1
|
Dariolli R, Nir R, Mushlam T, Souza GR, Farmer SR, Batista ML. Optimized scaffold-free human 3D adipose tissue organoid culture for obesity and disease modeling. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100218. [PMID: 39870353 DOI: 10.1016/j.slasd.2025.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate In vivo metabolism, posing challenges in adipose tissue research. Three-dimensional (3D) AT organoids, although promising, present significant handling challenges during long-term culture. As adipocytes maturate and accumulate fat, they develop organotypic characteristics, increasing the buoyancy effect, which causes the organoids to oscillate, complicating culture manipulation and rendering multiple handling steps difficult. Due to these challenges, most adipose spheroid and organoid models are scaffold-based, despite many cell types' ability to secrete extracellular matrix (ECM) components and self-assemble into aggregates. Scaffold-free 3D organoids have been less explored. To address the shortage of affordable and reliable AT models, we utilized magnetic bioprinting technology to develop a human-derived 3D model of adipose tissue. This system incorporates a magnetic holder that restrains organoids, preventing them from floating and minimizing the risk of loss during manipulation. This study outlines a protocol for generating In vitro AT-derived organoid using 3D magnetic bioprinting, with a focus on manufacturing, culturing, and assessing the morpho-functional characteristics of late-stage AT organoids. Magnetic bioprinting allows for the replication of tissue structure and function In vitro without the risk of organoid loss, making it an ideal method for high-throughput AT organoid culture. Additionally, the combination of 3D scaffold-free manufacturing with In vitro disease modeling offers a valuable tool for discovering treatments for metabolic diseases such as obesity and T2D.
Collapse
Affiliation(s)
| | | | - Tova Mushlam
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Glauco R Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
2
|
Gaviria Castrillon AM, Wray S, Rodríguez A, Fajardo SD, Machain VA, Parisi J, Bosio GN, Kaplan DL, Restrepo-Osorio A, Bosio VE. Biomimetic bilayer scaffold from Bombyx mori silk materials for small diameter vascular applications in tissue engineering. J Biomed Mater Res A 2025; 113:e37789. [PMID: 39367651 DOI: 10.1002/jbm.a.37789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 10/06/2024]
Abstract
Enhancing the biocompatibility and mechanical stability of small diameter vascular scaffolds remain significant challenges. To address this challenge, small-diameter tubular structures were electrospun from silk fibroin (SF) from silk textile industry discarded materials to generate bilayer scaffolds that mimic native blood vessels, but derived from a sustainable natural material resource. The inner layer was obtained by directly dissolving SF in formic acid, while the middle layer (SF-M) was achieved through aqueous concentration of the protein. Structural and biological properties of each layer as well as the bilayer were evaluated. The inner layer exhibited nano-scale fiber diameters and 57.9% crystallinity, and degradation rates comparable with the SF-M layer. The middle layer displayed micrometer-scale fibers diameters with an ultimate extension of about 274%. Both layers presented contact angles suitable for cell growth and cytocompatibility, while the bilayer material displayed an intermediate mechanical response and a reduced enzymatic degradation rate when compared to each individual layer. The bilayer material emulates many of the characteristics of native small-diameter vessels, thereby suggesting further studies towards in vivo opportunities.
Collapse
Affiliation(s)
- Ana M Gaviria Castrillon
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Sandra Wray
- Departamento de Ciencias de la Vida, Insituto Tecnológico Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Aníbal Rodríguez
- Departamento de Ciencias de la Vida, Insituto Tecnológico Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Sahara Díaz Fajardo
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Victoria A Machain
- Biometrials for Tissue Engieeering Lab (BIOMIT Lab), Instituto de Física La Plata (CONICET, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
| | - Julieta Parisi
- Sector de Cultivos Celulares, Instituto Multidisciplinario de Biología Celular (CICPBA-CONICET-UNLP), La Plata, Argentina
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de la Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Adriana Restrepo-Osorio
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Valeria E Bosio
- Biometrials for Tissue Engieeering Lab (BIOMIT Lab), Instituto de Física La Plata (CONICET, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
3
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408032. [PMID: 39420757 PMCID: PMC11875024 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
4
|
Okumuş EB, Böke ÖB, Turhan SŞ, Doğan A. From development to future prospects: The adipose tissue & adipose tissue organoids. Life Sci 2024; 351:122758. [PMID: 38823504 DOI: 10.1016/j.lfs.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.
Collapse
Affiliation(s)
- Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
5
|
Davidsen LI, Hagberg CE, Goitea V, Lundby SM, Larsen S, Ebbesen MF, Stanic N, Topel H, Kornfeld JW. Mouse vascularized adipose spheroids: an organotypic model for thermogenic adipocytes. Front Endocrinol (Lausanne) 2024; 15:1396965. [PMID: 38982992 PMCID: PMC11231189 DOI: 10.3389/fendo.2024.1396965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by β-adrenergic receptor stimulation correlating with elevated β-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.
Collapse
Affiliation(s)
- Laura Ingeborg Davidsen
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Carolina E. Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Victor Goitea
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Stine Meinild Lundby
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Frendø Ebbesen
- Danish Molecular Biomedical Imaging Center (DaMBIC), Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Natasha Stanic
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Hande Topel
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Jan-Wilhelm Kornfeld
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
7
|
Balachander GM, Nilawar S, Meka SRK, Ghosh LD, Chatterjee K. Unravelling microRNA regulation and miRNA-mRNA regulatory networks in osteogenesis driven by 3D nanotopographical cues. Biomater Sci 2024; 12:978-989. [PMID: 38189225 DOI: 10.1039/d3bm01597a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Three-dimensional (3D) culturing of cells is being adopted for developing tissues for various applications such as mechanistic studies, drug testing, tissue regeneration, and animal-free meat. These approaches often involve cost-effective differentiation of stem or progenitor cells. One approach is to exploit architectural cues on a 3D substrate to drive cellular differentiation, which has been shown to be effective in various studies. Although extensive gene expression data from such studies have shown that gene expression patterns might differ, the gene regulatory networks controlling the expression of genes are rarely studied. In this study, we profiled genes and microRNAs (miRNAs) via next-generation sequencing (NGS) in human mesenchymal stem cells (hMSCs) driven toward osteogenesis via architectural cues in 3D matrices (3D conditions) and compared with cells in two-dimensional (2D) culture driven toward osteogenesis via soluble osteoinductive factors (OF conditions). The total number of differentially expressed genes was smaller in 3D compared to OF conditions. A distinct set of genes was observed under these conditions that have been shown to control osteogenic differentiation via different pathways. Small RNA sequencing revealed a core set of miRNAs to be differentially expressed under these conditions, similar to those that have been previously implicated in osteogenesis. We also observed a distinct regulation of miRNAs in these samples that can modulate gene expression, suggesting supplementary gene regulatory networks operative under different stimuli. This study provides insights into studying gene regulatory networks for identifying critical nodes to target for enhanced cellular differentiation and reveal the differences in physical and biochemical cues to drive cell fates.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Lopamudra Das Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
8
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
9
|
Roblin NV, DeBari MK, Shefter SL, Iizuka E, Abbott RD. Development of a More Environmentally Friendly Silk Fibroin Scaffold for Soft Tissue Applications. J Funct Biomater 2023; 14:jfb14040230. [PMID: 37103320 PMCID: PMC10143335 DOI: 10.3390/jfb14040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their associated environmental concerns. Environmentally friendly alternatives have been proposed for each processing stage; however, an integrated green fibroin scaffold approach has not been characterized or used for soft tissue applications. Here, we show that the combination of sodium hydroxide (NaOH) as a substitute degumming agent with the popular "aqueous-based" alternative silk fibroin gelation method yields fibroin scaffolds with comparable properties to traditional Na2CO3-degummed aqueous-based scaffolds. The more environmentally friendly scaffolds were found to have comparable protein structure, morphology, compressive modulus, and degradation kinetics, with increased porosity and cell seeding density relative to traditional scaffolds. Human adipose-derived stem cells showed high viability after three days of culture while seeded in each scaffold type, with uniform cell attachment to pore walls. Adipocytes from human whole adipose tissue seeded into scaffolds were found to have similar levels of lipolytic and metabolic function between conditions, in addition to a healthy unilocular morphology. Results indicate that our more environmentally friendly methodology for silk scaffold production is a viable alternative and well suited to soft tissue applications.
Collapse
Affiliation(s)
- Nathan V Roblin
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Megan K DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sandra L Shefter
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Erica Iizuka
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rosalyn D Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Robledo F, González-Hodar L, Tapia P, Figueroa AM, Ezquer F, Cortés V. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther 2023; 14:70. [PMID: 37024989 PMCID: PMC10080976 DOI: 10.1186/s13287-023-03262-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Adipose tissue-derived stromal vascular fraction (SVF) harbors multipotent cells with potential therapeutic relevance. We developed a method to form adipose spheroids (AS) from the SVF with complex organoid structure and enhanced leptin secretion upon insulin stimulation. METHODS SVF was generated from the interscapular brown adipose tissue of newborn mice. Immunophenotype and stemness of cultured SVF were determined by flow cytometry and in vitro differentiation, respectively. Spheroids were generated in hanging drops and non-adherent plates and compared by morphometric methods. The adipogenic potential was compared between preadipocyte monolayers and spheroids. Extracellular leptin was quantified by immunoassay. Lipolysis was stimulated with isoprenaline and quantified by colorimetric methods. AS viability and ultrastructure were determined by confocal and transmission electron microscopy analyses. RESULTS Cultured SVF contained Sca1 + CD29 + CD44 + CD11b- CD45- CD90- cells with adipogenic and chondrogenic but no osteogenic potential. Culture on non-adherent plates yielded the highest quantity and biggest size of spheroids. Differentiation of AS for 15 days in a culture medium supplemented with insulin and rosiglitazone resulted in greater Pparg, Plin1, and Lep expression compared to differentiated adipocytes monolayers. AS were viable and maintained leptin secretion even in the absence of adipogenic stimulation. Glycerol release after isoprenaline stimulation was higher in AS compared to adipocytes in monolayers. AS were composed of outer layers of unilocular mature adipocytes and an inner structure composed of preadipocytes, immature adipocytes and an abundant loose extracellular matrix. CONCLUSION Newborn mice adipose SVF can be efficiently differentiated into leptin-secreting AS. Prolonged stimulation with insulin and rosiglitazone allows the formation of structurally complex adipose organoids able to respond to adrenergic lipolytic stimulation.
Collapse
Affiliation(s)
- Fermín Robledo
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lila González-Hodar
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Tapia
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Yuen Jr JSK, Saad MK, Xiang N, Barrick BM, DiCindio H, Li C, Zhang SW, Rittenberg M, Lew ET, Zhang KL, Leung G, Pietropinto JA, Kaplan DL. Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications. eLife 2023; 12:e82120. [PMID: 37014056 PMCID: PMC10072877 DOI: 10.7554/elife.82120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
We present a method of producing bulk cell-cultured fat tissue for food applications. Mass transport limitations (nutrients, oxygen, waste diffusion) of macroscale 3D tissue culture are circumvented by initially culturing murine or porcine adipocytes in 2D, after which bulk fat tissue is produced by mechanically harvesting and aggregating the lipid-filled adipocytes into 3D constructs using alginate or transglutaminase binders. The 3D fat tissues were visually similar to fat tissue harvested from animals, with matching textures based on uniaxial compression tests. The mechanical properties of cultured fat tissues were based on binder choice and concentration, and changes in the fatty acid compositions of cellular triacylglyceride and phospholipids were observed after lipid supplementation (soybean oil) during in vitro culture. This approach of aggregating individual adipocytes into a bulk 3D tissue provides a scalable and versatile strategy to produce cultured fat tissue for food-related applications, thereby addressing a key obstacle in cultivated meat production.
Collapse
Affiliation(s)
- John Se Kit Yuen Jr
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Ning Xiang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Chunmei Li
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | | | - Emily T Lew
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Kevin Lin Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Glenn Leung
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| |
Collapse
|
12
|
Sanchez MM, Tonmoy TI, Park BH, Morgan JT. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules 2022; 12:biom12121828. [PMID: 36551256 PMCID: PMC9775308 DOI: 10.3390/biom12121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an "adipose-vascular" HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.
Collapse
|
13
|
Abstract
Metabolic diseases, including obesity, diabetes mellitus and cardiovascular disease, are a major threat to health in the modern world, but efforts to understand the underlying mechanisms and develop rational treatments are limited by the lack of appropriate human model systems. Notably, advances in stem cell and organoid technology allow the generation of cellular models that replicate the histological, molecular and physiological properties of human organs. Combined with marked improvements in gene editing tools, human stem cells and organoids provide unprecedented systems for studying mechanisms of metabolic diseases. Here, we review progress made over the past decade in the generation and use of stem cell-derived metabolic cell types and organoids in metabolic disease research, especially obesity and liver diseases. In particular, we discuss the limitations of animal models and the advantages of stem cells and organoids, including their application to metabolic diseases. We also discuss mechanisms of drug action, understanding the efficacy and toxicity of existing therapies, screening for new treatments and pursuing personalized therapies. We highlight the potential of combining stem cell-derived organoids with gene editing and functional genomics to revolutionize the approach to finding treatments for metabolic diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Abstract
The organoid is a 3D cell architecture formed by self-organized tissues or cells in vitro with similar cell types, histological structures, and biological functions of the native organ. Depending on the unique organ structures and cell types, producing organoids requires individualized design and is still challenging. Organoids of some tissues, including adipose tissue, remain to generate to be more faithful to their original organ in structure and function. We previously established a new model of the origin of adipose cells originating from non-adipose fascia tissue. Here, we investigated superficial fascia fragments in 3D hydrogel and found they were able to transform into relatively large adipocyte aggregates containing mature unilocular adipocytes, which were virtually "fat organoids". Such fascia-originated fat organoids had a typical structure of adipose tissues and possessed the principal function of adipose cells in the synthesis, storage, hydrolysis of triglycerides and adipokines secretion. Producing fat organoids from superficial fascia can provide a new approach for adipocyte research and strongly evidences that both adipose tissues and cells originate from fascia. Our findings give insights into metabolic regulation by the crosstalk between different organs and tissues and provide new knowledge for investigating novel treatments for obesity, diabetes and other metabolic diseases.Abbreviations: 3D: three dimensional; ASC: adipose-derived stromal cells; C/EBP: CCAAT-enhancer-binding protein; EdU: 5-ethynyl-2-deoxyuridine; FABP4: fatty acid-binding protein 4; FAS: fatty acid synthase; FSCs: fascia-derived stromal cells; Plin1: perilipin-1; Plin2: perilipin-2; PPARγ: peroxisome proliferator-activated receptor γ; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China
| | - Yuanyuan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China
| | - Yingyue Dong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China
| | - Tongsheng Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, Xiamen, Fujian, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China,CONTACT Guoheng Xu Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing100191, China
| |
Collapse
|
15
|
Louis F, Sowa Y, Irie S, Higuchi Y, Kitano S, Mazda O, Matsusaki M. Injectable Prevascularized Mature Adipose Tissues (iPAT) to Achieve Long-Term Survival in Soft Tissue Regeneration. Adv Healthc Mater 2022; 11:e2201440. [PMID: 36103662 DOI: 10.1002/adhm.202201440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 09/01/2022] [Indexed: 01/28/2023]
Abstract
Soft tissue regeneration remains a challenge in reconstructive surgery. So far, both autologous fat implantations and artificial implants methods used in clinical applications lead to various disadvantages and limited lifespan. To overcome these limitations and improve the graft volume maintenance, reproducing a mature adipose tissue already including vasculature structure before implantation can be the solution. Therefore, injectable prevascularized adipose tissues (iPAT) are made from physiological collagen microfibers mixed with human mature adipocytes, adipose-derived stem cells, and human umbilical vein endothelial cells, embedded in fibrin gel. Following murine subcutaneous implantation, the iPAT show a higher cell survival (84% ± 6% viability) and volume maintenance after 3 months (up to twice heavier) when compared to non-prevascularized balls and liposuctioned fat implanted controls. This higher survival can be explained by the greater amount of blood vessels found (up to 1.6-fold increase), with balanced host anastomosis (51% ± 1% of human/mouse lumens), also involving infiltration by the lymphatic and neural vasculature networks. Furthermore, with the cryopreservation possibility enabling their later reinjection, the iPAT technology has the merit to allow noninvasive soft tissue regeneration for long-term outcomes.
Collapse
Affiliation(s)
- Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
16
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
17
|
Yuen JSK, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 2022; 280:121273. [PMID: 34933254 PMCID: PMC8725203 DOI: 10.1016/j.biomaterials.2021.121273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.
Collapse
Affiliation(s)
- John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - N Stephanie Kawecki
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia M Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sophia K Theodossiou
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
18
|
Louis F, Sowa Y, Kitano S, Matsusaki M. High-throughput drug screening models of mature adipose tissues which replicate the physiology of patients' Body Mass Index (BMI). Bioact Mater 2022; 7:227-241. [PMID: 34466729 PMCID: PMC8379425 DOI: 10.1016/j.bioactmat.2021.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Obesity is a complex and incompletely understood disease, but current drug screening strategies mostly rely on immature in vitro adipose models which cannot recapitulate it properly. To address this issue, we developed a statistically validated high-throughput screening model by seeding human mature adipocytes from patients, encapsulated in physiological collagen microfibers. These drop tissues ensured the maintenance of adipocyte viability and functionality for controlling glucose and fatty acids uptake, as well as glycerol release. As such, patients' BMI and insulin sensitivity displayed a strong inverse correlation: the healthy adipocytes were associated with the highest insulin-induced glucose uptake, while insulin resistance was confirmed in the underweight and severely obese adipocytes. Insulin sensitivity recovery was possible with two type 2 diabetes treatments, rosiglitazone and melatonin. Finally, the addition of blood vasculature to the model seemed to more accurately recapitulate the in vivo physiology, with particular respect to leptin secretion metabolism.
Collapse
Affiliation(s)
- Fiona Louis
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
| | - Yoshihiro Sowa
- Kyoto Prefectural University of Medicine, Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kamigyo-ku Kajii-cho, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
- Corresponding author. Kyoto, 602-8566, Kamigyo-ku Kajii-cho, Kawaramachi-Hirokoji, Japan.
| | - Shiro Kitano
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
- TOPPAN PRINTING CO., LTD., Technical Research Institute, 4-2-3 Takanodaiminami, Sugito-machi, Saitama, 345-8508, Japan
| | - Michiya Matsusaki
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
- Osaka University, Graduate School of Engineering, Department of Applied Chemistry, 2-1 Yamadaoka, Suita Osaka, 565-0871, Japan
- Corresponding author. Osaka, 565-0871, 2-1 Yamadaoka, Suita, Japan.
| |
Collapse
|
19
|
Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis. Acta Biomater 2021; 134:215-227. [PMID: 34303011 DOI: 10.1016/j.actbio.2021.07.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Severe injuries to skin including hypodermis require full-thickness skin replacement. Here, we bioengineered a tri-layered human skin substitute (TLSS) containing the epidermis, dermis, and hypodermis. The hypodermal layer was generated by differentiation of human adipose stem cells (ASC) in a collagen type I hydrogel and combined with a prevascularized dermis consisting of human dermal microvascular endothelial cells and fibroblasts, which arranged into a dense vascular network. Subsequently, keratinocytes were seeded on top to generate the epidermal layer of the TLSS. The differentiation of ASC into adipocytes was confirmed in vitro on the mRNA level by the presence of adiponectin, as well as by the expression of perilipin and FABP-4 proteins. Moreover, functional characteristics of the hypodermis in vitro and in vivo were evaluated by Oil Red O, BODIPY, and AdipoRed stainings visualizing intracellular lipid droplets. Further, we demonstrated that both undifferentiated ASC and mature adipocytes present in the hypodermis influenced the keratinocyte maturation and homeostasis in the skin substitutes after transplantation. In particular, an enhanced secretion of TGF-β1 by these cells affected the epidermal morphogenesis as assessed by the expression of key proteins involved in the epidermal differentiation including cytokeratin 1, 10, 19 and cornified envelope formation such as involucrin. Here, we propose a novel functional hypodermal-dermo-epidermal tri-layered skin substitute containing blood capillaries that efficiently promote regeneration of skin defects. STATEMENT OF SIGNIFICANCE: The main objective of this study was to develop and assess the usefulness of a tri-layered human prevascularized skin substitute (TLSS) containing an epidermis, dermis, and hypodermis. The bioengineered hypodermis was generated from human adipose mesenchymal stem cells (ASC) and combined with a prevascularized dermis and epidermis. The TLSS represents an exceptional model for studying the role of cell-cell and cell-matrix interactions in vitro and in vivo. In particular, we observed that enhanced secretion of TGF-β1 in the hypodermis exerted a profound impact on fibroblast and keratinocyte differentiation, as well as epidermal barrier formation and homeostasis. Therefore, improved understanding of the cell-cell interactions in such a physiological skin model is essential to gain insights into different aspects of wound healing.
Collapse
|
20
|
Pandiyan R, Sugumaran A, Samiappan S, Sengottaiyan P, Ayyaru S, Dharmaraj S, Ashokkumar V, Pugazhendhi A. Fabrication and characterization of in vitro 2D skin model – An attempt to establish scaffold for tissue engineering. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Engineering a 3D Vascularized Adipose Tissue Construct Using a Decellularized Lung Matrix. Biomimetics (Basel) 2021; 6:biomimetics6030052. [PMID: 34562876 PMCID: PMC8482279 DOI: 10.3390/biomimetics6030052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Critically sized defects in subcutaneous white adipose tissue result in extensive disfigurement and dysfunction and remain a reconstructive challenge for surgeons; as larger defect sizes are correlated with higher rates of complications and failure due to insufficient vascularization following implantation. Our study demonstrates, for the first time, a method to engineer perfusable, pre-vascularized, high-density adipose grafts that combine patient-derived adipose cells with a decellularized lung matrix (DLM). The lung is one of the most vascularized organs with high flow, low resistance, and a large blood-alveolar interface separated by a thin basement membrane. For our work, the large volume capacity within the alveolar compartment was repurposed for high-density adipose cell filling, while the acellular vascular bed provided efficient graft perfusion throughout. Both adipocytes and hASCs were successfully delivered and remained in the alveolar space even after weeks of culture. While adipose-derived cells maintained their morphology and functionality in both static and perfusion DLM cultures, perfusion culture offered enhanced outcomes over static culture. Furthermore, we demonstrate that endothelial cells seamlessly integrate into the acellular vascular tree of the DLM with adipocytes. These results support that the DLM is a unique platform for creating vascularized adipose tissue grafts for large defect filling.
Collapse
|
22
|
Abstract
Choosing the material with the best regeneration potential and properties closest to that of the extracellular matrix is one of the main challenges in tissue engineering and regenerative medicine. Natural polymers, such as collagen, elastin, and cellulose, are widely used for this purpose in tissue engineering. Cellulose derived from bacteria has excellent mechanical properties, high hydrophilicity, crystallinity, and a high degree of polymerization and, therefore, can be used as scaffold/membrane for tissue engineering. In the current study, we reviewed the latest trends in the application of bacterial cellulose (BC) polymers as a scaffold in different types of tissue, including bone, vascular, skin, and cartilage. Also, we mentioned the biological and mechanical advantages and disadvantages of BC polymers. Given the data presented in this study, BC polymer could be suggested as a favorable natural polymer in the design of tissue scaffolds. Implementing novel composites that combine this polymer with other materials through modern or rapid prototyping methods can open up a great prospect in the future of tissue engineering and regenerative medicine.
Collapse
|
23
|
Nadine S, Correia CR, Mano JF. An Immunomodulatory Miniaturized 3D Screening Platform Using Liquefied Capsules. Adv Healthc Mater 2021; 10:e2001993. [PMID: 33506631 DOI: 10.1002/adhm.202001993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Indexed: 12/11/2022]
Abstract
A critical determinant of successful clinical outcomes is the host's response to the biomaterial. Therefore, the prediction of the immunomodulatory bioperformance of biomedical devices following implantation is of utmost importance. Herein, liquefied capsules are proposed as immunomodulatory miniaturized 3D platforms for the high-content combinatorial screening of different polymers that could be used generically in scaffolds. Additionally, the confined and liquefied core of capsules affords a cell-mediated 3D assembly with bioinstructive microplatforms, allowing to study the potential synergistic effect that cells in tissue engineering therapies have on the immunological environment before implantation. As a proof-of-concept, three different polyelectrolytes, ranging in charge density and source, are used. Poly(L-lysine)-, alginate-, and chitosan-ending capsules with or without encapsulated mesenchymal stem/stromal cells (MSCs) are placed on top of a 2D culture of macrophages. Results show that chitosan-ending capsules, as well as the presence of MSCs, favor the balance of macrophage polarization toward a more regenerative profile, through the up-regulation of anti-inflammatory markers, and the release of pro-regenerative cytokines. Overall, the developed system enables the study of the immunomodulatory bioperformance of several polymers in a cost-effective and scalable fashion, while the paracrine signaling between encapsulated cells and the immunological environment can be simultaneously evaluated.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Clara R. Correia
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
24
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
25
|
Sarigil O, Anil-Inevi M, Firatligil-Yildirir B, Unal YC, Yalcin-Ozuysal O, Mese G, Tekin HC, Ozcivici E. Scaffold-free biofabrication of adipocyte structures with magnetic levitation. Biotechnol Bioeng 2020; 118:1127-1140. [PMID: 33205833 DOI: 10.1002/bit.27631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.
Collapse
Affiliation(s)
- Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Muge Anil-Inevi
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | - Yagmur Ceren Unal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
26
|
Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JCM, Abou-Kheir W, Al-Sayegh M. Modeling Adipogenesis: Current and Future Perspective. Cells 2020; 9:2326. [PMID: 33092038 PMCID: PMC7590203 DOI: 10.3390/cells9102326] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells' differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Reem Daouk
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Joseph Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, 2460 Abu Dhabi, UAE
| |
Collapse
|
27
|
Optimization of Co-Culture Conditions for a Human Vascularized Adipose Tissue Model. Bioengineering (Basel) 2020; 7:bioengineering7030114. [PMID: 32957541 PMCID: PMC7552791 DOI: 10.3390/bioengineering7030114] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
In vitro adipose tissue models can be used to provide insight into fundamental aspects of adipose physiology. These systems may serve as replacements for animal models, which are often poor predictors of obesity and metabolic diseases in humans. Adipose tissue consists of a rich vasculature that is essential to its function. However, the study of endothelial cell–adipocyte interactions has been challenging due to differences in culture conditions required for the survival and function of each cell type. To address this issue, we performed an extensive evaluation of the cell culture media composition to identify the conditions optimal for the co-culture of endothelial cells and adipocytes. The effects of individual media factors on cell survival, proliferation, and differentiation were systematically explored. Several media factors were determined to disrupt the co-culture system. Optimized culture conditions were identified and used to generate a vascularized human adipose microtissue. An interconnected vascular network was established within an adipose micro-tissue, and the networks were anastomosed with perfused channels to form a functional network. In conclusion, media conditions were identified that enabled endothelial cell–adipocyte co-culture and were used to support the formation of a vascularized adipose tissue within a microfluidic device.
Collapse
|
28
|
TGF-β is insufficient to induce adipocyte state loss without concurrent PPARγ downregulation. Sci Rep 2020; 10:14084. [PMID: 32826933 PMCID: PMC7442643 DOI: 10.1038/s41598-020-71100-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/05/2022] Open
Abstract
Cell plasticity, the ability of differentiated cells to convert into other cell types, underlies the pathogenesis of many diseases including the transdifferentiation of adipocytes (fat cells) into myofibroblasts in the pathogenesis of dermal fibrosis. Loss of adipocyte identity is an early step in different types of adipocyte plasticity. In this study, we determine the dynamics of adipocyte state loss in response to the profibrotic cytokine TGF-β. We use two complementary approaches, lineage tracing and live fluorescent microscopy, which both allow for robust quantitative tracking of adipocyte identity loss at the single-cell level. We find that the intracellular TGF-β signaling in adipocytes is inhibited by the transcriptional factor PPARγ, specifically by its ubiquitously expressed isoform PPARγ1. However, TGF-β can lead to adipocyte state loss when it is present simultaneously with another stimulus. Our findings establish that an integration of stimuli occurring in a specific order is pivotal for adipocyte state loss which underlies adipocyte plasticity. Our results also suggest the possibility of a more general switch-like mechanism between adipogenic and profibrotic molecular states.
Collapse
|
29
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
30
|
Human Adipose Derived Cells in Two- and Three-Dimensional Cultures: Functional Validation of an In Vitro Fat Construct. Stem Cells Int 2020; 2020:4242130. [PMID: 32587620 PMCID: PMC7303735 DOI: 10.1155/2020/4242130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity, defined as a body mass index of 30 kg/m2 or above, has increased considerably in incidence and frequency within the United States and globally. Associated comorbidities including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, and nonalcoholic fatty liver disease have led to a focus on the mechanisms promoting the prevention and treatment of obesity. Commonly utilized in vitro models employ human or mouse preadipocyte cell lines in a 2-dimensional (2D) format. Due to the structural, biochemical, and biological limitations of these models, increased attention has been placed on "organ on a chip" technologies for a 3-dimensional (3D) culture. Herein, we describe a method employing cryopreserved primary human stromal vascular fraction (SVF) cells and a human blood product-derived biological scaffold to create a 3D adipose depot in vitro. The "fat-on-chip" 3D cultures have been validated relative to 2D cultures based on proliferation, flow cytometry, adipogenic differentiation, confocal microscopy/immunofluorescence, and functional assays (adipokine secretion, glucose uptake, and lipolysis). Thus, the in vitro culture system demonstrates the critical characteristics required for a humanized 3D white adipose tissue (WAT) model.
Collapse
|
31
|
Development of novel human in vitro vascularized adipose tissue model with functional macrophages. Cytotechnology 2020; 72:665-683. [PMID: 32524217 PMCID: PMC7547925 DOI: 10.1007/s10616-020-00407-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/04/2020] [Indexed: 01/16/2023] Open
Abstract
Inflammation has been proven significant factor in development of type 2 diabetes. So far, most of the adipose tissue related research has been performed in animals, mainly rodent models. The relevance of translation of animal results to humans is questionable. However, in vitro model with relevant human cell source, such as human adipose tissue stromal cells (hASC), can be developed and should be utilized for human adipose tissue research. We developed in vitro models of human adipose tissue utilizing hASC, endothelial cells and monocytes/macrophages. By isolating endothelial cells and macrophages from same adipose tissue as hASC, we were able to provide method for constructing personalized models of adipose tissue. With these models, we studied the effect of macrophages on adipogenesis and protein secretion, with and without vasculature. The models were analyzed for immunocytochemical markers, cell number, triglyceride accumulation and protein secretion. We found that lipid accumulation was greater in adipocytes in the presence of macrophages. Interferon gamma increased this difference between adipocyte culture and Adipocyte-Macrophage co-culture. Protein secretion was affected more by macrophages when vasculature was not present compared to the mild effect when vasculature was present. The vascularized adipose model with macrophages is valuable tool for human adipose tissue research, especially for the personalized medicine approaches; for choosing the right treatments and for studying rare medical conditions.
Collapse
|
32
|
Benmeridja L, De Moor L, De Maere E, Vanlauwe F, Ryx M, Tytgat L, Vercruysse C, Dubruel P, Van Vlierberghe S, Blondeel P, Declercq H. High‐throughput fabrication of vascularized adipose microtissues for 3D bioprinting. J Tissue Eng Regen Med 2020; 14:840-854. [DOI: 10.1002/term.3051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Lara Benmeridja
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Ghent Belgium
- Department of Plastic and Reconstructive Surgery, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Hospital Ghent Belgium
| | - Lise De Moor
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Ghent Belgium
| | - Elisabeth De Maere
- Department of Plastic and Reconstructive Surgery, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Hospital Ghent Belgium
| | - Florian Vanlauwe
- Department of Plastic and Reconstructive Surgery, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Hospital Ghent Belgium
| | - Michelle Ryx
- Department of Plastic and Reconstructive Surgery, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Hospital Ghent Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of SciencesGhent University Ghent Belgium
- Brussels Photonics (B‐PHOT), Department of Applied Physics and PhotonicsVrije Universiteit Brussel and Flanders Make Brussels Belgium
| | - Chris Vercruysse
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Ghent Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of SciencesGhent University Ghent Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of SciencesGhent University Ghent Belgium
- Brussels Photonics (B‐PHOT), Department of Applied Physics and PhotonicsVrije Universiteit Brussel and Flanders Make Brussels Belgium
| | - Phillip Blondeel
- Department of Plastic and Reconstructive Surgery, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Hospital Ghent Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health SciencesGhent University Ghent Belgium
| |
Collapse
|
33
|
Conci C, Bennati L, Bregoli C, Buccino F, Danielli F, Gallan M, Gjini E, Raimondi MT. Tissue engineering and regenerative medicine strategies for the female breast. J Tissue Eng Regen Med 2019; 14:369-387. [PMID: 31825164 PMCID: PMC7065113 DOI: 10.1002/term.2999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
Abstract
The complexity of mammary tissue and the variety of cells involved make tissue regeneration an ambitious goal. This review, supported by both detailed macro and micro anatomy, illustrates the potential of regenerative medicine in terms of mammary gland reconstruction to restore breast physiology and morphology, damaged by mastectomy. Despite the widespread use of conventional therapies, many critical issues have been solved using the potential of stem cells resident in adipose tissue, leading to commercial products. in vitro research has reported that adipose stem cells are the principal cellular source for reconstructing adipose tissue, ductal epithelium, and nipple structures. In addition to simple cell injection, construct made by cells seeded on a suitable biodegradable scaffold is a viable alternative from a long‐term perspective. Preclinical studies on mice and clinical studies, most of which have reached Phase II, are essential in the commercialization of cellular therapy products. Recent studies have revealed that the enrichment of fat grafting with stromal vascular fraction cells is a viable alternative to breast reconstruction. Although in the future, organ‐on‐a‐chip can be envisioned, for the moment researchers are still focusing on therapies that are a long way from regenerating the whole organ, but which nevertheless prevent complications, such as relapse and loss in terms of morphology.
Collapse
Affiliation(s)
- Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Lorenzo Bennati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Chiara Bregoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Federica Buccino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesca Danielli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Michela Gallan
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Ereza Gjini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
34
|
iTRAQ-Based Quantitative Proteomic Comparison of 2D and 3D Adipocyte Cell Models Co-cultured with Macrophages Using Online 2D-nanoLC-ESI-MS/MS. Sci Rep 2019; 9:16746. [PMID: 31727937 PMCID: PMC6856061 DOI: 10.1038/s41598-019-53196-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
The demand for novel three-dimensional (3D) cell culture models of adipose tissue has been increasing, and proteomic investigations are important for determining the underlying causes of obesity, type II diabetes, and metabolic disorders. In this study, we performed global quantitative proteomic profiling of three 3D-cultured 3T3-L1 cells (preadipocytes, adipocytes and co-cultured adipocytes with macrophages) and their 2D-cultured counterparts using 2D-nanoLC-ESI-MS/MS with iTRAQ labelling. A total of 2,885 shared proteins from six types of adipose cells were identified and quantified in four replicates. Among them, 48 proteins involved in carbohydrate metabolism (e.g., PDHα, MDH1/2, FH) and the mitochondrial fatty acid beta oxidation pathway (e.g., VLCAD, ACADM, ECHDC1, ALDH6A1) were relatively up-regulated in the 3D co-culture model compared to those in 2D and 3D mono-cultured cells. Conversely, 12 proteins implicated in cellular component organisation (e.g., ANXA1, ANXA2) and the cell cycle (e.g., MCM family proteins) were down-regulated. These quantitative assessments showed that the 3D co-culture system of adipocytes and macrophages led to the development of insulin resistance, thereby providing a promising in vitro obesity model that is more equivalent to the in vivo conditions with respect to the mechanisms underpinning metabolic syndromes and the effect of new medical treatments for metabolic disorders.
Collapse
|
35
|
Nadine S, Patrício SG, Correia CR, Mano JF. Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication 2019; 12:015005. [DOI: 10.1088/1758-5090/ab3e16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Navarro J, Swayambunathan J, Janes ME, Santoro M, Mikos AG, Fisher JP. Dual-chambered membrane bioreactor for coculture of stratified cell populations. Biotechnol Bioeng 2019; 116:3253-3268. [PMID: 31502660 DOI: 10.1002/bit.27164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
We have developed a dual-chambered bioreactor (DCB) that incorporates a membrane to study stratified 3D cell populations for skin tissue engineering. The DCB provides adjacent flow lines within a common chamber; the inclusion of the membrane regulates flow layering or mixing, which can be exploited to produce layers or gradients of cell populations in the scaffolds. Computational modeling and experimental assays were used to study the transport phenomena within the bioreactor. Molecular transport across the membrane was defined by a balance of convection and diffusion; the symmetry of the system was proven by its bulk convection stability, while the movement of molecules from one flow line to the other is governed by coupled convection-diffusion. This balance allowed the perfusion of two different fluids, with the membrane defining the mixing degree between the two. The bioreactor sustained two adjacent cell populations for 28 days, and was used to induce indirect adipogenic differentiation of mesenchymal stem cells due to molecular cross-talk between the populations. We successfully developed a platform that can study the dermis-hypodermis complex to address limitations in skin tissue engineering. Furthermore, the DCB can be used for other multilayered tissues or the study of communication pathways between cell populations.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Jay Swayambunathan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Morgan Elizabeth Janes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Marco Santoro
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Antonios G Mikos
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Department of Bioengineering, Rice University, Houston, Texas
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| |
Collapse
|
37
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Booij TH, Price LS, Danen EHJ. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:615-627. [PMID: 30817892 PMCID: PMC6589915 DOI: 10.1177/2472555219830087] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
The introduction of more relevant cell models in early preclinical drug discovery, combined with high-content imaging and automated analysis, is expected to increase the quality of compounds progressing to preclinical stages in the drug development pipeline. In this review we discuss the current switch to more relevant 3D cell culture models and associated challenges for high-throughput screening and high-content analysis. We propose that overcoming these challenges will enable front-loading the drug discovery pipeline with better biology, extracting the most from that biology, and, in general, improving translation between in vitro and in vivo models. This is expected to reduce the proportion of compounds that fail in vivo testing due to a lack of efficacy or to toxicity.
Collapse
Affiliation(s)
- Tijmen H. Booij
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- NEXUS Personalized Health Technologies, ETH Zürich, Switzerland
| | - Leo S. Price
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- OcellO B.V., Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
39
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Muller S, Ader I, Creff J, Leménager H, Achard P, Casteilla L, Sensebé L, Carrière A, Deschaseaux F. Human adipose stromal-vascular fraction self-organizes to form vascularized adipose tissue in 3D cultures. Sci Rep 2019; 9:7250. [PMID: 31076601 PMCID: PMC6510792 DOI: 10.1038/s41598-019-43624-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
Native human subcutaneous adipose tissue (AT) is well organized into unilocular adipocytes interspersed within dense vascularization. This structure is completely lost under standard culture conditions and may impair the comparison with native tissue. Here, we developed a 3-D model of human white AT reminiscent of the cellular architecture found in vivo. Starting with adipose progenitors derived from the stromal-vascular fraction of human subcutaneous white AT, we generated spheroids in which endogenous endothelial cells self-assembled to form highly organized endothelial networks among stromal cells. Using an optimized adipogenic differentiation medium to preserve endothelial cells, we obtained densely vascularized spheroids containing mature adipocytes with unilocular lipid vacuoles. In vivo study showed that when differentiated spheroids were transplanted in immune-deficient mice, endothelial cells within the spheroids connected to the recipient circulatory system, forming chimeric vessels. In addition, adipocytes of human origin were still observed in transplanted mice. We therefore have developed an in vitro model of vascularized human AT-like organoids that constitute an excellent tool and model for any study of human AT.
Collapse
Affiliation(s)
- Sandra Muller
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Isabelle Ader
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Justine Creff
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France.,LBCMCP, Centre de Biologie Intégrative (CBI) CNRS, University of Toulouse, Toulouse, France.,LAAS-CNRS University of Toulouse CNRS, Toulouse, France
| | - Hélène Leménager
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Pauline Achard
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Louis Casteilla
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Luc Sensebé
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Audrey Carrière
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France.
| |
Collapse
|
41
|
Contessi Negrini N, Bonnetier M, Giatsidis G, Orgill DP, Farè S, Marelli B. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater 2019; 87:61-75. [PMID: 30654214 DOI: 10.1016/j.actbio.2019.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Abstract
When adipose tissue (AT) is impaired by trauma or disease, AT engineering could provide a shelf-ready structural and functional restoration as alternative to current clinical treatments, which mainly aim at aesthetic replacement. Yet, the lack of an efficient vascular network within the scaffolds represents a major limitation to their translation application in patients. Here, we propose the use of microstructured crosslinked gelatin hydrogels with an embedded prevascular channel as scaffolding materials for AT engineering. The scaffolds are fabricated using - simultaneously - alginate-based microbeads and 3D printed filaments as sacrificial material encapsulated in gelatin at the point of material fabrication and removed post-crosslinking. This method yields the formation of microstructures that resemble the micro-architecture of physiological human fat tissue and of microvessels that can facilitate vascularization through anastomosis with patients' own blood vessels. The cytocompatible method used to prepare the gelatin scaffolds showed structural stability over time while allowing for cell infiltration and protease-based remodeling/degradation. Scaffolds' mechanical properties were also designed to mimic the one of natural breast adipose tissue, a key parameter for AT regeneration. Scaffold's embedded channel (∅ = 300-400 µm) allowed for cell infiltration and enabled blood flow in vitro when an anastomosis with a rat blood artery was performed using surgical glue. In vitro tests with human mesenchymal stem cells (hMSC) showed colonization of the porous structure of the gelatin hydrogels, differentiation into adipocytes and accumulation of lipid droplets, as shown by Oil Red O staining. STATEMENT OF SIGNIFICANCE: The potential clinical use of scaffolds for adipose tissue (AT) regeneration is currently limited by an unmet simultaneous achievement of adequate structural/morphological properties together with a promoted scaffold vascularization. Sacrificial materials, currently used either to obtain a tissue-mimicking structure or hollow channels to promote scaffold' vascularization, are powerful versatile tools for the fabrication of scaffolds with desired features. However, an integrated approach by means of sacrificial templates aiming at simultaneously achieving an adequate AT-mimicking structure and hollow channels for vascularization is missing. Here, we prove the suitability of crosslinked gelatin scaffolds obtained by using sacrificial alginate microbeads and 3D printed strands to achieve proper features and hollow channels useful for scaffolds vascularization.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States; Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Mathilde Bonnetier
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States.
| |
Collapse
|
42
|
Yu JR, Navarro J, Coburn JC, Mahadik B, Molnar J, Holmes JH, Nam AJ, Fisher JP. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Adv Healthc Mater 2019; 8:e1801471. [PMID: 30707508 PMCID: PMC10290827 DOI: 10.1002/adhm.201801471] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022]
Abstract
The skin is responsible for several important physiological functions and has enormous clinical significance in wound healing. Tissue engineered substitutes may be used in patients suffering from skin injuries to support regeneration of the epidermis, dermis, or both. Skin substitutes are also gaining traction in the cosmetics and pharmaceutical industries as alternatives to animal models for product testing. Recent biomedical advances, ranging from cellular-level therapies such as mesenchymal stem cell or growth factor delivery, to large-scale biofabrication techniques including 3D printing, have enabled the implementation of unique strategies and novel biomaterials to recapitulate the biological, architectural, and functional complexity of native skin. This progress report highlights some of the latest approaches to skin regeneration and biofabrication using tissue engineering techniques. Current challenges in fabricating multilayered skin are addressed, and perspectives on efforts and strategies to meet those limitations are provided. Commercially available skin substitute technologies are also examined, and strategies to recapitulate native physiology, the role of regulatory agencies in supporting translation, as well as current clinical needs, are reviewed. By considering each of these perspectives while moving from bench to bedside, tissue engineering may be leveraged to create improved skin substitutes for both in vitro testing and clinical applications.
Collapse
Affiliation(s)
- Justine R Yu
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| | - James C Coburn
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- Division of Biomedical Physics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Joseph Molnar
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - James H Holmes
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Arthur J Nam
- Division of Plastic, Reconstructive and Maxillofacial Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742, USA
- NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, MD, 20742, USA
| |
Collapse
|
43
|
Galateanu B, Hudita A, Zaharia C, Bunea MC, Vasile E, Buga MR, Costache M. Silk-Based Hydrogels for Biomedical Applications. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Navarro J, Swayambunathan J, Lerman M, Santoro M, Fisher JP. Development of keratin-based membranes for potential use in skin repair. Acta Biomater 2019; 83:177-188. [PMID: 30342286 DOI: 10.1016/j.actbio.2018.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
The layers in skin determine its protective and hemostasis functions. This layered microstructure cannot be naturally regenerated after severe burns; we aim to reconstruct it using guided tissue regeneration (GTR). In GTR, a membrane is used to regulate tissue growth by stopping fast-proliferating cells and allowing slower cells to migrate and reconstruct specialized microstructures. Here, we proposed the use of keratin membranes crosslinked via dityrosine bonding. Variables from the crosslinking process were grouped within an energy density (ED) parameter to manufacture and evaluate the membranes. Sol fraction, spectrographs, and thermograms were used to quantify the non-linear relation between ED and the resulting crosslinking degree (CD). Mechanical and swelling properties increased until an ED threshold was reached; at higher ED, the CD and properties of the membranes remained invariable indicating that all possible dityrosine bonds were formed. Transport assays showed that the membranes allow molecular diffusion; low ED membranes retain solutes within their structure while the high ED samples allow higher transport rates indicating that uncrosslinked proteins can be responsible of reducing transport. This was confirmed with lower transport of adipogenic growth factors to stem cells when using low ED membranes; high ED samples resulted in increased production of intracellular lipids. Overall, we can engineer keratin membranes with specific CD, a valuable tool to tune microstructural and transport properties.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Jay Swayambunathan
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Max Lerman
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Marco Santoro
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| |
Collapse
|
45
|
Doornaert M, Colle J, De Maere E, Declercq H, Blondeel P. Autologous fat grafting: Latest insights. Ann Med Surg (Lond) 2018; 37:47-53. [PMID: 30622707 PMCID: PMC6318549 DOI: 10.1016/j.amsu.2018.10.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022] Open
Abstract
A recent rise in the use of autologous fat transfer for soft tissue augmentation has paralleled the increasing popularity of liposuction body contouring. This creates a readily available and inexpensive product for lipografting, which is the application of lipoaspirated material. Consistent scientific proof about the long-term viability of the transferred fat is not available. Clinically, there is a reabsorption rate which has been reported to range from 20 to 90%. Results can be unpredictable with overcorrection and regular need for additional interventions. In this review, adipogenesis physiology and the adipogenic cascade from adipose-derived stem cells to adult adipocytes is extensively described to determine various procedures involved in the fat grafting technique. Variables in structure and physiology, adipose tissue harvesting- and processing techniques, and the preservation of fat grafts are taken into account to collect reproducible scientific data to establish standard in vitro and in vivo models for experimental fat grafting. Adequate histological staining for fat tissue, immunohistochemistry and viability assays should be universally used in experiments to be able to produce comparative results. By analysis of the applied methods and comparison to similar experiments, a conclusion concerning the ideal technique to improve clinical outcome is proposed. Adipogenic physiology is described to determine various procedures involved in the fat grafting technique. Clinical studies on fat grafting have confirmed an unpredictable result. After analysis of the literature and despite attempts to eliminate confounding factors, on every step of the fat transfer technique a number of studies with conflicting results exist. Adequate histological staining for fat tissue, immunohistochemistry and viability assays should be universally used in experiments to be able to produce comparative results.
Collapse
|
46
|
Proulx M, Mayrand D, Vincent C, Boisvert A, Aubin K, Trottier V, Fradette J. Short-term post-implantation dynamics of in vitro engineered human microvascularized adipose tissues. ACTA ACUST UNITED AC 2018; 13:065013. [PMID: 30277888 DOI: 10.1088/1748-605x/aadff7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Engineered adipose tissues are developed for their use as substitutes for tissue replacement in reconstructive surgery. To ensure a timely perfusion of the grafted substitutes, different strategies can be used such as the incorporation of an endothelial component. In this study, we engineered human adipose tissue substitutes comprising of functional adipocytes as well as a natural extracellular matrix using the self-assembly approach, without the use of exogenous scaffolding elements. Human microvascular endothelial cells (hMVECs) were incorporated during tissue production in vitro and we hypothesized that their presence would favor the early connection with the host vascular network translating into functional enhancement after implantation into nude mice in comparison to the substitutes that were not enriched in hMVECs. In vitro, no significant differences were observed between the substitutes in terms of histological aspects. After implantation, both groups presented numerous adipocytes and an abundant matrix in addition to the presence of host capillaries within the grafts. The substitutes thickness and volume were not significantly different between groups over the short-term time course of 14 days (d). For the microvascularized adipose tissues, human CD31 staining revealed a human capillary network connecting with the host microvasculature as early as 3 d after grafting. The detection of murine red blood cells within human CD31+ structures confirmed the functionality of the human capillary network. By analyzing the extent of the global vascularization achieved, a tendency towards increased total capillary network surface and volume was revealed for prevascularized tissues over 14 d. Therefore, applying this strategy on thicker reconstructed adipose tissues with rate-limiting oxygen diffusion might procure added benefits and prove useful to provide voluminous substitutes for patients suffering from adipose tissue loss or defects.
Collapse
Affiliation(s)
- Maryse Proulx
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, CMDGT/LOEX, Aile-R, Hôpital Enfant-Jésus, 1401, 18e Rue, Québec, Qc, G1J 1Z4, Canada. Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, 1401, 18e Rue, Québec, Qc, G1J 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Dong J, Yu M, Zhang Y, Yin Y, Tian W. Recent developments and clinical potential on decellularized adipose tissue. J Biomed Mater Res A 2018; 106:2563-2574. [PMID: 29664222 DOI: 10.1002/jbm.a.36435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jia Dong
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Mei Yu
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Yan Zhang
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Yin Yin
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Weidong Tian
- State Key Laboratory of Oral Disease; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu China
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology, Sichuan University; Chengdu China
- Department of Oral and Maxillofacial Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| |
Collapse
|
48
|
Huttala O, Palmroth M, Hemminki P, Toimela T, Heinonen T, Ylikomi T, Sarkanen JR. Development of Versatile HumanIn VitroVascularized Adipose Tissue Model with Serum-Free Angiogenesis and Natural Adipogenesis Induction. Basic Clin Pharmacol Toxicol 2018; 123 Suppl 5:62-71. [DOI: 10.1111/bcpt.12987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Outi Huttala
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Maaria Palmroth
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Pauliina Hemminki
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Tarja Toimela
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Tuula Heinonen
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
| | - Timo Ylikomi
- Faculty of Medicine and Life Sciences; FICAM; University of Tampere; Tampere Finland
- Cell Biology; Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Jertta-Riina Sarkanen
- Cell Biology; Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| |
Collapse
|
49
|
Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:ijms19040936. [PMID: 29561796 PMCID: PMC5979503 DOI: 10.3390/ijms19040936] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host–microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.
Collapse
|
50
|
Mayrand D, Fradette J. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes. Methods Mol Biol 2018; 1773:93-105. [PMID: 29687383 DOI: 10.1007/978-1-4939-7799-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.
Collapse
Affiliation(s)
- Dominique Mayrand
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, CRCHU de Québec-Université Laval, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, CRCHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- CMDGT/LOEX, Aile-R, Pavilion Hôpital Enfant-Jésus, CRCHU de Québec-Université Laval, Québec, QC, Canada.
| |
Collapse
|