1
|
Liu M, Wu C, Wu C, Zhou Z, Fang R, Liu C, Ning R. Immune cells differentiation in osteoarthritic cartilage damage: friends or foes? Front Immunol 2025; 16:1545284. [PMID: 40201177 PMCID: PMC11975574 DOI: 10.3389/fimmu.2025.1545284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Osteoarthritis (OA) is a chronic disease primarily characterized by degenerative changes in articular cartilage and synovitis, for which there are currently no targeted or curative therapies available in clinical practice. In recent years, the in-depth analysis of OA using single-cell sequencing and immunomics technologies has revealed the presence of multiple immune cell subsets, as well as different differentiation states within the same subset, in OA. Through immune-immune and immune-joint tissue interactions, these cells collectively promote or inhibit the progression of arthritis. This complex immune network, where "friends and foes coexist," has made targeted therapeutic strategies aimed at directly eliminating immune cells challenging, highlighting the urgent need for a detailed review of the composition, distribution, functional heterogeneity, therapeutic potential, and potential risks of immune subsets within the joint. Additionally, the similarities and differences between OA and rheumatoid arthritis (RA) in terms of diagnosis and immunotherapy need to be precisely understood, in order to draw lessons from or reject RA-based immunotherapies. To this end, this review summarizes the major triggers of inflammation in OA, the differentiation characteristics of key immune cell subsets, and compares the similarities and differences between OA and RA in diagnosis and treatment. It also outlines the current immunomodulatory strategies for OA and their limitations. Furthermore, we provide a detailed and focused discussion on immune cells that act as "friends or foes" in arthritis, covering the M1/M2 polarization of macrophages, functional heterogeneity of neutrophils, unique roles of dendritic cells at different maturation states, the balance between pro-inflammatory T cells and regulatory T cells (Tregs), and the diverse functions of B cells, plasma cells, and regulatory B cells (Bregs) in OA. By interpreting the roles of these immune cells, this review clarifies the dynamic changes and interactions of immune cells in OA joints, providing a theoretical foundation for more precise targeted interventions in future clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenfeng Liu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Longfei H, Wenyuan H, Weihua F, Peng P, Sun L, Kun L, Mincong H, Fan Y, Wei H, Qiushi W. Exosomes in cartilage microenvironment regulation and cartilage repair. Front Cell Dev Biol 2025; 13:1460416. [PMID: 40109360 PMCID: PMC11919854 DOI: 10.3389/fcell.2025.1460416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Osteoarthritis (OA) is a debilitating disease that predominantly impacts the hip, hand, and knee joints. Its pathology is defined by the progressive degradation of articular cartilage, formation of bone spurs, and synovial inflammation, resulting in pain, joint function limitations, and substantial societal and familial burdens. Current treatment strategies primarily target pain alleviation, yet improved interventions addressing the underlying disease pathology are scarce. Recently, exosomes have emerged as a subject of growing interest in OA therapy. Numerous studies have investigated exosomes to offer promising therapeutic approaches for OA through diverse in vivo and in vitro models, elucidating the mechanisms by which exosomes from various cell sources modulate the cartilage microenvironment and promote cartilage repair. Preclinical investigations have demonstrated the regulatory effects of exosomes originating from human cells, including mesenchymal stem cells (MSC), synovial fibroblasts, chondrocytes, macrophages, and exosomes derived from Chinese herbal medicines, on the modulation of the cartilage microenvironment and cartilage repair through diverse signaling pathways. Additionally, therapeutic mechanisms encompass cartilage inflammation, degradation of the cartilage matrix, proliferation and migration of chondrocytes, autophagy, apoptosis, and mitigation of oxidative stress. An increasing number of exosome carrier scaffolds are under development. Our review adopts a multidimensional approach to enhance comprehension of the pivotal therapeutic functions exerted by exosomes sourced from diverse cell types in OA. Ultimately, our aim is to pinpoint therapeutic targets capable of regulating the cartilage microenvironment and facilitating cartilage repair in OA.
Collapse
Affiliation(s)
- Han Longfei
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hou Wenyuan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fang Weihua
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lu Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Kun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - He Mincong
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Fan
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - He Wei
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Qiushi
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Orthopaedic, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Toktarov T, Raimagambetov Y, Balbossynov B, Saginova D, Abilmazhinov M, Ogay V. Implantation of Heparin-Conjugated Fibrin Hydrogel for Local Defects of Cartilage in Knee Osteoarthritis: A Case Report. Int Med Case Rep J 2025; 18:151-156. [PMID: 39871859 PMCID: PMC11769846 DOI: 10.2147/imcrj.s483485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Background Cartilage defects in the knee joint are areas of damage and wear to the cartilage that normally covers and protects the ends of bones. These defects occur due to sudden injuries, such as trauma or sports accidents, or due to chronic conditions, such as osteoarthritis. Cartilage acts as a shock absorber (cushion absorber), reducing the impact of mechanical stress on the joints, which helps prevent bone damage during movement. Cartilage also serves as a gliding surface for the joints, allowing them to move smoothly, which minimizes friction between the bones. Its damage can cause pain, swelling, and decreased joint function. Treatment of localized cartilage defects is important to prevent further damage to the joint and maintain good knee function. Identifying problems early and treating them correctly can help improve outcomes and reduce the likelihood of more serious joint problems. Case Description We describe the case of a 46-year-old man with a localized cartilage defect in the knee joint who was followed for one year after the application of heparin-conjugated fibrin hydrogel for the treatment. We watched the patient for a year, doing functional tests, checking MRI results after the procedure, and watching for side effects. Results This case demonstrates that implantation of hydrogel successfully engraft and lead to remodeling of hyaline-like cartilage, thereby improving the condition of damaged knee cartilage. Comparison of MRI images before and 1 year after surgery showed the effectiveness of this technology.
Collapse
Affiliation(s)
- Tusipkhan Toktarov
- National Scientific Center of Traumatology and Orthopedics Named After Academician Batpenov N.D., Astana, Kazakhstan
- Astana Medical University, Astana, Kazakhstan
| | - Yerik Raimagambetov
- National Scientific Center of Traumatology and Orthopedics Named After Academician Batpenov N.D., Astana, Kazakhstan
| | - Bagdat Balbossynov
- National Scientific Center of Traumatology and Orthopedics Named After Academician Batpenov N.D., Astana, Kazakhstan
| | - Dina Saginova
- National Scientific Center of Traumatology and Orthopedics Named After Academician Batpenov N.D., Astana, Kazakhstan
| | | | - Vyacheslav Ogay
- National Scientific Center of Traumatology and Orthopedics Named After Academician Batpenov N.D., Astana, Kazakhstan
- Stem Cell Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
4
|
Singer J, Knezic N, Gohring G, Fite O, Christiansen J, Huard J. Synovial mesenchymal stem cells. ORTHOBIOLOGICS 2025:141-154. [DOI: 10.1016/b978-0-12-822902-6.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Li X, Sun H, Li D, Cai Z, Xu J, Ma R. CD34+ synovial fibroblasts exhibit high osteogenic potential in synovial chondromatosis. Cell Tissue Res 2024; 397:37-50. [PMID: 38602543 DOI: 10.1007/s00441-024-03892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Synovial chondromatosis (SC) is a disorder of the synovium characterized by the formation of osteochondral nodules within the synovium. This study aimed to identify the abnormally differentiated progenitor cells and possible pathogenic signaling pathways. Loose bodies and synovium were obtained from patients with SC during knee arthroplasty. Single-cell RNA sequencing was used to identify cell subsets and their gene signatures in SC synovium. Cells derived from osteoarthritis (OA) synovium were used as controls. Multi-differentiation and colony-forming assays were used to identify progenitor cells. The roles of transcription factors and signaling pathways were investigated through computational analysis and experimental verification. We identified an increased proportion of CD34+ sublining fibroblasts in SC synovium. CD34+CD31- cells and CD34-CD31- cells were sorted from SC synovium. Compared with CD34- cells, CD34+ cells had larger alkaline phosphatase (ALP)-stained area and calcified area after osteogenic induction. In addition, CD34+ cells exhibited a stronger tube formation ability than CD34- cells. Our bioinformatic analysis suggested the expression of TWIST1, a negative regulator of osteogenesis, in CD34- sublining fibroblasts and was regulated by the TGF-β signaling pathway. The experiment showed that CD34+ cells acquired the TWIST1 expression during culture and the combination of TGF-β1 and harmine, an inhibitor of Twist1, could further stimulate the osteogenesis of CD34+ cells. Overall, CD34+ synovial fibroblasts in SC synovium have multiple differentiation potentials, especially osteogenic differentiation potential, and might be responsible for the pathogenesis of SC.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopaedics, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
- Key Laboratory of Qingdao in Medicine and Engineering, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Hao Sun
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Deng Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiqing Cai
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Xu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ruofan Ma
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Tang D, Tang W, Chen H, Liu D, Jiao F. Synergistic Effects of Icariin and Extracellular Vesicles Derived from Rabbit Synovial Membrane-Derived Mesenchymal Stem Cells on Osteochondral Repair via the Wnt/ β-Catenin Pathway. Anal Cell Pathol (Amst) 2024; 2024:1083143. [PMID: 38946863 PMCID: PMC11214593 DOI: 10.1155/2024/1083143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Osteochondral defects (OCDs) are localized areas of damaged cartilage and underlying subchondral bone that can produce pain and seriously impair joint function. Literature reports indicated that icariin (ICA) has the effect of promoting cartilage repair. However, its mechanism remains unclear. Here, we explored the effects of icariin and extracellular vesicles (EVs) from rabbit synovial-derived mesenchymal stem cells (rSMSCs) on repairing of OCDs. Materials and Methods Rabbit primary genicular chondrocytes (rPGCs), knee skeletal muscle cells (rSMCKs), and rSMSCs, and extracellular vesicles derived from the latter two cells (rSMCK-EVs and rSMSC-EVs) were isolated and identified. The rPGCs were stimulated with ICA, rSMSC-EVs either separately or in combination. The rSMCK-EVs were used as a control. After stimulation, chondrogenic-related markers were analyzed by quantitative RT-PCR and western blotting. Cell proliferation was determined by the CCK-8 assay. The preventative effects of ICA and SMSC-EVs in vivo were determined by H&E and toluidine blue staining. Immunohistochemical analyses were performed to evaluate the levels of COL2A1 and β-catenin in vivo. Results. In vitro, the proliferation of rPGCs was markedly increased by ICA treatment in a dose-dependent manner. When compared with ICA or rSMSC-EVs treatment alone, combined treatment with ICA and SMSC-EVs produced stronger stimulative effects on cell proliferation. Moreover, combined treatment with ICA and rSMSC-EVs promoted the expression of chondrogenic-related gene, including COL2A1, SOX-9, and RUNX2, which may be via the activation of the Wnt/β-catenin pathway. In vivo, combined treatment with rSMSC-EVs and ICA promoted cartilage repair in joint bone defects. Results also showed that ICA or rSMSC-EVs both promoted the COL2A1 and β-catenin protein accumulation in articular cartilage, and that was further enhanced by combined treatment with rSMSC-EVs and ICA. Conclusion Our findings highlight the promising potential of using combined treatment with ICA and rSMSC-EVs for promoting osteochondral repair.
Collapse
Affiliation(s)
- Dongming Tang
- Department of Joint SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Wang Tang
- Department of Spine SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Huanqing Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Donghua Liu
- Department of Spine SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Feng Jiao
- Department of Joint SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| |
Collapse
|
7
|
Shi L, Chen L, Gao X, Sun X, Jin G, Yang Y, Shao Y, Zhu F, Zhou G. Comparison of different sources of mesenchymal stem cells: focus on inflammatory bowel disease. Inflammopharmacology 2024; 32:1721-1742. [PMID: 38615278 DOI: 10.1007/s10787-024-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Inflammatory bowel disease (IBD) poses a significant challenge in modern medicine, with conventional treatments limited by efficacy and associated side effects, necessitating innovative therapeutic approaches. Mesenchymal stem cells (MSC) have emerged as promising candidates for IBD treatment due to their immunomodulatory properties and regenerative potential. This thesis aims to explore and compare various sources of MSC and evaluate their efficacy in treating IBD. This study comprehensively analyses MSC derived from multiple sources, including bone marrow, adipose tissue, umbilical cord, and other potential reservoirs. Core elements of this investigation include assessing differences in cell acquisition, immunomodulatory effects, and differentiation capabilities among these MSC sources, as well as comparing their clinical trial outcomes in IBD patients to their therapeutic efficacy in animal models. Through meticulous evaluation and comparative analysis, this thesis aims to elucidate disparities in the efficacy of different MSC sources for IBD treatment, thereby identifying the most promising therapeutic applications. The findings of this study are intended to advance our understanding of MSC biology and offer valuable insights for selecting the most effective MSC sources for personalized IBD therapy. Ultimately, this research endeavor will optimise therapeutic strategies for managing inflammatory bowel disease through the utilization of MSC.
Collapse
Affiliation(s)
- Lihao Shi
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Leilei Chen
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xizhuang Gao
- Clinical Medical College of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China
| | - Xufan Sun
- Clinical Medical College of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, People's Republic of China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, People's Republic of China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China
| | - Guangxi Zhou
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China.
| |
Collapse
|
8
|
Tjandra KC, Novriansyah R, Sudiasa INS, Ar A, Rahmawati NAD, Dilogo IH. Modified Mesenchymal stem cell, platelet-rich plasma, and hyaluronic acid intervention in early stage osteoarthritis: A systematic review, meta-analysis, and meta-regression of arthroscopic-guided intra-articular approaches. PLoS One 2024; 19:e0295876. [PMID: 38457479 PMCID: PMC10923406 DOI: 10.1371/journal.pone.0295876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promise for osteoarthritis (OA) treatment, potentially enhanced by combining them with platelet-rich plasma (PRP) and hyaluronic acid (HA). This study aimed to assess the synergy of MSCs, PRP, and varying HA doses, and determine optimal MSC sources to treat early-stage OA in the perspective of Lysholm score, VAS Score, KSS score, and WOMAC score. METHOD Original articles from 2013 to 2023 were screened from four databases, focusing on clinical trials and randomized controlled trials. The Risk of Bias in Non-randomized Studies-of Interventions (ROB-2) tool evaluated bias, and a PICOS criteria table guided result construction. Revman 5.4 analyzed outcomes such as Lysholm score, VAS score, KSS, WOMAC score, cartilage volume, and defect size using MRI. This systematic review adhered to PRISMA guidelines. RESULT Nine studies met the final inclusion criteria. Meta-analysis revealed a significant improvement in Lysholm score (MD: 17.89; 95% CI: 16.01, 19.77; I2 = 0%, P = 0.56), a notable reduction in VAS score (MD: -2.62; 95% CI: -2.83, -2.41; I2 = 99%, P < 0.00001), elevated KSS (MD: 29.59; 95% CI: 27.66, 31.52; I2 = 95%, P < 0.0001), and reduced WOMAC score (MD: -12.38; 95% CI: -13.75, -11.01; I2 = 99%, P < 0.0001). CONCLUSIONS Arthroscopic guided high-dose subchondral application of primary cultured synovial MSCs in popliteal PRP media with HA effectively regenerates cartilage defects and improves clinical outcomes in early-stage osteoarthritis. Clarification of MSC sources and quantities enhances the understanding of this promising treatment modality.
Collapse
Affiliation(s)
- Kevin Christian Tjandra
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Robin Novriansyah
- Kariadi General Hospital, Semarang, Indonesia
- Department of Surgery, Faculty of Medicine, Universitas Diopnegoro, Semarang, Indonesia
| | - I. Nyoman Sebastian Sudiasa
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Ardiyana Ar
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Nurul Azizah Dian Rahmawati
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster Indonesian Medical Education and Research Institute (IMERI) Universitas Indonesia, Jakarta, Indonesia
- Department of Orthopaedic and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
9
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho MV, Caseiro AR, Rêma A, Briote I, Mendonça CM, Santos JM, Atayde LM, Alvites RD, Maurício AC. Treatment of Equine Tarsus Long Medial Collateral Ligament Desmitis with Allogenic Synovial Membrane Mesenchymal Stem/Stromal Cells Enhanced by Umbilical Cord Mesenchymal Stem/Stromal Cell-Derived Conditioned Medium: Proof of Concept. Animals (Basel) 2024; 14:370. [PMID: 38338013 PMCID: PMC10854557 DOI: 10.3390/ani14030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Horses are high-performance athletes prone to sportive injuries such as tendonitis and desmitis. The formation of fibrous tissue in tendon repair remains a challenge to overcome. This impels regenerative medicine to develop innovative therapies that enhance regeneration, retrieving original tissue properties. Multipotent Mesenchymal Stem/Stromal Cells (MSCs) have been successfully used to develop therapeutic products, as they secrete a variety of bioactive molecules that play a pivotal role in tissue regeneration. These factors are released in culture media for producing a conditioned medium (CM). The aforementioned assumptions led to the formulation of equine synovial membrane MSCs (eSM-MSCs)-the cellular pool that naturally regenerates joint tissue-combined with a medium enriched in immunomodulatory factors (among other bioactive factors) produced by umbilical cord stroma-derived MSCs (eUC-MSCs) that naturally contribute to suppressing the immune rejection in the maternal-fetal barrier. A description of an equine sport horse diagnosed with acute tarsocrural desmitis and treated with this formulation is presented. Ultrasonographic ligament recovery occurred in a reduced time frame, reducing stoppage time and allowing for the horse's return to unrestricted competition after the completion of a physical rehabilitation program. This study focused on the description of the therapeutic formulation and potential in an equine desmitis treatment using the cells themselves and their secretomes.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Inês Briote
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Carla M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| |
Collapse
|
10
|
Popov VL, Poliakov AM, Pakhaliuk VI. In silico evaluation of the mechanical stimulation effect on the regenerative rehabilitation for the articular cartilage local defects. Front Med (Lausanne) 2023; 10:1134786. [PMID: 36960336 PMCID: PMC10027915 DOI: 10.3389/fmed.2023.1134786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Osteoarthritis is one of the most severe diseases of the human musculoskeletal system, and therefore, for many years, special attention has been paid to the search for effective methods of its treatment. However, even the most modern methods only in a limited number of cases in the early or intermediate stages of osteoarthritis lead to positive treatment results. In the later stages of development, osteoarthritis is practically incurable and most often ends with disability or the need for joint replacement for a large number of people. One of the main reasons hindering the development of osteoarthritis treatment methods is the peculiarities of articular cartilage, in which there is practically no vascular network and tissue homeostasis is carried out mainly due to the diffusion of nutrients present in the synovial fluid. In modern medicine, for the treatment of osteoarthritis, tissue engineering strategies have been developed based on the implantation of scaffolds populated with chondrogenic cells into the area of the defect. In vitro studies have established that these cells are highly mechanosensitive and, under the influence of mechanical stimuli of a certain type and intensity, their ability to proliferate and chondrogenesis increases. This property can be used to improve the efficiency of regenerative rehabilitation technologies based on the synergistic combination of cellular technologies, tissue engineering strategies, and mechanical tissue stimulation. In this work, using a regenerative rehabilitation mathematical model of local articular cartilage defects, numerical experiments were performed, the results of which indicate that the micro-and macro environment of the restored tissue, which changes during mechanical stimulation, has a significant effect on the formation of the extracellular matrix, and, consequently, cartilage tissue generally. The results obtained can be used to plan strategies for mechanical stimulation, based on the analysis of the results of cell proliferation experimental assessment after each stimulation procedure in vivo.
Collapse
Affiliation(s)
- Valentin L. Popov
- Institute of Mechanics, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Valentin L. Popov,
| | | | - Vladimir I. Pakhaliuk
- Polytechnic Institute, Sevastopol State University, Sevastopol, Russia
- Vladimir I. Pakhaliuk,
| |
Collapse
|
11
|
Chaudhari LR, Kawale AA, Desai SS, Kashte SB, Joshi MG. Pathophysiology of Spinal Cord Injury and Tissue Engineering Approach for Its Neuronal Regeneration: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:51-81. [PMID: 36038807 DOI: 10.1007/5584_2022_731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A spinal cord injury (SCI) is a very debilitating condition causing loss of sensory and motor function as well as multiple organ failures. Current therapeutic options like surgery and pharmacotherapy show positive results but are incapable of providing a complete cure for chronic SCI symptoms. Tissue engineering, including neuroprotective or growth factors, stem cells, and biomaterial scaffolds, grabs attention because of their potential for regeneration and ability to bridge the gap in the injured spinal cord (SC). Preclinical studies with tissue engineering showed functional recovery and neurorestorative effects. Few clinical trials show the safety and efficacy of the tissue engineering approach. However, more studies should be carried out for potential treatment modalities. In this review, we summarize the pathophysiology of SCI and its current treatment modalities, including surgical, pharmacological, and tissue engineering approaches following SCI in preclinical and clinical phases.
Collapse
Affiliation(s)
- Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Akshay A Kawale
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Sangeeta S Desai
- Department of Obstetrics and Gynecology, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra, India
| | - Shivaji B Kashte
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
- Stem Plus Biotech, SMK Commercial Complex, Sangli, Maharashtra, India.
| |
Collapse
|
12
|
Regeneration of Osteochondral Defects by Combined Delivery of Synovium-Derived Mesenchymal Stem Cells, TGF-β1 and BMP-4 in Heparin-Conjugated Fibrin Hydrogel. Polymers (Basel) 2022; 14:polym14245343. [PMID: 36559710 PMCID: PMC9780905 DOI: 10.3390/polym14245343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The regeneration of cartilage and osteochondral defects remains one of the most challenging clinical problems in orthopedic surgery. Currently, tissue-engineering techniques based on the delivery of appropriate growth factors and mesenchymal stem cells (MSCs) in hydrogel scaffolds are considered as the most promising therapeutic strategy for osteochondral defects regeneration. In this study, we fabricated a heparin-conjugated fibrin (HCF) hydrogel with synovium-derived mesenchymal stem cells (SDMSCs), transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-4 (BMP-4) to repair osteochondral defects in a rabbit model. An in vitro study showed that HCF hydrogel exhibited good biocompatibility, a slow degradation rate and sustained release of TGF-β1 and BMP-4 over 4 weeks. Macroscopic and histological evaluations revealed that implantation of HCF hydrogel with SDMSCs, TGF-β1 and BMP-4 significantly enhanced the regeneration of hyaline cartilage and the subchondral bone plate in osteochondral defects within 12 weeks compared to hydrogels with SDMSCs or growth factors alone. Thus, these data suggest that combined delivery of SDMSCs with TGF-β1 and BMP-4 in HCF hydrogel may synergistically enhance the therapeutic efficacy of osteochondral defect repair of the knee joints.
Collapse
|
13
|
Miguel F, Barbosa F, Ferreira FC, Silva JC. Electrically Conductive Hydrogels for Articular Cartilage Tissue Engineering. Gels 2022; 8:710. [PMID: 36354618 PMCID: PMC9689960 DOI: 10.3390/gels8110710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Articular cartilage is a highly specialized tissue found in diarthrodial joints, which is crucial for healthy articular motion. Despite its importance, articular cartilage has limited regenerative capacities, and the degeneration of this tissue is a leading cause of disability worldwide, with hundreds of millions of people affected. As current treatment options for cartilage degeneration remain ineffective, tissue engineering has emerged as an exciting approach to create cartilage substitutes. In particular, hydrogels seem to be suitable candidates for this purpose due to their biocompatibility and high customizability, being able to be tailored to fit the biophysical properties of native cartilage. Furthermore, these hydrogel matrices can be combined with conductive materials in order to simulate the natural electrochemical properties of articular cartilage. In this review, we highlight the most common conductive materials combined with hydrogels and their diverse applications, and then present the current state of research on the development of electrically conductive hydrogels for cartilage tissue engineering. Finally, the main challenges and future perspectives for the application of electrically conductive hydrogels on articular cartilage repair strategies are also discussed.
Collapse
Affiliation(s)
- Filipe Miguel
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Barbosa
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Carlos Silva
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
14
|
Azzarà A, Risi Ambrogioni L, Cassano I, Lintas C, Longo UG, Denaro V, Gurrieri F. Genetic Characterization in Familial Rotator Cuff Tear: An Exome Sequencing Study. BIOLOGY 2022; 11:biology11111565. [PMID: 36358266 PMCID: PMC9687989 DOI: 10.3390/biology11111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Background: multiple gene variants seem to contribute to rotator cuff (RC) tear susceptibility. The aim of the study is to perform an exome sequencing analysis within a family to identify rare gene variants predisposing to the development of RC tear. Material and methods: the exome sequencing was conducted in a family consisting of four individuals, two healthy and the remaining ones with bilateral RC tears. Variants in common among the two affected subjects were selected, and those in common with the healthy subject and those with a frequency >1% were removed. The potential pathogenicity of the variants was investigated using the predictions of several in silico tools from VarSome. Results: the exome sequencing yielded approximately 600,000 variants per patient, subsequently filtered according to frequency <1% and absence of association with other diseases. Removing variants common with the healthy subject, 348 rare variants among 248 genes were identified. Based on the risk of damaging, three candidate genes for RC tear were found: COL23A1, EMILIN3, and HDAC10. Conclusion: this is the first whole-exome sequencing analysis within a family to explore genetic predisposition in RC tear. The results reveal the presence of common damaging variants among affected individuals in the COL23A1, EMILIN3, and HDAC10 genes.
Collapse
Affiliation(s)
- Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Laura Risi Ambrogioni
- Operative Research Unit of Trauma and Orthopaedic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Trauma and Orthopaedic Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Umile Giuseppe Longo
- Operative Research Unit of Trauma and Orthopaedic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Trauma and Orthopaedic Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Correspondence: ; Tel.: +39-062-2541-1613; Fax: +39-0622-5411
| | - Vincenzo Denaro
- Operative Research Unit of Trauma and Orthopaedic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Trauma and Orthopaedic Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
15
|
Mahmoud EE, Mawas AS, Mohamed AA, Noby MA, Abdel-Hady ANA, Zayed M. Treatment strategies for meniscal lesions: from past to prospective therapeutics. Regen Med 2022; 17:547-560. [PMID: 35638397 DOI: 10.2217/rme-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Menisci play an important role in the biomechanics of knee joint function, including loading transmission, joint lubrication, prevention of soft tissue impingement during motion and joint stability. Meniscal repair presents a challenge due to a lack of vascularization that limits the healing capacity of meniscal tissue. In this review, the authors aimed to untangle the available treatment options for repairing meniscal tears. Various surgical procedures have been developed to treat meniscal tears; however, clinical outcomes are limited. Consequently, numerous researchers have focused on different treatments such as the application of exogenous and/or autologous growth factors, scaffolds including tissue-derived matrix, cell-based therapy and miRNA-210. The authors present current and prospective treatment strategies for meniscal lesions.
Collapse
Affiliation(s)
- Elhussein E Mahmoud
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Amany S Mawas
- Department of Pathology & Clinical Pathology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Alsayed A Mohamed
- Department of Anatomy & Embryology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohammed A Noby
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Mohammed Zayed
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
16
|
Prajwal GS, Jeyaraman N, Kanth V K, Jeyaraman M, Muthu S, Rajendran SNS, Rajendran RL, Khanna M, Oh EJ, Choi KY, Chung HY, Ahn BC, Gangadaran P. Lineage Differentiation Potential of Different Sources of Mesenchymal Stem Cells for Osteoarthritis Knee. Pharmaceuticals (Basel) 2022; 15:386. [PMID: 35455383 PMCID: PMC9028477 DOI: 10.3390/ph15040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) have paved a way for treating musculoskeletal diseases in a minimally invasive manner. The regenerative medicine cocktail involves the usage of mesenchymal stem/stromal cells (MSCs), either uncultured or culture-expanded cells along with growth factors, cytokines, exosomes, and secretomes to provide a better regenerative milieu in degenerative diseases. The successful regeneration of cartilage depends on the selection of the appropriate source of MSCs, the quality, quantity, and frequency of MSCs to be injected, and the selection of the patient at an appropriate stage of the disease. However, confirmation on the most favorable source of MSCs remains uncertain to clinicians. The lack of knowledge in the current cellular treatment is uncertain in terms of how beneficial MSCs are in the long-term or short-term (resolution of pain) and improved quality of life. Whether MSCs treatments have any superiority, exists due to sources of MSCs utilized in their potential to objectively regenerate the cartilage at the target area. Many questions on source and condition remain unanswered. Hence, in this review, we discuss the lineage differentiation potentials of various sources of MSCs used in the management of knee osteoarthritis and emphasize the role of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Gollahalli Shivashankar Prajwal
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Mallika Spine Centre, Guntur 522001, Andhra Pradesh, India
| | - Naveen Jeyaraman
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Krishna Kanth V
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, Puducherry, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226010, Uttar Pradesh, India
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Kang Young Choi
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
17
|
Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, Roshangar L, Ahmadi M. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes for Orthopedic Diseases Treatment. Stem Cell Rev Rep 2022; 18:933-951. [PMID: 34169411 PMCID: PMC8224994 DOI: 10.1007/s12015-021-10185-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Musculoskeletal disorders (MSDs) are conditions that can affect muscles, bones, and joints. These disorders are very painful and severely limit patients' mobility and are more common in the elderly. MSCs are multipotent stem cells isolated from embryonic (such as the umbilical cord) and mature sources (such as adipose tissue and bone marrow). These cells can differentiate into various cells such as osteoblasts, adipocytes, chondrocytes, NP-like cells, Etc. Due to MSC characteristics such as immunomodulatory properties, ability to migrate to the site of injury, recruitment of cells involved in repair, production of growth factors, and large amount production of extracellular vesicles, these cells have been used in many regenerative-related medicine studies. Also, MSCs produce different types of EVs, such as exosomes, to the extracellular environment. Exosomes reflect MSCs' characteristics and do not have cell therapy-associated problems because they are cell-free. These vesicles carry proteins, nucleic acids, and lipids to the host cell and change their function. This review focuses on MSCs and MSCs exosomes' role in repairing dense connective tissues such as tendons, cartilage, invertebrate disc, bone fracture, and osteoporosis treatment.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marziah Zahar
- Social Security Centre of Excellence, School of Business Management, College of Business, Universiti Utara Malaysia, Sintok Kedah, Malaysia
| | | | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Zamudio-Cuevas Y, Plata-Rodríguez R, Fernández-Torres J, Flores KM, Cárdenas-Soria VH, Olivos-Meza A, Hernández-Rangel A, Landa-Solís C. Synovial membrane mesenchymal stem cells for cartilaginous tissues repair. Mol Biol Rep 2022; 49:2503-2517. [PMID: 35013859 DOI: 10.1007/s11033-021-07051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The present review is focused on general aspects of the synovial membrane as well as specialized aspects of its cellular constituents, particularly the composition and location of synovial membrane mesenchymal stem cells (S-MSCs). S-MSC multipotency properties are currently at the center of translational medicine for the repair of multiple joint tissues, such as articular cartilage and meniscus lesions. METHODS AND RESULTS We reviewed the results of in vitro and in vivo research on the current clinical applications of S-MSCs, surface markers, cell culture techniques, regenerative properties, and immunomodulatory mechanisms of S-MSCs as well as the practical limitations of the last twenty-five years (1996 to 2021). CONCLUSIONS Despite the poor interest in the development of new clinical trials for the application of S-MSCs in joint tissue repair, we found evidence to support the clinical use of S-MSCs for cartilage repair. S-MSCs can be considered a valuable therapy for the treatment of repairing joint lesions.
Collapse
Affiliation(s)
- Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Ricardo Plata-Rodríguez
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Karina Martínez Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Víctor Hugo Cárdenas-Soria
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Anell Olivos-Meza
- Ortopedia del Deporte y Artroscopía, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Adriana Hernández-Rangel
- Instituto Politécnico Nacional-ESIQIE, Av. Luis Enrique Erro S/N, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico City, CDMX, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico.
| |
Collapse
|
19
|
Jeyaraman M, Muthu S, Jeyaraman N, Ranjan R, Jha SK, Mishra P. Synovium Derived Mesenchymal Stromal Cells (Sy-MSCs): A Promising Therapeutic Paradigm in the Management of Knee Osteoarthritis. Indian J Orthop 2022; 56:1-15. [PMID: 35070137 PMCID: PMC8748553 DOI: 10.1007/s43465-021-00439-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Synovium-derived mesenchymal stromal cell (Sy-MSC) is a newer member of the mesenchymal stromal cell families. The first successful demonstration of the mesenchymal stromal cell from the human synovial membrane was done in 2001 and since then its potential role for musculoskeletal regeneration has been keenly documented. The regenerative effects of Sy-MSCs are through paracrine signaling, direct cell-cell interactions, and extracellular vehicles. Sy-MSCs possess superior chondrogenicity than other sources of mesenchymal stromal cells. This article aims to outline the advancement of synovium-derived mesenchymal stromal cells along with a specific insight into the application for managing osteoarthritis knee.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Government Medical College & Hospital, Dindigul, Tamil Nadu India
| | - Naveen Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Prabhu Mishra
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| |
Collapse
|
20
|
Lee JS, Shim DW, Kang KY, Chae DS, Lee WS. Method Categorization of Stem Cell Therapy for Degenerative Osteoarthritis of the Knee: A Review. Int J Mol Sci 2021; 22:ijms222413323. [PMID: 34948119 PMCID: PMC8704290 DOI: 10.3390/ijms222413323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Current clinical applications of mesenchymal stem cell therapy for osteoarthritis lack consistency because there are no established criteria for clinical processes. We aimed to systematically organize stem cell treatment methods by reviewing the literature. The treatment methods used in 27 clinical trials were examined and reviewed. The clinical processes were separated into seven categories: cell donor, cell source, cell preparation, delivery methods, lesion preparation, concomitant procedures, and evaluation. Stem cell donors were sub-classified as autologous and allogeneic, and stem cell sources included bone marrow, adipose tissue, peripheral blood, synovium, placenta, and umbilical cord. Mesenchymal stem cells can be prepared by the expansion or isolation process and attached directly to cartilage defects using matrices or injected into joints under arthroscopic observation. The lesion preparation category can be divided into three subcategories: chondroplasty, microfracture, and subchondral drilling. The concomitant procedure category describes adjuvant surgery, such as high tibial osteotomy. Classification codes were assigned for each subcategory to provide a useful and convenient method for organizing documents associated with stem cell treatment. This classification system will help researchers choose more unified treatment methods, which will facilitate the efficient comparison and verification of future clinical outcomes of stem cell therapy for osteoarthritis.
Collapse
Affiliation(s)
- Jae Sun Lee
- Stem Cell Therapy Center, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Dong Woo Shim
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Kyung-Yil Kang
- Department of Medicine, Catholic Kwandong Graduate School, Gangneung-si 25601, Korea;
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| | - Woo-Suk Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06276, Korea
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| |
Collapse
|
21
|
Li Y, Zhou Y, Wang Y, Crawford R, Xiao Y. Synovial macrophages in cartilage destruction and regeneration-lessons learnt from osteoarthritis and synovial chondromatosis. Biomed Mater 2021; 17. [PMID: 34823229 DOI: 10.1088/1748-605x/ac3d74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/25/2021] [Indexed: 01/15/2023]
Abstract
Inflammation is a critical process in disease pathogenesis and the restoration of tissue structure and function, for example, in joints such as the knee and temporomandibular. Within the innate immunity process, the body's first defense response in joints when physical and chemical barriers are breached is the synovial macrophages, the main innate immune effector cells, which are responsible for triggering the initial inflammatory reaction. Macrophage is broadly divided into three phenotypes of resting M0, pro-inflammatory M1-like (referred to below as M1), and anti-inflammatory M2-like (referred to below as M2). The synovial macrophage M1-to-M2 transition can affect the chondrogenic differentiation of mesenchymal stem cells (MSCs) in joints. On the other hand, MSCs can also influence the transition between M1 and M2. Failure of the chondrogenic differentiation of MSCs can result in persistent cartilage destruction leading to osteoarthritis. However, excessive chondrogenic differentiation of MSCs may cause distorted cartilage formation in the synovium, which is evidenced in the case of synovial chondromatosis. This review summarizes the role of macrophage polarization in the process of both cartilage destruction and regeneration, and postulates that the transition of macrophage phenotype in an inflammatory joint environment may play a key role in determining the fate of joint cartilage.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yifan Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
22
|
Fu L, Li P, Zhu J, Liao Z, Gao C, Li H, Yang Z, Zhao T, Chen W, Peng Y, Cao F, Ning C, Sui X, Guo Q, Lin Y, Liu S. Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ. Bioact Mater 2021; 9:411-427. [PMID: 34820580 PMCID: PMC8586787 DOI: 10.1016/j.bioactmat.2021.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
Many recent studies have shown that joint-resident mesenchymal stem cells (MSCs) play a vital role in articular cartilage (AC) in situ regeneration. Specifically, synovium-derived MSCs (SMSCs), which have strong chondrogenic differentiation potential, may be the main driver of cartilage repair. However, both the insufficient number of MSCs and the lack of an ideal regenerative microenvironment in the defect area will seriously affect the regeneration of AC. Tetrahedral framework nucleic acids (tFNAs), notable novel nanomaterials, are considered prospective biological regulators in biomedical engineering. Here, we aimed to explore whether tFNAs have positive effects on AC in situ regeneration and to investigate the related mechanism. The results of in vitro experiments showed that the proliferation and migration of SMSCs were significantly enhanced by tFNAs. In addition, tFNAs, which were added to chondrogenic induction medium, were shown to promote the chondrogenic capacity of SMSCs by increasing the phosphorylation of Smad2/3. In animal models, the injection of tFNAs improved the therapeutic outcome of cartilage defects compared with that of the control treatments without tFNAs. In conclusion, this is the first report to demonstrate that tFNAs can promote the chondrogenic differentiation of SMSCs in vitro and enhance AC regeneration in vivo, indicating that tFNAs may become a promising therapeutic for AC regeneration. Tetrahedral framework nucleic acids (tFNAs) can promote SMSCs proliferation by activating the Wnt/β-catenin pathway. tFNAs can promote SMSCs migration in vitro and vivo. tFNAs can promote SMSCs chondrogenic differentiation by regulating the TGF/Smad2/3 signaling pathway. tFNAs show improved articular cartilage in situ regeneration activity in vivo.
Collapse
Affiliation(s)
- Liwei Fu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Stomatology Department, The Fifth Hospital of Sichuan Province, Chengdu, 610031, People's Republic of China
| | - Zhiyao Liao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Hao Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Zhen Yang
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Tianyuan Zhao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Wei Chen
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Fuyang Cao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Chao Ning
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| |
Collapse
|
23
|
Hunziker EB, Shintani N, Haspl M, Lippuner K, Voegelin E, Keel MJ. The synovium of human osteoarthritic joints retains its chondrogenic potential irrespective of age. Tissue Eng Part A 2021; 28:283-295. [PMID: 34693739 DOI: 10.1089/ten.tea.2021.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The autologous synovium is a potential tissue source for local induction of chondrogenesis by tissue engineering approaches to repair articular cartilage defects such as they occur in osteoarthritis. It was the aim of the present study to ascertain whether the aging of human osteoarthritic patients compromises the chondrogenic potential of their knee-joint synovium and the structural and metabolic stability of the transformed tissue. The patients were allocated to one of the following two age categories: 54 - 65 years and 66 - 86 years (n = 7-11 donors per time point and experimental group; total number of donors: 64). Synovial biopsies were induced in vitro to undergo chondrogenesis by exposure to either bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-ß1 (TGF-ß1) alone, or a combination of the two growth factors, for up to 6 weeks. The differentiated explants were evaluated morphologically and morphometrically for the volume fraction of metachromasia (sulfated proteoglycans), immunohistochemically for type-II collagen, and for the gene-expression levels of anabolic chondrogenic markers as well as catabolic factors by a real-time polymerase-chain-reaction (RT-PCR) analysis. Quantitative metachromasia revealed that chondrogenic differentiation of human synovial explants was induced to the greatest degree by either BMP-2 alone or the BMP-2/TGF-1 combination, i.e. to a comparable level with each of the two stimulation protocols and within both age categories. The BMP-2/TGF-1combination protocol resulted in chondrocytes of a physiological size for normal human articular cartilage, unlike the BMP-2 alone stimulation that resulted in cell sizes of terminal hypertrophy. The stable gene-expression levels of the anabolic chondrogenic markers confirmed the superiority of these two stimulation protocols and demonstrated the hyaline-like qualities of the generated cartilage matrix. The gene-expression levels of the catabolic markers remained extremely low. The data also confirmed the usefulness of experimental in vitro studies with bovine synovial tissue as a paradigm for human synovial investigations. Our data reveal the chondrogenic potential of the human knee-joint synovium of osteoarthritic patients to be uncompromised by ageing and catabolic processes. The potential of synovium-based clinical engineering (repair) of cartilage tissue using autologous synovium may thus not be reduced by the age of the human patient.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Inselspital Universitatsspital Bern, 27252, Departments of Osteoporosis and Orthopaedic Surgery, Freiburgstrasse 10, Bern, Switzerland, 3010.,Switzerland;
| | - Nahoko Shintani
- Inselspital Universitatsspital Bern, 27252, Department of Osteoporosis, Bern, Switzerland;
| | - Miroslav Haspl
- University of Zagreb, 37631, of Orthopaedic Surgery, Zagreb, Zagreb, Croatia;
| | - Kurt Lippuner
- Inselspital University Hospital Bern, 27252, Department of Osteoporosis, Bern, BE, Switzerland;
| | - Esther Voegelin
- Inselspital Universitatsspital Bern, 27252, of Plastic and Hand Surgery, Bern, BE, Switzerland;
| | - Marius J Keel
- Inselspital Universitatsspital Bern, 27252, Orthopedic Department, Bern, BE, Switzerland;
| |
Collapse
|
24
|
Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX. Stem cell therapies in tendon-bone healing. World J Stem Cells 2021; 13:753-775. [PMID: 34367476 PMCID: PMC8316867 DOI: 10.4252/wjsc.v13.i7.753] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/08/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.
Collapse
Affiliation(s)
- Yue Xu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Wan-Xia Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li-Na Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yue-Qing Ming
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yu-Lin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Guo-Xin Ni
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
25
|
Proteomic Analysis Reveals Commonly Secreted Proteins of Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Synovial Membrane to Show Potential for Cartilage Regeneration in Knee Osteoarthritis. Stem Cells Int 2021; 2021:6694299. [PMID: 34306096 PMCID: PMC8264516 DOI: 10.1155/2021/6694299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Paracrine factors secreted by mesenchymal stem cells (MSCs) reportedly modulate inflammation and reparative processes in damaged tissues and have been explored for knee osteoarthritis (OA) therapy. Although various studies have reported the effects of paracrine factors in knee OA, it is not yet clear which paracrine factors directly affect the regeneration of damaged cartilage and which are secreted under various knee OA conditions. In this study, we cultured MSCs derived from three types of tissues and treated each type with IL-1β and TNF-α or not to obtain conditioned medium. Each conditioned medium was used to analyse the paracrine factors related to cartilage regeneration using liquid chromatography-tandem mass spectrometry. Bone marrow-, adipose tissue-, and synovial membrane-MSCs (all-MSCs) exhibited expression of 93 proteins under normal conditions and 105 proteins under inflammatory conditions. It was confirmed that the types of secreted proteins differed depending on the environmental conditions, and the proteins were validated using ELISA. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using a list of proteins secreted by all-MSCs under each condition confirmed that the secreted proteins were closely related to cartilage repair under inflammatory conditions. Protein-protein interaction networks were confirmed to change depending on environmental differences and were found to enhance the secretion of paracrine factors related to cartilage regeneration under inflammatory conditions. In conclusion, our results demonstrated that compared with knee OA conditions, the differential expression proteins may contribute to the regeneration of damaged cartilage. In addition, the detailed information on commonly secreted proteins by all-MSCs provides a comprehensive basis for understanding the potential of paracrine factors to influence tissue repair and regeneration in knee OA.
Collapse
|
26
|
Agarwal N, Mak C, Bojanic C, To K, Khan W. Meta-Analysis of Adipose Tissue Derived Cell-Based Therapy for the Treatment of Knee Osteoarthritis. Cells 2021; 10:1365. [PMID: 34206010 PMCID: PMC8228374 DOI: 10.3390/cells10061365] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disorder associated with cartilage loss and is a leading cause of disability around the world. In old age, the capacity of cartilage to regenerate is diminished. With an aging population, the burden of OA is set to rise. Currently, there is no definitive treatment for OA. However, cell-based therapies derived from adipose tissue are promising. A PRISMA systematic review was conducted employing four databases (MEDLINE, EMBASE, Cochrane, Web of Science) to identify all clinical studies that utilized adipose tissue derived mesenchymal stem cells (AMSCs) or stromal vascular fraction (SVF) for the treatment of knee OA. Eighteen studies were included, which met the inclusion criteria. Meta-analyses were conducted on fourteen of these studies, which all documented WOMAC scores after the administration of AMSCs. Pooled analysis revealed that cell-based treatments definitively improve WOMAC scores, post treatment. These improvements increased with time. The studies in this meta-analysis have established the safety and efficacy of both AMSC therapy and SVF therapy for knee OA in old adults and show that they reduce pain and improve knee function in symptomatic knee OA suggesting that they may be effective therapies to improve mobility in an aging population.
Collapse
Affiliation(s)
- Nikhil Agarwal
- MBChB Office, University of Aberdeen College of Life Sciences and Medicine, Foresterhill Rd, Aberdeen AB25 2ZD, UK;
| | - Christopher Mak
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (C.M.); (C.B.); (K.T.)
| | - Christine Bojanic
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (C.M.); (C.B.); (K.T.)
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (C.M.); (C.B.); (K.T.)
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (C.M.); (C.B.); (K.T.)
| |
Collapse
|
27
|
Chung MJ, Son JY, Park S, Park SS, Hur K, Lee SH, Lee EJ, Park JK, Hong IH, Kim TH, Jeong KS. Mesenchymal Stem Cell and MicroRNA Therapy of Musculoskeletal Diseases. Int J Stem Cells 2021; 14:150-167. [PMID: 33377459 PMCID: PMC8138662 DOI: 10.15283/ijsc20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic effects of mesenchymal stem cells (MSCs) in musculoskeletal diseases (MSDs) have been verified in many human and animal studies. Although some tissues contain MSCs, the number of cells harvested from those tissues and rate of proliferation in vitro are not enough for continuous transplantation. In order to produce and maintain stable MSCs, many attempts are made to induce differentiation from pluripotent stem cells (iPSCs) into MSCs. In particular, it is also known that the paracrine action of stem cell-secreted factors could promote the regeneration and differentiation of target cells in damaged tissue. MicroRNAs (miRNAs), one of the secreted factors, are small non-coding RNAs that regulate the translation of a gene. It is known that miRNAs help communication between stem cells and their surrounding niches through exosomes to regulate the proliferation and differentiation of stem cells. While studies have so far been underway targeting therapeutic miRNAs of MSDs, studies on specific miRNAs secreted from MSCs are still minimal. Hence, our ultimate goal is to obtain sufficient amounts of exosomes from iPSC-MSCs and develop them into therapeutic agents, furthermore to select specific miRNAs and provide safe cell-free clinical setting as a cell-free status with purpose of delivering them to target cells. This review article focuses on stem cell therapy on MSDs, specific microRNAs regulating MSDs and updates on novel approaches.
Collapse
Affiliation(s)
- Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Soon-Seok Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Keun Hur
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Tae-Hwan Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
28
|
Regulatory Effect of Mesenchymal Stem Cells on T Cell Phenotypes in Autoimmune Diseases. Stem Cells Int 2021; 2021:5583994. [PMID: 33859701 PMCID: PMC8024100 DOI: 10.1155/2021/5583994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Research on mesenchymal stem cells (MSCs) starts from the earliest assumption that cells derived from the bone marrow have the ability to repair tissues. Several scientists have since documented the crucial role of bone marrow-derived MSCs (BM-MSCs) in processes such as embryonic bone and cartilage formation, adult fracture and tissue repair, and immunomodulatory activities in therapeutic applications. In addition to BM-MSCs, several sources of MSCs have been reported to possess tissue repair and immunoregulatory abilities, making them potential treatment options for many diseases. Therefore, the therapeutic potential of MSCs in various diseases including autoimmune conditions has been explored. In addition to an imbalance of T cell subsets in most patients with autoimmune diseases, they also exhibit complex disease manifestations, overlapping symptoms among diseases, and difficult treatment. MSCs can regulate T cell subsets to restore their immune homeostasis toward disease resolution in autoimmune conditions. This review summarizes the role of MSCs in relieving autoimmune diseases via the regulation of T cell phenotypes.
Collapse
|
29
|
Cai X, Daniels O, Cucchiarini M, Madry H. Ectopic models recapitulating morphological and functional features of articular cartilage. Ann Anat 2021; 237:151721. [PMID: 33753232 DOI: 10.1016/j.aanat.2021.151721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Articular cartilage is an extremely specialized connective tissue which covers all diarthrodial joints. Implantation of chondrogenic cells without or with additional biomaterial scaffolds in ectopic locationsin vivo generates substitutes of cartilage with structural and functional characteristics that are used in fundamental investigations while also serving as a basis for translational studies. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant ectopic models, among which subcutaneous, intramuscular, and kidney capsule transplantation and elaborates on implanted cells and biomaterial scaffolds and on their use to recapitulate morphological and functional features of articular cartilage. Although the absence of a physiological joint environment and biomechanical stimuli is the major limiting factor, ectopic models are an established component for articular cartilage research aiming to generate a bridge between in vitro data and the clinically more relevant translational orthotopic in vivo models when their limitations are considered.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Oliver Daniels
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
30
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
31
|
|
32
|
Siengdee P, Oster M, Reyer H, Viergutz T, Wimmers K, Ponsuksili S. Morphological and Molecular Features of Porcine Mesenchymal Stem Cells Derived From Different Types of Synovial Membrane, and Genetic Background of Cell Donors. Front Cell Dev Biol 2020; 8:601212. [PMID: 33363158 PMCID: PMC7755640 DOI: 10.3389/fcell.2020.601212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023] Open
Abstract
Synovial mesenchymal stem cells (SMSCs) have become a great cell source for musculoskeletal stem cell research, especially related to cartilage and bone tissue regeneration, due to their superior cell proliferation properties and multidifferentiation potential into various cell lineages. This study revealed isolation methods, culture conditions, and morphological and molecular characterization of SMSCs derived fibrous synovium (FS) and adipose synovium (FP) of two pig breeds differing in growth performance [German Landrace (DL), and fat deposition (Angeln Saddleback (AS)]. Herein, FS possessed nucleated cell numbers nearly twice as high as those of FP at Passage 0. SMSCs derived from different types of synovial membrane and genetic background show similar cell morphologies and immunophenotypes, which were assessed by cell surface epitopes and multilineage differentiation potential, but differ significantly in their molecular characteristics. In addition, transcripts of SMSCs from AS were more enriched in IGF-1 signaling and VEGF ligand receptor, while SMSCs from DL were more enriched in growth hormone signaling and bone metabolism. The results indicate that genetics and tissues play significant roles for SMSC characteristics so that SMSCs can be traced back to the original cell donor and be used for fine turning in applications of medical research and therapies.
Collapse
Affiliation(s)
- Puntita Siengdee
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
33
|
Hanai H, Jacob G, Nakagawa S, Tuan RS, Nakamura N, Shimomura K. Potential of Soluble Decellularized Extracellular Matrix for Musculoskeletal Tissue Engineering - Comparison of Various Mesenchymal Tissues. Front Cell Dev Biol 2020; 8:581972. [PMID: 33330460 PMCID: PMC7732506 DOI: 10.3389/fcell.2020.581972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background It is well studied that preparations of decellularized extracellular matrix (ECM) obtained from mesenchymal tissues can function as biological scaffolds to regenerate injured musculoskeletal tissues. Previously, we reported that soluble decellularized ECMs derived from meniscal tissue demonstrated excellent biocompatibility and produced meniscal regenerate with native meniscal anatomy and biochemical characteristics. We therefore hypothesized that decellularized mesenchymal tissue ECMs from various mesenchymal tissues should exhibit tissue-specific bioactivity. The purpose of this study was to test this hypothesis using porcine tissues, for potential applications in musculoskeletal tissue engineering. Methods Nine types of porcine tissue, including cartilage, meniscus, ligament, tendon, muscle, synovium, fat pad, fat, and bone, were decellularized using established methods and solubilized. Although the current trend is to develop tissue specific decellularization protocols, we selected a simple standard protocol across all tissues using Triton X-100 and DNase/RNase after mincing to compare the outcome. The content of sulfated glycosaminoglycan (sGAG) and hydroxyproline were quantified to determine the biochemical composition of each tissue. Along with the concentration of several growth factors, known to be involved in tissue repair and/or maturation, including bFGF, IGF-1, VEGF, and TGF-β1. The effect of soluble ECMs on cell differentiation was explored by combining them with 3D collagen scaffold culturing human synovium derived mesenchymal stem cells (hSMSCs). Results The decellularization of each tissue was performed and confirmed both histologically [hematoxylin and eosin (H&E) and 4’,6-diamidino-2-phenylindole (DAPI) staining] and on the basis of dsDNA quantification. The content of hydroxyproline of each tissue was relatively unchanged during the decellularization process when comparing the native and decellularized tissue. Cartilage and meniscus exhibited a significant decrease in sGAG content. The content of hydroxyproline in meniscus-derived ECM was the highest when compared with other tissues, while sGAG content in cartilage was the highest. Interestingly, a tissue-specific composition of most of the growth factors was measured in each soluble decellularized ECM and specific differentiation potential was particularly evident in cartilage, ligament and bone derived ECMs. Conclusion In this study, soluble decellularized ECMs exhibited differences based on their tissue of origin and the present results are important going forward in the field of musculoskeletal regeneration therapy.
Collapse
Affiliation(s)
- Hiroto Hanai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - George Jacob
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Orthopaedics, Tejasvini Hospital, Mangalore, India
| | - Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
34
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
35
|
Cartilage repair using stem cells & biomaterials: advancement from bench to bedside. Mol Biol Rep 2020; 47:8007-8021. [PMID: 32888123 DOI: 10.1007/s11033-020-05748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Osteoarthritis (OA) involves gradual destruction of articular cartilagemanifested by pain, stiffness of joints, and impaired movement especially in knees and hips. Non-vascularity of this tissue hinders its self-regenerative capacity and thus, the application of reparative or restorative modalities becomes imperative in OA treatment. In recent years, stem cell-based therapies have been explored as potential modalities for addressing OA complications. While mesenchymal stem cells (MSCs) hold immense promise, the recapitulation of native articular cartilage usingMSCs remains elusive. In this review, we have highlighted the chondrogenic potential of MSCs, factors guiding in vitro chondrogenic differentiation, biomaterials available for cartilage repair, their current market status, and the outcomes of major clinical trials. Our search on ClinicalTrials.gov using terms "stem cell" and "osteoarthritis" yielded 83 results. An analysis of the 29 trials that have been completed revealed differences in source of MSCs (bone marrow, adipose tissue, umbilical cord etc.), cell type (autologous or allogenic), and dose administered. Moreover, only 02 out of 29 studies have reported the use of matrix for cartilage repair. From future perspective, aconsensus on choice of cells, differentiation inducers, biomaterials, and clinical settings might pave a way for concocting robust strategies to improve the clinical applicability of biomimetic neocartilage constructs.
Collapse
|
36
|
Li Y, Chen M, Zhou W, Gao S, Luo X, Peng L, Yan J, Wang P, Li Q, Zheng Y, Liu S, Cheng Y, Guo Q. Cell-free 3D wet-electrospun PCL/silk fibroin/Sr 2+ scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomater 2020; 113:196-209. [PMID: 32561472 DOI: 10.1016/j.actbio.2020.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Considering the intrinsic poor self-healing capacity of meniscus, tissue engineering has become a new direction for the treatment of meniscus lesions. However, disturbed by mechanical stability and biocompatibility, most meniscus implants fail to relieve symptoms and prevent the development of osteoarthritis. The goal of this study was to develop a potential meniscal substitute for clinical application. Here, silk fibroin with good mechanical performance and biocompatibility, and strontium ion acting as bioactive factor, were incorporated with Ɛ-Polycaprolactone to fabricate a meniscus scaffold (SP-Sr). By the wet-electrospun method, the 3D SP-Sr provided suitable pore size (100-200 μm) and enough mechanical support (61.6 ± 2.9 MPa for tensile modulus and 0.11 ± 0.03 MPa for compressive modulus). Moreover, after addition of Sr2+, the SP-Sr seeded by rabbit adipose tissue-derived stromal cells (rADSCs) showed the highest secretion with 2.61- and 2.98-fold increase in collagen and aggrecan, respectively, compared with SF/PCL group. And the extracellular matrix related genes expression in SP-Sr also showed upregulation results. Particularly, the expression of the collagen II gene, which played a crucial role in the formation of meniscal inner avascular region, showed a 9-fold increase in SP-Sr compared with pure PCL group. Furthermore, the MRI results of SP-Sr implanted in rabbits with total meniscectomy for 6 months demonstrated effective prevention of meniscus extrusion and relieving joint space narrowing compared with meniscectomy group. And the effects of cartilage protection and delaying osteoarthritis development were confirmed by Pathological examination. Especially, after 6-month implantation, the neo-menisci showed similar structural constituent and mechanical performance. STATEMENT OF SIGNIFICANCE: Meniscus regeneration faces great challenge due to the meniscus having limited healing potential owing to its anisotropic structure, its hypocellularity and hypovascularity. The present tissue engineering solutions have failed to maintain the biological function for meniscus reconstruction in vivo because of fragile and poor biocompatible materials, leading to long-term joint degeneration. The goal of this study was to develop a meniscal substitute potential for clinical application. Here, silk fibroin and strontium were incorporated with Ɛ-Polycaprolactone by wet-electrospinning method to fabricate a meniscus scaffold (SP-Sr). The 6-month implantation results revealed that SP-Sr scaffold was effective in preventing meniscus extrusion, cartilage protection and delaying osteoarthritis development, and the regenerated menisci showed similar structural constituent and mechanical performance.
Collapse
Affiliation(s)
- Yangyang Li
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Wenhao Zhou
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Shuang Gao
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Xujiang Luo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Liqing Peng
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianglong Yan
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Pei Wang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Qiyao Li
- Department of Biomedical Engineering, Materials Research Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shuyun Liu
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Cheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China.
| | - Quanyi Guo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
37
|
Silva JC, Han X, Silva TP, Xia K, Mikael PE, Cabral JMS, Ferreira FC, Linhardt RJ. Glycosaminoglycan remodeling during chondrogenic differentiation of human bone marrow-/synovial-derived mesenchymal stem/stromal cells under normoxia and hypoxia. Glycoconj J 2020; 37:345-360. [PMID: 32086666 DOI: 10.1007/s10719-020-09911-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Glycosaminoglycans (GAGs) are major components of cartilage extracellular matrix (ECM), which play an important role in tissue homeostasis not only by providing mechanical load resistance, but also as signaling mediators of key cellular processes such as adhesion, migration, proliferation and differentiation. Specific GAG types as well as their disaccharide sulfation patterns can be predictive of the tissue maturation level but also of disease states such as osteoarthritis. In this work, we used a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to perform a comparative study in terms of temporal changes in GAG and disaccharide composition between tissues generated from human bone marrow- and synovial-derived mesenchymal stem/stromal cells (hBMSC/hSMSC) after chondrogenic differentiation under normoxic (21% O2) and hypoxic (5% O2) micromass cultures. The chondrogenic differentiation of hBMSC/hSMSC cultured under different oxygen tensions was assessed through aggregate size measurement, chondrogenic gene expression analysis and histological/immunofluorescence staining in comparison to human chondrocytes. For all the studied conditions, the compositional analysis demonstrated a notable increase in the average relative percentage of chondroitin sulfate (CS), the main GAG in cartilage composition, throughout MSC chondrogenic differentiation. Additionally, hypoxic culture conditions resulted in significantly different average GAG and CS disaccharide percentage compositions compared to the normoxic ones. However, such effect was considerably more evident for hBMSC-derived chondrogenic aggregates. In summary, the GAG profiles described here may provide new insights for the prediction of cartilage tissue differentiation/disease states and to characterize the quality of MSC-generated chondrocytes obtained under different oxygen tension culture conditions.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Teresa P Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Paiyz E Mikael
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA.
| |
Collapse
|
38
|
Silva JC, Moura CS, Borrecho G, Alves de Matos AP, Cabral JMS, Linhardt RJ, Ferreira FC. Effects of glycosaminoglycan supplementation in the chondrogenic differentiation of bone marrow- and synovial- derived mesenchymal stem/stromal cells on 3D-extruded poly (ε-caprolactone) scaffolds. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- João C. Silva
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Carla S. Moura
- CDRSP – Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, Portugal
| | - Gonçalo Borrecho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Caparica, Portugal
| | | | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
39
|
Jacob G, Shimomura K, Krych AJ, Nakamura N. The Meniscus Tear: A Review of Stem Cell Therapies. Cells 2019; 9:E92. [PMID: 31905968 PMCID: PMC7016630 DOI: 10.3390/cells9010092] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023] Open
Abstract
Meniscal injuries have posed a challenging problem for many years, especially considering that historically the meniscus was considered to be a structure with no important role in the knee joint. This led to earlier treatments aiming at the removal of the entire structure in a procedure known as a meniscectomy. However, with the current understanding of the function and roles of the meniscus, meniscectomy has been identified to accelerate joint degradation significantly and is no longer a preferred treatment option in meniscal tears. Current therapies are now focused to regenerate, repair, or replace the injured meniscus to restore its native function. Repairs have improved in technique and materials over time, with various implant devices being utilized and developed. More recently, strategies have applied stem cells, tissue engineering, and their combination to potentiate healing to achieve superior quality repair tissue and retard the joint degeneration associated with an injured or inadequately functioning meniscus. Accordingly, the purpose of this current review is to summarize the current available pre-clinical and clinical literature using stem cells and tissue engineering for meniscal repair and regeneration.
Collapse
Affiliation(s)
- George Jacob
- Department and Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; (G.J.); (K.S.)
| | - Kazunori Shimomura
- Department and Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; (G.J.); (K.S.)
| | - Aaron J. Krych
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka 530-0043, Japan
- Global Centre for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Sivasubramaniyan K, Koevoet WJLM, Hakimiyan AA, Sande M, Farrell E, Hoogduijn MJ, Verhaar JAN, Chubinskaya S, Bühring HJ, van Osch GJVM. Cell-surface markers identify tissue resident multipotential stem/stromal cell subsets in synovial intimal and sub-intimal compartments with distinct chondrogenic properties. Osteoarthritis Cartilage 2019; 27:1831-1840. [PMID: 31536814 DOI: 10.1016/j.joca.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Synovium contains multipotent progenitor/stromal cells (MPCs) with potential to participate in cartilage repair. Understanding the identity of these MPCs will allow their therapeutic potential to be fully exploited. Hence this study aimed to identify primary synovial MPCs and characterize them in the context of cartilage regeneration. METHODS Primary MPC/MPC-subset specific markers in synovium were identified by FACS analysis of uncultured cells. MPC-subsets from human synovium obtained from patients undergoing total knee arthroplasty were FACS sorted, cultured, immunophenotyped and chondrogenically differentiated. The anatomical localization of MPCs in synovium was examined using immunohistochemistry. Finally, the presence of these MPC subsets in healthy synovium obtained from human organ donors was examined. RESULTS A combination of CD45, CD31, CD73 and CD90 can isolate two distinct MPC-subsets in synovium. These MPC-subsets, freshly isolated from synovium, did not express CD45 or CD31, but expressed CD73. Additionally, a sub-population of CD73+ cells also expressed CD90. CD45-CD31-CD73+CD90- cells were significantly more chondrogenic than CD45-CD31-CD73+CD90+ cells in the presence of TGFβ1. Interestingly, reduced chondrogenic ability of CD73+CD90+ cells could be reversed by the addition of BMP2, showing discrete chondrogenic factor requirements by distinct cell-subsets. In addition, these MPCs had distinct anatomical localization; CD73 was expressed both in intimal and sub-intimal region while CD90 was enriched in the sub-intimal region. We further demonstrated that these subsets are also present in healthy synovium. CONCLUSIONS We provide indications that primary MPCs in synovial intima and sub-intima are phenotypically and functionally distinct with different chondrogenic properties.
Collapse
Affiliation(s)
- K Sivasubramaniyan
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - W J L M Koevoet
- Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A A Hakimiyan
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - M Sande
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - E Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M J Hoogduijn
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - J A N Verhaar
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - H-J Bühring
- Department of Internal Medicine II, Division of Hematology, University Clinic of Tübingen, Tübingen, Germany
| | - G J V M van Osch
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
41
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
42
|
Diaz-Rodriguez P, Erndt-Marino JD, Gharat T, Munoz Pinto DJ, Samavedi S, Bearden R, Grunlan MA, Saunders WB, Hahn MS. Toward zonally tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2019; 107:2019-2029. [PMID: 30549205 PMCID: PMC6934364 DOI: 10.1002/jbm.b.34293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/22/2018] [Accepted: 11/10/2018] [Indexed: 12/15/2022]
Abstract
Synovium-derived mesenchymal stem cells (SMSCs) are an emerging cell source for regenerative medicine applications, including osteochondral defect (OCD) repair. However, in contrast to bone marrow MSCs, scaffold compositions which promote SMSC chondrogenesis/osteogenesis are still being identified. In the present manuscript, we examine poly(ethylene) glycol (PEG)-based scaffolds containing zonally-specific biochemical cues to guide SMSC osteochondral differentiation. Specifically, SMSCs were encapsulated in PEG-based scaffolds incorporating glycosaminoglycans (hyaluronan or chondroitin-6-sulfate [CSC]), low-dose of chondrogenic and osteogenic growth factors (TGFβ1 and BMP2, respectively), or osteoinductive poly(dimethylsiloxane) (PDMS). Initial studies suggested that PEG-CSC-TGFβ1 scaffolds promoted enhanced SMSC chondrogenic differentiation, as assessed by significant increases in Sox9 and aggrecan. Conversely, PEG-PDMS-BMP2 scaffolds stimulated increased levels of osteoblastic markers with significant mineral deposition. A "Transition" zone formulation was then developed containing a graded mixture of the chondrogenic and osteogenic signals present in the PEG-CSC-TGFβ1 and PEG-PDMS-BMP2 constructs. SMSCs within the "Transition" formulation displayed a phenotypic profile similar to hypertrophic chondrocytes, with the highest expression of collagen X, intermediate levels of osteopontin, and mineralization levels equivalent to "bone" formulations. Overall, these results suggest that a graded transition from PEG-CSC-TGFβ1 to PEG-PDMS-BMP2 scaffolds elicits a gradual SMSC phenotypic shift from chondrocyte to hypertrophic chondrocyte to osteoblast-like. As such, further development of these scaffold formulations for use in SMSC-based OCD repair is warranted. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2019-2029, 2019.
Collapse
Affiliation(s)
| | - Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Tanmay Gharat
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Dany J Munoz Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert Bearden
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - W Brian Saunders
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Mariah S Hahn
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
43
|
The Combination of TGF-β3 and BMP-6 Synergistically Promotes the Chondrogenic Differentiation of Equine Bone Marrow-Derived Mesenchymal Stem Cells. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09880-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Farokhi M, Mottaghitalab F, Fatahi Y, Saeb MR, Zarrintaj P, Kundu SC, Khademhosseini A. Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Kargozar S, Mozafari M, Hamzehlou S, Brouki Milan P, Kim HW, Baino F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES 2019; 9:174. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
46
|
Bae HC, Park HJ, Wang SY, Yang HR, Lee MC, Han HS. Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells. Biomater Res 2018; 22:28. [PMID: 30275971 PMCID: PMC6158840 DOI: 10.1186/s40824-018-0134-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.
Collapse
Affiliation(s)
- Hyun Cheol Bae
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744 Republic of Korea
| | - Hee Jung Park
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744 Republic of Korea
| | - Sun Young Wang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744 Republic of Korea
| | - Ha Ru Yang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744 Republic of Korea
| | - Myung Chul Lee
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744 Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744 Republic of Korea
| |
Collapse
|
47
|
Ferro T, Santhagunam A, Madeira C, Salgueiro JB, Silva CL, Cabral JMS. Successful isolation and ex vivo expansion of human mesenchymal stem/stromal cells obtained from different synovial tissue‐derived (biopsy) samples. J Cell Physiol 2018; 234:3973-3984. [DOI: 10.1002/jcp.27202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Tiago Ferro
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - Aruna Santhagunam
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Catarina Madeira
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - João B. Salgueiro
- Centro Hospitalar de Lisboa Ocidental (CHLO)—Hospital S. Francisco Xavier Lisboa Portugal
| | - Cláudia L. Silva
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
48
|
Shi R, Huang Y, Ma C, Wu C, Tian W. Current advances for bone regeneration based on tissue engineering strategies. Front Med 2018; 13:160-188. [PMID: 30047029 DOI: 10.1007/s11684-018-0629-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Abstract
Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yuelong Huang
- Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China
| | - Chi Ma
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chengai Wu
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Wei Tian
- Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing, 100035, China. .,Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China.
| |
Collapse
|
49
|
Native tissue-based strategies for meniscus repair and regeneration. Cell Tissue Res 2018; 373:337-350. [PMID: 29397425 DOI: 10.1007/s00441-017-2778-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Meniscus injuries appear to be becoming increasingly common and pose a challenge for orthopedic surgeons. However, there is no curative approach for dealing with defects in the inner meniscus region due to its avascular nature. Numerous strategies have been applied to regenerate and repair meniscus defects and native tissue-based strategies have received much attention. Native tissue usually has good biocompatibility, excellent mechanical properties and a suitable microenvironment for cellular growth, adhesion, redifferentiation, extracellular matrix deposition and remodeling. Classically, native tissue-based strategies for meniscus repair and regeneration are divided into autogenous and heterogeneous tissue transplantation. Autogenous tissue transplantation is performed more widely than heterogeneous tissue transplantation because there is no immunological rejection and the success rates are higher. This review first discusses the native meniscus structure and function and then focuses on the use of the autogenous tissue for meniscus repair and regeneration. Finally, it summarizes the advantages and disadvantages of heterogeneous tissue transplantation. We hope that this review provides some suggestions for the future design of meniscus repair and regeneration strategies.
Collapse
|
50
|
Gao L, Orth P, Cucchiarini M, Madry H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev Med Devices 2018; 14:717-732. [PMID: 28817971 DOI: 10.1080/17434440.2017.1368386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.
Collapse
Affiliation(s)
- Liang Gao
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Patrick Orth
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Henning Madry
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| |
Collapse
|