1
|
Fatima Balderrama I, Schafer S, El Shatanofy M, Bergamo ETP, Mirsky NA, Nayak VV, Marcantonio Junior E, Alifarag AM, Coelho PG, Witek L. Biomimetic Tissue Engineering Strategies for Craniofacial Applications. Biomimetics (Basel) 2024; 9:636. [PMID: 39451842 PMCID: PMC11506466 DOI: 10.3390/biomimetics9100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Biomimetics is the science of imitating nature's designs and processes to create innovative solutions for various fields, including dentistry and craniofacial reconstruction. In these areas, biomimetics involves drawing inspiration from living organisms/systems to develop new materials, techniques, and devices that closely resemble natural tissue structures and enhance functionality. This field has successfully demonstrated its potential to revolutionize craniofacial procedures, significantly improving patient outcomes. In dentistry, biomimetics offers exciting possibilities for the advancement of new dental materials, restorative techniques, and regenerative potential. By analyzing the structure/composition of natural teeth and the surrounding tissues, researchers have developed restorative materials that mimic the properties of teeth, as well as regenerative techniques that might assist in repairing enamel, dentin, pulp, cementum, periodontal ligament, and bone. In craniofacial reconstruction, biomimetics plays a vital role in developing innovative solutions for facial trauma, congenital defects, and various conditions affecting the maxillofacial region. By studying the intricate composition and mechanical properties of the skull and facial bones, clinicians and engineers have been able to replicate natural structures leveraging computer-aided design and manufacturing (CAD/CAM) and 3D printing. This has allowed for the creation of patient-specific scaffolds, implants, and prostheses that accurately fit a patient's anatomy. This review highlights the current evidence on the application of biomimetics in the fields of dentistry and craniofacial reconstruction.
Collapse
Affiliation(s)
- Isis Fatima Balderrama
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
| | - Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Muhammad El Shatanofy
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Edmara T. P. Bergamo
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Prosthodontics, NYU Dentistry, New York, NY 10010, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elcio Marcantonio Junior
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
| | - Adham M. Alifarag
- Department of General Surgery, Temple University Hospital System, Philadelphia, PA 19140, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Haider A, Khan S, Iqbal DN, Khan SU, Haider S, Mohammad K, Mustfa G, Rizwan M, Haider A. Chitosan as a tool for tissue engineering and rehabilitation: Recent developments and future perspectives - A review. Int J Biol Macromol 2024; 278:134172. [PMID: 39111484 DOI: 10.1016/j.ijbiomac.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Chitosan has established itself as a multifunctional and auspicious biomaterial within the domain of tissue engineering, presenting a decade of uninterrupted advancements and novel implementations. This article provides a comprehensive overview of the most recent developments in chitosan-based tissue engineering, focusing on significant progress made in the last ten years. An exploration is conducted of the various techniques utilized in the modification of chitosan and the production of scaffolds, with an analysis of their effects on cellular reactions and tissue regeneration. The investigation focuses on the integration of chitosan with other biomaterials and the addition of bioactive agents to improve their functionalities. Upon careful analysis of the in vitro and in vivo research, it becomes evident that chitosan effectively stimulates cell adhesion, proliferation, and differentiation. Furthermore, we offer valuable perspectives on the dynamic realm of chitosan-based approaches tailored to distinct tissue categories, including nerve, bone, cartilage, and skin. The review concludes with a discussion of prospective developments, with particular attention given to possible directions for additional study, translational implementations, and the utilization of chitosan to tackle existing obstacles in the field of tissue engineering. This extensive examination provides a significant amalgamation of the advancements achieved over the previous decade and directs scholars towards uncharted territories in chitosan-based tissue engineering.
Collapse
Affiliation(s)
- Ammar Haider
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Shabana Khan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan.
| | - Salah Uddin Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Khaled Mohammad
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ghulam Mustfa
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| |
Collapse
|
3
|
Piszko PJ, Piszko A, Kiryk S, Kiryk J, Horodniczy T, Struzik N, Wiśniewska K, Matys J, Dobrzyński M. Bone Regeneration Capabilities of Scaffolds Containing Chitosan and Nanometric Hydroxyapatite-Systematic Review Based on In Vivo Examinations. Biomimetics (Basel) 2024; 9:503. [PMID: 39194482 DOI: 10.3390/biomimetics9080503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
In this systematic review, the authors aimed to investigate the state of knowledge on in vivo evaluations of chitosan and nanometric hydroxyapatite (nanohydroxyapatite, nHAp) scaffolds for bone-tissue regeneration. In March 2024, an electronic search was systematically conducted across the PubMed, Cochrane, and Web of Science databases using the keywords (hydroxyapatite) AND (chitosan) AND (scaffold) AND (biomimetic). Methodologically, the systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol to the letter. Initially, a total of 375 studies were screened, and 164 duplicates were removed. A further 188 articles were excluded because they did not correspond to the predefined topics, and an additional 3 articles were eliminated due to the inability to obtain the full text. The final compilation included 20 studies. All publications indicated a potential beneficial effect of the scaffolds in in vivo bone defect repair. A beneficial effect of hydroxyapatite as a scaffold component was observed in 16 studies, including greater mechanical resistance, cellular differentiation, and enhanced bone damage regeneration. The addition of chitosan and apatite ceramics, which combined the strengths of both materials, had the potential to become a useful bone-tissue engineering material.
Collapse
Affiliation(s)
- Paweł J Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Aleksandra Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Sylwia Kiryk
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Jan Kiryk
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Tomasz Horodniczy
- Ortho.pl Centrum Zdrowego Uśmiechu, Buforowa 34, 52-131 Wrocław, Poland
| | - Natalia Struzik
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-368 Wrocław, Poland
| | - Kamila Wiśniewska
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Jacek Matys
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| |
Collapse
|
4
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Tang L, Chen X, Wang M, Liu Y, Li B, Li Y, Zhang Y. A biomimetic in situ mineralization ECM composite scaffold to promote endogenous bone regeneration. Colloids Surf B Biointerfaces 2023; 232:113587. [PMID: 37844476 DOI: 10.1016/j.colsurfb.2023.113587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Bone tissue engineering scaffolds constructed from single-component organic materials have inherent limitations. Inspired by the hierarchical structure of physiological natural bone hard tissues, our research explores the construction of organic-inorganic composite scaffold for bone regeneration. In this study, we used a natural and readily obtainable extracellular matrix (ECM) material, i.e., decellularized small intestinal submucosa (SIS), to build the organic component of a phosphorylated hydroxyapatite nanocrystal-containing composite scaffold (nHA@SIS). Guided by polymer-induced liquid-precursor theory, we introduced a soluble inorganic mineralization solution to achieve an inorganic component of nHA@SIS. Using in situ mineralization, we successfully formed inorganic component within SIS and constructed nHA@SIS composite scaffold. We analyzed the physicochemical properties and the osteogenic role of nHA@SIS via a series of in vitro and in vivo studies. Compared with SIS scaffold, the nHA@SIS possessed suitable physicochemical properties, maintained the excellent cell activity of SIS and better guided reorganization of the cell skeleton, thereby achieving superior osteoconductivity and maintaining osteoinductivity at the protein and gene levels. Furthermore, the rat cranial defect area in the nHA@SIS scaffold group was mostly repaired after 12 weeks of implantation, with a larger amount of higher-density new bone tissue being visible at the edge and center than SIS and blank control group. This significantly improved in vivo osteogenic ability indicated the great potential of nHA@SIS for bone tissue engineering applications.
Collapse
Affiliation(s)
- Lin Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| | - Xiaoying Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| | - Mei Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yuhua Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China.
| | - Bowen Li
- Department of Stomatology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yuke Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| | - Yi Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| |
Collapse
|
6
|
Dalir Abdolahinia E, Hajisadeghi S, Moayedi Banan Z, Dadgar E, Delaramifar A, Izadian S, Sharifi S, Maleki Dizaj S. Potential applications of medicinal herbs and phytochemicals in oral and dental health: Status quo and future perspectives. Oral Dis 2023; 29:2468-2482. [PMID: 35699367 DOI: 10.1111/odi.14276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Herbal therapies are utilized to treat a broad diversity of diseases all over the globe. Although no clinical studies have been conducted to demonstrate the antibacterial, antimicrobial, and antiplaque characteristics of these plants, this does not imply that they are ineffectual as periodontal treatments or anti-cariogenic drugs. However, there is a scarcity of research confirming their efficacy and worth. SUBJECT Herbs are utilized in dentistry as antimicrobial, antineoplastic, antiseptic, antioxidant, and analgesics agents as well as for the elimination of bad breath. In addition, the application of herbal agents in tissue engineering improved the regeneration of oral and dental tissues. This study reviews the application of medicinal herbs for the treatment of dental and oral diseases in different aspects. METHODS This article focuses on current developments in the use of medicinal herbs and phytochemicals in oral and dental health. An extensive literature review was conducted via an Internet database, mostly PubMed. The articles included full-text publications written in English without any restrictions on a date. CONCLUSION Plants have been suggested, as an alternate remedy for oral-dental problems, and this vocation needs long-term dependability. More research on herbal medicine potential as pharmaceutical sources and/or therapies is needed.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Hajisadeghi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Zahra Moayedi Banan
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Delaramifar
- School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Sepideh Izadian
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
8
|
Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
10
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
11
|
Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021; 267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Organic-inorganic hybrid materials like bone, shells, and teeth can be found in nature, which are usually composed of biomacromolecules and nanoscale inorganic ingredients. Synergy of organic-inorganic components in hybrid materials render them outstanding and versatile performance. Chitosan is commonly used organic materials in bionic hybrid materials since its bioactive properties and could be controllable tailored by various means to meet complex conditions in different applications. Among these fabrication means, hybridization was favored for its convenience and efficiency. This review discusses three kinds of chitosan-based hybrid materials: hybridized with hydroxyapatite, calcium carbonate, and clay respectively, which are the representative of phosphate, carbonate, and hydrous aluminosilicates. Here, we reported the latest developments of the preparation methods, composition, structure and applications of these bioactive hybrid materials, especially in the biomedical field. Despite the great progress was made in bioactive organic-inorganic hybrid materials based on chitosan, some challenges and specific directions are still proposed for future development in this review.
Collapse
Affiliation(s)
- Xiaoyang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinchen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
12
|
Sun CK, Weng PW, Chang JZC, Lin YW, Tsuang FY, Lin FH, Tsai TH, Sun JS. Metformin-Incorporated Gelatin/Hydroxyapatite Nanofiber Scaffold for Bone Regeneration. Tissue Eng Part A 2021; 28:1-12. [PMID: 33971745 DOI: 10.1089/ten.tea.2021.0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering and regenerative medicine has gradually evolved as a promising therapeutic strategy to the modern health care of aging and diseased population. In this study, we developed a novel nanofibrous scaffold and verified its application in the critical bone defect regeneration. The metformin-incorporated nano-gelatin/hydroxyapatite fibers (NGF) was produced by electrospinning, cross-linked, and then characterized by X-ray powder diffractometer and Fourier-transform infrared spectroscopy. Cytotoxicity, cell adhesion, cell differentiation, and quantitative osteogenic gene and protein expression were analyzed by bone marrow stem cells (BMSCs) from rat. Rat forearm critical bone defect model was performed for the in vivo study. The NGF were characterized by their porous structures with proper interconnectivity without significant cytotoxic effects; the adhesion of BMSCs on the NGF could be enhanced. The osteogenic gene and protein expression were upregulated. Postimplantation, the new regenerated bone in bone defect was well demonstrated in the NGF samples. We demonstrated that the metformin-incorporated NGF greatly improved healing potential on the critical-size bone defect. Although metformin-incorporated NGF had advantageous effectiveness during bone regeneration, further validation is required before it can be applied to clinical applications. Impact statement Bone is the structure that supports the rest of the human body. Critical-size bone defect hinders the regeneration of damaged bone tissues and compromises the mechanical strength of the skeletal system. Characterized by their porous structures with proper interconnectivity, the electrospinning nano-gelatin/hydroxyapatite fibrous scaffold developed in this study can greatly improve the healing potential on the critical-size bone defect. Further validation can validate its potential clinical applications.
Collapse
Affiliation(s)
- Chung-Kai Sun
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Republic of China)
| | - Pei-Wei Weng
- Department of Orthopaedics, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei, Taiwan (Republic of China)
| | - Jenny Zwei-Chieng Chang
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan (Republic of China)
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Fon-Yih Tsuang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan (Republic of China)
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Republic of China)
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, College of Medicine, China Medical University, Taichung, Taiwan (Republic of China).,Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan (Republic of China)
| |
Collapse
|
13
|
Ferreira MR, Milani R, Rangel EC, Peppelenbosch M, Zambuzzi W. OsteoBLAST: Computational Routine of Global Molecular Analysis Applied to Biomaterials Development. Front Bioeng Biotechnol 2020; 8:565901. [PMID: 33117780 PMCID: PMC7578266 DOI: 10.3389/fbioe.2020.565901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
For bone purposes, surface modifications are a common trend in biomaterials research aiming to reduce the time necessary for osteointegration, culminating in faster recovery of patients. In this scenario, analysis of intracellular signaling pathways have emerged as an important and reliable strategy to predict biological responses from in vitro approaches. We have combined global analysis of intracellular protein phosphorylation, systems biology and bioinformatics into an early biomaterial analysis routine called OsteoBLAST. We employed the routine as follows: the PamChip tyrosine kinase assay was applied to mesenchymal stem cells grown on three distinct titanium surfaces: machined, dual acid-etched and nanoHA. Then, OsteoBLAST was able to identify the most reliable spots to further obtain the differential kinome profile and finally to allow a comparison among the different surfaces. Thereafter, NetworKIN, STRING, and Cytoscape were used to build and analyze a supramolecular protein-protein interaction network, and DAVID tools identified biological signatures in the differential kinome for each surface.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Renato Milani
- Bioquímica e Biologia Tecidual, Biology Institute, Universidade de Campinas (UNICAMP), São Paulo, Brazil
| | - Elidiane C Rangel
- Institute of Science and Technology, São Paulo State University (UNESP), São Paulo, Brazil
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willian Zambuzzi
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
14
|
The role of nanohydroxyapatite on the morphological, physical, and biological properties of chitosan nanofibers. Clin Oral Investig 2020; 25:3095-3103. [PMID: 33047204 DOI: 10.1007/s00784-020-03633-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effects of nanohydroxyapatite (nHAp) particles on the morphological, chemical, physical, and biological properties of chitosan electrospun nanofibers. MATERIALS AND METHODS nHAp particles with a 1.67 Ca/P ratio were synthesized via the aqueous precipitation method, incorporated into chitosan polymer solution (0.5 wt%), and electrospun into nHAp-loaded fibers (ChHa fibers). Neat chitosan fibers (nHAp-free, Ch fibers) were used as the control. The electrospun fiber mats were characterized using morphological, topographical, chemical, thermal, and a range of biological (antibacterial, antibiofilm, cell viability, and alkaline phosphatase [ALP] activity) analyses. Data were analyzed using ANOVA and Tukey's test (α = 0.05). RESULTS ChHa fibers demonstrated a bead-like morphology, with thinner (331 ± 110 nm) and smoother (Ra = 2.9 ± 0.3 μm) distribution as compared to the control fibers. Despite showing similar cell viability and ALP activity to Ch fibers, the ChHa fibers demonstrated greater antibacterial potential against most tested bacteria (except for P. intermedia), and higher antibiofilm activity against P. gingivalis biofilm. CONCLUSIONS The incorporation of nHAp particles did not jeopardize the overall morphology, topography, physical, and biological characteristics of the chitosan nanofibers. CLINICAL RELEVANCE The combination of nHAp particles with chitosan can be used to engineer bioactive, electrospun composite nanofibers with potential applications in regenerative dentistry.
Collapse
|
15
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
16
|
Kandalam U, Kawai T, Ravindran G, Brockman R, Romero J, Munro M, Ortiz J, Heidari A, Thomas R, Kuriakose S, Naglieri C, Ejtemai S, Kaltman SI. Predifferentiated Gingival Stem Cell-Induced Bone Regeneration in Rat Alveolar Bone Defect Model. Tissue Eng Part A 2020; 27:424-436. [PMID: 32729362 PMCID: PMC8098763 DOI: 10.1089/ten.tea.2020.0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cleft alveolus, a common birth defect of the maxillary bone, affects one in 700 live births every year. This defect is traditionally restored by autogenous bone grafts or allografts, which may possibly cause complications. Cell-based therapies using the mesenchymal stem cells (MSCs) derived from human gingiva (gingiva-derived mesenchymal stem cells [GMSCs]) is attracting the research interest due to their highly proliferative and multilineage differentiation capacity. Undifferentiated GMSCs expressed high level of MSC-distinctive surface antigens, including CD73, CD105, CD90, and CD166. Importantly, GMSCs induced with osteogenic medium for a week increased the surface markers of osteogenic phenotypes, such as CD10, CD92, and CD140b, indicating their osteogenic potential. The objective of this study was to assess the bone regenerative efficacy of predifferentiated GMSCs (dGMSCs) toward an osteogenic lineage in combination with a self-assembling hydrogel scaffold PuraMatrix™ (PM) and/or bone morphogenetic protein 2 (BMP2), on a rodent model of maxillary alveolar bone defect. A critical size maxillary alveolar defect of 7 mm × 1 mm × 1 mm was surgically created in athymic nude rats. The defect was filled with either PM/BMP2 or PM/dGMSCs or the combination of three (PM/dGMSCs/BMP2) and the bone regeneration was evaluated at 4 and 8 weeks postsurgery. New bone formation was evaluated by microcomputed tomography and histology using Hematoxylin and Eosin staining. The results demonstrated the absence of spontaneous bone healing, either at 4 or 8 weeks postsurgery in the defect group. However, the PM/dGMSCs/BMP2 group showed significant enhancement in bone regeneration at 4 and 8 weeks postsurgery, compared with the transplantation of individual material/cells alone. Apart from developing the smallest critical size defect, results showed that PM/dGMSCs/BMP2 could serve as a promising option for the regeneration of bone in the cranio/maxillofacial region in humans.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Toshihisa Kawai
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Geeta Ravindran
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ross Brockman
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Oral and Maxillofacial, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jorge Romero
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Matthew Munro
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Julian Ortiz
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Alireza Heidari
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ron Thomas
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sajish Kuriakose
- Department of Oral Medicine and Oral Surgery and College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Christopher Naglieri
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Shaileen Ejtemai
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Steven I Kaltman
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
17
|
Tian L, Zhang Z, Tian B, Zhang X, Wang N. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv 2020; 10:4805-4816. [PMID: 35495239 PMCID: PMC9049012 DOI: 10.1039/c9ra10275b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/19/2020] [Indexed: 11/21/2022] Open
Abstract
Biomaterial scaffolds play a critical role in bone tissue engineering. Moreover, 3D printing technology has enormous advantage in the manufacture of bioengineering scaffolds for patient-specific bone defect treatments. In order to provide an aseptic environment for bone regeneration, ε-poly-l-lysine (EPL), an antimicrobic cationic polypeptide, was used for surface modification of 3D printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds which were fabricated by fused deposition modeling (FDM) technology. The scaffold morphology and micro-structure were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transform infrared spectroscopy (FT-IR). The release profile surface roughness, open porosity, and mechanical properties of the scaffolds were evaluated. Cell adhesion, proliferation, differentiation potential and antibacterial properties were also examined. As a result, 3D printed PCL/HA scaffolds with interconnected pores showed a slightly rough surface and improved mechanical properties due to adding hydroxyapatite (HA) particles. After being modified by EPL, favorable biocompatibility and osteoconductivity of ε-poly-l-lysine/polycaprolactone/hydroxyapatite (EPL/PCL/HA) scaffolds were observed. Moreover, antibacterial activity of the EPL/PCL/HA scaffolds was apparent. As a consequence, the EPL/PCL/HA scaffolds had great potential for bone regeneration and prevention of infections. This would yield a patient-specific bioactive and antibacterial composite scaffold for advanced bone tissue engineering applications.
Collapse
Affiliation(s)
- Lijiao Tian
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University Beijing 100010 PR China
- Liangxiang Hospital of Beijing Fangshan District Beijing 100010 PR China
| | - Zhenting Zhang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University Beijing 100010 PR China
| | - Bin Tian
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University Beijing 100010 PR China
| | - Xin Zhang
- Liangxiang Hospital of Beijing Fangshan District Beijing 100010 PR China
| | - Na Wang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University Beijing 100010 PR China
| |
Collapse
|
18
|
Zhu J, Ye H, Deng D, Li J, Wu Y. Electrospun metformin-loaded polycaprolactone/chitosan nanofibrous membranes as promoting guided bone regeneration membranes: Preparation and characterization of fibers, drug release, and osteogenic activity in vitro. J Biomater Appl 2020; 34:1282-1293. [PMID: 31964207 DOI: 10.1177/0885328220901807] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Junjin Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilin Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Deng
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yingying Wu
- Department of Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, Deng H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym 2019; 230:115658. [PMID: 31887899 DOI: 10.1016/j.carbpol.2019.115658] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Promoting bone regeneration and repairing defects are urgent and critical challenges in orthopedic clinical practice. Research on bone substitute biomaterials is essential for improving the treatment strategies for bone regeneration. Chitin and its derivative, chitosan, are among the most abundant natural biomaterials and widely found in the shells of crustaceans. Chitin and chitosan are non-toxic, antibacterial, biocompatible, degradable, and have attracted significant attention in bone substitute biomaterials. Chitin/chitosan nanofibers and nanostructured scaffolds have large surface area to volume ratios and high porosities. These scaffolds can be fabricated by electrospinning, thermally induced phase separation and self-assembly, and are widely used in biomedical applications such as biological scaffolds, drug delivery, bacterial inhibition, and wound dressing. Recently, some chitin/chitosan-based nanofibrous scaffolds have been found structurally similar to bone's extracellular matrix and can assist in bone regeneration. This review outlines the biomedical applications and biological properties of chitin/chitosan-based nanofibrous scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Xiaowen Shi
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Huifeng Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
| | - Yumin Du
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
20
|
Watcharajittanont N, Putson C, Pripatnanont P, Meesane J. Layer-by-layer electrospun membranes of polyurethane/silk fibroin based on mimicking of oral soft tissue for guided bone regeneration. ACTA ACUST UNITED AC 2019; 14:055011. [PMID: 31342923 DOI: 10.1088/1748-605x/ab3502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Guided bone regeneration is an effective method that can enhance bone volume at a defect site of the mandible before material implantation. Layer-by-layer electrospun membranes of polyurethane/silk fibroin (SF) were fabricated to mimic oral soft tissue. The electrospun polyurethane fibers were initially fabricated into a membrane. Next, the polyurethane layer was covered with electrospun SF fibers at different thicknesses. Then, the SF layer was covered with electrospun polyurethane fibers. Afterward, the morphologies of the membranes were observed and analyzed by scanning electron microscopy. The physical properties of the membranes were evaluated from the contact angle and mechanical properties. The biological performances were evaluated by observing cell adhesion, viability and proliferation, alkaline phosphatase activity, and calcium content. The results demonstrated that the membrane with a thin SF core showed better physical properties and mechanical performance than the thicker SF cores. Finally, the results deduced that the membrane with a thin SF core was promising for guided bone regeneration.
Collapse
Affiliation(s)
- Nattawat Watcharajittanont
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | | | | |
Collapse
|
21
|
Heimbuck AM, Priddy-Arrington TR, Padgett ML, Llamas CB, Barnett HH, Bunnell BA, Caldorera-Moore ME. Development of Responsive Chitosan–Genipin Hydrogels for the Treatment of Wounds. ACS APPLIED BIO MATERIALS 2019; 2:2879-2888. [DOI: 10.1021/acsabm.9b00266] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Abitha M. Heimbuck
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Tyler R. Priddy-Arrington
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Madison L. Padgett
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Claire B. Llamas
- Department of Pharmacology, Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70118, United States
| | - Haley H. Barnett
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Bruce A. Bunnell
- Department of Pharmacology, Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70118, United States
| | - Mary E. Caldorera-Moore
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
| |
Collapse
|
22
|
Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine 2019; 14:4333-4351. [PMID: 31354264 PMCID: PMC6580939 DOI: 10.2147/ijn.s209431] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Given the enormous increase in the risks of bone and cartilage defects with the rise in the aging population, the current treatments available are insufficient for handling this burden, and the supply of donor organs for transplantation is limited. Therefore, tissue engineering is a promising approach for treating such defects. Advances in materials research and high-tech optimized fabrication of scaffolds have increased the efficiency of tissue engineering. Electrospun nanofibrous scaffolds and hydrogel scaffolds mimic the native extracellular matrix of bone, providing a support for bone and cartilage tissue engineering by increasing cell viability, adhesion, propagation, and homing, and osteogenic isolation and differentiation, vascularization, host integration, and load bearing. The use of these scaffolds with advanced three- and four-dimensional printing technologies has enabled customized bone grafting. In this review, we discuss the different approaches used for cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| |
Collapse
|
23
|
Balagangadharan K, Trivedi R, Vairamani M, Selvamurugan N. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr Polym 2019; 216:1-16. [PMID: 31047045 DOI: 10.1016/j.carbpol.2019.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Sinapic acid (SA) is a plant-derived phenolic compound known for its multiple biological properties, but its role in the promotion of bone formation is not yet well-studied. Moreover, the delivery of SA is hindered by its complex hydrophobic nature, limiting its bioavailability. In this study, we fabricated a drug delivery system using chitosan nanoparticles (nCS) loaded with SA at different concentrations. These were incorporated into polycaprolactone (PCL) fibers via an electrospinning method. nCS loaded with 50 μM SA in PCL fibers promoted osteoblast differentiation. Furthermore, SA treatment activated the osteogenesis signaling pathways in mouse mesenchymal stem cells. A critical-sized rat calvarial bone defect model system identified that the inclusion of SA into PCL/nCS fibers accelerated bone formation. Collectively, these data suggest that SA promoted osteoblast differentiation in vitro and bone formation in vivo, possibly by activating the TGF-β1/BMP/Smads/Runx2 signaling pathways, suggesting SA might have therapeutic benefits in bone regeneration.
Collapse
Affiliation(s)
- Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow 226031, Uttar Pradesh, India
| | - Mariappanadar Vairamani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
24
|
Bakopoulou A, Georgopoulou Α, Grivas I, Bekiari C, Prymak O, Loza Κ, Epple M, Papadopoulos GC, Koidis P, Chatzinikolaidou Μ. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration. Dent Mater 2018; 35:310-327. [PMID: 30527589 DOI: 10.1016/j.dental.2018.11.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/19/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Biomimetic chitosan/gelatin (CS/Gel) scaffolds have attracted great interest in tissue engineering of several tissues. However, limited information exists regarding the potential of combining CS/Gel scaffolds with oral cells, such as dental pulp stem cells (DPSCs), to produce customized constructs targeting alveolar/orofacial bone reconstruction, which has been the aim of the present study. METHODS Two scaffold types, designated as CS/Gel-0.1 and CS/Gel-1, were fabricated using 0.1 and 1% (v/v) respectively of the crosslinker glutaraldehyde (GTA). Scaffolds (n=240) were seeded with DPSCs with/without pre-exposure to recombinant human BMP-2. In vitro assessment included DPSCs characterization (flow cytometry), evaluation of viability/proliferation (live/dead staining, metabolic-based tests), osteo/odontogenic gene expression analysis (qRT-PCR) and structural/chemical characterization (scanning electron microscopy, SEM; energy dispersive X-ray spectroscopy, EDX; X-ray powder diffraction, XRD; thermogravimetry, TG). In vivo assessment included implantation of DPSC-seeded scaffolds in immunocompromised mice, followed by histology and SEM-EDX. Statistical analysis employed one/two-way ANOVA and Tukey's post-hoc tests (significance for p<0.05). RESULTS Both scaffolds supported cell viability/proliferation over 14 days in culture, showing extensive formation of a hydroxyapatite-rich nanocrystalline calcium phosphate phase. Differential expression patterns indicated GTA concentration to significantly affect the expression of osteo/odontogenic genes, with CS/Gel-0.1 scaffolds being more effective in upregulating DSPP, IBSP and Osterix. In vivo analysis demonstrated time-dependent production of a nanocrystalline, mineralized matrix at 6, 8 and 10 weeks, being more prominent in constructs bearing rhBMP-2 pre-treated cells. The latter showed higher amounts of osteoid and fully mineralized bone, as well as empty space reduction. SIGNIFICANCE These results reveal a promising strategy for orofacial bone tissue engineering.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | - Αnthie Georgopoulou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Ioannis Grivas
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, A.U.Th, Greece
| | - Chryssa Bekiari
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, A.U.Th, Greece
| | - Oleg Prymak
- Inorganic Chemistry & Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Germany
| | - Κateryna Loza
- Inorganic Chemistry & Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry & Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Germany
| | - George C Papadopoulos
- Department of Anatomy, Histology & Embryology, School of Veterinary Medicine, Faculty of Health Sciences, A.U.Th, Greece
| | - Petros Koidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece
| | - Μaria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece; Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece.
| |
Collapse
|
25
|
Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:941-954. [PMID: 30606606 DOI: 10.1016/j.msec.2018.11.081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials are of significant importance in biomedical applications as these biological macromolecules have moderately replaced classical tissue grafting techniques owing to its beneficial properties. Despite of its favourable advantages, poor mechanical and degradative properties of biomaterials are of great concern. To this regard, crosslinkers have emerged as a smart and promising tool to augment the biological functionality of biopolymers. Different crosslinkers have been extensively used in past decades to develop bone substitutes, but the implications of toxic response and adverse reactions are truly precarious after implantation. Traditional crosslinker like glutaraldehyde has been widely used in numerous bio-implants but the potential toxicity is largely being debated with many disproving views. As alternative, green chemicals, enzymatic and non-enzymatic chemicals, bi-functional epoxies, zero-length crosslinkers and physical crosslinkers have been introduced to achieve the desired properties of a bone substitute. In this review, systematic literature search was performed on PubMed database to identify the most commonly used crosslinkers for developing promising bone like materials. The relevant articles were identified, analysed and reviewed in this paper giving due importance to different crosslinking methodologies and comparing their effectiveness and efficacy in regard to material composition, scaffold production, crosslinker dosage, toxicity and immunogenicity. This review summarizes the recent developments in crosslinking mechanism with an emphasis placed on their ability to link proteins through bonding reactions. Finally, this study also covers the convergent and divergent methodologies of crosslinking strategies also giving special importance in retrieving the current limitations and future opportunities of crosslinking modalities in bone tissue engineering.
Collapse
|
26
|
Gangolli RA, Devlin SM, Gerstenhaber JA, Lelkes PI, Yang M. A Bilayered Poly (Lactic-Co-Glycolic Acid) Scaffold Provides Differential Cues for the Differentiation of Dental Pulp Stem Cells. Tissue Eng Part A 2018; 25:224-233. [PMID: 29984629 DOI: 10.1089/ten.tea.2018.0041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT In this article we used an FDA-approved biodegradable biomaterial, poly (lactic-co-glycolic acid) (PLGA 75:25) to generate a bilayered scaffold with the capacity to induce differential, layer-specific dentinogenic differentiation of dental pulp stem cells (DPSCs) in vitro. We surmise that such a scaffold can be used in conjunction with current regenerative endodontic procedures to help regenerating a physiologic dentin-pulp complex in vivo. We hypothesize that our scaffold in conjunction with DPSCs will advance current regenerative endodontics by restoring dentin and initiating the innervation and revascularization of the pulp.
Collapse
Affiliation(s)
- Riddhi A Gangolli
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Sean M Devlin
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Jonathan A Gerstenhaber
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Peter I Lelkes
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania.,2 Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Maobin Yang
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania.,2 Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Xue W, Yu J, Chen W. Plants and Their Bioactive Constituents in Mesenchymal Stem Cell-Based Periodontal Regeneration: A Novel Prospective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7571363. [PMID: 30175141 PMCID: PMC6098897 DOI: 10.1155/2018/7571363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Periodontitis is a common chronic inflammatory disease, which causes the destruction of both the soft and mineralized tissues. However, current treatments such as bone graft materials, barrier membranes, and protein products all have difficulties in regenerating the complete periodontal tissue structure. Stem cell-based tissue engineering has now emerged as one of the most effective treatments for the patients suffering from periodontal diseases. Plants not only can be substrates for life processes, but also contain hormones or functional molecules. Numbers of preclinical studies have revealed that products from plant can be successfully applied in modulating proliferation and differentiation of human mesenchymal stem cells. Plant-derived substances can induce stem cells osteogenic differentiation, and they also possess angiogenic potency. Furthermore, in the field of tissue engineering, plant-derived compounds or plant extracts can be incorporated with biomaterials or utilized as biomaterials for cell transplantation. So it is speculated that botanical products may become a new perspective in stem cell-based periodontal regeneration. However, the lack of achieving predict clinical efficacy and quality control has been the major impediment to its extensive application. This review gives an overview of the prospect of applying different plant-derived substances in various human mesenchymal stem cells-based periodontal regeneration.
Collapse
Affiliation(s)
- Wenqing Xue
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Endodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Wu Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
Lai WY, Feng SW, Chan YH, Chang WJ, Wang HT, Huang HM. In Vivo Investigation into Effectiveness of Fe₃O₄/PLLA Nanofibers for Bone Tissue Engineering Applications. Polymers (Basel) 2018; 10:E804. [PMID: 30960729 PMCID: PMC6404065 DOI: 10.3390/polym10070804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Fe₃O₄ nanoparticles were loaded into poly-l-lactide (PLLA) with concentrations of 2% and 5%, respectively, using an electrospinning method. In vivo animal experiments were then performed to evaluate the potential of the Fe₃O₄/PLLA nanofibrous material for bone tissue engineering applications. Bony defects with a diameter of 4 mm were prepared in rabbit tibias. Fe₃O₄/PLLA nanofibers were grafted into the drilled defects and histological examination and computed tomography (CT) image detection were performed after an eight-week healing period. The histological results showed that the artificial bony defects grafted with Fe₃O₄/PLLA nanofibers exhibited a visibly higher bone healing activity than those grafted with neat PLLA. In addition, the quantitative results from CT images revealed that the bony defects grafted with 2% and 5% Fe₃O₄/PLLA nanofibers, respectively, showed 1.9- and 2.3-fold increases in bone volume compared to the control blank sample. Overall, the results suggest that the Fe₃O₄/PLLA nanofibers fabricated in this study may serve as a useful biomaterial for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Wei-Yi Lai
- School of Organic and Polymeric, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ya-Hui Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Dental Department, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan.
| | - Hsin-Ta Wang
- School of Organic and Polymeric, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei 11031, Taiwan.
| |
Collapse
|
29
|
Jo YY, Kim SG, Kwon KJ, Kweon H, Chae WS, Yang WG, Lee EY, Seok H. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo. Int J Mol Sci 2017; 18:ijms18040858. [PMID: 28420224 PMCID: PMC5412440 DOI: 10.3390/ijms18040858] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/28/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to evaluate the in vivo bone regeneration capability of alginate (AL), AL/hydroxyapatite (HA), and AL/HA/silk fibroin (SF) composites. Forty Sprague Dawley rats were used for the animal experiments. Central calvarial bone (diameter: 8.0 mm) defects were grafted with AL, AL/HA, or AL/HA/SF. New bone formation was evaluated by histomorphometric analysis. To demonstrate the immunocompatibility of each group, the level of tumor necrosis factor (TNF)-α expression was studied by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) at eight weeks post implantation. Additionally, osteogenic markers, such as fibroblast growth factor (FGF)-23, osteoprotegerin (OPG), and Runt-related transcription factor (Runx2) were evaluated by qPCR or IHC at eight weeks post implantation. The AL/HA/SF group showed significantly higher new bone formation than did the control group (p = 0.044) and the AL group (p = 0.035) at four weeks post implantation. Additionally, the AL/HA/SF group showed lower relative TNF-α mRNA levels and higher FGF-23 mRNA levels than the other groups did at eight weeks post implantation. IHC results demonstrated that the AL/HA/SF group had lower TNF-α expression and higher OPG and Runx2 expression at eight weeks post implantation. Additionally, no evidence of the inflammatory reaction or giant cell formation was observed around the residual graft material. We concluded that the AL/HA/SF composite could be effective as a scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- You-Young Jo
- Sericultural & Apicultural Materials Division, National Institute of Agricultural Science, Wanju 55365, Korea.
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, Gangneung-Wonju National University, Gangneung 25457, Korea.
| | - Kwang-Jun Kwon
- Department of Oral and Maxillofacial Surgery, Gangneung-Wonju National University, Gangneung 25457, Korea.
| | - HaeYong Kweon
- Sericultural & Apicultural Materials Division, National Institute of Agricultural Science, Wanju 55365, Korea.
| | - Weon-Sik Chae
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 41566, Korea.
| | - Won-Geun Yang
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 41566, Korea.
| | - Eun-Young Lee
- Department of Oral and Maxillofacial Surgery, Chungbuk National University College of Medicine, Cheongju 28644, Korea.
- Department of Oral and Maxillofacial Surgery, Chungbuk National University Hospital, Cheongju 28644, Korea.
| | - Hyun Seok
- Department of Oral and Maxillofacial Surgery, Gangneung-Wonju National University, Gangneung 25457, Korea.
- Department of Oral and Maxillofacial Surgery, Chungbuk National University Hospital, Cheongju 28644, Korea.
| |
Collapse
|
30
|
Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. ScientificWorldJournal 2017; 2017:8639898. [PMID: 28567441 PMCID: PMC5439263 DOI: 10.1155/2017/8639898] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration. However, there is a wide variability in terms of physicochemical characteristics of chitosan used in some studies and its combinations with other biomaterials, making it difficult to compare results and standardize its properties. The current systematic review of literature on the use of chitosan for tissue regeneration consisted of a study of 478 articles in the PubMed database, which resulted, after applying inclusion criteria, in the selection of 61 catalogued, critically analysed works. The results demonstrated the effectiveness of chitosan-based biomaterials in 93.4% of the studies reviewed, whether or not combined with cells and growth factors, in the regeneration of various types of tissues in animals. However, the absence of clinical studies in humans, the inadequate experimental designs, and the lack of information concerning chitosan's characteristics limit the reproducibility and relevance of studies and the clinical applicability of chitosan.
Collapse
|
31
|
Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells: A review. Int J Biol Macromol 2016; 93:1366-1381. [DOI: 10.1016/j.ijbiomac.2016.03.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/28/2016] [Accepted: 03/06/2016] [Indexed: 12/11/2022]
|
32
|
Azeem A, Marani L, Fuller K, Spanoudes K, Pandit A, Zeugolis D. Influence of Nonsulfated Polysaccharides on the Properties of Electrospun Poly(lactic-co-glycolic acid) Fibers. ACS Biomater Sci Eng 2016; 3:1304-1312. [DOI: 10.1021/acsbiomaterials.6b00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - L. Marani
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - K. Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - K. Spanoudes
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. Pandit
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
33
|
de Misquita MRDOF, Bentini R, Goncalves F. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review. J Biomater Appl 2016; 31:625-636. [DOI: 10.1177/0885328216656476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone tissue engineering is an excellent alternative for the regeneration of large bone defects caused by trauma or bone pathologies. Scaffolds, stem cells, and bioactive molecules are the three key components of bone regeneration. Although a wide range of biomaterials of various compositions and structures has been proposed in the literature, these materials are rarely used in clinical applications. Therefore, more standardized studies are required to design scaffolds that enable better bone regeneration and are suitable for clinical use. The aim of this systematic review was to compare the performance of scaffolds used in preclinical animal studies to determine which class of materials has achieved a higher rate of bone neoformation (osteoinduction and osteoconduction). The selected studies were divided into three groups according to the following experimental models: studies that used subcutaneous models, bone defects in calvaria, and bone defects in long bones. Despite the large number of parameters in the included studies, we generally concluded that biomaterials containing calcium phosphates had important osteoinductive effects and were essential for better performance of the materials. Furthermore, natural polymers generally had better performance than synthetic polymers did, especially when the materials were associated with stem cells. The combination of materials from different classes was the most promising strategy for bone tissue regeneration.
Collapse
Affiliation(s)
| | | | - Flavia Goncalves
- Universidade Ibirapuera – Unidade Chacara Flora, Sao Paulo, Brazil
| |
Collapse
|
34
|
Omidvar N, Ganji F, Eslaminejad MB. In vitro
osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres. J Biomed Mater Res A 2016; 104:1657-67. [DOI: 10.1002/jbm.a.35695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/09/2016] [Accepted: 02/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Noushin Omidvar
- Biomedical Engineering Group, Chemical Engineering Faculty, Tarbiat Modares University; Tehran Iran
| | - Fariba Ganji
- Biomedical Engineering Group, Chemical Engineering Faculty, Tarbiat Modares University; Tehran Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| |
Collapse
|
35
|
Muzzarelli RAA, El Mehtedi M, Bottegoni C, Aquili A, Gigante A. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone. Mar Drugs 2015; 13:7314-38. [PMID: 26690453 PMCID: PMC4699241 DOI: 10.3390/md13127068] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/22/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022] Open
Abstract
The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan) hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the quality assessment of the gels are reviewed. The antibacterial activity of GEN-chitosan has been well assessed in the treatment of gastric infections supported by Helicobacter pylori. Therapies based on chitosan alginate crosslinked with genipin include stem cell transplantation, and development of contraction free biomaterials suitable for cartilage engineering. Collagen, gelatin and other proteins have been associated to said hydrogels in view of the regeneration of the cartilage. Viability and proliferation of fibroblasts were impressively enhanced upon addition of poly-l-lysine. The modulation of the osteocytes has been achieved in various ways by applying advanced technologies such as 3D-plotting and electrospinning of biomimetic scaffolds, with optional addition of nano hydroxyapatite to the formulations. A wealth of biotechnological advances and know-how has permitted reaching outstanding results in crucial areas such as cranio-facial surgery, orthopedics and dentistry. It is mandatory to use scaffolds fully characterized in terms of porosity, pore size, swelling, wettability, compressive strength, and degree of acetylation, if the osteogenic differentiation of human mesenchymal stem cells is sought: in fact, the novel characteristics imparted by GEN-chitosan must be simultaneously of physico-chemical and cytological nature. Owing to their high standard, the scientific publications dated 2010-2015 have met the expectations of an interdisciplinary audience.
Collapse
Affiliation(s)
- Riccardo A A Muzzarelli
- Faculty of Medicine, Polytechnic University of Marche, Via Tronto 10/A, Ancona IT-60126, Italy.
| | - Mohamad El Mehtedi
- Department of Industrial Engineering & Mathematical Sciences, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, Ancona IT-60131, Italy.
| | - Carlo Bottegoni
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Faculty of Medicine, Polytechnic University of Marche, Via Tronto 10/A, Ancona IT-60126, Italy.
| | - Alberto Aquili
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Faculty of Medicine, Polytechnic University of Marche, Via Tronto 10/A, Ancona IT-60126, Italy.
| | - Antonio Gigante
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Faculty of Medicine, Polytechnic University of Marche, Via Tronto 10/A, Ancona IT-60126, Italy.
| |
Collapse
|
36
|
Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. TISSUE ENGINEERING 2007; 13:2249-57. [PMID: 17536926 PMCID: PMC4948987 DOI: 10.1089/ten.2006.0306] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small pore sizes inherent to electrospun matrices can hinder efficient cellular ingrowth. To facilitate infiltration while retaining its extracellular matrix-like character, electrospinning was combined with salt leaching to produce a scaffold having deliberate, engineered delaminations. We made elegant use of a specific randomizing component of the electrospinning process, the Taylor Cone and the falling fiber beneath it, to produce a uniform, well-spread distribution of salt particles. After 3 weeks of culture, up to 4 mm of cellular infiltration was observed, along with cellular coverage of up to 70% within the delaminations. To our knowledge, this represents the first observation of extensive cellular infiltration of electrospun matrices. Infiltration appears to be driven primarily by localized proliferation rather than coordinated cellular locomotion. Cells also moved from the salt-generated porosity into the surrounding electrospun fiber matrix. Given that the details of salt deposition (amount, size, and number density) are far from optimized, the result provides a convincing illustration of the ability of mammalian cells to interact with appropriately tailored electrospun matrices. These layered structures can be precisely fabricated by varying the deposition interval and particle size conceivably to produce in vivo-like gradients in porosity such that the resulting scaffolds better resemble the desired final structure.
Collapse
Affiliation(s)
- Jin Nam
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|