1
|
Sakai T, Kumagai K. Molecular dissection of tendon development and healing: Insights into tenogenic phenotypes and functions. J Biol Chem 2025; 301:108353. [PMID: 40015639 PMCID: PMC11986518 DOI: 10.1016/j.jbc.2025.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Tendon is a dense connective tissue that transmits contraction forces from skeletal muscles to bones. Adult tendon injury is a significant clinical problem because it occurs frequently with a high recurrence rate, and damaged tendon is rarely restored to full function. The main barrier to improving recovery outcomes is our incomplete understanding of the molecular mechanisms underlying the biological alterations following tendon injury in vivo. In this review, we specifically highlight the cellular dynamism of fibrotic tendon wound healing and the roles of mechanical loading. In particular, we document how tendon stem/progenitor cells expressing the tendon-specific transcription factor Scleraxis (Scx) play a role in fibrotic tendon wound healing, and describe novel experimental systems such as lineage cell tracing and single-cell analysis, both of which can shed light on tendon cell behavior and fate decisions during the tendon wound healing process.
Collapse
Affiliation(s)
- Takao Sakai
- Department of Diagnostic Pathology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | - Ken Kumagai
- Department of Orthopaedic Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
2
|
Ling SKK, Liang Z, Lui PPY. High-fat diet-induced obesity exacerbated collagenase-induced tendon injury with upregulation of interleukin-1beta and matrix metalloproteinase-1. Connect Tissue Res 2024; 65:447-457. [PMID: 39364694 DOI: 10.1080/03008207.2024.2409751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
AIMS Obesity increases tendinopathy's risk, but its mechanisms remain unclear. This study examined the effect of high-fat diet (HFD)-induced obesity on the outcomes and inflammation of collagenase-induced (CI) tendon injury. METHODS Mice were fed with standard chow (SC) or HFD for 12 weeks. Bacterial collagenase I or saline was injected over the patellar tendons of each mouse. At weeks 2 and 8 post-injection, the patellar tendons were harvested for histology, immunohistochemical staining, and gait analysis. The difference (Δ) of limb-idleness index (LII) at the time of post-injury and pre-injury states was calculated. Biomechanical test of tendons was also performed at week 8 post-injection. RESULTS HFD aggravated CI tendon injury with an increase in vascularity and cellularity compared to SC treatment. The histopathological score (week 2: p = 0.025; week 8: p = 0.013) and ΔLII (week 2: p = 0.012; week 8: p = 0.005) were significantly higher in the HFD group compared to those in the SC group after CI tendon injury. Stiffness (saline: p = 0.003; CI: p = 0.010), ultimate stress (saline: p < 0.001; CI: p = 0.006), and Young's modulus (saline: p = 0.017; CI: p = 0.007) were significantly lower in the HFD group compared to the SC group at week 8 after saline or collagenase injection. HFD induced higher expression of IL-1β (week 2: p = 0.010; week 8: p = 0.025) and MMP-1 (week 2: p = 0.010; week 8: p = 0.004) compared to SC treatment after CI tendon injury at both time points. CONCLUSIONS HFD-induced obesity exacerbated histopathological, functional, and biomechanical changes in the CI tendon injury model, which was associated with an upregulation of IL-1β and MMP-1.
Collapse
Affiliation(s)
- Samuel Ka-Kin Ling
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zuru Liang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Ltd, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
3
|
He Y, Lu S, Chen W, Yang L, Li F, Zhou P, Chen Z, Wan R, Zhang Z, Sun Y, Lin J, Chen Y, Luo Z, Xu C, Chen S. Exosomes derived from tendon stem/progenitor cells enhance tendon-bone interface healing after rotator cuff repair in a rat model. Bioact Mater 2024; 40:484-502. [PMID: 39040569 PMCID: PMC11260958 DOI: 10.1016/j.bioactmat.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The rate of retear after surgical repair remains high. Mesenchymal stem cells (MSCs) have been extensively employed in regenerative medicine for several decades. However, safety and ethical concerns constrain their clinical application. Tendon Stem/Progenitor Cells (TSPCs)-derived exosomes have emerged as promising cell-free therapeutic agents. Therefore, urgent studies are needed to investigate whether TSPC-Exos could enhance tendon-bone healing and elucidate the underlying mechanisms. In this study, TSPC-Exos were found to promote the proliferation, migration, and expression of fibrogenesis markers in BMSCs. Furthermore, TSPC-Exos demonstrated an ability to suppress the polarization of M1 macrophages while promoting M2 macrophage polarization. In a rat model of rotator cuff repair, TSPC-Exos modulated inflammation and improved the histological structure of the tendon-bone interface, the biomechanical properties of the repaired tendon, and the function of the joint. Mechanistically, TSPC-Exos exhibited high expression of miR-21a-5p, which regulated the expression of PDCD4. The PDCD4/AKT/mTOR axis was implicated in the therapeutic effects of TSPC-Exos on proliferation, migration, and fibrogenesis in BMSCs. This study introduces a novel approach utilizing TSPC-Exos therapy as a promising strategy for cell-free therapies, potentially benefiting patients with rotator cuff tear in the future.
Collapse
Affiliation(s)
- Yanwei He
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Shihao Lu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wenbo Chen
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Li Yang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Fangqi Li
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Peng Zhou
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, 52074, Germany
| | - Zan Chen
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Zifan Zhang
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Chen Xu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| |
Collapse
|
4
|
Cai Z, Xin Z, Wang H, Wang C, Liu X. Extracellular Vesicle-Contained Thrombospondin 1 Retards Age-Related Degenerative Tendinopathy by Rejuvenating Tendon Stem/Progenitor Cell Senescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400598. [PMID: 38778750 DOI: 10.1002/smll.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Advanced age is a major risk factor for age-related degenerative tendinopathy. During aging, tendon stem/progenitor cell (TSPC) function declines owing to the transition from a normal quiescent state to a senescent state. Extracellular vesicles (EVs) from young stem cells are reported to possess anti-aging functions. However, it remains unclear whether EVs from young TSPCs (TSPC-EVs) can rejuvenate senescent TSPCs to delay age-related degeneration. Here, this study finds that TSPC-EVs can mitigate the aging phenotypes of senescent TSPCs and maintain their tenogenic capacity. In vitro studies reveal that TSPC-EVs can reinstall autophagy in senescent TSPCs to alleviate cellular senescence, and that the re-establishment of autophagy is mediated by the PI3K/AKT pathway. Mechanistically, this study finds that thrombospondin 1, a negative regulator of the PI3K/AKT pathway, is enriched in TSPC-EVs and can be transported to senescent TSPCs. Moreover, in vivo studies show that the local delivery of TSPC-EVs can rejuvenate senescent TSPCs and promote their tenogenic differentiation, thereby rescuing tendon regeneration in aged rats. Taken together, TSPC-EVs as a novel cell-free approach have promising therapeutic potential for aging-related degenerative tendinopathy.
Collapse
Affiliation(s)
- Zhuochang Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Zhiyi Xin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Haoyuan Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Chongyang Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Xudong Liu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
5
|
Ma Z, Lee AYW, Kot CH, Yung PSH, Chen SC, Lui PPY. Upregulation of FABP4 induced inflammation in the pathogenesis of chronic tendinopathy. J Orthop Translat 2024; 47:105-115. [PMID: 39007036 PMCID: PMC11245957 DOI: 10.1016/j.jot.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/06/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Objectives Excessive inflammation contributes to the pathogenesis of tendinopathy. Fatty acid binding protein 4 (FABP4) is a pro-inflammatory adipokine mediating various metabolic and inflammatory diseases. This study aimed to examine the expression of FABP4 and its association with the expressions of inflammatory cytokines in tendinopathy. The effects of a single injection of FABP4 on tendon pathology and inflammation were examined. The effect of FABP4 on the expressions of inflammatory cytokines and the effect of IL-1β on the expression of FABP4 in tendon-derived stem/progenitor cells (TDSCs) were also investigated. Methods 1) Clinical patellar tendinopathy samples, healthy hamstring tendon samples, and healthy patellar tendon samples, 2) rotator cuff tendinopathy samples and healthy hamstring tendon samples; and 3) Achilles tendons of mice after saline or collagenase injection (CI) were stained for FABP4, IL-1β, IL-6, TNF-α and IL-10 by immunohistochemistry (IHC). For the rotator cuff tendinopathy samples, co-localization of FABP4 with IL-1β and TNF-α was done by immunofluorescent staining (IF). Mouse Achilles tendons injected with FABP4 or saline were collected for histology and IHC as well as microCT imaging post-injection. TDSCs were isolated from human and mouse tendons. The mRNA expressions of inflammatory cytokines in human and mouse TDSCs after the addition of FABP4 was quantified by qRT-PCR. The expression of FABP4 in TDSCs isolated from rotator cuff tendinopathy samples and healthy hamstring tendon samples was examined by IF. Mouse Achilles TDSCs were treated with IL-1β. The mRNA and protein expressions of FABP4 were examined by qRT-PCR and IF, respectively. Results There was significant upregulation of FABP4 in the patellar tendinopathy samples and rotator cuff tendinopathy samples compared to their corresponding controls. FABP4 was mainly expressed in the pathological areas including blood vessels, hypercellular and calcified regions. The expressions of IL-1β and TNF-α increased in human rotator cuff tendinopathy samples and co-localized with the expression of FABP4. Collagenase induced tendinopathic-like histopathological changes and ectopic calcification in the mouse Achilles tendinopathy model. The expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-10) and FABP4 increased in hypercellular region, round cells chondrocyte-like cells and calcified regions in the mouse Achilles tendons post-collagenase injection. A single injection of FABP4 in mouse Achilles tendons induced histopathological changes resembling tendinopathy, with increased cell rounding, loss of collagen fiber alignment, and additionally presence of chondrocyte-like cells and calcification post-injection. The expressions of IL1-β, IL-6, TNF-α and IL-10 increased in mouse Achilles tendons post-FABP4 injection. FABP4 increased the expressions of IL10, IL6, and TNFa in human TDSCs as well as the expressions of Il1b, Il6, and Il10 in mouse TDSCs. Human tendinopathy TDSCs expressed higher level of FABP4 compared to healthy hamstring TDSCs. Besides, IL-1β increased the expression of FABP4 in mouse TDSCs. Conclusion In conclusion, an upregulation of FABP4 is involved in excessive inflammation and pathogenesis of tendinopathy. TDSCs is a potential source of FABP4 during tendon inflammation. Translation potential of this article FABP4 can be a potential treatment target of tendinopathy.
Collapse
Affiliation(s)
- Zebin Ma
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Angel Yuk Wa Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Cheuk Hin Kot
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Patrick Shu Hang Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Ssu-Chi Chen
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
6
|
Lui PPY, Liang Z, Tan RM, Yung PSH. Establishment of a Mouse Degenerative Model of Patellar Tendinopathy with Upregulation of Inflammation. Int J Mol Sci 2024; 25:3847. [PMID: 38612656 PMCID: PMC11011606 DOI: 10.3390/ijms25073847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
There is no mouse model of patellar tendinopathy. This study aimed to establish a mouse inflammatory and degenerative patellar tendon injury model, which will facilitate research on patellar tendinopathy using advanced molecular tools including transgenic models. Collagenase at different doses (low dose (LD), medium dose (MD), high dose (HD)) or saline was injected over the mouse patellar tendon. At weeks 1, 2, 4, and 8 post-injection, the tendons were harvested for histology and further examined by micro-computed tomography (microCT) imaging at week 8. The optimal dose group and the saline group were further evaluated by immunohistochemical staining, gait pattern, and biomechanical properties. The histopathological score increased dose-dependently post-collagenase injection. Ectopic mineralization was observed and increased with collagenase dose. The LD group was selected for further analysis. The expression of IL-10, TNF-α, and MMP-1 significantly increased post-injection. The changes of limb idleness index (ΔLII) compared to preinjury state were significantly higher, while the ultimate load, stiffness, ultimate stress, and maximum Young's modulus were significantly lower in the LD group compared to the saline group. A mouse inflammatory degenerative model of patellar tendon injury resembling tendinopathy was established as indicated by the dose-dependent increase in tendon histopathology, ectopic calcification, decrease in biomechanical properties, and pain-associated gait changes.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
7
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
8
|
Lu J, Chen H, Lyu K, Jiang L, Chen Y, Long L, Wang X, Shi H, Li S. The Functions and Mechanisms of Tendon Stem/Progenitor Cells in Tendon Healing. Stem Cells Int 2023; 2023:1258024. [PMID: 37731626 PMCID: PMC10509002 DOI: 10.1155/2023/1258024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Tendon injury is one of the prevalent disorders of the musculoskeletal system in orthopedics and is characterized by pain and limitation of joint function. Due to the difficulty of spontaneous tendon healing, and the scar tissue and low mechanical properties that usually develops after healing. Therefore, the healing of tendon injury remains a clinical challenge. Although there are a multitude of approaches to treating tendon injury, the therapeutic effects have not been satisfactory to date. Recent studies have shown that stem cell therapy has a facilitative effect on tendon healing. In particular, tendon stem/progenitor cells (TSPCs), a type of stem cell from tendon tissue, play an important role not only in tendon development and tendon homeostasis, but also in tendon healing. Compared to other stem cells, TSPCs have the potential to spontaneously differentiate into tenocytes and express higher levels of tendon-related genes. TSPCs promote tendon healing by three mechanisms: modulating the inflammatory response, promoting tenocyte proliferation, and accelerating collagen production and balancing extracellular matrix remodeling. However, current investigations have shown that TSPCs also have a negative effect on tendon healing. For example, misdifferentiation of TSPCs leads to a "failed healing response," which in turn leads to the development of chronic tendon injury (tendinopathy). The focus of this paper is to describe the characteristics of TSPCs and tenocytes, to demonstrate the roles of TSPCs in tendon healing, while discussing the approaches used to culture and differentiate TSPCs. In addition, the limitations of TSPCs in clinical application and their potential therapeutic strategies are elucidated.
Collapse
Affiliation(s)
- Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houyin Shi
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Lin Y, Guo R, R G, Xu B. Tailored modulation of S100A1 and RASSF8 expression by butanediamide augments healing of rotator cuff tears. PeerJ 2023; 11:e15791. [PMID: 37601265 PMCID: PMC10434103 DOI: 10.7717/peerj.15791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives This investigation sought to elucidate promising treatment modalities for rotator cuff tears (RCTs) by delving into the molecular machinations instigating the affliction. The focus was on differentially expressed genes (DEGs) linked to RCTs, and the exploration of their roles and operative pathways. Methods DEGs were discerned from GEO datasets, followed by the establishment of a protein-protein interaction (PPI) network. Subsequently, the network's core genes were determined employing a Venn diagram. Enrichment analysis facilitated the unveiling of the biological roles and signal transduction pathways of these pivotal genes, thus shedding light on molecular strategies for RCT-targeted treatment. The Discovery Studio 2019 software was employed to sift through FDA-sanctioned drugs targeting these essential proteins. Moreover, the efficaciousness of these FDA-endorsed drugs vis-à-vis RCTs was corroborated by the construction of an in vivo animal model of the injury and the in vitro cultivation of tendon-derived stem cells. Results Bioinformatics outcomes revealed a significant overexpression of S100A1 and RASSF8 in RCT patients. The FDA drug repository indicated that Butanediamide has a selective affinity for S100A1 and RASSF8. Subsequent in vivo and in vitro experimentation demonstrated that Butanediamide could suppress S100A1 expression and bolster TDSC proliferation, thereby facilitating RCT healing. Conclusions S100A1 and RASSF8 are pivotal genes implicated in RCTs, and their roles have been elucidated. The FDA-approved compound, Butanediamide, may represent a prospective therapeutic agent for RCTs by targeting S100A1 and RASSF8, respectively.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ruipeng Guo
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Geng R
- Southeast University, Nanjing, China
| | - Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
10
|
Enhancement of Tendon Repair Using Tendon-Derived Stem Cells in Small Intestinal Submucosa via M2 Macrophage Polarization. Cells 2022; 11:cells11172770. [PMID: 36078178 PMCID: PMC9454771 DOI: 10.3390/cells11172770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Reconstruction of Achilles tendon defects and prevention of postoperative tendon adhesions were two serious clinical problems. In the treatment of Achilles tendon defects, decellularized matrix materials and mesenchymal stem cells (MSCs) were thought to address both problems. (2) Methods: In vitro, cell adhesion, proliferation, and tenogenic differentiation of tendon-derived stem cells (TDSCs) on small intestinal submucosa (SIS) were evaluated. RAW264.7 was induced by culture medium of TDSCs and TDSCs–SIS scaffold groups. A rat Achilles tendon defect model was used to assess effects on tendon regeneration and antiadhesion in vivo. (3) Results: SIS scaffold facilitated cell adhesion and tenogenic differentiation of TDSCs, while SIS hydrogel coating promoted proliferation of TDSCs. The expression of TGF-β and ARG-1 in the TDSCs-SIS scaffold group were higher than that in the TDSCs group on day 3 and 7. In vivo, the tendon regeneration and antiadhesion capacity of the implanted TDSCs–SIS scaffold was significantly enhanced. The expression of CD163 was significantly highest in the TDSCs–SIS scaffold group; meanwhile, the expression of CD68 decreased more significantly in the TDSCs–SIS scaffold group than the other two groups. (4) Conclusion: This study showed that biologically prepared SIS scaffolds synergistically promote tendon regeneration with TDSCs and achieve antiadhesion through M2 polarization of macrophages.
Collapse
|
11
|
Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022; 14:pharmaceutics14081684. [PMID: 36015310 PMCID: PMC9414392 DOI: 10.3390/pharmaceutics14081684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown potential for the treatment of tendon and ligament injuries. This approach can eliminate the need to transplant live cells to the human body, thereby reducing issues related to the maintenance of cell viability and stability and potential erroneous differentiation of transplanted cells to bone or tumor. Despite these advantages, there are practical issues that need to be considered for successful clinical application of MSC-EV-based products in the treatment of tendon and ligament injuries. This review aims to discuss the general and tissue-specific considerations for manufacturing MSC-EVs for clinical translation. Specifically, we will discuss Good Manufacturing Practice (GMP)-compliant manufacturing and quality control (parent cell source, culture conditions, concentration method, quantity, identity, purity and impurities, sterility, potency, reproducibility, storage and formulation), as well as safety and efficacy issues. Special considerations for applying MSC-EVs, such as their compatibility with arthroscopy for the treatment of tendon and ligament injuries, are also highlighted.
Collapse
|
12
|
Ning C, Gao C, Li P, Fu L, Chen W, Liao Z, Xu Z, Yuan Z, Guo W, Sui X, Liu S, Guo Q. Dual‐Phase Aligned Composite Scaffolds Loaded with Tendon‐Derived Stem Cells for Achilles Tendon Repair. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Cangjian Gao
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Pinxue Li
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Liwei Fu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Wei Chen
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiyao Liao
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zizheng Xu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200030 P. R. China
| | - Weimin Guo
- Department of Orthopaedic Surgery Guangdong Provincial Key Laboratory of Orthopedics and Traumatology First Affiliated Hospital Sun Yat‐sen University No. 58 Zhongshan Second Road, Yuexiu District Guangzhou Guangdong 510080 P. R. China
| | - Xiang Sui
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Shuyun Liu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Quanyi Guo
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| |
Collapse
|
13
|
Cottrill EJ, Bowen CJ, Pennington ZA, Murray JA, Rajkovic CJ, Dietz HC, Sponseller PD. Tendon Healing in a Mouse Model of Loeys-Dietz Syndrome: Controlled Study Using a Patellar Tendon Transection Model. J Pediatr Orthop 2022; 42:e590-e595. [PMID: 35442932 DOI: 10.1097/bpo.0000000000002131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Loeys-Dietz syndrome (LDS) is a rare autosomal-dominant connective tissue disorder caused by genetic mutations in the transforming growth factor-β (TGFβ) signaling pathway. In addition to vascular malformations, patients with LDS commonly present with bone and tendon abnormalities, including joint laxity. While TGFβ signaling dysregulation has been implicated in many of these clinical manifestations, the degree to which it influences the tendinopathy and tendon healing issues in LDS has not been determined. METHODS Wound healing after patellar tendon transection was compared between wild-type (WT) and Tgfbr2-mutant (LDS) mice (7 mice per group). In all mice, the right patellar tendon was transected at midsubstance, while the left was untouched to serve as a control. Mice were euthanized 6 weeks after surgery. Tendon specimens were harvested for histopathologic grading according to a previously validated scoring metric, and gene expression levels of Mmp2, Tgfb2, and other TGFβ-signaling genes were assayed. Between-group comparisons were made using 1-way analysis of variance with post hoc Tukey honestly significant difference testing. RESULTS Expression levels of assayed genes were similar between LDS and WT tendons at baseline; however, at 6 weeks after patellar tendon transection, LDS tendons showed sustained elevations in Mmp2 and Tgfb2 compared with baseline values; these elevations were not seen in normal tendons undergoing the same treatments. Histologically, untreated LDS tendons had significantly greater cellularity and cell rounding compared with untreated WT tendons, and both WT and LDS tendons had significantly worse histologic scores after surgery. CONCLUSION We present the first mechanistic insight into the effect of LDS on tendons and tendon healing. The morphologic differences between LDS and WT tendons at baseline may help explain the increased risk of tendon/ligament dysfunction in patients with LDS, and the differential healing response to injury in LDS may account for the delayed healing and weaker repair tissue. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
| | - Caitlin J Bowen
- Genetic Medicine
- Howard Hughes Medical Institute, Bethesda, MD
| | | | - Jason A Murray
- Pathology, The Johns Hopkins University School of Medicine
| | | | - Harry C Dietz
- Genetic Medicine
- Howard Hughes Medical Institute, Bethesda, MD
| | | |
Collapse
|
14
|
Song K, Jiang T, Pan P, Yao Y, Jiang Q. Exosomes from tendon derived stem cells promote tendon repair through miR-144-3p-regulated tenocyte proliferation and migration. Stem Cell Res Ther 2022; 13:80. [PMID: 35197108 PMCID: PMC8867681 DOI: 10.1186/s13287-022-02723-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tendon derived stem cells (TDSCs) have proven to be effective in tendon repair by secreting paracrine factors, which modulate the function of resident cells and inflammatory process. Exosomes, which are secreted from cells to mediate intercellular communication, may be used to treat tendon injuries. Here, we aimed to determine the effects of exosomes from TDSCs (TDSC-Exos) on tendon repair and to explore the underlying mechanism by investigating the role of microRNAs (miRNAs). METHODS TDSC-Exos were isolated from TDSC conditioned medium. In vitro studies were performed to investigate the effects of TDSC-Exos on the proliferation, migration, cytoprotection, collagen production and tendon-specific markers expression in tenocytes. In order to determine the therapeutic effects of TDSC-Exos in vivo, we used a scaffold of photopolymerizable hyaluronic acid (p-HA) loaded with TDSC-Exos (pHA-TDSC-Exos) to treat tendon defects in the rat model. Subsequently, RNA sequencing and bioinformatic analyses were used to screen for enriched miRNAs in TDSC-Exos and predict target genes. The miRNA-target transcript interaction was confirmed by a dual-luciferase reporter assay system. In order to determine the role of candidate miRNA and its target gene in TDSC-Exos-regulated tendon repair, miRNA mimic and inhibitor were transfected into tenocytes to evaluate cell proliferation and migration. RESULTS Treatment with TDSC-Exos promoted proliferation, migration, type I collagen production and tendon-specific markers expression in tenocytes, and also protected tenocytes from oxidative stress and serum deprivation. The scaffold of pHA-TDSC-Exos could sever as a sustained release system to treat the rat model of tendon defects. In vivo study showed that TDSC-Exos promoted early healing of injured tendons. Rats treated with TDSC-Exos had better fiber arrangement and histological scores at the injury site. Besides, the injured tendons treated with TDSC-Exos had better performance in the biomechanical testing. Therefore, the pHA-TDSC-Exos scaffold proved to facilitate tendon repair in the rat model. miR-144-3p was enriched in TDSC-Exos and promoted tenocyte proliferation and migration via targeting AT-rich interactive domain 1A (ARID1A). CONCLUSIONS TDSC-Exos enhanced tenon repair through miR-144-3p-regulated tenocyte proliferation and migration. These results suggest that TDSC-Exos can serve as a promising strategy to treat tendon injuries.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Tao Jiang
- Department of Orthopedic Surgery, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 214200, Jiangsu, People's Republic of China
| | - Pin Pan
- Department of Orthopedic Surgery, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, People's Republic of China
| | - Yao Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China. .,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Yao S, Yung PSH, Lui PPY. Tackling the Challenges of Graft Healing After Anterior Cruciate Ligament Reconstruction-Thinking From the Endpoint. Front Bioeng Biotechnol 2022; 9:756930. [PMID: 35004636 PMCID: PMC8727521 DOI: 10.3389/fbioe.2021.756930] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Anterior cruciate ligament (ACL) tear is common in sports and accidents, and accounts for over 50% of all knee injuries. ACL reconstruction (ACLR) is commonly indicated to restore the knee stability, prevent anterior–posterior translation, and reduce the risk of developing post-traumatic osteoarthritis. However, the outcome of biological graft healing is not satisfactory with graft failure after ACLR. Tendon graft-to-bone tunnel healing and graft mid-substance remodeling are two key challenges of biological graft healing after ACLR. Mounting evidence supports excessive inflammation due to ACL injury and ACLR, and tendon graft-to-bone tunnel motion negatively influences these two key processes. To tackle the problem of biological graft healing, we believe that an inductive approach should be adopted, starting from the endpoint that we expected after ACLR, even though the results may not be achievable at present, followed by developing clinically practical strategies to achieve this ultimate goal. We believe that mineralization of tunnel graft and ligamentization of graft mid-substance to restore the ultrastructure and anatomy of the original ACL are the ultimate targets of ACLR. Hence, strategies that are osteoinductive, angiogenic, or anti-inflammatory should drive graft healing toward the targets. This paper reviews pre-clinical and clinical literature supporting this claim and the role of inflammation in negatively influencing graft healing. The practical considerations when developing a biological therapy to promote ACLR for future clinical translation are also discussed.
Collapse
Affiliation(s)
- Shiyi Yao
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Patrick Shu Hang Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
16
|
Li Y, Wu T, Liu S. Identification and Distinction of Tenocytes and Tendon-Derived Stem Cells. Front Cell Dev Biol 2021; 9:629515. [PMID: 33937230 PMCID: PMC8085586 DOI: 10.3389/fcell.2021.629515] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Restoring the normal structure and function of injured tendons is one of the biggest challenges in orthopedics and sports medicine department. The discovery of tendon-derived stem cells (TDSCs) provides a novel perspective to treat tendon injuries, which is expected to be an ideal seed cell to promote tendon repair and regeneration. Because of the lack of specific markers, the identification of tenocytes and TDSCs has not been conclusive in the in vitro study of tendons. In addition, the morphology of tendon derived cells is similar, and the comparison and identification of tenocytes and TDSCs are insufficient, which causes some obstacles to the in vitro study of tendon. In this review, the characteristics of tenocytes and TDSCs are summarized and compared based on some existing research results (mainly in terms of biomarkers), and a potential marker selection for identification is suggested. It is of profound significance to further explore the mechanism of biomarkers in vivo and to find more specific markers.
Collapse
Affiliation(s)
- Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyi Wu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Huang Z, Yin Z, Xu J, Fei Y, Heng BC, Jiang X, Chen W, Shen W. Tendon Stem/Progenitor Cell Subpopulations and Their Implications in Tendon Biology. Front Cell Dev Biol 2021; 9:631272. [PMID: 33681210 PMCID: PMC7930382 DOI: 10.3389/fcell.2021.631272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Tendon harbors a cell population that possesses stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity, commonly referred to as tendon stem/progenitor cells (TSPCs). Various techniques have been employed to study how TSPCs are implicated in tendon development, homeostasis and healing. Recent advances in single-cell analysis have enabled much progress in identifying and characterizing distinct subpopulations of TSPCs, which provides a more comprehensive view of TSPCs function in tendon biology. Understanding the mechanisms of physiological and pathological processes regulated by TSPCs, especially a particular subpopulation, would greatly benefit treatment of diseased tendons. Here, we summarize the current scientific literature on the various subpopulations of TSPCs, and discuss how TSPCs can contribute to tissue homeostasis and pathogenesis, as well as examine the key modulatory signaling pathways that determine stem/progenitor cell state. A better understanding of the roles that TSPCs play in tendon biology may facilitate the development of novel treatment strategies for tendon diseases.
Collapse
Affiliation(s)
- Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,China Orthopedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Jialu Xu
- Department of Infectious Diseases, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, China
| | - Xuesheng Jiang
- Department of Orthopedic Surgery, Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,China Orthopedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
18
|
Kokubu S, Inaki R, Hoshi K, Hikita A. Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regen Ther 2020; 14:103-110. [PMID: 31989000 PMCID: PMC6970144 DOI: 10.1016/j.reth.2019.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Achilles tendinopathy is characterized by scar formation or ectopic ossification, both of which result in pain and worsened physical function in athletes and older people. Although cell therapy using adipose-derived stem cells (ASCs) has been shown to be effective for tendinopathy, the underlying mechanisms by which ASCs result in tendon healing in vivo have not yet been fully clarified. METHODS ASCs were obtained from the fat pads of EGFP transgenic mice by collagenase digestion. C57BL/6 mice were used in a collagenase-induced injury model. ASCs were transplanted into injury sites at 1 week after injury. Tendons were harvested at 9 days, 2 weeks, and 4 weeks after transplantation, and analyzed by histological examination and μCT scanning. RESULTS Histological analysis and μCT scanning revealed greater recovery of collagen fibers and suppression of ectopic ossification in the ASC-treated group than in the control group at 2 and 4 weeks after injury. Immunohistochemical analysis identified transplanted ASCs in the tendon core close to peritenon and connective tissue at 2 days and 1 week after transplantation, but not at 3 weeks. Furthermore, while the expression levels of IL-1β, GLUT1, and CA9 were significantly reduced in the ASC group compared to the control group at 9 days after injury, those of VEGF and the number of CD31 positive vessels were significantly increased. CONCLUSION The efficacy of ASCs for tendon repair and the prevention of ectopic ossification in Achilles tendinopathy were demonstrated. Our data suggest that ASCs can modulate inflammation and induce neovascularization in the early stage of tendon injury.
Collapse
Affiliation(s)
- Saeko Kokubu
- Department of Sensory and Motor System Medicine, Department of Oral and Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryoko Inaki
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuto Hoshi
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
19
|
Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J Orthop Res 2020; 38:7-12. [PMID: 31529731 PMCID: PMC7307866 DOI: 10.1002/jor.24475] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
Ligament and tendon injuries are common problems in orthopedics. There is a need for treatments that can expedite nonoperative healing or improve the efficacy of surgical repair or reconstruction of ligaments and tendons. Successful biologically-based attempts at repair and reconstruction would require a thorough understanding of normal tendon and ligament healing. The inflammatory, proliferative, and remodeling phases, and the cells involved in tendon and ligament healing will be reviewed. Then, current research efforts focusing on biologically-based treatments of ligament and tendon injuries will be summarized, with a focus on stem cells endogenous to tendons and ligaments. Statement of clinical significance: This paper details mechanisms of ligament and tendon healing, as well as attempts to apply stem cells to ligament and tendon healing. Understanding of these topics could lead to more efficacious therapies to treat ligament and tendon injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:7-12, 2020.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Surgery, Baltimore VA Medical Center, Baltimore, Maryland
| | - Jamie L Kator
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Aaron James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Motomi Enamoto-Iwamoto
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| |
Collapse
|
20
|
McClellan A, Paterson YZ, Paillot R, Guest DJ. Equine Fetal, Adult, and Embryonic Stem Cell-Derived Tenocytes Are All Immune Privileged but Exhibit Different Immune Suppressive Properties In Vitro. Stem Cells Dev 2019; 28:1413-1423. [PMID: 31507234 DOI: 10.1089/scd.2019.0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In horses and humans, tendon injuries are a significant problem. Not only can they occur in both athletes and nonathletes, they require lengthy periods of recuperation and undergo poor natural regeneration, which leads to high reinjury rates. Embryonic stem cells (ESCs) may provide a renewable source of allogeneic cells to use in clinical applications to aid tissue regeneration. Equine ESCs can undergo tenocyte differentiation in vivo and in vitro, but the immune properties of tenocytes isolated from either ESCs or tissues have not previously been characterized. Here, we demonstrate that equine tenocytes derived from fetal and adult tendon tissue and ESCs express robust levels of major histocompatibility complex (MHC) I but no MHC II in response to inflammatory cytokine interferon gamma (IFNγ). However, MHC expression does not affect their allorecognition by peripheral blood mononuclear cells in vitro. Adult and fetal tenocytes remain immune privileged and strongly immune suppressive in both the presence and absence of exogenously applied IFNγ. In contrast, ESC-derived tenocytes are immune privileged even in the presence of IFNγ, but they are only weakly immune suppressive in the presence but not in the absence of exogenously applied IFNγ. This is despite ESC-tenocytes expressing a number of genes involved in immune modulation at significantly higher levels than those expressed by adult and fetal tenocytes when in standard, nonstimulated monolayer culture. Together, this work suggests that, similar to other fibroblasts, tenocytes have immune modulatory properties, and that culture-expanded tenocytes derived from primary tissues or ESCs may be safe to use in clinical transplantations to injured tendons of unrelated animals.
Collapse
Affiliation(s)
- Alyce McClellan
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Yasmin Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Romain Paillot
- LABÉO Frank Duncombe, Caen, France.,Normandie University, UniCaen, Biotargen, Saint-Contest, France
| | - Deborah Jane Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
21
|
Ruan D, Zhu T, Huang J, Le H, Hu Y, Zheng Z, Tang C, Chen Y, Ran J, Chen X, Yin Z, Qian S, Pioletti D, Heng BC, Chen W, Shen W, Ouyang HW. Knitted Silk-Collagen Scaffold Incorporated with Ligament Stem/Progenitor Cells Sheet for Anterior Cruciate Ligament Reconstruction and Osteoarthritis Prevention. ACS Biomater Sci Eng 2019; 5:5412-5421. [PMID: 33464061 DOI: 10.1021/acsbiomaterials.9b01041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current surgical management of anterior cruciate ligament (ACL) rupture still remains an intractable challenge in ACL regeneration due to the weak self-healing capability of ACL. Inadequate cell numbers and vascularization within the articular cavity contribute mainly to the poor prognosis. This time, we fabricated a new tissue engineering scaffold by adding ligament stem/progenitor cell (LSPC) sheets to our previous knitted silk-collagen sponge scaffold, which overcame these limitations by providing sufficient numbers of seed cells and a natural extracellular matrix to facilitate regeneration. LSPCs display excellent proliferation and multilineage differentiation capacity. Upon ectopic implantation, the knitted silk-collagen sponge scaffold incorporated with an LSPC sheet exhibited less immune cells but more fibroblast-like cells, deposited ECM and neovascularization, and better tissue ingrowth. In a rabbit model, we excised the ACL and performed a reconstructive surgery with our scaffold. Increased expression of ligament-specific genes and better collagen fibril formation could be observed after orthotopic transplantation. After 6 months, the LSPC sheet group showed better results on ligament regeneration and ligament-bone healing. Furthermore, no obvious cartilage and meniscus degeneration were observed at 6 months postoperation. In conclusion, these results indicated that the new tissue engineering scaffold can promote ACL regeneration and slow down the progression of osteoarthritis, thus suggesting its high clinical potential as an ideal graft in ACL reconstruction.
Collapse
Affiliation(s)
- Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Ting Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Cardiothoracic Surgery, Shaoxing People's Hospital, Shaoxin Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Huihui Le
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Yejun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Orthopedic Surgery, Children's Hospital, Zhejiang University School of Medicine, Zhejiang, 310052, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Shengjun Qian
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | | | | | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Hong-Wei Ouyang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
22
|
Yao X, Ning LJ, He SK, Cui J, Hu RN, Zhang Y, Zhang YJ, Luo JC, Ding W, Qin TW. Stem Cell Extracellular Matrix-Modified Decellularized Tendon Slices Facilitate the Migration of Bone Marrow Mesenchymal Stem Cells. ACS Biomater Sci Eng 2019; 5:4485-4495. [DOI: 10.1021/acsbiomaterials.9b00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Bogdanowicz DR, Lu HH. Designing the stem cell microenvironment for guided connective tissue regeneration. Ann N Y Acad Sci 2018; 1410:3-25. [PMID: 29265419 DOI: 10.1111/nyas.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration.
Collapse
Affiliation(s)
- Danielle R Bogdanowicz
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
24
|
Durgam SS, Stewart AA, Sivaguru M, Wagoner Johnson AJ, Stewart MC. Tendon-derived progenitor cells improve healing of collagenase-induced flexor tendinitis. J Orthop Res 2016; 34:2162-2171. [PMID: 27035120 DOI: 10.1002/jor.23251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Tendinitis is a common and a performance-limiting injury in athletes. This study describes the value of intralesional tendon-derived progenitor cell (TDPC) injections in equine flexor tendinitis. Collagenase-induced tendinitis was created in both front superficial digital flexor (SDF) tendons. Four weeks later, the forelimb tendon lesions were treated with 1 × 107 autogenous TDPCs or saline. Tendinitis was also induced by collagenase in one hind SDF tendon, to study the survival and distribution of DiI-labeled TDPCs 1, 2, 4, and 6 weeks after injection. The remaining normal tendon was used as a "control." Twelve weeks after forelimb TDPC injections, tendons were harvested for assessment of matrix gene expression, biochemical, biomechanical, and histological characteristics. DiI-labeled TDPCs were abundant 1 week after injection but gradually declined over time and were undetectable after 6 weeks. Twelve weeks after TDPC injection, collagens I and III, COMP and tenomodulin mRNA levels were similar (p = 0.3) in both TDPC and saline groups and higher (p < 0.05) than normal tendon. Yield and maximal stresses of the TDPC group were significantly greater (p = 0.005) than the saline group's and similar (p = 0.6) to normal tendon. However, the elastic modulus of the TDPC and saline groups were not significantly different (p = 0.32). Histological assessment of the repair tissues with Fourier transform-second harmonic generation imaging demonstrated that collagen alignment was significantly better (p = 0.02) in TDPC group than in the saline controls. In summary, treating collagenase-induced flexor tendon lesions with TDPCs improved the tensile strength and collagen fiber alignment of the repair tissue. Study Design © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2162-2171, 2016.
Collapse
Affiliation(s)
- Sushmitha S Durgam
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, 1008 W Hazelwood Drive, Urbana, Illinois, 61802
| | - Allison A Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, 1008 W Hazelwood Drive, Urbana, Illinois, 61802
| | - Mayandi Sivaguru
- Core Facilities, Institute of Genomic Biology, University of Illinois, Urbana, Illinois, 61801
| | - Amy J Wagoner Johnson
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois, Urbana, Illinois, 61801
| | - Matthew C Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, 1008 W Hazelwood Drive, Urbana, Illinois, 61802
| |
Collapse
|
25
|
Lui PPY, Wong OT, Lee YW. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model. Cytotherapy 2016; 18:99-112. [PMID: 26719200 DOI: 10.1016/j.jcyt.2015.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/26/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Treatment of tendon-derived stem cells (TDSCs) with connective tissue growth factor (CTGF) and ascorbic acid promoted their tenogenic differentiation. We investigated the effects of TDSCs pre-treated with CTGF and ascorbic acid on tendon repair in a patellar tendon window injury rat model. METHODS Green fluorescent protein-TDSCs (GFP-TDSCs) were pre-treated with or without CTGF and ascorbic acid for 2 weeks before transplantation. The patellar tendons of rats were injured and divided into three groups: fibrin glue-only group (control group), untreated and treated TDSC group. The rats were followed up until week 16. RESULTS The treated TDSCs accelerated and enhanced the quality of tendon repair compared with untreated TDSCs up to week 8, which was better than that in the controls up to week 16 as shown by histology, ultrasound imaging and biomechanical test. The fibrils in the treated TDSC group showed better alignment and larger size compared with those in the control group at week 8 (P = 0.004). There was lower risk of ectopic mineralization after transplantation of treated or untreated TDSCs (all P ≤ 0.050). The transplanted cells proliferated and could be detected in the window wound up to weeks 2 to 4 and week 8 for the untreated and treated TDSC groups, respectively. CONCLUSIONS The transplantation of TDSCs promoted tendon repair up to week 16, with CTGF and ascorbic acid pre-treatment showing the best results up to week 8. Pre-treatment of TDSCs with CTGF and ascorbic acid may be used to further enhance the rate and quality of tendon repair after injury.
Collapse
Affiliation(s)
| | - On Tik Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Kraus TM, Imhoff FB, Reinert J, Wexel G, Wolf A, Hirsch D, Hofmann A, Stöckle U, Buchmann S, Tischer T, Imhoff AB, Milz S, Anton M, Vogt S. Stem cells and bFGF in tendon healing: Effects of lentiviral gene transfer and long-term follow-up in a rat Achilles tendon defect model. BMC Musculoskelet Disord 2016; 17:148. [PMID: 27048602 PMCID: PMC4822291 DOI: 10.1186/s12891-016-0999-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/25/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The influence of stem cells and lentiviral expression of basic fibroblastic growth factor (bFGF) on tendon healing and remodelling was investigated in an in-vivo long-term (12 weeks) rat Achilles tendon defect model. METHODS In sixty male Lewis rats, complete tendon defects (2.4 mm) were created and either left untreated (PBS) or treated by injection of stem cells lentivirally expressing the enhanced green fluorescence marker gene eGFP (MSC-LV-eGFP) or basic fibroblast growth factor bFGF (MSC-LV-bFGF). Tendons were harvested after 12 weeks and underwent biomechanical and (immuno)-histological analysis. RESULTS After 12 weeks the mean ultimate load to failure ratio (treated side to contralateral side) in biomechanical testing reached 97 % in the bFGF-group, 103 % in the eGFP-group and 112 % in the PBS-group. Also in the stiffness testing both MSC groups did not reach the results of the PBS group. Histologically, the MSC groups did not show better results than the control group. There were clusters of ossifications found in all groups. In immunohistology, only the staining collagen-type-I was strongly increased in both MSC groups in comparison to PBS control group. However, there were no significant differences in the (immuno)-histological results between both stem cell groups. CONCLUSION The biomechanical and (immuno)-histological results did not show positive effects of the MSC groups on tendon remodelling in a long-term follow-up. Interestingly, in later stages stem cells had hardly any effects on biomechanical results. This study inspires a critical and reflected use of stem cells in tendon healing.
Collapse
Affiliation(s)
- T M Kraus
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany. .,BG Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - F B Imhoff
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - J Reinert
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - G Wexel
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - A Wolf
- Institute of Molecular Immunology/Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - D Hirsch
- Institute of Molecular Immunology/Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - A Hofmann
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - U Stöckle
- BG Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - S Buchmann
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - T Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - A B Imhoff
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - S Milz
- Anatomische Anstalt, Ludwig Maximillians Universität, Munich, Germany
| | - M Anton
- Institute of Molecular Immunology/Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - S Vogt
- Department for Sports Orthopaedics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.,Department of Sports Orthopaedics, Hessing Stiftung, Augsburg, Germany
| |
Collapse
|
27
|
Tendon Stem Cells: Mechanobiology and Development of Tendinopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:53-62. [DOI: 10.1007/978-3-319-33943-6_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Cheung TS, Lau PM, Lu H, Ho HP, Lui PPY, Kong SK. Cytotoxic and sublethal effects of silver nanoparticles on tendon-derived stem cells - implications for tendon engineering. Toxicol Res (Camb) 2016; 5:318-330. [PMID: 30090348 PMCID: PMC6060715 DOI: 10.1039/c5tx00349k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022] Open
Abstract
Tendon injuries occur commonly in sports and workplace. Tendon-derived stem cells (TDSCs) have great potential for tendon healing because they can differentiate into functional tenocytes. To grow TDSCs properly in vivo, a scaffold is needed. Silver nanoparticles (AgNPs) have been used in a range of biomedical applications for their anti-bacterial and -inflammatory effects. AgNPs are therefore expected to be a good scaffolding coating material for tendon engineering. Yet, their cytotoxicity in TDSCs remains unknown. Moreover, their sublethal effects were mysterious in TDSCs. In our study, decahedral AgNPs (43.5 nm in diameter) coated with polyvinylpyrrolidone (PVP) caused a decrease in TDSCs' viability beginning at 37.5 μg ml-1 but showed non-cytotoxic effects at concentrations below 18.8 μg ml-1. Apoptosis was observed in the TDSCs when higher doses of AgNPs (75-150 μg ml-1) were used. Mechanistically, AgNPs induced reactive oxygen species (ROS) formation and mitochondrial membrane potential (MMP) depolarization, resulting in apoptosis. Interestingly, treating TDSCs with N-acetyl-l-cysteine (NAC) antioxidant significantly antagonized the ROS formation, MMP depolarization and apoptosis indicating that ROS accumulation was a prominent mediator in the AgNP-induced cytotoxicity. On the other hand, AgNPs inhibited the tendon markers' mRNA expression (0-15 μg ml-1), proliferation and clonogenicity (0-15 μg ml-1) in TDSCs under non-cytotoxic concentrations. Taken together, we have reported here for the first time that the decahedral AgNPs are cytotoxic to rat TDSCs and their sublethal effects are also detrimental to stem cells' proliferation and tenogenic differentiation. Therefore, AgNPs are not a good scaffolding coating material for tendon engineering.
Collapse
Affiliation(s)
- Tik Shing Cheung
- Program of Biochemistry , School of Life Sciences , The Chinese University of Hong Kong , Hong Kong , China . ; ; Tel: +(852) 3943 6799
| | - Pui Man Lau
- Program of Biochemistry , School of Life Sciences , The Chinese University of Hong Kong , Hong Kong , China . ; ; Tel: +(852) 3943 6799
| | - Haifei Lu
- Department of Electronic Engineering , Center for Advanced Research in Photonics , The Chinese University of Hong Kong , Hong Kong , China
| | - Ho Pui Ho
- Department of Electronic Engineering , Center for Advanced Research in Photonics , The Chinese University of Hong Kong , Hong Kong , China
| | | | - Siu Kai Kong
- Program of Biochemistry , School of Life Sciences , The Chinese University of Hong Kong , Hong Kong , China . ; ; Tel: +(852) 3943 6799
| |
Collapse
|
29
|
Lui PPY. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:163-74. [PMID: 26715856 PMCID: PMC4685888 DOI: 10.2147/sccaa.s60832] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Headquarter, Hospital Authority, Hong Kong SAR, People's Republic of China
| |
Collapse
|
30
|
Costa-Almeida R, Gonçalves AI, Gershovich P, Rodrigues MT, Reis RL, Gomes ME. Tendon Stem Cell Niche. TISSUE-SPECIFIC STEM CELL NICHE 2015. [DOI: 10.1007/978-3-319-21705-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
31
|
Tan C, Lui PPY, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (tdscs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One 2014; 9:e97453. [PMID: 24831949 PMCID: PMC4022525 DOI: 10.1371/journal.pone.0097453] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
We hypothesized that the transplantation of Scx-transduced tendon-derived stem cells (TDSCs) promoted better tendon repair compared to the transplantation of mock-transduced cells. This study thus aimed to investigate the effect of Scx transduction on the expression of lineage markers in TDSCs and the effect of the resulting cell line in the promotion of tendon repair. Rat non-GFP or GFP-TDSCs were transduced with Scx or empty lentiviral vector (Mock) and selected by blasticidin. The mRNA expressions of Scx and different lineage markers were examined by qRT-PCR. The effect of the transplantation of GFP-TDSC-Scx on tendon repair was then tested in a rat unilateral patellar tendon window injury model. The transplantation of GFP-TDSC-Mock and scaffold-only served as controls. At week 2, 4 and 8 post-transplantation, the repaired patellar tendon was harvested for ex vivo fluorescent imaging, vivaCT imaging, histology, immunohistochemistry and biomechanical test. GFP-TDSC-Scx consistently showed higher expressions of most of tendon- and cartilage- related markers compared to the GFP-TDSC-Mock. However, the effect of Scx transduction on the expressions of bone-related markers was inconclusive. The transplanted GFP-TDSCs could be detected in the window wound at week 2 but not at week 4. Ectopic mineralization was detected in some samples at week 8 but there was no difference among different groups. The GFP-TDSC-Scx group only statistically significantly improved tendon repair histologically and biomechanically compared to the Scaffold-only group and the GFP-TDSC-Mock group at the early stage of tendon repair. There was significant higher expression of collagen type I in the window wound in the GFP-TDSC-Scx group compared to the other two groups at week 2. The transplantation of GFP-TDSC-Scx promoted healing at the early stage of tendon repair in a rat patellar tendon window injury model.
Collapse
Affiliation(s)
- Chunlai Tan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yin Mei Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|