1
|
Zhong J, Li W, Li H, Zhang J, Hou Z, Wang X, Zhou E, Lu K, Zhuang W, Sang H. A self-forming bone membrane generated by periosteum-derived stem cell spheroids enhances the repair of bone defects. Acta Biomater 2025; 193:185-201. [PMID: 39742905 DOI: 10.1016/j.actbio.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The periosteum, a highly specialized thin tissue, is instrumental in contributing to as much as 70 % of early bone formation. Recognizing the periosteum's vital physiological roles, the fabrication of a biomimetic periosteum has risen as an auspicious strategy for addressing extensive bone defects. In the study, we obtained such biomimetic periosteum by utilizing periosteum-derived stem cells (PDSCs) spheroids. These spheroids are induced to spontaneously generate a bioactive membrane on a delicate 3D-printed polycaprolactone (PCL) substrate. This process yields a biomimetic periosteum rich in the resources needed for bone repair. The in vitro evaluations demonstrated that this membrane can act as a repository for growth factors and stem cells. The release kinetics confirmed a sustained delivery of BMP-2 and VEGF, which promoted enhanced osteogenesis and angiogenesis in vitro, respectively. The in vivo results further highlighted robust bone regeneration from critical cranial defects upon the application of this biomimetic periosteum. The biomimetic periosteum, easily harvested and potent in bioactivity, presents substantial clinical potential, particularly for the treatment of critical-sized bone defects. STATEMENT OF SIGNIFICANCE: PDSC theoretically demonstrates substantial potential in membrane construction, a value we've harnessed in this pioneering application. By employing cell spheroids, we've successfully integrated a substantial number of cells into the membrane framework. PDSC spheroids exhibit the remarkable ability to self-assemble into functional membranes, endowing them with robust biological capabilities that enhance their performance in biological systems. The in vitro evaluations demonstrated that this membrane can act as a repository for growth factors and stem cells. The in vivo bone repair facilitated by this membrane is notably effective, characterized by superior bone quality and accelerated formation rates. This process mirrors the natural intramembrane ossification, offering a promising approach to bone integration and regeneration.
Collapse
Affiliation(s)
- Jintao Zhong
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| | - Wenhua Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| | - Hetong Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Jin Zhang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Xiao Wang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Enhui Zhou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Ke Lu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Weida Zhuang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| |
Collapse
|
2
|
Liang W, Zhou C, Liu X, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J Orthop Translat 2025; 50:257-273. [PMID: 39902262 PMCID: PMC11788687 DOI: 10.1016/j.jot.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Bone-related diseases like osteoarthritis and osteoporosis impact millions globally, affecting quality of life. Osteoporosis considerably enhances the probability of bone fractures of the wrist, hip, and spine. Enhancement and acceleration of functional bone development can be achieved through the sustained delivery of growth factors (GFs) and cells in biomaterial carriers. The delivery of bioactive compounds in a targeted, spatiotemporal way that most closely resembles the natural defect repair process can be achieved by designing the carrier system with established release kinetics. Furthermore, the carrier can serve as a substrate that mimics the extracellular matrix, facilitating osteoprogenitor cell infiltration and growth for integrative tissue healing. In this report, we explore the significance of GFs within the realm of bone and cartilage tissue engineering, encompassing their encapsulation and delivery methodologies, the kinetics of release, and their amalgamation with biomaterials and stem cells (SCs) to facilitate the mending of bone fractures. Moreover, the significance of GFs in evaluating the microenvironment of bone tissue through reciprocal signaling with cells and biomaterial scaffolds is emphasized which will serve as the foundation for prospective advances in bone and cartilage tissue engineering as well as therapeutic equipment. Nanoparticles are being used in regenerative medicine to promote bone regeneration and repair by delivering osteoinductive growth factors like BMP-2, VEGF, TGF-β. These nanocarriers allow controlled release, minimizing adverse effects and ensuring growth factors are concentrated at the injury site. They are also mixed with mesenchymal stem cells (MSCs) to improve their engraftment, differentiation, and survival. This approach is a key step in developing multi-model systems that more efficiently facilitate bone regeneration. Researchers are exploring smart nanoparticles with immunomodulatory qualities to improve bonre regeneration and reduce inflammation in injury site. Despite promising preclinical results, challenges include cost management, regulatory approval, and long term safety. However, incorporating stem cell transport and growth factors in nanoparticles could revolutionize bone regeneration and offer more personalized therapies for complex bone disorders and accidents. The translational potential of this article Stem cell transport and growth factors encapsulated in nanoparticles are becoming revolutionary methods for bone regeneration and repair. By encouraging stem cells to develop into osteoblasts, osteoinductive GFs like BMP-2, VEGF, and TGF-β can be delivered under control due to nanomaterials like nanoparticles, nanofibers, and nanotubes. By ensuring sustained release, these nanocarriers lessen adverse effects and enhance therapeutic results. In order to prove their survival and development, MCSs, which are essential for bone regeneration, are mixed with nanoparticles, frequently using scaffolds that resemble the ECM of bone. Furthermore, by adjusting to the injured environment and lowering inflammation, immunomodulatory nanostructures and stimuli-responsive nanomaterials can further maximize. While there are still shotcomings to overcome, including managing expenses, negotiating regulatory processes, and guaranteeing long-term safety, this method promises to outperform traditional bone grafting by providing quicker, more individualized, and more efficient treatments. Nano-embedded growth factors and stem cell technologies have the potential to revolutionize orthopedic therapy and significantly enhance patient outcomes with further research.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, China
| | - Xiankun Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
3
|
Childress PJ, Nielsen JJ, Bemenderfer TB, Dadwal UC, Chakraborty N, Harris JS, Bethel M, Alvarez MB, Tucker A, Wessel AR, Millikan PD, Wilhite JH, Engle A, Brinker A, Rytlewski JD, Scofield DC, Griffin KS, Shelley WC, Manikowski KJ, Jackson KL, Miller SA, Cheng YH, Ghosh J, Mulcrone PL, Srour EF, Yoder MC, Natoli RM, Shively KD, Gautam A, Hammamieh R, Low SA, Low PS, McKinley TO, Anglen JO, Lowery JW, Chu TMG, Kacena MA. Thrombopoietic agents enhance bone healing in mice, rats, and pigs. J Bone Miner Res 2024; 40:125-139. [PMID: 39566068 DOI: 10.1093/jbmr/zjae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Achieving bone union remains a significant clinical dilemma. The use of osteoinductive agents, specifically bone morphogenetic proteins (BMPs), has gained wide attention. However, multiple side effects, including increased incidence of cancer, have renewed interest in investigating alternatives that provide safer, yet effective bone regeneration. Here we demonstrate the robust bone healing capabilities of the main megakaryocyte (MK) growth factor, thrombopoietin (TPO), and second-generation TPO agents using multiple animal models, including mice, rats, and pigs. This bone healing activity is shown in two fracture models (critical-sized defect [CSD] and closed fracture) and with local or systemic administration. Our transcriptomic analyses, cellular studies, and protein arrays demonstrate that TPO enhances multiple cellular processes important to fracture healing, particularly angiogenesis, which is required for bone union. Finally, the therapeutic potential of thrombopoietic agents is high since they are used in the clinic for other indications (eg, thrombocytopenia) with established safety profiles and act upon a narrowly defined population of cells.
Collapse
Affiliation(s)
- Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Thomas B Bemenderfer
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Jonathan S Harris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Marta B Alvarez
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Aamir Tucker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Alexander R Wessel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Patrick D Millikan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jonathan H Wilhite
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Andrew Engle
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Alexander Brinker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jeffrey D Rytlewski
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - David C Scofield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kaitlyn S Griffin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - W Christopher Shelley
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kelli J Manikowski
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, United States
| | - Krista L Jackson
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, United States
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Patrick L Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| | - Edward F Srour
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Karl D Shively
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Stewart A Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Philip S Low
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jeffrey O Anglen
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, United States
| | - Tien-Min G Chu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, United States
| |
Collapse
|
4
|
Lee S, Kim JH, Kim YH, Hong J, Kim WK, Jin S, Kang BJ. Sustained BMP-2 delivery via alginate microbeads and polydopamine-coated 3D-Printed PCL/β-TCP scaffold enhances bone regeneration in long bone segmental defects. J Orthop Translat 2024; 49:11-22. [PMID: 39420946 PMCID: PMC11483278 DOI: 10.1016/j.jot.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background/Objective Repair of long bone defects remains a major challenge in clinical practice, necessitating the use of bone grafts, growth factors, and mechanical stability. Hence, a combination therapy involving a 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) scaffold coated with polydopamine (PDA) and alginate microbeads (AM) for sustained delivery of bone morphogenetic protein-2 (BMP-2) was investigated to treat long bone segmental defects. Methods Several in vitro analyses were performed to evaluate the scaffold osteogenic effects in vitro such as PDA surface modification, namely, hydrophilicity and cell adhesion; cytotoxicity and BMP-2 release kinetics using CCK-8 assay and ELISA, respectively; osteogenic differentiation in canine adipose-derived mesenchymal stem cells (Ad-MSCs); formation of mineralized nodules using ALP staining and ARS staining; and mRNA expression of osteogenic differentiation markers using RT-qPCR. Bone regeneration in femoral bone defects was evaluated in vivo using a rabbit femoral segmental bone defect model by performing radiography, micro-computed tomography, and histological observation (hematoxylin and eosin and Masson's trichrome staining). Results The PDA-coated 3D-printed scaffold demonstrated increased hydrophilicity, cell adhesion, and cell proliferation compared with that of the control. BMP-2 release kinetics assessment showed that BMP-2 AM showed a reduced initial burst and continuous release for 28 days. In vitro co-culture with canine Ad-MSCs showed an increase in mineralization and mRNA expression of osteogenic markers in the BMP-2 AM group compared with that of the BMP-2-adsorbed scaffold group. In vivo bone regeneration evaluation 12 weeks after surgery showed that the BMP-2 AM/PDA group exhibited the highest bone volume in the scaffold, followed by the BMP-2/PDA group. High cortical bone connectivity was observed in the PDA-coated scaffold groups. Conclusion These findings suggest that the combined use of PDA-coated 3D-printed bone scaffolds and BMP-2 AM can successfully induce bone regeneration even in load-bearing bone segmental defects. The translational potential of this article A 3D-printed PCL/β-TCP scaffold was fabricated to mimic the cortical bone of the femur. Along with the application of PDA surface modification and sustained BMP-2 release via AM, the developed scaffold could provide suitable osteoconduction, osteoinduction, and osteogenesis in both in vitro settings and in vivo rabbit femoral segmental bone defect models. Therefore, our findings suggest a promising therapeutic option for treating challenging long bone segmental defects, with potential for future clinical application.
Collapse
Affiliation(s)
- Seoyun Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Hun Kim
- Department of Mechanical System Engineering, Graduate School of Knowledge-based Technology and Energy, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Yong-Hun Kim
- T&R Biofab Co. Ltd., Gyeonggi, 15073, South Korea
| | - Jihyeock Hong
- Department of Mechanical Engineering, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Songwan Jin
- T&R Biofab Co. Ltd., Gyeonggi, 15073, South Korea
- Department of Mechanical Engineering, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Yu Y, Chen R, Chen X, Wang J, Liu C. Regulating the bioactivity of non-glycosylated recombinant human bone morphogenetic protein-2 to enhance bone regeneration. Bioact Mater 2024; 38:169-180. [PMID: 38711759 PMCID: PMC11070760 DOI: 10.1016/j.bioactmat.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is the predominant growth factor that effectively induces osteogenic differentiation in orthopedic procedures. However, the bioactivity and stability of rhBMP-2 are intrinsically associated with its sequence, structure, and storage conditions. In this study, we successfully determined the amino acid sequence and protein secondary structure model of non-glycosylated rhBMP-2 expressed by an E. coli expression system through X-ray crystal structure analysis. Furthermore, we observed that acidic storage conditions enhanced the proliferative and osteoinductive activity of rhBMP-2. Although the osteogenic activity of non-glycosylated rhBMP-2 is relatively weaker compared to glycosylated rhBMP-2; however, this discrepancy can be mitigated by incorporating exogenous chaperone molecules. Overall, such information is crucial for rationalizing the design of stabilization methods and enhancing the bioactivity of rhBMP-2, which may also be applicable to other growth factors.
Collapse
Affiliation(s)
- Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rui Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xinye Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
6
|
Liu X, Astudillo Potes MD, Dashtdar B, Schreiber AC, Tilton M, Li L, Elder BD, Lu L. 3D Stem Cell Spheroids with 2D Hetero-Nanostructures for In Vivo Osteogenic and Immunologic Modulated Bone Repair. Adv Healthc Mater 2024; 13:e2303772. [PMID: 38271276 PMCID: PMC11404522 DOI: 10.1002/adhm.202303772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 01/27/2024]
Abstract
3D stem cell spheroids have immense potential for various tissue engineering applications. However, current spheroid fabrication techniques encounter cell viability issues due to limited oxygen access for cells trapped within the core, as well as nonspecific differentiation issues due to the complicated environment following transplantation. In this study, functional 3D spheroids are developed using mesenchymal stem cells with 2D hetero-nanostructures (HNSs) composed of single-stranded DNA (ssDNA) binding carbon nanotubes (sdCNTs) and gelatin-bind black phosphorus nanosheets (gBPNSs). An osteogenic molecule, dexamethasone (DEX), is further loaded to fabricate an sdCNTgBP-DEX HNS. This approach aims to establish a multifunctional cell-inductive 3D spheroid with improved oxygen transportation through hollow nanotubes, stimulated stem cell growth by phosphate ions supplied from BP oxidation, in situ immunoregulation, and osteogenesis induction by DEX molecules after implantation. Initial transplantation of the 3D spheroids in rat calvarial bone defect shows in vivo macrophage shifts to an M2 phenotype, leading to a pro-healing microenvironment for regeneration. Prolonged implantation demonstrates outstanding in vivo neovascularization, osteointegration, and new bone regeneration. Therefore, these engineered 3D spheroids hold great promise for bone repair as they allow for stem cell delivery and provide immunoregulative and osteogenic signals within an all-in-one construct.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
7
|
Lang A, Benn A, Collins JM, Wolter A, Balcaen T, Kerckhofs G, Zwijsen A, Boerckel JD. Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis in juvenile bone. Commun Biol 2024; 7:315. [PMID: 38480819 PMCID: PMC10937971 DOI: 10.1038/s42003-024-05915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Skeletal development depends on coordinated angiogenesis and osteogenesis. Bone morphogenetic proteins direct bone formation in part by activating SMAD1/5 signaling in osteoblasts. However, the role of SMAD1/5 in skeletal endothelium is unknown. Here, we found that endothelial cell-conditional SMAD1/5 depletion in juvenile mice caused metaphyseal and diaphyseal hypervascularity, resulting in altered trabecular and cortical bone formation. SMAD1/5 depletion induced excessive sprouting and disrupting the morphology of the metaphyseal vessels, with impaired anastomotic loop formation at the chondro-osseous junction. Endothelial SMAD1/5 depletion impaired growth plate resorption and, upon long-term depletion, abrogated osteoprogenitor recruitment to the primary spongiosa. Finally, in the diaphysis, endothelial SMAD1/5 activity was necessary to maintain the sinusoidal phenotype, with SMAD1/5 depletion inducing formation of large vascular loops and elevated vascular permeability. Together, endothelial SMAD1/5 activity sustains skeletal vascular morphogenesis and function and coordinates growth plate remodeling and osteoprogenitor recruitment dynamics in juvenile mouse bone.
Collapse
Affiliation(s)
- Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden (TUD), Fetscherstrasse 74, Dresden, 01307, Germany.
| | - Andreas Benn
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, 3000, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Joseph M Collins
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Angelique Wolter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| | - Tim Balcaen
- Institute of Mechanics, Materials and Civil Engineering, Biomechanics lab, UCLouvain, Louvain-la-Neuve, 1348, Belgium
- Institute of Experimental and Clinical Research, Pole of Morphology, UCLouvain, Brussels, 1200, Belgium
- KU Leuven, Department of Chemistry, Sustainable Chemistry for Metals and Molecules, Leuven, 3000, Belgium
| | - Greet Kerckhofs
- Institute of Mechanics, Materials and Civil Engineering, Biomechanics lab, UCLouvain, Louvain-la-Neuve, 1348, Belgium
- Institute of Experimental and Clinical Research, Pole of Morphology, UCLouvain, Brussels, 1200, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, 3001, Belgium
- Division for Skeletal Tissue Engineering, Prometheus, KU Leuven, Leuven, 3000, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, 3000, Belgium
| | - Joel D Boerckel
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Jang HJ, Yoon JK. The Role of Vasculature and Angiogenic Strategies in Bone Regeneration. Biomimetics (Basel) 2024; 9:75. [PMID: 38392121 PMCID: PMC10887147 DOI: 10.3390/biomimetics9020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Bone regeneration is a complex process that involves various growth factors, cell types, and extracellular matrix components. A crucial aspect of this process is the formation of a vascular network, which provides essential nutrients and oxygen and promotes osteogenesis by interacting with bone tissue. This review provides a comprehensive discussion of the critical role of vasculature in bone regeneration and the applications of angiogenic strategies, from conventional to cutting-edge methodologies. Recent research has shifted towards innovative bone tissue engineering strategies that integrate vascularized bone complexes, recognizing the significant role of vasculature in bone regeneration. The article begins by examining the role of angiogenesis in bone regeneration. It then introduces various in vitro and in vivo applications that have achieved accelerated bone regeneration through angiogenesis to highlight recent advances in bone tissue engineering. This review also identifies remaining challenges and outlines future directions for research in vascularized bone regeneration.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
10
|
López-Andaluz J, Flores-Fraile J, Javier-Borrajo, Blanco-Antona L, García-Carrodeguas R, López-Montañés D, García-Cenador M, García-Criado F. Assessment of rhBMP-2-loaded bovine hydroxyapatite granules in the guided bone regeneration of critical bone defect in rat mandible bone. J Dent Sci 2024; 19:276-284. [PMID: 38303875 PMCID: PMC10829555 DOI: 10.1016/j.jds.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Indexed: 02/03/2024] Open
Affiliation(s)
- J. López-Andaluz
- Department of Surgery, University of Salamanca, Salamanca, Spain
| | - J. Flores-Fraile
- Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Javier-Borrajo
- Department of Physics, Engineering and Medical Radiology, University of Salamanca, Salamanca, Spain
| | - L. Blanco-Antona
- Department of Surgery, University of Salamanca, Salamanca, Spain
| | - R. García-Carrodeguas
- Department de R&D and Biomaterial Production, Noricum S.L, Madrid, Spain
- Biosanitary Research Institute (IBSAL), Salamanca, Spain
| | | | - M.B. García-Cenador
- Department of Surgery, University of Salamanca, Salamanca, Spain
- Biosanitary Research Institute (IBSAL), Salamanca, Spain
| | - F.J. García-Criado
- Department of Surgery, University of Salamanca, Salamanca, Spain
- Biosanitary Research Institute (IBSAL), Salamanca, Spain
| |
Collapse
|
11
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
12
|
Wang W, Zhang G, Wang Y, Ran J, Chen L, Wei Z, Zou H, Cai Y, Han W. An injectable and thermosensitive hydrogel with nano-aided NIR-II phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration. J Nanobiotechnology 2023; 21:367. [PMID: 37805588 PMCID: PMC10559606 DOI: 10.1186/s12951-023-02124-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Periodontitis is a common public health problem worldwide and an inflammatory disease with irregular defect of alveolar bone caused by periodontal pathogens. Both antibacterial therapy and bone regeneration are of great importance in the treatment of periodontitis. In this study, injectable and thermosensitive hydrogels with 3D networks were used as carriers for controlled release of osteo-inductive agent (BMP-2) and Near Infrared Region-II (NIR-II) phototherapy agents (T8IC nano-particles). T8IC nano-particles were prepared by reprecipitation and acted as photosensitizer under 808 nm laser irradiation. Besides, we promoted photodynamic therapy (PDT) through adding H2O2 to facilitate the antibacterial effect instead of increasing the temperature of photothermal therapy (PTT). Hydrogel + T8IC + Laser + BMP-2 + H2O2 incorporated with mild PTT (45 °C), enhanced PDT and sustained release of BMP-2. It was present with excellent bactericidal effect, osteogenic induction and biosafety both in vitro and in vivo. Besides, immunohistochemistry staining and micro-CT analyses had confirmed that PTT and PDT could promote bone regeneration through alleviating inflammation state. Altogether, this novel approach with synergistic antibacterial effect, anti-inflammation and bone regeneration has a great potential for the treatment of periodontitis in the future.
Collapse
Affiliation(s)
- Weixiang Wang
- Fourth Clinical Division, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Guorong Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jianchuan Ran
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Lin Chen
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zheng Wei
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Huihui Zou
- Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
- Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
13
|
Niu Y, Chen L, Wu T. Recent Advances in Bioengineering Bone Revascularization Based on Composite Materials Comprising Hydroxyapatite. Int J Mol Sci 2023; 24:12492. [PMID: 37569875 PMCID: PMC10419613 DOI: 10.3390/ijms241512492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The natural healing process of bone is impaired in the presence of tumors, trauma, or inflammation, necessitating external assistance for bone regeneration. The limitations of autologous/allogeneic bone grafting are still being discovered as research progresses. Bone tissue engineering (BTE) is now a crucial component of treating bone injuries and actively works to promote vascularization, a crucial stage in bone repair. A biomaterial with hydroxyapatite (HA), which resembles the mineral makeup of invertebrate bones and teeth, has demonstrated high osteoconductivity, bioactivity, and biocompatibility. However, due to its brittleness and porosity, which restrict its application, scientists have been prompted to explore ways to improve its properties by mixing it with other materials, modifying its structural composition, improving fabrication techniques and growth factor loading, and co-cultivating bone regrowth cells to stimulate vascularization. This review scrutinizes the latest five-year research on HA composite studies aimed at amplifying vascularization in bone regeneration.
Collapse
Affiliation(s)
- Yifan Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tianfu Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
14
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
15
|
He Y, Liang L, Luo C, Zhang ZY, Huang J. Strategies for in situ tissue engineering of vascularized bone regeneration (Review). Biomed Rep 2023; 18:42. [PMID: 37325184 PMCID: PMC10265129 DOI: 10.3892/br.2023.1625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 06/17/2023] Open
Abstract
Numerous physiological processes occur following bone fracture, including inflammatory cell recruitment, vascularization, and callus formation and remodeling. In particular circumstances, such as critical bone defects or osteonecrosis, the regenerative microenvironment is compromised, rendering endogenous stem/progenitor cells incapable of fully manifesting their reparative potential. Consequently, external interventions, such as grafting or augmentation, are frequently necessary. In situ bone tissue engineering (iBTE) employs cell-free scaffolds that possess microenvironmental cues, which, upon implantation, redirect the behavior of endogenous stem/progenitor cells towards a pro-regenerative inflammatory response and reestablish angiogenesis-osteogenesis coupling. This process ultimately results in vascularized bone regeneration (VBR). In this context, a comprehensive review of the current techniques and modalities in VBR-targeted iBTE technology is provided.
Collapse
Affiliation(s)
- Yijun He
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Lin Liang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Cheng Luo
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Jiongfeng Huang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|
16
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Wu Y, Li X, Sun Y, Tan X, Wang C, Wang Z, Ye L. Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact Mater 2023; 20:111-125. [PMID: 35663335 PMCID: PMC9133584 DOI: 10.1016/j.bioactmat.2022.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Although biomimetic hydrogels play an essential role in guiding bone remodeling, reconstructing large bone defects is still a significant challenge since bioinspired gels often lack osteoconductive capacity, robust mechanical properties and suitable antioxidant ability for bone regeneration. To address these challenges, we first engineered molecular design of hydrogels (gelatin/polyethylene glycol diacrylate/2-(dimethylamino)ethyl methacrylate, GPEGD), where their mechanical properties were significantly enhanced via introducing trace amounts of additives (0.5 wt%). The novel hybrid hydrogels show high compressive strength (>700 kPa), stiff modulus (>170 kPa) and strong ROS-scavenging ability. Furthermore, to endow the GPEGD hydrogels excellent osteoinductions, novel biocompatible, antioxidant and BMP-2 loaded polydopamine/heparin nanoparticles (BPDAH) were developed for functionalization of the GPEGD gels (BPDAH-GPEGD). In vitro results indicate that the antioxidant BPDAH-GPEGD is able to deplete elevated ROS levels to protect cells viability against ROS damage. More importantly, the BPDAH-GPEGD hydrogels have good biocompatibility and promote the osteo differentiation of preosteoblasts and bone regenerations. At 4 and 8 weeks after implantation of the hydrogels in a mandibular bone defect, Micro-computed tomography and histology results show greater bone volume and enhancements in the quality and rate of bone regeneration in the BPDAH-GPEGD hydrogels. Thus, the multiscale design of stiffening and ROS scavenging hydrogels could serve as a promising material for bone regeneration applications. Trace additives of DMAEMA markedly enhanced the mechanical performances of the gelatin-based hydrogels through molecular induced multiple crosslinking structures. Molecular design strategy combined with bioactive nanocomposites have a synergistically effects on promoting ROS scavenging ability and osteoactivity of the biomimetic hydrogels.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenming Wang
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| | - Ling Ye
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
18
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
19
|
Lang A, Benn A, Wolter A, Balcaen T, Collins J, Kerckhofs G, Zwijsen A, Boerckel JD. Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis during long bone growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.522994. [PMID: 36712097 PMCID: PMC9881901 DOI: 10.1101/2023.01.07.522994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Skeletal development depends on coordinated angiogenesis and osteogenesis. Bone morphogenetic proteins direct bone development by activating SMAD1/5 signaling in osteoblasts. However, the role of SMAD1/5 in skeletal endothelium is unknown. Here, we found that endothelial cell-conditional SMAD1/5 depletion in juvenile mice caused metaphyseal and diaphyseal hypervascularity, resulting in altered cancellous and cortical bone formation. SMAD1/5 depletion induced excessive sprouting, disrupting the columnar structure of the metaphyseal vessels and impaired anastomotic loop morphogenesis at the chondro-osseous junction. Endothelial SMAD1/5 depletion impaired growth plate resorption and, upon long term depletion, abrogated osteoprogenitor recruitment to the primary spongiosa. Finally, in the diaphysis, endothelial SMAD1/5 activity was necessary to maintain the sinusoidal phenotype, with SMAD1/5 depletion inducing formation of large vascular loops, featuring elevated endomucin expression, ectopic tip cell formation, and hyperpermeability. Together, endothelial SMAD1/5 activity sustains skeletal vascular morphogenesis and function and coordinates growth plate remodeling and osteoprogenitor recruitment dynamics during bone growth.
Collapse
Affiliation(s)
- Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Andreas Benn
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Angelique Wolter
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Joseph Collins
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - An Zwijsen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Joel D. Boerckel
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers (Basel) 2022; 14:polym14224906. [PMID: 36433033 PMCID: PMC9695274 DOI: 10.3390/polym14224906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Large bone defects resulting from trauma, infection and tumors are usually difficult for the body's repair mechanisms to heal spontaneously. Generally, various types of bones and orthopedic implants are adopted to enhance bone repair and regeneration in the clinic. Due to the limitations of traditional treatments, bone defect repair is still a compelling challenge for orthopedic surgeons. In recent years, bone tissue engineering has become a potential option for bone repair and regeneration. Amidst the various scaffolds for bone tissue engineering applications, hydrogels are considered a new type of non-toxic, non-irritating and biocompatible materials, which are widely used in the biomedicine field currently. Some studies have demonstrated that hydrogels can provide a three-dimensional network structure similar to a natural extracellular matrix for tissue regeneration and can be used to transport cells, biofactors, nutrients and drugs. Therefore, hydrogels may have the potential to be multifunctional sustained-release drug carriers in the treatment of bone defects. The recent applications of different types of hydrogels in bone defect repair were briefly reviewed in this paper.
Collapse
|
21
|
Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat 2022; 34:73-84. [PMID: 35782964 PMCID: PMC9213234 DOI: 10.1016/j.jot.2022.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Background Bone defects after trauma, infection, or tumour resection present a challenge for patients and clinicians. To date, autologous bone graft (ABG) is the gold standard for bone regeneration. To address the limitations of ABG such as limited harvest volume as well as overly fast remodelling and resorption, a new treatment strategy of scaffold-guided bone regeneration (SGBR) was developed. In a well-characterized sheep model of large to extra-large tibial segmental defects, three-dimensional (3D) printed composite scaffolds have shown clinically relevant biocompatibility and osteoconductive capacity in SGBR strategies. Here, we report four challenging clinical cases with large complex posttraumatic long bone defects using patient-specific SGBR as a successful treatment. Methods After giving informed consent computed tomography (CT) images were used to design patient-specific biodegradable medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP, 80:20 wt%) scaffolds. The CT scans were segmented using Materialise Mimics to produce a defect model and the scaffold parts were designed with Autodesk Meshmixer. Scaffold prototypes were 3D-printed to validate robust clinical handling and bone defect fit. The final scaffold design was additively manufactured under Food and Drug Administration (FDA) guidelines for patient-specific and custom-made implants by Osteopore International Pte Ltd. Results Four patients (age: 23–42 years) with posttraumatic lower extremity large long bone defects (case 1: 4 cm distal femur, case 2: 10 cm tibia shaft, case 3: complex malunion femur, case 4: irregularly shaped defect distal tibia) are presented. After giving informed consent, the patients were treated surgically by implanting a custom-made mPCL-TCP scaffold loaded with ABG (case 2: additional application of recombinant human bone morphogenetic protein-2) harvested with the Reamer-Irrigator-Aspirator system (RIA, Synthes®). In all cases, the scaffolds matched the actual anatomical defect well and no perioperative adverse events were observed. Cases 1, 3 and 4 showed evidence of bony ingrowth into the large honeycomb pores (pores >2 mm) and fully interconnected scaffold architecture with indicative osseous bridges at the bony ends on the last radiographic follow-up (8–9 months after implantation). Comprehensive bone regeneration and full weight bearing were achieved in case 2 at follow-up 23 months after implantation. Conclusion This study shows the bench to bedside translation of guided bone regeneration principles into scaffold-based bone tissue engineering. The scaffold design in SGBR should have a tissue-specific morphological signature which stimulates and directs the stages from the initial host response towards the full regeneration. Thereby, the scaffolds provide a physical niche with morphology and biomaterial properties that allow cell migration, proliferation, and formation of vascularized tissue in the first one to two months, followed by functional bone formation and the capacity for physiological bone remodelling. Great design flexibility of composite scaffolds to support the one to three-year bone regeneration was observed in four patients with complex long bone defects. The translational potential of this article This study reports on the clinical efficacy of SGBR in the treatment of long bone defects. Moreover, it presents a comprehensive narrative of the rationale of this technology, highlighting its potential for bone regeneration treatment regimens in patients with any type of large and complex osseous defects.
Collapse
|
22
|
Xu Y, Huang M, He W, He C, Chen K, Hou J, Huang M, Jiao Y, Liu R, Zou N, Liu L, Li C. Heterotopic Ossification: Clinical Features, Basic Researches, and Mechanical Stimulations. Front Cell Dev Biol 2022; 10:770931. [PMID: 35145964 PMCID: PMC8824234 DOI: 10.3389/fcell.2022.770931] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is defined as the occurrence of extraskeletal bone in soft tissue. Although this pathological osteogenesis process involves the participation of osteoblasts and osteoclasts during the formation of bone structures, it differs from normal physiological osteogenesis in many features. In this article, the primary characteristics of heterotopic ossification are reviewed from both clinical and basic research perspectives, with a special highlight on the influence of mechanics on heterotopic ossification, which serves an important role in the prophylaxis and treatment of HO.
Collapse
Affiliation(s)
- Yili Xu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
23
|
Dadwal UC, de Andrade Staut C, Tewari NP, Awosanya OD, Mendenhall SK, Valuch CR, Nagaraj RU, Blosser RJ, Li J, Kacena MA. Effects of diet, BMP-2 treatment, and femoral skeletal injury on endothelial cells derived from the ipsilateral and contralateral limbs. J Orthop Res 2022; 40:439-448. [PMID: 33713476 PMCID: PMC8435543 DOI: 10.1002/jor.25033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Type 2 diabetes (T2D) results in physiological and structural changes in bone, contributing to poor fracture healing. T2D compromises microvascular performance, which can negatively impact bone regeneration as angiogenesis is required for new bone formation. We examined the effects of bone morphogenetic protein-2 (BMP-2) administered locally at the time of femoral segmental bone defect (SBD) surgery, and its angiogenic impacts on endothelial cells (ECs) isolated from the ipsilateral or contralateral tibia in T2D mice. Male C57BL/6 mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) starting at 8 weeks. After 12 weeks, the T2D phenotype in HFD mice was confirmed via glucose and insulin tolerance testing and echoMRI, and all mice underwent SBD surgery. Mice were treated with BMP-2 (5 µg) or saline at the time of surgery. Three weeks postsurgery, bone marrow ECs were isolated from ipsilateral and contralateral tibias, and proliferation, angiogenic potential, and gene expression of the cells was analyzed. BMP-2 treatment increased EC proliferation by two fold compared with saline in LFD contralateral tibia ECs, but no changes were seen in surgical tibia EC proliferation. BMP-2 treatment enhanced vessel-like structure formation in HFD mice whereas, the opposite was observed in LFD mice. Still, in BMP-2 treated LFD mice, ipsilateral tibia ECs increased expression of CD31, FLT-1, ANGPT1, and ANGPT2. These data suggest that the modulating effects of T2D and BMP-2 on the microenvironment of bone marrow ECs may differentially influence angiogenic properties at the fractured limb versus the contralateral limb.
Collapse
Affiliation(s)
- Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | | | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | | | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa Ann Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA,Corresponding Author: Melissa A. Kacena, Ph.D., Director of Basic and Translational Research, Professor of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN 46202, (317) 278-3482 – office, (317) 278-9568 – fax,
| |
Collapse
|
24
|
Hatt LP, Thompson K, Helms JA, Stoddart MJ, Armiento AR. Clinically relevant preclinical animal models for testing novel cranio-maxillofacial bone 3D-printed biomaterials. Clin Transl Med 2022; 12:e690. [PMID: 35170248 PMCID: PMC8847734 DOI: 10.1002/ctm2.690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Bone tissue engineering is a rapidly developing field with potential for the regeneration of craniomaxillofacial (CMF) bones, with 3D printing being a suitable fabrication tool for patient-specific implants. The CMF region includes a variety of different bones with distinct functions. The clinical implementation of tissue engineering concepts is currently poor, likely due to multiple reasons including the complexity of the CMF anatomy and biology, and the limited relevance of the currently used preclinical models. The 'recapitulation of a human disease' is a core requisite of preclinical animal models, but this aspect is often neglected, with a vast majority of studies failing to identify the specific clinical indication they are targeting and/or the rationale for choosing one animal model over another. Currently, there are no suitable guidelines that propose the most appropriate animal model to address a specific CMF pathology and no standards are established to test the efficacy of biomaterials or tissue engineered constructs in the CMF field. This review reports the current clinical scenario of CMF reconstruction, then discusses the numerous limitations of currently used preclinical animal models employed for validating 3D-printed tissue engineered constructs and the need to reduce animal work that does not address a specific clinical question. We will highlight critical research aspects to consider, to pave a clinically driven path for the development of new tissue engineered materials for CMF reconstruction.
Collapse
Affiliation(s)
- Luan P. Hatt
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
- Department of Health Sciences and TechonologyInstitute for BiomechanicsETH ZürichZürichSwitzerland
| | - Keith Thompson
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Jill A. Helms
- Division of Plastic and Reconstructive SurgeryDepartment of Surgery, Stanford School of MedicineStanford UniversityPalo AltoCalifornia
| | - Martin J. Stoddart
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Angela R. Armiento
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| |
Collapse
|
25
|
Moraes de Lima Perini M, Valuch CR, Dadwal UC, Awosanya OD, Mostardo SL, Blosser RJ, Knox AM, McGuire AC, Battina HL, Nazzal M, Kacena MA, Li J. Characterization and assessment of lung and bone marrow derived endothelial cells and their bone regenerative potential. Front Endocrinol (Lausanne) 2022; 13:935391. [PMID: 36120459 PMCID: PMC9470942 DOI: 10.3389/fendo.2022.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is important for successful fracture repair. Aging negatively affects the number and activity of endothelial cells (ECs) and subsequently leads to impaired bone healing. We previously showed that implantation of lung-derived endothelial cells (LECs) improved fracture healing in rats. In this study, we characterized and compared neonatal lung and bone marrow-derived endothelial cells (neonatal LECs and neonatal BMECs) and further asses3sed if implantation of neonatal BMECs could enhance bone healing in both young and aged mice. We assessed neonatal EC tube formation, proliferation, and wound migration ability in vitro in ECs isolated from the bone marrow and lungs of neonatal mice. The in vitro studies demonstrated that both neonatal LECs and neonatal BMECs exhibited EC traits. To test the function of neonatal ECs in vivo, we created a femoral fracture in young and aged mice and implanted a collagen sponge to deliver neonatal BMECs at the fracture site. In the mouse fracture model, endochondral ossification was delayed in aged control mice compared to young controls. Neonatal BMECs significantly improved endochondral bone formation only in aged mice. These data suggest BMECs have potential to enhance aged bone healing. Compared to LECs, BMECs are more feasible for translational cell therapy and clinical applications in bone repair. Future studies are needed to examine the fate and function of BMECs implanted into the fracture sites.
Collapse
Affiliation(s)
| | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Murad Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs (VA) Medical Center, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Jiliang Li,
| |
Collapse
|
26
|
Tanaka Y, Aung KT, Ono M, Mikai A, Dang AT, Hara ES, Tosa I, Ishibashi K, Ono-Kimura A, Nawachi K, Kuboki T, Oohashi T. Suppression of Bone Necrosis around Tooth Extraction Socket in a MRONJ-like Mouse Model by E-rhBMP-2 Containing Artificial Bone Graft Administration. Int J Mol Sci 2021; 22:ijms222312823. [PMID: 34884630 PMCID: PMC8657653 DOI: 10.3390/ijms222312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is related to impaired bone healing conditions in the maxillomandibular bone region as a complication of bisphosphonate intake. Although there are several hypotheses for the onset of MRONJ symptoms, one of the possible causes is the inhibition of bone turnover and blood supply leading to bone necrosis. The optimal treatment strategy for MRONJ has not been established either. BMP-2, a member of the TGF-β superfamily, is well known for regulating bone remodeling and homeostasis prenatally and postnatally. Therefore, the objectives of this study were to evaluate whether cyclophosphamide/zoledronate (CY/ZA) induces necrosis of the bone surrounding the tooth extraction socket, and to examine the therapeutic potential of BMP-2 in combination with the hard osteoinductive biomaterial, β-tricalcium phosphate (β-TCP), in the prevention and treatment of alveolar bone loss around the tooth extraction socket in MRONJ-like mice models. First, CY/ZA was intraperitoneally administered for three weeks, and alveolar bone necrosis was evaluated before and after tooth extraction. Next, the effect of BMP-2/β-TCP was investigated in both MRONJ-like prevention and treatment models. In the prevention model, CY/ZA was continuously administered for four weeks after BMP-2/β-TCP transplantation. In the treatment model, CY/ZA administration was suspended after transplantation of BMP-2/β-TCP. The results showed that CY/ZA induced a significant decrease in the number of empty lacunae, a sign of bone necrosis, in the alveolar bone around the tooth extraction socket after tooth extraction. Histological analysis showed a significant decrease in the necrotic alveolar bone around tooth extraction sockets in the BMP-2/β-TCP transplantation group compared to the non-transplanted control group in both MRONJ-like prevention and treatment models. However, bone mineral density, determined by micro-CT analysis, was significantly higher in the BMP-2/β-TCP transplanted group than in the control group in the prevention model only. These results clarified that alveolar bone necrosis around tooth extraction sockets can be induced after surgical intervention under CY/ZA administration. In addition, transplantation of BMP-2/β-TCP reduced the necrotic alveolar bone around the tooth extraction socket. Therefore, a combination of BMP-2/β-TCP could be an alternative approach for both prevention and treatment of MRONJ-like symptoms.
Collapse
Affiliation(s)
- Yukie Tanaka
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Y.T.); (A.T.D.); (K.I.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.T.A.); (I.T.); (T.K.)
| | - Kyaw Thu Aung
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.T.A.); (I.T.); (T.K.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Y.T.); (A.T.D.); (K.I.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan; (A.M.); (A.O.-K.); (K.N.)
- Correspondence: ; Tel.: +81-86-235-7129; Fax: +81-86-222-7768
| | - Akihiro Mikai
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan; (A.M.); (A.O.-K.); (K.N.)
| | - Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Y.T.); (A.T.D.); (K.I.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.T.A.); (I.T.); (T.K.)
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.T.A.); (I.T.); (T.K.)
| | - Kei Ishibashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Y.T.); (A.T.D.); (K.I.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.T.A.); (I.T.); (T.K.)
| | - Aya Ono-Kimura
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan; (A.M.); (A.O.-K.); (K.N.)
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kumiko Nawachi
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan; (A.M.); (A.O.-K.); (K.N.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.T.A.); (I.T.); (T.K.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan; (A.M.); (A.O.-K.); (K.N.)
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Y.T.); (A.T.D.); (K.I.); (T.O.)
| |
Collapse
|
27
|
Dentin Matrix Protein 1 on Titanium Surface Facilitates Osteogenic Differentiation of Stem Cells. Molecules 2021; 26:molecules26226756. [PMID: 34833848 PMCID: PMC8621853 DOI: 10.3390/molecules26226756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) contains a large number of acidic domains, multiple phosphorylation sites, a functional arginine-glycine-aspartate (RGD) motif, and a DNA binding domain, and has been shown to play essential regulatory function in dentin and bone mineralization. DMP1 could also orchestrate bone matrix formation, but the ability of DMP1 on Ti to human mesenchymal stem cell (hMSC) conversion to osteoblasts has not been studied. There is importance to test if the DMP1 coated Ti surface would promote cell migration and attachment to the metal surface and promote the differentiation of the attached stem cells to an osteogenic lineage. This study aimed to study the human mesenchymal stem cells (hMSCs) attachment and proliferation on DMP1 coated titanium (Ti) disks compared to non-coated disks, and to assess possible osteoblastic differentiation of attached hMSCs. Sixty-eight Ti disks were divided into two groups. Group 1 disks were coated with dentin matrix protein 1 and group 2 disks served as control. Assessment with light microscopy was used to verify hMSC attachment and proliferation. Cell viability was confirmed through fluorescence microscopy and mitochondrial dehydrogenase activity. Real-time polymerase chain reaction analysis was done to study the gene expression. The proliferation assay showed significantly greater cell proliferation with DMP1 coated disks compared to the control group (p-value < 0.001). Cell vitality analysis showed a greater density of live cells on DMP1 coated disks compared to the control group. Alkaline phosphatase staining revealed higher enzyme activity on DMP1 coated disks and showed itself to be significantly higher than the control group (p-value < 0.001). von Kossa staining revealed higher positive areas for mineralized deposits on DMP1 coated disks than the control group (p-value < 0.05). Gene expression analysis confirmed upregulation of runt-related transcription factor 2, osteoprotegerin, osteocalcin, osteopontin, and alkaline phosphatase on DMP1 coated disks (p-value < 0.001). The dentin matrix protein promoted the adhesion, proliferation, facilitation differentiation of hMSC, and mineralized matrix formation.
Collapse
|
28
|
Dadwal UC, Bhatti FUR, Awosanya OD, de Andrade Staut C, Nagaraj RU, Perugini AJ, Tewari NP, Valuch CR, Sun S, Mendenhall SK, Zhou D, Mostardo SL, Blosser RJ, Li J, Kacena MA. The Effects of SRT1720 Treatment on Endothelial Cells Derived from the Lung and Bone Marrow of Young and Aged, Male and Female Mice. Int J Mol Sci 2021; 22:11097. [PMID: 34681756 PMCID: PMC8540697 DOI: 10.3390/ijms222011097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is critical for successful fracture healing. Age-related alterations in endothelial cells (ECs) may cause impaired bone healing. Therefore, examining therapeutic treatments to improve angiogenesis in aging may enhance bone healing. Sirtuin 1 (SIRT1) is highly expressed in ECs and its activation is known to counteract aging. Here, we examined the effects of SRT1720 treatment (SIRT1 activator) on the growth and function of bone marrow and lung ECs (BMECs and LECs, respectively), derived from young (3-4 month) and old (20-24 month) mice. While aging did not alter EC proliferation, treatment with SRT1720 significantly increased proliferation of all LECs. However, SRT1720 only increased proliferation of old female BMECs. Vessel-like tube assays showed similar vessel-like structures between young and old LECs and BMECs from both male and female mice. SRT1720 significantly improved vessel-like structures in all LECs. No age, sex, or treatment differences were found in migration related parameters of LECs. In males, old BMECs had greater migration rates than young BMECs, whereas in females, old BMECs had lower migration rates than young BMECs. Collectively, our data suggest that treatment with SRT1720 appears to enhance the angiogenic potential of LECs irrespective of age or sex. However, its role in BMECs is sex- and age-dependent.
Collapse
Affiliation(s)
- Ushashi Chand Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Olatundun Dupe Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Anthony Joseph Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Nikhil Prasad Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Conner Riley Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (C.R.V.); (J.L.)
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Stephen Kyle Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Sarah Lyn Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Rachel Jean Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (C.R.V.); (J.L.)
| | - Melissa Ann Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
McKinley TO, Childress P, Jewell E, Griffin KS, Wininger AE, Tucker A, Gremah A, Savaglio MK, Warden SJ, Fuchs RK, Natoli RM, Shively KD, Anglen JO, Gabriel Chu TM, Kacena MA. Bone Morphogenetic Protein-2 Rapidly Heals Two Distinct Critical Sized Segmental Diaphyseal Bone Defects in a Porcine Model. Mil Med 2021; 188:117-124. [PMID: 34557897 PMCID: PMC9825249 DOI: 10.1093/milmed/usab360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Segmental bone defects (SBDs) are devastating injuries sustained by warfighters and are difficult to heal. Preclinical models that accurately simulate human conditions are necessary to investigate therapies to treat SBDs. We have developed two novel porcine SBD models that take advantage of similarities in bone healing and immunologic response to injury between pigs and humans. The purpose of this study was to investigate the efficacy of Bone Morphogenetic Protein-2 (BMP-2) to heal a critical sized defect (CSD) in two novel porcine SBD models. MATERIALS AND METHODS Two CSDs were performed in Yucatan Minipigs including a 25.0-mm SBD treated with intramedullary nailing (IMN) and a 40.0-mm SBD treated with dual plating (ORIF). In control animals, the defect was filled with a custom spacer and a bovine collagen sponge impregnated with saline (IMN25 Cont, n = 8; ORIF40 Cont, n = 4). In experimental animals, the SBD was filled with a custom spacer and a bovine collage sponge impregnated with human recombinant BMP-2 (IMN25 BMP, n = 8; ORIF40 BMP, n = 4). Healing was quantified using monthly modified Radiographic Union Score for Tibia Fractures (mRUST) scores, postmortem CT scanning, and torsion testing. RESULTS BMP-2 restored bone healing in all eight IMN25 BMP specimens and three of four ORIF40 BMP specimens. None of the IMN25 Cont or ORIF40 Cont specimens healed. mRUST scores at the time of sacrifice increased from 9.2 (±2.4) in IMN25 Cont to 15.1 (±1.0) in IMN25 BMP specimens (P < .0001). mRUST scores increased from 8.2 (±1.1) in ORIF40 Cont to 14.3 (±1.0) in ORIF40 BMP specimens (P < .01). CT scans confirmed all BMP-2 specimens had healed and none of the control specimens had healed in both IMN and ORIF groups. BMP-2 restored 114% and 93% of intact torsional stiffness in IMN25 BMP and ORIF40 BMP specimens. CONCLUSIONS We have developed two porcine CSD models, including fixation with IMN and with dual-plate fixation. Porcine models are particularly relevant for SBD research as the porcine immunologic response to injury closely mimics the human response. BMP-2 restored healing in both CSD models, and the effects were evident within the first month after injury. These findings support the use of both porcine CSD models to investigate new therapies to heal SBDs.
Collapse
Affiliation(s)
- Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of MedicineIndianapolis, IN 46202,USA
| | | | - Emily Jewell
- Hand Surgery Associates of Indiana, Indianapolis, IN 46260, USA
| | - Kaitlyn S Griffin
- Department of Obstetrics and Gynecology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Austin E Wininger
- Department of Orthopaedic Surgery, Methodist Hospital, Houston, TX 77030, USA
| | - Aamir Tucker
- Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, USA
| | - Adam Gremah
- Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, USA
| | - Michael K Savaglio
- Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, USA
| | - Stuart J Warden
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, IN 46202, USA
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, IN 46202, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202,USA
| | - Karl D Shively
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
30
|
A Review on the Enhancement of Calcium Phosphate Cement with Biological Materials in Bone Defect Healing. Polymers (Basel) 2021; 13:polym13183075. [PMID: 34577976 PMCID: PMC8472520 DOI: 10.3390/polym13183075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
Collapse
|
31
|
Dadwal UC, Bhatti FUR, Awosanya OD, Nagaraj RU, Perugini AJ, Sun S, Valuch CR, de Andrade Staut C, Mendenhall SK, Tewari NP, Mostardo SL, Nazzal MK, Battina HL, Zhou D, Kanagasabapathy D, Blosser RJ, Mulcrone PL, Li J, Kacena MA. The effects of bone morphogenetic protein 2 and thrombopoietin treatment on angiogenic properties of endothelial cells derived from the lung and bone marrow of young and aged, male and female mice. FASEB J 2021; 35:e21840. [PMID: 34423881 DOI: 10.1096/fj.202001616rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
With an aging world population, there is an increased risk of fracture and impaired healing. One contributing factor may be aging-associated decreases in vascular function; thus, enhancing angiogenesis could improve fracture healing. Both bone morphogenetic protein 2 (BMP-2) and thrombopoietin (TPO) have pro-angiogenic effects. The aim of this study was to investigate the effects of treatment with BMP-2 or TPO on the in vitro angiogenic and proliferative potential of endothelial cells (ECs) isolated from lungs (LECs) or bone marrow (BMECs) of young (3-4 months) and old (22-24 months), male and female, C57BL/6J mice. Cell proliferation, vessel-like structure formation, migration, and gene expression were used to evaluate angiogenic properties. In vitro characterization of ECs generally showed impaired vessel-like structure formation and proliferation in old ECs compared to young ECs, but improved migration characteristics in old BMECs. Differential sex-based angiogenic responses were observed, especially with respect to drug treatments and gene expression. Importantly, these studies suggest that NTN1, ROBO2, and SLIT3, along with angiogenic markers (CD31, FLT-1, ANGPT1, and ANGP2) differentially regulate EC proliferation and functional outcomes based on treatment, sex, and age. Furthermore, treatment of old ECs with TPO typically improved vessel-like structure parameters, but impaired migration. Thus, TPO may serve as an alternative treatment to BMP-2 for fracture healing in aging owing to improved angiogenesis and fracture healing, and the lack of side effects associated with BMP-2.
Collapse
Affiliation(s)
- Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah L Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Patrick L Mulcrone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
32
|
Moncal KK, Gudapati H, Godzik KP, Heo DN, Kang Y, Rizk E, Ravnic DJ, Wee H, Pepley DF, Ozbolat V, Lewis GS, Moore JZ, Driskell RR, Samson TD, Ozbolat IT. Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010858. [PMID: 34421475 PMCID: PMC8376234 DOI: 10.1002/adfm.202010858] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 05/20/2023]
Abstract
Reconstruction of complex craniomaxillofacial (CMF) defects is challenging due to the highly organized layering of multiple tissue types. Such compartmentalization necessitates the precise and effective use of cells and other biologics to recapitulate the native tissue anatomy. In this study, intra-operative bioprinting (IOB) of different CMF tissues, including bone, skin, and composite (hard/soft) tissues, is demonstrated directly on rats in a surgical setting. A novel extrudable osteogenic hard tissue ink is introduced, which induced substantial bone regeneration, with ≈80% bone coverage area of calvarial defects in 6 weeks. Using droplet-based bioprinting, the soft tissue ink accelerated the reconstruction of full-thickness skin defects and facilitated up to 60% wound closure in 6 days. Most importantly, the use of a hybrid IOB approach is unveiled to reconstitute hard/soft composite tissues in a stratified arrangement with controlled spatial bioink deposition conforming the shape of a new composite defect model, which resulted in ≈80% skin wound closure in 10 days and 50% bone coverage area at Week 6. The presented approach will be absolutely unique in the clinical realm of CMF defects and will have a significant impact on translating bioprinting technologies into the clinic in the future.
Collapse
Affiliation(s)
- Kazim K Moncal
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hemanth Gudapati
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin P Godzik
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dong N Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngnam Kang
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elias Rizk
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Dino J Ravnic
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Hwabok Wee
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - David F Pepley
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veli Ozbolat
- Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Gregory S Lewis
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason Z Moore
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Thomas D Samson
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Bjelić D, Finšgar M. The Role of Growth Factors in Bioactive Coatings. Pharmaceutics 2021; 13:1083. [PMID: 34371775 PMCID: PMC8309025 DOI: 10.3390/pharmaceutics13071083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
With increasing obesity and an ageing population, health complications are also on the rise, such as the need to replace a joint with an artificial one. In both humans and animals, the integration of the implant is crucial, and bioactive coatings play an important role in bone tissue engineering. Since bone tissue engineering is about designing an implant that maximally mimics natural bone and is accepted by the tissue, the search for optimal materials and therapeutic agents and their concentrations is increasing. The incorporation of growth factors (GFs) in a bioactive coating represents a novel approach in bone tissue engineering, in which osteoinduction is enhanced in order to create the optimal conditions for the bone healing process, which crucially affects implant fixation. For the application of GFs in coatings and their implementation in clinical practice, factors such as the choice of one or more GFs, their concentration, the coating material, the method of incorporation, and the implant material must be considered to achieve the desired controlled release. Therefore, the avoidance of revision surgery also depends on the success of the design of the most appropriate bioactive coating. This overview considers the integration of the most common GFs that have been investigated in in vitro and in vivo studies, as well as in human clinical trials, with the aim of applying them in bioactive coatings. An overview of the main therapeutic agents that can stimulate cells to express the GFs necessary for bone tissue development is also provided. The main objective is to present the advantages and disadvantages of the GFs that have shown promise for inclusion in bioactive coatings according to the results of numerous studies.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
34
|
Kawai T, Pan CC, Okuzu Y, Shimizu T, Stahl AM, Matsuda S, Maloney WJ, Yang YP. Combining a Vascular Bundle and 3D Printed Scaffold with BMP-2 Improves Bone Repair and Angiogenesis. Tissue Eng Part A 2021; 27:1517-1525. [PMID: 33906392 DOI: 10.1089/ten.tea.2021.0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vascularization is currently considered the biggest challenge in bone tissue engineering due to necrosis in the center of large scaffolds. We established a new expendable vascular bundle model to vascularize a three-dimensional printed channeled scaffold with and without bone morphogenetic protein-2 (BMP-2) for improved healing of large segmental bone defects. Bone formation and angiogenesis in an 8 mm critical-sized bone defect in the rat femur were significantly promoted by inserting a bundle consisting of the superficial epigastric artery and vein into the central channel of a large porous polycaprolactone scaffold. Vessels were observed sprouting from the vascular bundle inserted in the central tunnel. Although the regenerated bone volume in the group receiving the scaffold and vascular bundle was similar to that of the healthy femur, the rate of union of the group was not satisfactory (25% at 8 weeks). BMP-2 delivery was found to promote not only bone formation but also angiogenesis in the critical-sized bone defects. Both insertion of the vascular bundle alone and BMP-2 loading alone induced comparable levels of angiogenesis and when used in combination, significantly greater vascular volume was observed. These findings suggest a promising new modality of treatment in large bone defects. Level of Evidence: Therapeutic level I.
Collapse
Affiliation(s)
- Toshiyuki Kawai
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Yaichiro Okuzu
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Alexander M Stahl
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Chemistry, Stanford University, Stanford, California, USA
| | - Shuich Matsuda
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - William J Maloney
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yunzhi P Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Materials Science and Engineering, and Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
35
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
36
|
Bhatti FUR, Dadwal UC, Valuch CR, Tewari NP, Awosanya OD, de Andrade Staut C, Sun S, Mendenhall SK, Perugini AJ, Nagaraj RU, Battina HL, Nazzal MK, Blosser RJ, Maupin KA, Childress PJ, Li J, Kacena MA. The effects of high fat diet, bone healing, and BMP-2 treatment on endothelial cell growth and function. Bone 2021; 146:115883. [PMID: 33581374 PMCID: PMC8009863 DOI: 10.1016/j.bone.2021.115883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Angiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls. Endothelial cells (ECs) were isolated from the lungs (LECs) and bone marrow (BMECs) 3 weeks post-surgery, and the fractured femurs were also examined. Our studies demonstrate that local administration of BMP-2 at the fracture site in a CSD model results in complete bone healing within 3 weeks for all HFD mice and 66.7% of LFD mice, whereas those treated with saline remain unhealed. At the fracture site, vessel parameters and adipocyte numbers were significantly increased in BMP-2 treated femurs, irrespective of diet. At distal sites, LEC and BMEC proliferation was not altered by diet or BMP-2 treatment. HFD increased the tube formation ability of both LECs and BMECs. Interestingly, BMP-2 treatment at the time of surgery reduced tube formation in LECs and humeri BMECs. However, migration of BMECs from HFD mice treated with BMP-2 was increased compared to BMECs from HFD mice treated with saline. BMP-2 treatment significantly increased the expression of CD31, FLT-1, and ANGPT2 in LECs and BMECs in LFD mice, but reduced the expression of these same genes in HFD mice. To date, this is the first study that depicts the systemic influence of fracture surgery and local BMP-2 treatment on the proliferation and angiogenic potential of ECs derived from the bone marrow and lungs.
Collapse
Affiliation(s)
- Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Kevin A Maupin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
37
|
Chakka JL, Acri T, Laird NZ, Zhong L, Shin K, Elangovan S, Salem AK. Polydopamine functionalized VEGF gene-activated 3D printed scaffolds for bone regeneration. RSC Adv 2021; 11:13282-13291. [PMID: 35423856 PMCID: PMC8697638 DOI: 10.1039/d1ra01193f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Bone is a highly vascularized organ and the formation of new blood vessels is essential to regenerate large critical bone defects. In this study, polylactic acid (PLA) scaffolds of 20-80% infill were three-dimensionally (3D) printed using a fused deposition modeling based 3D printer. The PLA scaffolds were coated with polydopamine (PDA) and then were surface-functionalized with polyethyleneimine (PEI) and VEGF-encoding plasmid DNA (pVEGF) nanoplexes (PLA-PDA-PEI-pVEGF). The PLA-PDA-PEI-pVEGF scaffolds with 40% infill demonstrated higher encapsulation efficiency and sustained release of pVEGF than scaffolds with 20, 60 and 80% infill and were therefore used for in vitro and in vivo studies. The PLA-PDA-PEI-pVEGF increased the translation and secretion of VEGF and BMP-2. The PLA-PDA-PEI-pVEGF also yielded a 2- and 4.5-fold change in VEGF and osteocalcin gene expression in vitro, respectively. A tube formation assay using human umbilical vascular endothelial cells (HUVECs) showed a significant increase in tube length when exposed to the PLA-PDA-PEI-pVEGF scaffold, in comparison to PLA and PLA-PDA scaffolds. The PLA-PDA-PEI-pVEGF scaffold in an in vivo rat calvarial critical bone defect model demonstrated 1.6-fold higher new bone formation compared to the PLA-PDA scaffold. H&E and Masson's trichrome staining of bone sections also revealed that the PLA-PDA-PEI-pVEGF scaffold facilitated the formation of more blood vessels in the newly formed bone compared to the PLA and PLA-PDA scaffold groups. Thus, PLA-PDA-PEI-pVEGF might be a potential 3D printed gene activated scaffold for bone regeneration in clinical situations.
Collapse
Affiliation(s)
- Jaidev L Chakka
- Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa Iowa City IA-52242 USA +1-319-335-8810
| | - Timothy Acri
- Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa Iowa City IA-52242 USA +1-319-335-8810
| | - Noah Z Laird
- Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa Iowa City IA-52242 USA +1-319-335-8810
| | - Ling Zhong
- Department of Experimental Research, Sun Yat-sen University Guangzhou PR China
| | - Kyungsup Shin
- Department of Orthodontics, College of Dentistry and Dental Clinics, University of Iowa Iowa City IA-52242 USA
| | - Satheesh Elangovan
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa Iowa City IA-52242 USA
| | - Aliasger K Salem
- Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa Iowa City IA-52242 USA +1-319-335-8810
| |
Collapse
|
38
|
Miszuk J, Liang Z, Hu J, Sanyour H, Hong Z, Fong H, Sun H. An Elastic Mineralized 3D Electrospun PCL Nanofibrous Scaffold for Drug Release and Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2021; 4:3639-3648. [PMID: 33969280 DOI: 10.1021/acsabm.1c00134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Complex shaped and critical-sized bone defects have been a clinical challenge for many years. Scaffold-based strategies such as hydrogels provide localized drug release while filling complex defect shapes, but ultimately possess weaknesses in low mechanical strength alongside a lack of macroporous and collagen-mimicking nanofibrous structures. Thus, there is a demand for mechanically strong, extracellular matrix (ECM) mimicking scaffolds that can robustly fit complex shaped critical sized defects and simultaneously provide localized, sustained, multiple growth factor release. We therefore developed a composite, bi-phasic PCL/hydroxyapatite (HA) 3D nanofibrous (NF) scaffold for bone tissue regeneration by using our innovative electrospun-based thermally induced self-agglomeration (TISA) technique. One intriguing feature of our ECM-mimicking TISA scaffolds is that they are highly elastic and porous even after evenly coated with minerals and can easily be pressed to fit different defect shapes. Furthermore, the bio-mimetic mineral deposition technique allowed us to simultaneously encapsulate different type of drugs, e.g., proteins and small molecules, on TISA scaffolds under physiologically mild conditions. Compared to scaffolds with physically surface-adsorbed phenamil, a BMP2 signaling agonist, incorporated phenamil composite scaffolds indicated less burst release and longer lasting sustained release of phenamil with subsequently improved osteogenic differentiation of cells in vitro. Overall, our study indicated that the innovative press-fit 3D NF composite scaffold may be a robust tool for multiple-drug delivery and bone tissue engineering.
Collapse
Affiliation(s)
- Jacob Miszuk
- Department of Oral and Maxillofacial Surgery, Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Zhipeng Liang
- Program of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Jue Hu
- Department of Oral and Maxillofacial Surgery, Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hanna Sanyour
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Hao Fong
- Program of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| |
Collapse
|
39
|
Distinct Osteogenic Potentials of BMP-2 and FGF-2 in Extramedullary and Medullary Microenvironments. Int J Mol Sci 2020; 21:ijms21217967. [PMID: 33120952 PMCID: PMC7662681 DOI: 10.3390/ijms21217967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2) have been regarded as the major cytokines promoting bone formation, however, several studies have reported unexpected results with failure of bone formation or bone resorption of these growth factors. In this study, BMP-2 and FGF-2 adsorbed into atellocollagen sponges were transplanted into bone defects in the bone marrow-scarce calvaria (extramedullary environment) and bone marrow-abundant femur (medullary environment) for analysis of their in vivo effects not only on osteoblasts, osteoclasts but also on bone marrow cells. The results showed that BMP-2 induced high bone formation in the bone marrow-scarce calvaria, but induced bone resorption in the bone marrow-abundant femurs. On the other hand, FGF-2 showed opposite effects compared to those of BMP-2. Analysis of cellular dynamics revealed numerous osteoblasts and osteoclasts present in the newly-formed bone induced by BMP-2 in calvaria, but none were seen in either control or FGF-2-transplanted groups. On the other hand, in the femur, numerous osteoclasts were observed in the vicinity of the BMP-2 pellet, while a great number of osteoblasts were seen near the FGF-2 pellets or in the control group. Of note, FCM analysis showed that both BMP-2 and FGF-2 administrated in the femur did not significantly affect the hematopoietic cell population, indicating a relatively safe application of the two growth factors. Together, these results indicate that BMP-2 could be suitable for application in extramedullary bone regeneration, whereas FGF-2 could be suitable for application in medullary bone regeneration.
Collapse
|
40
|
Tazawa R, Uchida K, Minehara H, Matsuura T, Kawamura T, Sekiguchi H, Muneshige K, Inoue S, Inoue G, Takaso M. Poly(POG)n loaded with recombinant human bone morphogenetic protein-2 accelerates new bone formation in a critical-sized bone defect mouse model. J Orthop Surg Res 2020; 15:471. [PMID: 33054796 PMCID: PMC7557057 DOI: 10.1186/s13018-020-01977-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Delivery of bone morphogenetic protein-2 (BMP-2) via animal-derived absorbable collagen materials is used for the treatment of large bone defects. However, the administration of bovine proteins to humans is associated with the risk of zoonotic complications. We therefore examined the effect of combining BMP-2 with collagen-like peptides, poly(POG)n, in a critical-sized bone defect mouse model. Methods A 2-mm critical-sized bone defect was created in the femur of 9-week-old male C57/BL6J mice. Mice were randomly allocated into one of four treatment groups (n = 6 each): control (no treatment), poly(POG)n only, 0.2 μg, or 2.0 μg BMP-2 with poly(POG)n. New bone formation was monitored using soft X-ray radiographs, and bone formation at the bone defect site was examined using micro-computed tomography and histological examination at 4 weeks after surgery. Results Administration of 2.0 μg of BMP-2 with poly(POG)n promoted new bone formation and resulted in greater bone volume and bone mineral content than that observed in the control group and successfully achieved consolidation. In contrast, bone formation in all other groups was scarce. Conclusions Our findings suggest the potential of BMP-2 with poly(POG)n as a material, free from animal-derived collagen, for the treatment of large bone defects.
Collapse
Affiliation(s)
- Ryo Tazawa
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan. .,Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki City, Kanagawa, 253-0083, Japan.
| | - Hiroaki Minehara
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Terumasa Matsuura
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Tadashi Kawamura
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki City, Kanagawa, 253-0083, Japan
| | - Kyoko Muneshige
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Sho Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
41
|
Mikai A, Ono M, Tosa I, Nguyen HTT, Hara ES, Nosho S, Kimura-Ono A, Nawachi K, Takarada T, Kuboki T, Oohashi T. BMP-2/β-TCP Local Delivery for Bone Regeneration in MRONJ-Like Mouse Model. Int J Mol Sci 2020; 21:ijms21197028. [PMID: 32987737 PMCID: PMC7583034 DOI: 10.3390/ijms21197028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe pathological condition associated mainly with the long-term administration of bone resorption inhibitors, which are known to induce suppression of osteoclast activity and bone remodeling. Bone Morphogenetic Protein (BMP)-2 is known to be a strong inducer of bone remodeling, by directly regulating osteoblast differentiation and osteoclast activity. This study aimed to evaluate the effects of BMP-2 adsorbed onto beta-tricalcium phosphate (β-TCP), which is an osteoinductive bioceramic material and allows space retention, on the prevention and treatment of MRONJ in mice. Tooth extraction was performed after 3 weeks of zoledronate (ZA) and cyclophosphamide (CY) administration. For prevention studies, BMP-2/β-TCP was transplanted immediately after tooth extraction, and the mice were administered ZA and CY for an additional 4 weeks. The results showed that while the tooth extraction socket was mainly filled with a sparse tissue in the control group, bone formation was observed at the apex of the tooth extraction socket and was filled with a dense connective tissue rich in cellular components in the BMP-2/β-TCP transplanted group. For treatment studies, BMP-2/β-TCP was transplanted 2 weeks after tooth extraction, and bone formation was followed up for the subsequent 4 weeks under ZA and CY suspension. The results showed that although the tooth extraction socket was mainly filled with soft tissue in the control group, transplantation of BMP-2/β-TCP could significantly accelerate bone formation, as shown by immunohistochemical analysis for osteopontin, and reduce the bone necrosis in tooth extraction sockets. These data suggest that the combination of BMP-2/β-TCP could become a suitable therapy for the management of MRONJ.
Collapse
Affiliation(s)
- Akihiro Mikai
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.M.); (H.T.T.N.); (S.N.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (I.T.); (A.K.-O.); (K.N.); (T.K.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.M.); (H.T.T.N.); (S.N.); (T.O.)
- Correspondence: ; Tel.: +81-86-235-7129; Fax: +81-86-222-7768
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (I.T.); (A.K.-O.); (K.N.); (T.K.)
| | - Ha Thi Thu Nguyen
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.M.); (H.T.T.N.); (S.N.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (I.T.); (A.K.-O.); (K.N.); (T.K.)
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Shuji Nosho
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.M.); (H.T.T.N.); (S.N.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (I.T.); (A.K.-O.); (K.N.); (T.K.)
| | - Aya Kimura-Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (I.T.); (A.K.-O.); (K.N.); (T.K.)
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kumiko Nawachi
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (I.T.); (A.K.-O.); (K.N.); (T.K.)
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (I.T.); (A.K.-O.); (K.N.); (T.K.)
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.M.); (H.T.T.N.); (S.N.); (T.O.)
| |
Collapse
|
42
|
Subbiah R, Cheng A, Ruehle MA, Hettiaratchi MH, Bertassoni LE, Guldberg RE. Effects of controlled dual growth factor delivery on bone regeneration following composite bone-muscle injury. Acta Biomater 2020; 114:63-75. [PMID: 32688092 DOI: 10.1016/j.actbio.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The objective of this study was to investigate the controlled release of two growth factors (BMP-2 and VEGF) as a treatment strategy for bone healing in clinically challenging composite injuries, consisting of a femoral segmental bone defect and volumetric muscle loss. This is the first investigation of dual growth factor delivery in a composite injury model using an injectable delivery system consisting of heparin microparticles and alginate gel. The loading efficiency of growth factors into these biomaterials was found to be >90%, revealing a strong affinity of VEGF and BMP-2 to heparin and alginate. The system could achieve simultaneous or tunable release of VEGF and BMP-2 by varying the loading strategy. Single growth factor delivery (VEGF or BMP-2 alone) significantly enhanced vascular growth in vitro. However, no synergistic effect was observed for dual growth factor (BMP-2 + VEGF) delivery in vitro. Effective bone healing was achieved in all treatment groups (BMP-2, simultaneous or tunable delivery of BMP-2 and VEGF) in the composite injury model. The mechanics of the regenerated bone reached a maximum strength of ~52% of intact bone with tunable delivery of VEGF and BMP-2. Overall, simultaneous or tunable co-delivery of low-dose BMP-2 and VEGF failed to fully restore the mechanics of bone in this injury model. Given the severity of the composite injury, VEGF alone may not be sufficient to establish mature and stable blood vessels when compared with previous studies co-delivering BMP-2+VEGF enhanced bone tissue regeneration. Hence, future studies are warranted to develop an alternative treatment strategy focusing on better control over growth factor dose, spatiotemporal delivery, and additional growth factors to regenerate fully functional bone tissue. STATEMENT OF SIGNIFICANCE: We have developed an injectable delivery system consisting of heparin microparticles and an alginate hydrogel that is capable of delivering multiple growth factors in a tunable manner. We used this delivery system to deliver BMP-2 and VEGF in a rodent model of composite bone-muscle injury that mimics clinical type III open fractures. An advanced treatment strategy is necessary for these injuries in order to avoid the negative side effects of high doses of growth factors and because it has been shown that the addition of a muscle injury in this model attenuates the bone regenerative effect of BMP-2. This is the first study to test the effects of dual growth factor delivery (BMP-2/VEGF) on bone healing in a composite bone-muscle injury model and is expected to open up new directions in protein delivery for regenerative medicine.
Collapse
|
43
|
Freeman FE, Pitacco P, van Dommelen LHA, Nulty J, Browe DC, Shin JY, Alsberg E, Kelly DJ. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. SCIENCE ADVANCES 2020; 6:eabb5093. [PMID: 32851179 PMCID: PMC7428335 DOI: 10.1126/sciadv.abb5093] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/02/2020] [Indexed: 05/16/2023]
Abstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Fiona E. Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Pierluca Pitacco
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Lieke H. A. van Dommelen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jessica Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - David C. Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Jung-Youn Shin
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Departments of Biomedical Engineering, Pharmacology, Orthopaedics, and Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Role of biomechanics in vascularization of tissue-engineered bones. J Biomech 2020; 110:109920. [PMID: 32827778 DOI: 10.1016/j.jbiomech.2020.109920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Biomaterial based reconstruction is still the most commonly employed method of small bone defect reconstruction. Bone tissue-engineered techniques are improving, and adjuncts such as vascularization technologies allow re-evaluation of traditional reconstructive methods for healingofcritical-sized bone defect. Slow infiltration rate of vasculogenesis after cell-seeded scaffold implantation limits the use of clinically relevant large-sized scaffolds. Hence, in vitro vascularization within the tissue-engineered bone before implantation is required to overcome the serious challenge of low cell survival rate after implantation which affects bone tissue regeneration and osseointegration. Mechanobiological interactions between cells and microvascular mechanics regulate biological processes regarding cell behavior. In addition, load-bearing scaffolds demand mechanical stability properties after vascularization to have adequate strength while implanted. With the advent of bioreactors, vascularization has been greatly improved by biomechanical regulation of stem cell differentiation through fluid-induced shear stress and synergizing osteogenic and angiogenic differentiation in multispecies coculture cells. The benefits of vascularization are clear: avoidance of mass transfer limitation and oxygen deprivation, a significant decrease in cell necrosis, and consequently bone development, regeneration and remodeling. Here, we discuss specific techniques to avoid pitfalls and optimize vascularization results of tissue-engineered bone. Cell source, scaffold modifications and bioreactor design, and technique specifics all play a critical role in this new, and rapidly growing method for bone defect reconstruction. Given the crucial importance of long-term survival of vascular network in physiological function of 3D engineered-bone constructs, greater knowledge of vascularization approaches may lead to the development of new strategies towards stabilization of formed vascular structure.
Collapse
|
45
|
Sun P, Shi A, Shen C, Liu Y, Wu G, Feng J. Human salivary histatin-1 (Hst1) promotes bone morphogenetic protein 2 (BMP2)-induced osteogenesis and angiogenesis. FEBS Open Bio 2020; 10:1503-1515. [PMID: 32484586 PMCID: PMC7396425 DOI: 10.1002/2211-5463.12906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Large‐volume bone defects can result from congenital malformation, trauma, infection, inflammation and cancer. At present, it remains challenging to treat these bone defects with clinically available interventions. Allografts, xenografts and most synthetic materials have no intrinsic osteoinductivity, and so an alternative approach is to functionalize the biomaterial with osteoinductive agents, such as bone morphogenetic protein 2 (BMP2). Because it has been previously demonstrated that human salivary histatin‐1 (Hst1) promotes endothelial cell adhesion, migration and angiogenesis, we examine here whether Hst1 can promote BMP2‐induced bone regeneration. Rats were given subcutaneous implants of absorbable collagen sponge membranes seeded with 0, 50, 200 or 500 μg Hst1 per sample and 0 or 2 μg BMP2 per sample. At 18 days postsurgery, rats were sacrificed, and implanted regional tissue was removed for micro computed tomography (microCT) analyses of new bone (bone volume, trabecular number and trabecular separation). Four samples per group were decalcified and subjected to immunohistochemical staining to analyze osteogenic and angiogenic markers. We observed that Hst1 increased BMP2‐induced new bone formation in a dose‐dependent manner. Co‐administration of 500 μg Hst1 and BMP2 resulted in the highest observed bone volume and trabecular number, the lowest trabecular separation and the highest expression of osteogenic markers and angiogenic markers. Our results suggest that coadministration of Hst1 may enhance BMP2‐induced osteogenesis and angiogenesis, and thus may have potential for development into a treatment for large‐volume bone defects.
Collapse
Affiliation(s)
- Ping Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Andi Shi
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chenxi Shen
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Jianying Feng
- School of Dentistry, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Bracey DN, Jinnah AH, Willey JS, Seyler TM, Hutchinson ID, Whitlock PW, Smith TL, Danelson KA, Emory CL, Kerr BA. Investigating the Osteoinductive Potential of a Decellularized Xenograft Bone Substitute. Cells Tissues Organs 2019; 207:97-113. [PMID: 31655811 PMCID: PMC6935535 DOI: 10.1159/000503280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Bone grafting is the second most common tissue transplantation procedure worldwide. One of the alternative methods for bone repair under investigation is a tissue-engineered bone substitute. An ideal property of tissue-engineered bone substitutes is osteoinductivity, defined as the ability to stimulate primitive cells to differentiate into a bone-forming lineage. In the current study, we use a decellularization and oxidation protocol to produce a porcine bone scaffold and examine whether it possesses osteoinductive potential and can be used to create a tissue-engineered bone microenvironment. The decellularization protocol was patented by our lab and consists of chemical decellularization and oxidation steps using combinations of deionized water, trypsin, antimicrobials, peracetic acid, and triton-X100. To test if the bone scaffold was a viable host, preosteoblasts were seeded and analyzed for markers of osteogenic differentiation. The osteoinductive potential was observed in vitro with similar osteogenic markers being expressed in preosteoblasts seeded on the scaffolds and demineralized bone matrix. To assess these properties in vivo, scaffolds with and without preosteoblasts preseeded were subcutaneously implanted in mice for 4 weeks. MicroCT scanning revealed 1.6-fold increased bone volume to total volume ratio and 1.4-fold increase in trabecular thickness in scaffolds after implantation. The histological analysis demonstrates new bone formation and blood vessel formation with pentachrome staining demonstrating osteogenesis and angiogenesis, respectively, within the scaffold. Furthermore, CD31+ staining confirmed the endothelial lining of the blood vessels. These results demonstrate that porcine bone maintains its osteoinductive properties after the application of a patented decellularization and oxidation protocol developed in our laboratory. Future work must be performed to definitively prove osteogenesis of human mesenchymal stem cells, biocompatibility in large animal models, and osteoinduction/osseointegration in a relevant clinical model in vivo. The ability to create a functional bone microenvironment using decellularized xenografts will impact regenerative medicine, orthopedic reconstruction, and could be used in the research of multiple diseases.
Collapse
Affiliation(s)
- Daniel N. Bracey
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Alexander H. Jinnah
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Jeffrey S. Willey
- Wake Forest Baptist Medical Center, Radiation Oncology, Winston Salem, NC, USA
| | | | | | | | - Thomas L. Smith
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Kerry A. Danelson
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Cynthia L. Emory
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Bethany A. Kerr
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
- Virginia Tech-Wake Forest University School for Bioengineering and Sciences, Winston Salem, NC, USA
- Wake Forest School of Medicine, Cancer Biology, Winston Salem, NC, USA
| |
Collapse
|