Feng G, Zhang B, Wu Y, Li W, Zhang Y, Hu B. RBM14 is indispensable for pluripotency maintenance and mesoderm development of mouse embryonic stem cells. Biochem Biophys Res Commun 2018; 501:259-265. [PMID: 29729270 DOI: 10.1016/j.bbrc.2018.04.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
The pluripotency of embryonic stem cells (ESCs) is maintained by core pluripotency transcription factors, cofactors and several signaling pathways. RBM14 is a component of the para-speckle complex, which has been implicated in multiple important biological processes. The role of RBM14 in ESCs and lineage differentiation remains to be elucidated. In the present study, we provided evidence that RBM14 plays important roles in maintaining pluripotency and in the early differentiation of ESCs. RBM14 was demonstrated to be expressed in mouse embryonic stem cells (mESCs) and localized in the nucleus. RBM14 expression was depleted in mESCs using clustered regularly interspaced short palindromic repeats (CRISPR) technology. Our results also showed that RBM14 depletion altered the gene expression profiles of mESCs. In particular, pluripotency-associated genes and genes involved in the Wnt and TGF-β signaling pathways were downregulated in RBM14 knockout mESCs. Furthermore, RBM14 was found to be essential for mesoderm development in vitro and in vivo. The specific effects of RBM14 depletion were verified by conducting a rescue experiment. Our findings demonstrated that RBM14 not only plays an important role in maintaining the pluripotency of mESCs but is also indispensable for mesoderm development.
Collapse
Affiliation(s)
- Guilai Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Da Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linlin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
46
|
Xiong C, Li X, Liu J, Zhao X, Xu S, Huang X. Identification and Characterization of a Cis Antisense RNA of the rpoH Gene of Salmonella enterica Serovar Typhi. Front Microbiol 2018; 9:978. [PMID: 29867881 PMCID: PMC5963218 DOI: 10.3389/fmicb.2018.00978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi (S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis-encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH.
Collapse
Affiliation(s)
- Changyan Xiong
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China.,Department of Forensic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuejiao Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China.,Department of Laboratory Diagnosis, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Juanli Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xin Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shungao Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
47
|
Yang J, Li C, Zhang L, Wang X. Extracellular Vesicles as Carriers of Non-coding RNAs in Liver Diseases. Front Pharmacol 2018; 9:415. [PMID: 29740327 PMCID: PMC5928552 DOI: 10.3389/fphar.2018.00415] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted from normal, diseased, and transformed cells in vitro and in vivo. EVs have been found to play a critical role in cell-to-cell communication by transferring non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long ncRNAs (lncRNAs) and so on. Emerging evidence shows that transferring biological information through EVs to neighboring cells in intercellular communication not only keep physiological functions, but also participate in the pathogenesis of liver diseases. Liver diseases often promote release of EVs and/or in different cargo sorting into these EVs. Either of these modifications can promote disease pathogenesis. Given this fact, EV-associated ncRNAs, such as miR-192, miR-122 and lncRNA-ROR and so on, can serve as new diagnostic biomarkers and new therapeutic targets for liver disease, because altered EV-associated ncRNAs may reflect the underlying liver disease condition. In this review, we focus on understanding the emerging role of EV-associated ncRNAs in viral hepatitis, liver fibrosis, alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) and discuss their utility in biomarker discovery and therapeutics. A better understanding of this multifaceted pattern of communication between different type cells in liver may contribute to developing novel approaches for personalized diagnostics and therapeutics.
Collapse
Affiliation(s)
- Junfa Yang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Changyao Li
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
48
|
Zhu XX, Yan YW, Chen D, Ai CZ, Lu X, Xu SS, Jiang S, Zhong GS, Chen DB, Jiang YZ. Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget 2018; 7:63561-63570. [PMID: 27566578 PMCID: PMC5325385 DOI: 10.18632/oncotarget.11538] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in gene regulation and are involving in diverse cellular processes. However, their roles in reprogramming of gene expression profiles during lineage commitment and maturation of mesenchymal stem cells (MSCs) remain poorly understood. In the current study, we characterize the expression of a lncRNA, HoxA-AS3, during the differentiation of MSCs. We showed that HoxA-AS3 is increased upon adipogenic induction of MSCs, while HoxA-AS3 remains unaltered during osteogenic induction. Silencing of HoxA-AS3 in MSCs resulted in decreased adipogenesis and expression of adipogenic markers, PPARG, CEBPA, FABP4 and ADIPOQ. Conversely, knockdown of HoxA-AS3 expression in MSCs exhibited an enhanced osteogenesis and osteogenic markers expression, including RUNX2, SP7, COL1A1, IBSP, BGLAP and SPP1. Mechanistically, HoxA-AS3 interacts with Enhancer Of Zeste 2 (EZH2) and is required for H3 lysine-27 trimethylation (H3K27me3) of key osteogenic transcription factor Runx2. Our data reveal that HoxA-AS3 acts as an epigenetic switch that determines the lineage specification of MSC.
Collapse
Affiliation(s)
- Xin-Xing Zhu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Ya-Wei Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Demeng Chen
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chun-Zhi Ai
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Xifeng Lu
- Department of Physiology, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Shan-Shan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Shan Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Gen-Shen Zhong
- Henan Key Laboratory of Neural Regeneration and Repairment, The First affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, CA, USA
| | - Yi-Zhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
49
|
Abstract
It is estimated that more than 90% of the mammalian genome is transcribed as non-coding RNAs. Recent evidences have established that these non-coding transcripts are not junk or just transcriptional noise, but they do serve important biological purpose. One of the rapidly expanding fields of this class of transcripts is the regulatory lncRNAs, which had been a major challenge in terms of their molecular functions and mechanisms of action. The emergence of high-throughput technologies and the development in various conventional approaches have led to the expansion of the lncRNA world. The combination of multidisciplinary approaches has proven to be essential to unravel the complexity of their regulatory networks and helped establish the importance of their existence. Here, we review the current methodologies available for discovering and investigating functions of long non-coding RNAs (lncRNAs) and focus on the powerful technological advancement available to specifically address their functional importance.
Collapse
|
50
|
Identification of long non-coding RNAs in the immature and mature rat anterior pituitary. Sci Rep 2017; 7:17780. [PMID: 29259254 PMCID: PMC5736705 DOI: 10.1038/s41598-017-17996-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
Many long non-coding RNAs (lncRNAs) have been identified in several types of human pituitary adenomas and normal anterior pituitary, some of which are involved in the pathogenesis of pituitary adenomas. However, a systematic analysis of lncRNAs expressed at different developmental stages of normal pituitary, particularly in rats, has not been performed. Therefore, we contrasted two cDNA libraries of immature (D15) and mature (D120) anterior pituitary in rat that were sequenced on an Illumina HiSeq Xten platform, and a total of 29,568,806,352 clean reads were identified. Notably, 7039 lncRNA transcripts corresponded to 4442 lncRNA genes, and 1181 lncRNA transcripts were significantly differentially expressed in D15 and D120. In addition, 6839 protein-coding genes (<100 kb upstream and downstream) were the nearest neighbors of 4074 lncRNA genes. An interaction network of lncRNAs and the follicle-stimulating hormone beta-subunit (FSHb) gene was constructed using the lncRNATargets platform, and three novel lncRNAs were obtained. Furthermore, we detected the expression of the novel lncRNAs and ten highly expressed lncRNAs that were randomly selected through quantitative PCR (qPCR). The rat anterior pituitary lncRNA content identified in this study provides a more in-depth understanding of the roles of these lncRNAs in hormone and reproduction development and regulation in mammals.
Collapse
|