1
|
Kim S, Li S, Baek SY, Cha C, Lee SJ. Combinatorial strategy for engineering cartilage and bone microtissues using microfluidic cell-laden microgels. Biofabrication 2025; 17:035002. [PMID: 40174602 DOI: 10.1088/1758-5090/adc840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/01/2025] [Indexed: 04/04/2025]
Abstract
Osteochondral defects (OCD) refer to localized injuries affecting both the avascular cartilage and subchondral bone. Current treatments, such as transplantation or microfracture surgery, are hindered by limitations like donor availability and the formation of small, rigid fibrocartilage. Tissue engineering presents a promising alternative, yet challenges arise from limited oxygen and nutrient supply when fabricating human-scale tissue constructs. To address this, we propose assembling engineered micro-scale tissue constructs as building blocks for human-scale constructs. In this study, we aimed to develop bone and cartilage microtissues as building blocks for osteochondral tissue engineering. We fabricated placental stem cell (PSC)-laden microgels, inducing differentiation into osteogenic and chondrogenic microtissues. Utilizing a microfluidics chip platform, these microgels comprised a cell-laden core containing bone-specific and cartilage-specific growth factor-mimetic peptides, respectively, along with an acellular hydrogel shell. Additionally, we investigated the effect of culture conditions on microtissue formation, testing dynamic and static conditions. Results revealed over 85% cell viability within the microgels over 7 d of continuous growth. Under static conditions, approximately 60% of cells migrated from the core to the periphery, while dynamic conditions exhibited evenly distributed cells. Within 4 weeks of differentiation, growth factor-mimetic peptides accelerated PSC differentiation into bone and cartilage microtissues. These findings suggest the potential clinical applicability of our approach in treating OCD.
Collapse
Affiliation(s)
- Suntae Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Siyuan Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, United States of America
| | - Seung Yeop Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, United States of America
| |
Collapse
|
2
|
Kon E, Conte P, Anzillotti G, Di Matteo B, Verdonk P. Report on Evolving Indications, Techniques, and Outcome of Novel and Innovative Surgical procedure - Agili C®. Curr Rev Musculoskelet Med 2025; 18:124-132. [PMID: 39951240 PMCID: PMC11965068 DOI: 10.1007/s12178-025-09951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Purpose of review Agili-C® (CartiHeal, Smith & Nephew) is an off-the-shelf aragonite-based (inorganic calcium carbonate) scaffold approved for clinical use in 2022 to treat chondral and osteochondral lesions eventually also in the context of mild to moderate knee osteoarthritis (Kellgren-Lawrence 0-3). The successful preclinical studies justified the subsequent clinical trials which reported both clinical and radiological significant improvements over time as well as superiority over standard surgical techniques for cartilage lesions treatment (i.e. microfractures/debridement). The aim of the present review is to summarize the available preclinical and clinical evidence and to report the current indications, surgical techniques and outcomes of this novel and innovative osteochondral scaffold. RECENT FINDINGS A total of six clinical reports, four single cohorts studies and a recent double arm randomized control trial followed by an analysis differentiating between femoral and trochlear lesions, have been published on Agili-C® safety and efficacy. Supported with an excellent safety profile, Agili-C® provided statistically significant clinical benefits at short and medium-term follow up in patients affected by knee joint surface lesions also when presenting in the context of mild to moderate knee osteoarthritis (Kellgren-Lawrence 0-3). Agili-C® (CartiHeal, Smith & Nephew) is an innovative aragonite-based osteochondral scaffold. It is an CE-marked and FDA approved off-the-shelf, cell-free, and cost-effective implant designed to treat knee joint surface lesions in the form of chondral and osteochondral defects. Its indications, supported by consistent clinical evidence, are single or multiple knee joint surface lesions (ICRS grade III or IV), with a total treatable area of 1-7cm2, without severe knee OA (Kellgren-Lawrence grade 0-3).
Collapse
Affiliation(s)
- Elizaveta Kon
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Pietro Conte
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
- ORTHOCA, Antwerp, Belgium.
| | - Giuseppe Anzillotti
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- ORTHOCA, Antwerp, Belgium
| | - Berardo Di Matteo
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Department of Traumatology, Orthopaedics and Disaster Surgery, Sechenov University, Moscow, 119991, Russia
| | - Peter Verdonk
- ORTHOCA, Antwerp, Belgium
- ASTARC Department, Antwerp University, Antwerp, Belgium
- MoRE Institute, Antwerp, Belgium
| |
Collapse
|
3
|
Liu M, Wu C, Wu C, Zhou Z, Fang R, Liu C, Ning R. Immune cells differentiation in osteoarthritic cartilage damage: friends or foes? Front Immunol 2025; 16:1545284. [PMID: 40201177 PMCID: PMC11975574 DOI: 10.3389/fimmu.2025.1545284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Osteoarthritis (OA) is a chronic disease primarily characterized by degenerative changes in articular cartilage and synovitis, for which there are currently no targeted or curative therapies available in clinical practice. In recent years, the in-depth analysis of OA using single-cell sequencing and immunomics technologies has revealed the presence of multiple immune cell subsets, as well as different differentiation states within the same subset, in OA. Through immune-immune and immune-joint tissue interactions, these cells collectively promote or inhibit the progression of arthritis. This complex immune network, where "friends and foes coexist," has made targeted therapeutic strategies aimed at directly eliminating immune cells challenging, highlighting the urgent need for a detailed review of the composition, distribution, functional heterogeneity, therapeutic potential, and potential risks of immune subsets within the joint. Additionally, the similarities and differences between OA and rheumatoid arthritis (RA) in terms of diagnosis and immunotherapy need to be precisely understood, in order to draw lessons from or reject RA-based immunotherapies. To this end, this review summarizes the major triggers of inflammation in OA, the differentiation characteristics of key immune cell subsets, and compares the similarities and differences between OA and RA in diagnosis and treatment. It also outlines the current immunomodulatory strategies for OA and their limitations. Furthermore, we provide a detailed and focused discussion on immune cells that act as "friends or foes" in arthritis, covering the M1/M2 polarization of macrophages, functional heterogeneity of neutrophils, unique roles of dendritic cells at different maturation states, the balance between pro-inflammatory T cells and regulatory T cells (Tregs), and the diverse functions of B cells, plasma cells, and regulatory B cells (Bregs) in OA. By interpreting the roles of these immune cells, this review clarifies the dynamic changes and interactions of immune cells in OA joints, providing a theoretical foundation for more precise targeted interventions in future clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenfeng Liu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Di Martino A, Salerno M, Galassi E, Grillini L, Dotti A, De Luca C, Filardo G. Osteochondral regeneration with a tri-layered biomimetic resorbable scaffold: In vivo study in a sheep model up to 12 months of follow-up. Biomaterials 2025; 314:122821. [PMID: 39357151 DOI: 10.1016/j.biomaterials.2024.122821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
The treatment of osteochondral joint lesions requires the regeneration of both articular cartilage and subchondral bone tissue. Scaffold-based strategies aimed at mimicking the native osteochondral structure have been explored with mixed results. The aim of this study was to evaluate the regenerative potential of a tri-layered osteochondral cell-free scaffold in a large animal model at both 6 and 12 months of follow-up. Bilateral critical-sized osteochondral defects were created in 22 sheep. One defect was filled with the scaffold, whereas the contralateral was left empty. The repair tissue quality was evaluated at 6 and 12 months of follow-up in terms of macroscopic appearance, histology, trabecular bone formation, and inflammation grade. The mean global ICRS II score in the scaffold and control groups was 41 ± 11 vs 30 ± 6 at 6 months (p = 0.004) and 54 ± 13 vs 37 ± 11 at 12 months (p = 0.002), respectively. A higher percentage of bone was found in the treatment group compared to controls both at 6 (BV/TV 48.8 ± 8.6 % vs 37.4 ± 9.5 %, respectively; p < 0.001) and 12 months (BV/TV 51.8 ± 8.8 % vs 42.1 ± 12.6 %, respectively; p = 0.023). No significant levels of inflammation were seen. These results demonstrated the scaffold safety and potential to regenerate both cartilage and subchondral tissues in a large animal model of knee osteochondral lesions.
Collapse
Affiliation(s)
- Alessandro Di Martino
- Applied and Translational Research Center, Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Elisabetta Galassi
- Fin-Ceramica Faenza S.p.a, Faenza, via Ravegnana 186, SP 302, 48018, Faenza, Italy
| | - Laura Grillini
- Fin-Ceramica Faenza S.p.a, Faenza, via Ravegnana 186, SP 302, 48018, Faenza, Italy
| | - Alessandro Dotti
- Fin-Ceramica Faenza S.p.a, Faenza, via Ravegnana 186, SP 302, 48018, Faenza, Italy
| | - Claudio De Luca
- Fin-Ceramica Faenza S.p.a, Faenza, via Ravegnana 186, SP 302, 48018, Faenza, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy; Università della Svizzera Italiana, Faculty of Biomedical Sciences, Via Buffi 13, 6900, Lugano, Switzerland
| |
Collapse
|
5
|
Roehm KD, Chiesa I, Haithcock D, Gottardi R, Prabhakarpandian B. A vascularized microfluidic model of the osteochondral unit for modeling inflammatory response and therapeutic screening. LAB ON A CHIP 2025; 25:370-382. [PMID: 39715348 DOI: 10.1039/d4lc00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types. We have characterized the model in terms of differentiation by molecule and matrix secretion and shown that it demonstrates morphology and functionality that mimic the native characteristic of the joint space. Finally, we induced inflammation and subsequently rescued the model constructs by a known compound as proof of concept for anti-inflammatory drug screening applications.
Collapse
Affiliation(s)
- Kevin D Roehm
- CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
| | - Irene Chiesa
- Department of Information Engineering and Research Center "Enrico Piaggio", University of Pisa, Italy
- Division of Otolaryngology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dustin Haithcock
- CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
| | - Riccardo Gottardi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Division of Otolaryngology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Ri.MED Foundation, Palermo, Italy
| | | |
Collapse
|
6
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Zhang H, Zhou Z, Zhang F, Wan C. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Gels 2024; 10:430. [PMID: 39057453 PMCID: PMC11276275 DOI: 10.3390/gels10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Articular cartilage is an avascular tissue with very limited capacity of self-regeneration. Trauma or injury-related defects, inflammation, or aging in articular cartilage can induce progressive degenerative joint diseases such as osteoarthritis. There are significant clinical demands for the development of effective therapeutic approaches to promote articular cartilage repair or regeneration. The current treatment modalities used for the repair of cartilage lesions mainly include cell-based therapy, small molecules, surgical approaches, and tissue engineering. However, these approaches remain unsatisfactory. With the advent of three-dimensional (3D) bioprinting technology, tissue engineering provides an opportunity to repair articular cartilage defects or degeneration through the construction of organized, living structures composed of biomaterials, chondrogenic cells, and bioactive factors. The bioprinted cartilage-like structures can mimic native articular cartilage, as opposed to traditional approaches, by allowing excellent control of chondrogenic cell distribution and the modulation of biomechanical and biochemical properties with high precision. This review focuses on various hydrogels, including natural and synthetic hydrogels, and their current developments as bioinks in 3D bioprinting for cartilage tissue engineering. In addition, the challenges and prospects of these hydrogels in cartilage tissue engineering applications are also discussed.
Collapse
Affiliation(s)
- Hongji Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Zheyuan Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Fengjie Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
8
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Lee H, Kang SH, Jeong GH, Lee SS, Chung BY, Kim GJ, Bai HW. Gamma irradiation-engineered macrophage-derived exosomes as potential immunomodulatory therapeutic agents. PLoS One 2024; 19:e0303434. [PMID: 38865377 PMCID: PMC11168684 DOI: 10.1371/journal.pone.0303434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024] Open
Abstract
The modulation of macrophage polarization is a promising strategy for maintaining homeostasis and improving innate and adaptive immunity. Low-dose ionizing radiation has been implicated in macrophage immunomodulatory responses. However, studies on the relationship between exosomes and regulation of macrophage polarization induced by ionizing radiation are limited. Therefore, this study investigated the alterations in macrophages and exosomes induced by gamma irradiation and elucidated the underlying mechanisms. We used the mouse macrophage cell line RAW 264.7 to generate macrophages and performed western blot, quantitative reverse transcription-PCR, and gene ontology analyses to elucidate the molecular profiles of macrophage-derived exosomes under varying treatment conditions, including 10 Gy gamma irradiation. Exosomes isolated from gamma-irradiated M1 macrophages exhibited an enhanced M1 phenotype. Irradiation induced the activation of NF-κB and NLRP3 signaling in M1 macrophages, thereby promoting the expression of pro-inflammatory cytokines. Cytokine expression was also upregulated in gamma-irradiated M1 macrophage-released exosomes. Therefore, gamma irradiation has a remarkable effect on the immunomodulatory mechanisms and cytokine profiles of gamma-irradiated M1 macrophage-derived exosomes, and represents a potential immunotherapeutic modality.
Collapse
Affiliation(s)
- Hanui Lee
- Radiation Biotechnology Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Science, Chonnam National University, Gwangju, Republic of Korea
| | - Seong Hee Kang
- Radiation Biotechnology Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
| | - Gyeong Han Jeong
- Radiation Biotechnology Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
| | - Seoung Sik Lee
- Radiation Biotechnology Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Byung Yeoup Chung
- Radiation Biotechnology Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Science, Chonnam National University, Gwangju, Republic of Korea
| | - Hyoung-Woo Bai
- Radiation Biotechnology Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Advances in 3D bioprinting for regenerative medicine applications. Regen Biomater 2024; 11:rbae033. [PMID: 38845855 PMCID: PMC11153344 DOI: 10.1093/rb/rbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nikos Koutsomarkos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion 70013, Greece
| |
Collapse
|
11
|
Itha R, Vaishya R, Vaish A, Migliorini F. Management of chondral and osteochondral lesions of the hip : A comprehensive review. ORTHOPADIE (HEIDELBERG, GERMANY) 2024; 53:23-38. [PMID: 37815635 PMCID: PMC10781822 DOI: 10.1007/s00132-023-04444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
Chondral and osteochondral lesions encompass several acute or chronic defects of the articular cartilage and/or subchondral bone. These lesions can result from several different diseases and injuries, including osteochondritis dissecans, osteochondral defects, osteochondral fractures, subchondral bone osteonecrosis, and insufficiency fractures. As the cartilage has a low capacity for regeneration and self-repair, these lesions can progress to osteoarthritis. This study provides a comprehensive overview of the subject matter that it covers. PubMed, Scopus and Google Scholar were accessed using the following keywords: "chondral lesions/defects of the femoral head", "chondral/cartilage lesions/defects of the acetabulum", "chondral/cartilage lesions/defects of the hip", "osteochondral lesions of the femoral head", "osteochondral lesions of the acetabulum", "osteochondral lesions of the hip", "osteochondritis dissecans," "early osteoarthritis of the hip," and "early stage avascular necrosis". Hip osteochondral injuries can cause significant damage to the articular surface and diminish the quality of life. It can be difficult to treat such injuries, especially in patients who are young and active. Several methods are used to treat chondral and osteochondral injuries of the hip, such as mesenchymal stem cells and cell-based treatment, surgical repair, and microfractures. Realignment of bony anatomy may also be necessary for optimal outcomes. Despite several treatments being successful, there is a lack of head-to-head comparisons and large sample size studies in the current literature. Additional research will be required to provide appropriate clinical recommendations for treating chondral/osteochondral injuries of the hip joint.
Collapse
Affiliation(s)
- Rajesh Itha
- Department of Orthopaedics, ESIC Model Hospital, 201307, Noida, Uttar Pradesh, India
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, Sarita Vihar, 110076, New Delhi, India
| | - Abhishek Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, Sarita Vihar, 110076, New Delhi, India
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Center of Aachen, 52064, Aachen, Germany.
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
| |
Collapse
|
12
|
Mancini IAD, Levato R, Ksiezarczyk MM, Castilho MD, Chen M, van Rijen MHP, IJsseldijk LL, Kik M, van Weeren PR, Malda J. Microstructural differences in the osteochondral unit of terrestrial and aquatic mammals. eLife 2023; 12:e80936. [PMID: 38009703 PMCID: PMC10781421 DOI: 10.7554/elife.80936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.
Collapse
Affiliation(s)
- Irina AD Mancini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht UniversityUtrechtNetherlands
- Regenerative Medicine Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht UniversityUtrechtNetherlands
- Regenerative Medicine Utrecht, Utrecht UniversityUtrechtNetherlands
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Marlena M Ksiezarczyk
- Regenerative Medicine Utrecht, Utrecht UniversityUtrechtNetherlands
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Miguel Dias Castilho
- Regenerative Medicine Utrecht, Utrecht UniversityUtrechtNetherlands
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
- Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
| | - Michael Chen
- Department of Mathematical Sciences, University of AdelaideAdelaideAustralia
| | - Mattie HP van Rijen
- Regenerative Medicine Utrecht, Utrecht UniversityUtrechtNetherlands
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Lonneke L IJsseldijk
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht UniversityUtrechtNetherlands
| | - Marja Kik
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht UniversityUtrechtNetherlands
| | - P René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht UniversityUtrechtNetherlands
- Regenerative Medicine Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht UniversityUtrechtNetherlands
- Regenerative Medicine Utrecht, Utrecht UniversityUtrechtNetherlands
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| |
Collapse
|
13
|
Jung Jung H, Kang MW, Lee JH, Lee JK, Kim JI. Preoperative patellar bone marrow lesions with full thickness cartilage defects correlate with residual anterior knee pain in total knee arthroplasty without patellar resurfacing. Knee Surg Sports Traumatol Arthrosc 2023; 31:5048-5056. [PMID: 37695390 DOI: 10.1007/s00167-023-07551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE Residual anterior knee pain is one of the most common problems after total knee arthroplasty (TKA). However, the contributing factors affecting postoperative anterior knee pain (AKP) remain poorly understood. This study aimed to evaluate the effect of preoperative patellar bone marrow lesions (BMLs) and patellar cartilage defects on postoperative AKP after patellar non-resurfacing TKA. METHODS This retrospective study included 336 patients who underwent unilateral TKA without patella resurfacing. All patients underwent preoperative magnetic resonance imaging (MRI) to assess the presence of BMLs and the degree of cartilage defects in the patella. Patients were categorized into four groups according to the presence of BMLs (with or without BMLs) and the degree of cartilage defects (with or without full thickness cartilage defects). The Kujala Anterior Knee Pain Scale (AKPS) and the Hospital for Special Surgery Knee Rating Scale (HSS) scores at 2 years after TKA were compared among the groups. RESULTS Preoperative BMLs in the patella were found in 132 (39.3%) of 336 cases. Among the four groups, the group with both BMLs and full-thickness cartilage defects demonstrated significantly lower AKPS compared to the other groups at 2 years after TKA (p < 0.01), but no significant difference was shown in the HSS scores, between these groups. There were no significant differences in either AKPS or HSS scores among the other three patient groups. CONCLUSIONS The presence of preoperative BMLs with full-thickness cartilage defects in the patella was associated with worse postoperative AKP after TKA without patella resurfacing. Patella resurfacing should be considered in this patient group to minimize the risk of developing residual AKP after TKA. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Ho Jung Jung
- Department of Orthopaedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Min Wook Kang
- Department of Orthopaedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jong Hwa Lee
- Department of Orthopaedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Joon Kyu Lee
- Department of Orthopaedic Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Joong Il Kim
- Department of Orthopaedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
- Department of Orthopedic Surgery, Hallym University Hospital, 1 Singilo, Yeongdeungpo-gu, Seoul, 07441, Korea.
| |
Collapse
|
14
|
Zecca PA, Reguzzoni M, Borgese M, Protasoni M, Filibian M, Raspanti M. Investigating the interfaces of the epiphyseal plate: An integrated approach of histochemistry, microtomography and SEM. J Anat 2023; 243:870-877. [PMID: 37391907 PMCID: PMC10557393 DOI: 10.1111/joa.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
We investigated the interfaces of the epiphyseal plate with over- and underlying bone segments using an integrated approach of histochemistry, microtomography and scanning electron microscopy (SEM) to overcome the inherent limitations of sections-based techniques. Microtomography was able to provide an unobstructed, frontal view of large expanses of the two bone surfaces facing the growth plate, while SEM observation after removal of the soft matrix granted an equally unhindered access with a higher resolution. The two interfaces appeared widely dissimilar. On the diaphyseal side the hypertrophic chondrocytes were arranged in tall columns packed in a sort of compact palisade; the interposed extracellular matrix was actively calcifying into a thick mineralized crust growing towards the epiphysis. Behind the mineralization front, histochemical data revealed a number of surviving cartilage islets which were being slowly remodelled into bone. In contrast, the epiphyseal side of the cartilage consisted of a relatively quiescent reserve zone whose mineralization was marginal in amount and discontinuous in extension; the epiphyseal bone consisted of a loose trabecular meshwork, with ample vascular spaces opening directly into the non-mineralized cartilage. On both sides the calcification process took place through the formation of spheroidal bodies 1-2 μm wide which gradually grew by apposition and coalesced into a solid mass, in a way distinctly different from that of bone and other calcified tissues.
Collapse
Affiliation(s)
| | | | - Marina Borgese
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| | | | - Marta Filibian
- Centro Grandi StrumentiUniversity of PaviaPaviaItaly
- Istituto Nazionale di Fisica Nucleare, Pavia UnitPaviaItaly
| | - Mario Raspanti
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| |
Collapse
|
15
|
Di J, Chen Z, Wang Z, He T, Wu D, Weng C, Deng J, Mai L, Wang K, He L, Rong L. Cartilage tissue from sites of weight bearing in patients with osteoarthritis exhibits a differential phenotype with distinct chondrocytes subests. RMD Open 2023; 9:e003255. [PMID: 37848267 PMCID: PMC10582868 DOI: 10.1136/rmdopen-2023-003255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease associated with excessive mechanical loading. The aim here was to elucidate whether different subpopulations of chondrocytes exhibit distinct phenotypes in response to variations in loading conditions. Furthermore, we seek to investigate the transcriptional switches and cell crosstalk among these chondrocytes subsets. METHODS Proteomic analysis was performed on cartilage tissues isolated from weight-bearing and non-weight-bearing regions. Additionally, single-cell RNA sequencing was employed to identify different subsets of chondrocytes. For disease-specific cells, in vitro differentiation induction was performed, and their presence was confirmed in human cartilage tissue sections using immunofluorescence. The molecular mechanisms underlying transcriptional changes in these cells were analysed through whole-transcriptome sequencing. RESULTS In the weight-bearing regions of OA cartilage tissue, a subpopulation of chondrocytes called OA hypertrophic chondrocytes (OAHCs) expressing the marker genes SLC39A14 and COL10A1 are present. These cells exhibit unique characteristics of active cellular interactions mediated by the TGFβ signalling pathway and express OA phenotypes, distinct from hypertrophic chondrocytes in healthy cartilage. OAHCs are mainly distributed in the superficial region of damaged cartilage in human OA tissue, and on TGFβ stimulation, exhibit activation of transcriptional expression of iron metabolism-related genes, along with enrichment of associated pathways. CONCLUSION This study identified and validated the existence of a subset of OAHCs in the weight-bearing area of OA cartilage tissue. Our findings provide a theoretical basis for targeting OAHCs to slow down the progression of OA and facilitate the repair of cartilage injuries.
Collapse
Affiliation(s)
- Jiawei Di
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Zihao Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Zhe Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Department of Joint Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Chuanggui Weng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Jiajun Deng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Lang Mai
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Kun Wang
- Department of Joint Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Pagani S, Salerno M, Filardo G, Locs J, van Osch GJ, Vecstaudza J, Dolcini L, Borsari V, Fini M, Giavaresi G, Columbaro M. Human Osteoblasts' Response to Biomaterials for Subchondral Bone Regeneration in Standard and Aggressive Environments. Int J Mol Sci 2023; 24:14764. [PMID: 37834212 PMCID: PMC10573262 DOI: 10.3390/ijms241914764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Osteochondral lesions, when not properly treated, may evolve into osteoarthritis (OA), especially in the elderly population, where altered joint function and quality are usual. To date, a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold (OC) has demonstrated good clinical results, although suboptimal subchondral bone regeneration still limits its efficacy. This study was aimed at evaluating the in vitro osteogenic potential of this scaffold, functionalized with two different strategies: the addition of Bone Morphogenetic Protein-2 (BMP-2) and the incorporation of strontium (Sr)-ion-enriched amorphous calcium phosphate (Sr-ACP) granules. Human osteoblasts were seeded on the functionalized scaffolds (OC+BMP-2 and OC+Sr-ACP, compared to OC) under stress conditions reproduced with the addition of H2O2 to the culture system, as well as in normal conditions, and evaluated in terms of morphology, metabolic activity, gene expression, and matrix synthesis. The OC+BMP-2 scaffold supported a better osteoblast morphology and stimulated scaffold colonization, cell activity, and extracellular matrix secretion, especially in the stressed culture environment but also in normal culture conditions, with increased expression of genes related to osteoblast differentiation. In conclusion, the incorporation of BMP-2 into the Col/Col-Mg-HAp scaffold also represents an improvement of the osteochondral scaffold in more challenging conditions, supporting further preclinical studies to optimize it for use in clinical practice.
Collapse
Affiliation(s)
- Stefania Pagani
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | - Gerjo J.V.M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | | | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
17
|
Zhou L, Xu J, Schwab A, Tong W, Xu J, Zheng L, Li Y, Li Z, Xu S, Chen Z, Zou L, Zhao X, van Osch GJ, Wen C, Qin L. Engineered biochemical cues of regenerative biomaterials to enhance endogenous stem/progenitor cells (ESPCs)-mediated articular cartilage repair. Bioact Mater 2023; 26:490-512. [PMID: 37304336 PMCID: PMC10248882 DOI: 10.1016/j.bioactmat.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 06/13/2023] Open
Abstract
As a highly specialized shock-absorbing connective tissue, articular cartilage (AC) has very limited self-repair capacity after traumatic injuries, posing a heavy socioeconomic burden. Common clinical therapies for small- to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies, including microfracture, mosaicplasty, autologous chondrocyte implantation (ACI), and matrix-induced ACI (MACI). However, these treatments frequently result in mechanically inferior fibrocartilage, low cost-effectiveness, donor site morbidity, and short-term durability. It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC. Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments. A deeper understanding of the mechanism of endogenous cartilage healing is furthering the (bio)design and application of these scaffolds. Currently, the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells (ESPCs) presents an evolving improvement for cartilage repair. This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration. Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed. The recent advances in novel (bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs (e.g. adhesion, migration, proliferation, differentiation, matrix production, and remodeling) for cartilage repair are summarized. Finally, this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jietao Xu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Andrea Schwab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences - CRMH, 999077, Hong Kong SAR, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Zhuo Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), 2600 AA, Delft, the Netherlands
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, 518000, Shenzhen, China
| |
Collapse
|
18
|
Volova LT, Kotelnikov GP, Shishkovsky I, Volov DB, Ossina N, Ryabov NA, Komyagin AV, Kim YH, Alekseev DG. 3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks. Polymers (Basel) 2023; 15:2695. [PMID: 37376340 DOI: 10.3390/polym15122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case-hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting-hydrogels and bioinks, as well as the biopolymers underlying the indicated products.
Collapse
Affiliation(s)
- Larisa T Volova
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Gennadiy P Kotelnikov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Igor Shishkovsky
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitriy B Volov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Natalya Ossina
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Nikolay A Ryabov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Aleksey V Komyagin
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Yeon Ho Kim
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Republic of Korea
| | - Denis G Alekseev
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| |
Collapse
|
19
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
20
|
Tao H, Zhao Y, Tao F, Xiang W, Cao H, Zhang Z. Effect of autogenous osteochondral mosaicplasty on the balance control of patients with cartilage defects of the knee: a pilot study. J Orthop Surg Res 2023; 18:336. [PMID: 37149624 PMCID: PMC10164316 DOI: 10.1186/s13018-023-03821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Autogenous osteochondral mosaicplasty (AOM) is a widely used optimal surgical technique for cartilage repair in young patients with focal articular cartilage defects. However, the alterations in balance control in these patients after AOM have not been sufficiently investigated. This study aimed to compare different balance control performances between the patients with knee cartilage defects and healthy controls before and after AOM, as well as evaluate the influence of AOM on balance control in these patients. METHODS Static posturographic tests were performed in twenty-four patients who were scheduled for AOM two weeks pre-, three months, and one year postoperatively, along with thirty matched controls, respectively. All participants underwent posturography under four standing conditions: eyes open and closed, without and with foam support to assess the balance control ability. Subsequently, patient-reported outcome measures (PROMs) were synchronously obtained and analyzed. RESULTS Compared to the control subjects, less efficient balance control was observed in study patients at three testing phases (p < 0.05), whereas no alterations in postural control were visible in these patients within a year following AOM (p > 0.05). Significant improvements were found in all PROMs such as the International Knee Documentation Committee, the Lysholm Knee Score, and the visual analogue scale in the study patients postoperatively (p < 0.01). CONCLUSION The results indicated that patients with knee cartilage defects have a prominent balance control deficit compared to healthy individuals. Furthermore, AOM does not improve balance control in these patients for at least one year postoperatively, and more effective approaches for postural regulation are required for the management of cartilage defect patients.
Collapse
Affiliation(s)
- Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Zheng Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
21
|
Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater 2023; 23:156-169. [PMID: 36406248 PMCID: PMC9661677 DOI: 10.1016/j.bioactmat.2022.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The skeletal system is responsible for weight-bearing, organ protection, and movement. Bone diseases caused by trauma, infection, and aging can seriously affect a patient's quality of life. Bone targeted biomaterials are suitable for the treatment of bone diseases. Biomaterials with bone-targeted properties can improve drug utilization and reduce side effects. A large number of bone-targeted micro-nano materials have been developed. However, only a few studies addressed bone-targeted hydrogel. The large size of hydrogel makes it difficult to achieve systematic targeting. However, local targeted hydrogel still has significant prospects. Molecules in bone/cartilage extracellular matrix and bone cells provide binding sites for bone-targeted hydrogel. Drug delivery systems featuring microgels with targeting properties is a key construction strategy for bone-targeted hydrogel. Besides, injectable hydrogel drug depot carrying bone-targeted drugs is another strategy. In this review, we summarize the bone-targeted hydrogel through application environment, construction strategies and disease applications. We hope this article will provide a reference for the development of bone-targeted hydrogels. We also hope this article could increase awareness of bone-targeted materials. Introducing the microenvironment and target molecules in different parts of long bones. Summarizing the construction strategy of micro/nanoparticle hydrogel with bone targeting properties. Summarizing the construction strategy of hydrogel based depot carrying bone-targeted drugs. Reporting the application and effect of bone targeting hydrogel in common bone diseases.
Collapse
|
22
|
Marcelino P, Silva JC, Moura CS, Meneses J, Cordeiro R, Alves N, Pascoal-Faria P, Ferreira FC. A Novel Approach for Design and Manufacturing of Curvature-Featuring Scaffolds for Osteochondral Repair. Polymers (Basel) 2023; 15:polym15092129. [PMID: 37177275 PMCID: PMC10181173 DOI: 10.3390/polym15092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Osteochondral (OC) defects affect both articular cartilage and the underlying subchondral bone. Due to limitations in the cartilage tissue's self-healing capabilities, OC defects exhibit a degenerative progression to which current therapies have not yet found a suitable long-term solution. Tissue engineering (TE) strategies aim to fabricate tissue substitutes that recreate natural tissue features to offer better alternatives to the existing inefficient treatments. Scaffold design is a key element in providing appropriate structures for tissue growth and maturation. This study presents a novel method for designing scaffolds with a mathematically defined curvature, based on the geometry of a sphere, to obtain TE constructs mimicking native OC tissue shape. The lower the designed radius, the more curved the scaffold obtained. The printability of the scaffolds using fused filament fabrication (FFF) was evaluated. For the case-study scaffold size (20.1 mm × 20.1 mm projected dimensions), a limit sphere radius of 17.064 mm was determined to ensure printability feasibility, as confirmed by scanning electron microscopy (SEM) and micro-computed tomography (μ-CT) analysis. The FFF method proved suitable to reproduce the curved designs, showing good shape fidelity and replicating the expected variation in porosity. Additionally, the mechanical behavior was evaluated experimentally and by numerical modelling. Experimentally, curved scaffolds showed strength comparable to conventional orthogonal scaffolds, and finite element analysis was used to identify the scaffold regions more susceptible to higher loads.
Collapse
Affiliation(s)
- Pedro Marcelino
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - João Carlos Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Carla S Moura
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços-S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - João Meneses
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| | - Rachel Cordeiro
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Alves
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Paula Pascoal-Faria
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
23
|
Tampieri A, Kon E, Sandri M, Campodoni E, Dapporto M, Sprio S. Marine-Inspired Approaches as a Smart Tool to Face Osteochondral Regeneration. Mar Drugs 2023; 21:md21040212. [PMID: 37103351 PMCID: PMC10145639 DOI: 10.3390/md21040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The degeneration of osteochondral tissue represents one of the major causes of disability in modern society and it is expected to fuel the demand for new solutions to repair and regenerate the damaged articular joints. In particular, osteoarthritis (OA) is the most common complication in articular diseases and a leading cause of chronic disability affecting a steady increasing number of people. The regeneration of osteochondral (OC) defects is one of the most challenging tasks in orthopedics since this anatomical region is composed of different tissues, characterized by antithetic features and functionalities, in tight connection to work together as a joint. The altered structural and mechanical joint environment impairs the natural tissue metabolism, thus making OC regeneration even more challenging. In this scenario, marine-derived ingredients elicit ever-increased interest for biomedical applications as a result of their outstanding mechanical and multiple biologic properties. The review highlights the possibility to exploit such unique features using a combination of bio-inspired synthesis process and 3D manufacturing technologies, relevant to generate compositionally and structurally graded hybrid constructs reproducing the smart architecture and biomechanical functions of natural OC regions.
Collapse
|
24
|
Yildirim N, Amanzhanova A, Kulzhanova G, Mukasheva F, Erisken C. Osteochondral Interface: Regenerative Engineering and Challenges. ACS Biomater Sci Eng 2023; 9:1205-1223. [PMID: 36752057 DOI: 10.1021/acsbiomaterials.2c01321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Osteochondral (OC) defects are debilitating for patients and represent a significant clinical problem for orthopedic surgeons as well as regenerative engineers due to their potential complications, which are likely to lead to osteoarthritis and related diseases. If they remain untreated or are treated suboptimally, OC lesions are known to impact the articular cartilage and the transition from cartilage to bone, that is, the cartilage-bone interface. An important component of the OC interface, that is, a selectively permeable membrane, the tidemark, still remains unaddressed in more than 90% of the published research in the past decade. This review focuses on the structure, composition, and function of the OC interface, regenerative engineering attempts with different scaffolding strategies and challenges ahead of us in recapitulating the native OC interface. There are different schools of thought regarding the structure of the native OC interface: stratified and graded. The former assumes the cartilage-to-bone interface to be hierarchically divided into distinct yet continuous zones of uncalcified cartilage-calcified cartilage-subchondral bone. The latter assumes the interface is continuously graded, that is, formed by an infinite number of layers. The cellular composition of the interface, either in respective layers or continuously changing in a graded manner, is chondrocytes, hypertrophic chondrocytes, and osteoblasts as moved from cartilage to bone. Functionally, the interface is assumed to play a role in enabling a smooth transition of loads exerted on the cartilage surface to the bone underneath. Regenerative engineering involves, first, a characterization of the native OC interface in terms of the composition, structure, and function, and, then, proposes the appropriate biomaterials, cells, and biomolecules either alone or in combination to eventually form a structure that mimics and functionally behaves similar to the native interface. The major challenge regarding regeneration of the OC interface appears to lie, in addition to others, in the formation of tidemark, which is a thin membrane separating the OC interface into two distinct zones: the avascular OC interface and the vascular OC interface. There is a significant amount of literature on regenerative approaches to the OC interface; however, only a small portion of them consider the importance of tidemark. Therefore, this review aims at highlighting the significance of the structural organization of the components of the OC interface and increasing the awareness of the orthopedics community regarding the importance of tidemark formation after clinical interventions or regenerative engineering attempts.
Collapse
Affiliation(s)
- Nuh Yildirim
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Amina Amanzhanova
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Gulzada Kulzhanova
- Nazarbayev University, School of Sciences and Humanities, Department of Biological Sciences, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Fariza Mukasheva
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Cevat Erisken
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| |
Collapse
|
25
|
Gurgul SJ, Moreira A, Xiao Y, Varma SN, Liu C, Costa PF, Williams GR. Electrosprayed Particles Loaded with Kartogenin as a Potential Osteochondral Repair Implant. Polymers (Basel) 2023; 15:polym15051275. [PMID: 36904516 PMCID: PMC10007262 DOI: 10.3390/polym15051275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The restoration of cartilage damage is a slow and not always successful process. Kartogenin (KGN) has significant potential in this space-it is able to induce the chondrogenic differentiation of stem cells and protect articular chondrocytes. In this work, a series of poly(lactic-co-glycolic acid) (PLGA)-based particles loaded with KGN were successfully electrosprayed. In this family of materials, PLGA was blended with a hydrophilic polymer (either polyethyleneglycol (PEG) or polyvinylpyrrolidone (PVP)) to control the release rate. Spherical particles with sizes in the range of 2.4-4.1 µm were fabricated. They were found to comprise amorphous solid dispersions, with high entrapment efficiencies of >93%. The various blends of polymers had a range of release profiles. The PLGA-KGN particles displayed the slowest release rate, and blending with PVP or PEG led to faster release profiles, with most systems giving a high burst release in the first 24 h. The range of release profiles observed offers the potential to provide a precisely tailored profile via preparing physical mixtures of the materials. The formulations are highly cytocompatible with primary human osteoblasts.
Collapse
Affiliation(s)
| | | | - Yi Xiao
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Swastina Nath Varma
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | | | - Gareth R. Williams
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
- Correspondence: ; Tel.: +44-0203-987-2817
| |
Collapse
|
26
|
Zecca PA, Reguzzoni M, Protasoni M, Raspanti M. The chondro-osseous junction of articular cartilage. Tissue Cell 2023; 80:101993. [PMID: 36516570 DOI: 10.1016/j.tice.2022.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
In the synovial joints the transition between the soft articular cartilage and the subchondral bone is mediated by a layer of calcified cartilage of structural and mechanical characteristics closer to those of bone. This layer, buried in the depth of articular cartilage, is not directly accessible and is mostly visualized in histological sections of decalcified tissue, where it appears as a darker strip in contact with the subchondral bone. In this study conventional histology and scanning electron microscopy (SEM) with secondary electron imaging (SE) or backscattered electron imaging (BSE) were used to discriminate the calcified and the uncalcified cartilage in high resolution on native, untreated tissue as well as in deproteinated or demineralized tissue. This approach evidenced a high heterogeneity of the calcified layer of articular cartilage. High resolution pictures revealed that the mineralization process originates by progressive accretion and confluence of individual, small mineral clusters, in a very different way from other hard tissues such as bone, dentin and mineralized tendons. Finally, selective removal of the soft matrix by thermal treatment allowed for the first time a face-on, unrestricted 3D view of the mineralization front.
Collapse
Affiliation(s)
| | | | - Marina Protasoni
- Department of Medicine & Surgery, Insubria University, Varese, Italy
| | - Mario Raspanti
- Department of Medicine & Surgery, Insubria University, Varese, Italy.
| |
Collapse
|
27
|
Bedell ML, Wang Z, Hogan KJ, Torres AL, Pearce HA, Chim LK, Grande-Allen KJ, Mikos AG. The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs. Acta Biomater 2023; 155:99-112. [PMID: 36384222 PMCID: PMC9805529 DOI: 10.1016/j.actbio.2022.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Extrusion bioprinted constructs for osteochondral tissue engineering were fabricated to study the effect of multi-material architecture on encapsulated human mesenchymal stem cells' tissue-specific matrix deposition and integration into an ex vivo porcine osteochondral explant model. Two extrusion fiber architecture groups with differing transition regions and degrees of bone- and cartilage-like bioink mixing were employed. The gradient fiber (G-Fib) architecture group showed an increase in chondral integration over time, 18.5 ± 0.7 kPa on Day 21 compared to 9.6 ± 1.6 kPa on Day 1 for the required peak push-out force, and the segmented fiber (S-Fib) architecture group did not, which corresponded to the increase in sulfated glycosaminoglycan deposition noted only in the G-Fib group and the staining for cellularity and tissue-specific matrix deposition at the fiber-defect boundary. Conversely, the S-Fib architecture was associated with significant mineralization over time, but the G-Fib architecture was not. Notably, both fiber groups also had similar chondral integration as a re-inserted osteochondral tissue control. While architecture did dictate differences in the cells' responses to their environment, architecture was not shown to distinguish a statistically significant difference in tissue integration via fiber push-out testing within a given time point or explant region. Use of this three-week osteochondral model demonstrates that these bioink formulations support the fabrication of cell-laden constructs that integrate into explanted tissue as capably as natural tissue and encapsulate osteochondral matrix-producing cells, and it also highlights the important role that spatial architecture plays in the engineering of multi-phasic tissue environments. STATEMENT OF SIGNIFICANCE: Here, an ex vivo model was used to interrogate fundamental questions about the effect of multi-material scaffold architectural choices on osteochondral tissue integration. Cell-encapsulating constructs resembling stratified osteochondral tissue were 3D printed with architecture consisting of either gradient transitions or segmented transitions between the bone-like and cartilage-like bioink regions. The printed constructs were assessed alongside re-inserted natural tissue plugs via mechanical tissue integration push-out testing, biochemical assays, and histology. Differences in osteochondral matrix deposition were observed based on architecture, and both printed groups demonstrated cartilage integration similar to the native tissue plug group. As 3D printing becomes commonplace within biomaterials and tissue engineering, this work illustrates critical 3D co-culture interactions and demonstrates the importance of considering architecture when interpreting the results of studies utilizing spatially complex, multi-material scaffolds.
Collapse
Affiliation(s)
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | | | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Letitia K Chim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; NIBIB/NIH Center for Engineering Complex Tissues, USA.
| |
Collapse
|
28
|
Yu H, Feng M, Mao G, Li Q, Zhang Z, Bian W, Qiu Y. Implementation of Photosensitive, Injectable, Interpenetrating, and Kartogenin-Modified GELMA/PEDGA Biomimetic Scaffolds to Restore Cartilage Integrity in a Full-Thickness Osteochondral Defect Model. ACS Biomater Sci Eng 2022; 8:4474-4485. [PMID: 36074133 DOI: 10.1021/acsbiomaterials.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cartilage defects caused by mechanical tear and wear are challenging clinical problems. Articular cartilage has unique load-bearing properties and limited self-repair ability. The current treatment methods, such as microfractures and autogenous cartilage transplantation to repair full-thickness cartilage defects, have apparent limitations. Tissue engineering technology has the potential to repair cartilage defects and directs current research development. To enhance the regenerative capacities of cartilage in weight-bearing areas, we attempted to develop a biomimetic scaffold loaded with a chondroprotective factor that can recreate structure, restore mechanical properties, and facilitate anabolic metabolism in larger joint defects. For enhanced spatial control over both bone and cartilage layers, it is envisioned that biomaterials that meet the needs of both tissue components are required for successful osteochondral repair. We used gelatin methacrylate (GELMA) and polyethylene glycol diacrylate (PEGDA) light-cured dual-network cross-linking modes that can significantly increase the mechanical properties of scaffolds and are capable of restoring function and prolonging the degradation time. Once the hydrogel complex was injected into the osteochondral defect, in situ UV light curing was applied to seamlessly connect the defect repair tissue with the surrounding normal cartilage tissue. The small molecule active substance kartogenin (KGN) can promote cartilage repair. We encapsulated KGN in biomimetic scaffolds so that, as the scaffold degrades, scaffold-loaded KGN was slowly released to induce endogenous mesenchymal stem cells to home and differentiate into chondrocytes to repair defective cartilage tissue. Our experiments have proven that, compared with the control group, GELMA/PEGDA + KGN repaired cartilage defects and restored cartilage to hyaline cartilage. Our study suggests that implementing photosensitive, injectable, interpenetrating, and kartogenin-modified GELMA/PEDGA biomimetic scaffolds may be a novel approach to restore cartilage integrity in full-thickness osteochondral defects.
Collapse
Affiliation(s)
- Haiquan Yu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Meng Feng
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Genwen Mao
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Qian Li
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Zhifeng Zhang
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Weiguo Bian
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yusheng Qiu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
29
|
Das P, Jana S, Kumar Nandi S. Biomaterial-Based Therapeutic Approaches to Osteoarthritis and Cartilage Repair Through Macrophage Polarization. CHEM REC 2022; 22:e202200077. [PMID: 35792527 DOI: 10.1002/tcr.202200077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
There is an ever-increasing clinical and socioeconomic burden associated with cartilage lesions & osteoarthritis (OA). Its progression, chondrocyte death & hypertrophy are all facilitated by inflamed synovium & joint environment. Due to their capacity to switch between pro- & anti-inflammatory phenotypes, macrophages are increasingly being recognized as a key player in the healing process, which has been largely overlooked in the past. A biomaterial's inertness has traditionally been a goal while developing them in order to reduce the likelihood of adverse reactions from the host organism. A better knowledge of how macrophages respond to implanted materials has made it feasible to determine the biomaterial architectural parameters that control the host response & aid in effective tissue integration. Thus, this review summarizes novel therapeutic techniques for avoiding OA or increasing cartilage repair & regeneration that might be developed using new technologies tuning macrophages into desirable functional phenotypes.
Collapse
Affiliation(s)
- Piyali Das
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| |
Collapse
|
30
|
Mukundan LM, Nirmal RS, Nair PD. Growth and Regeneration of Osteochondral Cells in Bioactive Niche: A Promising Approach for Osteochondral Tissue Repair. ACS APPLIED BIO MATERIALS 2022; 5:2676-2688. [PMID: 35658402 DOI: 10.1021/acsabm.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional repair of osteochondral defects caused due to osteoarthritis still remains the greatest challenge in orthopedic therapy. A prospective clinical strategy would be exploring osteochondral tissue engineering possibilities that promote simultaneous regeneration of the articular cartilage layer as well as the underlying subchondral bone. Incorporating the appropriate cues onto the scaffolds for the regeneration of the two contrasting tissues is therefore a demanding function. In the present study, a polymer-ceramic composite scaffolding material consisting of ternary bioactive glass (67.12 SiO2/28.5 CaO/4.38 P2O5 mol %) incorporated into a semi interpenetrating polymer network of hydrophilic-hydrophobic polymer (poly(vinyl alcohol)-polycaprolactone) matrix is prepared and physicochemically characterized. In vitro bioactivity, bone-bonding ability, and biocompatibility evaluation were performed in comparison with the pristine scaffold. The degree of chondrogenic and osteogenic potential of mesenchymal stem cells in both the scaffolds was evaluated by gene expression studies. Although both the scaffolds favored the differentiation to both cell lineages in their respective medium, a higher expression of bone specific genes found with the composite scaffold suggested that this composite scaffold would serve better for osteal layer and henceforth to promote the integration of the osteochondral construct at the defect site.
Collapse
Affiliation(s)
- Lakshmi M Mukundan
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695012, India
| | - Remya S Nirmal
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695012, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
31
|
Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials 2022; 285:121530. [DOI: 10.1016/j.biomaterials.2022.121530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
|
32
|
Yan M, Song Z, Kou H, Shang G, Shang C, Chen X, Ji Y, Bao D, Cheng T, Li J, Lv X, Liu H, Chen S. New Progress in Basic Research of Macrophages in the Pathogenesis and Treatment of Low Back Pain. Front Cell Dev Biol 2022; 10:866857. [PMID: 35669508 PMCID: PMC9163565 DOI: 10.3389/fcell.2022.866857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain (LBP) is quite common in clinical practice, which can lead to long-term bed rest or even disability. It is a worldwide health problem remains to be solved. LBP can be induced or exacerbated by abnormal structure and function of spinal tissue such as intervertebral disc (IVD), dorsal root ganglion (DRG) and muscle; IVD degeneration (IVDD) is considered as the most important among all the pathogenic factors. Inflammation, immune response, mechanical load, and hypoxia etc., can induce LBP by affecting the spinal tissue, among which inflammation and immune response are the key link. Inflammation and immune response play a double-edged sword role in LBP. As the main phagocytic cells in the body, macrophages are closely related to body homeostasis and various diseases. Recent studies have shown that macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus, expressed in various structures of the IVD, and the number is positively correlated with the degree of IVDD. Moreover, macrophages play a phagocytosis role or regulate the metabolism of DRG and muscle tissues through neuro-immune mechanism, while the imbalance of macrophages polarization will lead to more inflammatory factors to chemotaxis and aggregation, forming an "inflammatory waterfall" effect similar to "positive feedback," which greatly aggravates LBP. Regulation of macrophages migration and polarization, inhibition of inflammation and continuous activation of immune response by molecular biological technology can markedly improve the inflammatory microenvironment, and thus effectively prevent and treat LBP. Studies on macrophages and LBP were mainly focused in the last 3-5 years, attracting more and more scholars' attention. This paper summarizes the new research progress of macrophages in the pathogenesis and treatment of LBP, aiming to provide an important clinical prevention and treatment strategy for LBP.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xiangrong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deming Bao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: Current and future directions for 3D bioprinting. J Tissue Eng 2022; 13:20417314221133480. [PMID: 36386465 PMCID: PMC9643769 DOI: 10.1177/20417314221133480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 07/20/2023] Open
Abstract
Multiple prevalent diseases, such as osteoarthritis (OA), for which there is no cure or full understanding, affect the osteochondral unit; a complex interface tissue whose architecture, mechanical nature and physiological characteristics are still yet to be successfully reproduced in vitro. Although there have been multiple tissue engineering-based approaches to recapitulate the three dimensional (3D) structural complexity of the osteochondral unit, there are various aspects that still need to be improved. This review presents the different pre-requisites necessary to develop a human osteochondral unit construct and focuses on 3D bioprinting as a promising manufacturing technique. Examples of 3D bioprinted osteochondral tissues are reviewed, focusing on the most used bioinks, chosen cell types and growth factors. Further information regarding the applications of these 3D bioprinted tissues in the fields of disease modelling, drug testing and implantation is presented. Finally, special attention is given to the limitations that currently hold back these 3D bioprinted tissues from being used as models to investigate diseases such as OA. Information regarding improvements needed in bioink development, bioreactor use, vascularisation and inclusion of additional tissues to further complete an OA disease model, are presented. Overall, this review gives an overview of the evolution in 3D bioprinting of the osteochondral unit and its applications, as well as further illustrating limitations and improvements that could be performed explicitly for disease modelling.
Collapse
Affiliation(s)
| | - Swati Midha
- Kennedy Institute of Rheumatology,
University of Oxford, Oxford, UK
| | | | - Aline Miller
- Department of Chemical Engineering,
University of Manchester, Manchester, UK
| | - Ryo Torii
- Department of Mechanical Engineering,
University College London, London, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics and
Musculoskeletal Science, Division of Surgery & Interventional Science,
University College London (UCL), UK
| |
Collapse
|
34
|
Yasui Y, Dankert JF, Tonogai I, Mercer NP, Goodale MB, Fortier LA, Kennedy JG. The Effect of Single vs Serial Platelet-Rich Plasma Injections in Osteochondral Lesions Treated With Microfracture: An In Vivo Rabbit Model. Am J Sports Med 2021; 49:3876-3886. [PMID: 34710335 DOI: 10.1177/03635465211052512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biological adjuvants are used after a musculoskeletal injury to improve healing, decrease inflammation, and restore joint homeostasis. Work on 1 such adjuvant, platelet-rich plasma (PRP), has suggested a positive effect when introduced during cartilage repair. However, it remains unknown whether healing osteochondral injuries benefit from serial PRP injections. PURPOSE To evaluate the effects of serial PRP injections versus a single PRP injection on reparative cartilaginous tissue, subchondral bone remodeling, and the expression of inflammatory cytokines in joint synovium. STUDY DESIGN Controlled laboratory study. METHODS A total of 48 New Zealand White rabbits were randomly assigned to receive 1 (1P), 2 (2P), or 3 (3P) PRP injections. Cylindrical full-thickness cartilage defects (2.9 × 2.9 mm) with microdrillings (0.6-mm diameter) were created on the medial condyles of both knees. PRP was injected into the right knee after closure (groups 1P, 2P, and 3P), at 2 weeks after surgery (groups 2P and 3P), and at 4 weeks after surgery (group 3P). The left knees did not receive any PRP injections. A total of 6 rabbits in each group were euthanized at 3, 6, and 12 weeks postoperatively. Cartilage repair tissue was assessed using the Goebel macroscopic and modified International Cartilage Regeneration & Joint Preservation Society (ICRS) histological scoring systems. Subchondral bone remodeling was evaluated by micro-computed tomography analysis (micro-CT). Inflammatory cytokine levels were assessed by quantitative polymerase chain reaction. RESULTS No significant differences were found for the mean macroscopic score between the PRP groups at 12 weeks (control, 6.1 ± 3.3; group 1P, 3.4 ± 2.7; group 2P, 4.2 ± 2.9; group 3P, 0.7 ± 1.5). All PRP groups had a significantly higher mean modified ICRS histological score compared with the control group, but no significant difference was found among the PRP groups. No significant differences were seen in outcomes for the tested micro-CT parameters or cytokine expression levels. CONCLUSION Serial PRP injections conferred no apparent advantage over single injections according to evaluations of the macroscopic and histological appearance of the cartilaginous tissue, subchondral bone healing, and inflammatory cytokine expression levels in the synovium. CLINICAL RELEVANCE The use of PRP as a biological adjuvant to bone marrow stimulation for osteochondral lesions has the potential to enhance the quality of regenerative cartilaginous tissue. We recommend only a single PRP injection if the use of PRP is indicated by the operating surgeon as an adjuvant therapy for osteochondral lesions.
Collapse
Affiliation(s)
- Youichi Yasui
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - John F Dankert
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York, USA
| | | | - Nathaniel P Mercer
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York, USA
| | - Margaret B Goodale
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - John G Kennedy
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York, USA
| |
Collapse
|
35
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
36
|
Ai C, Lee YHD, Tan XH, Tan SHS, Hui JHP, Goh JCH. Osteochondral tissue engineering: Perspectives for clinical application and preclinical development. J Orthop Translat 2021; 30:93-102. [PMID: 34722152 PMCID: PMC8517716 DOI: 10.1016/j.jot.2021.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
The treatment of osteochondral defects (OCD) remains challenging. Among currently available surgical treatments for OCDs, scaffold-based treatments are promising to regenerate the osteochondral unit. However, there is still no consensus regarding the clinical effectiveness of these scaffold-based therapies for OCDs. Previous reviews have described the gradient physiological characteristics of osteochondral tissue and gradient scaffold design for OCD, tissue engineering strategies, biomaterials, and fabrication technologies. However, the discussion on bridging the gap between the clinical need and preclinical research is still limited, on which we focus in the present review, providing an insight into what is currently lacking in tissue engineering methods that failed to yield satisfactory outcomes, and what is needed to further improve these techniques. Currently available surgical treatments for OCDs are firstly summarized, followed by a comprehensive review on experimental animal studies in recent 5 years on osteochondral tissue engineering. The review will then conclude with what is currently lacking in these animal studies and the recommendations that would help enlighten the community in developing more clinically relevant implants. The translational potential of this article This review is attempting to summarize the lessons from clinical and preclinical failures, providing an insight into what is currently lacking in TE methods that failed to yield satisfactory outcomes, and what is needed to further improve these implants.
Collapse
Affiliation(s)
- Chengchong Ai
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Yee Han Dave Lee
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Xuan Hao Tan
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Si Heng Sharon Tan
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, National University Health System, Singapore.,NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
37
|
Nikhil A, Kumar A. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair. Biotechnol Bioeng 2021; 119:605-625. [PMID: 34723385 DOI: 10.1002/bit.27982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Treatment of articular cartilage injuries especially osteochondral tissue requires intervention of bioengineered scaffold. In this study, we investigated the potential of the tissue-engineered cryogel scaffold fabricated using cryogelation technology. Two types of cryogels viz. chitosan-gelatin-chondroitin sulfate (CGC) for articular cartilage and nano-hydroxyapatite-gelatin (HG) for subchondral bone were fabricated. Further, novel bilayer cryogel designed using single process fabrication of two layers (CGC as top layer and HG as the lower layer) was designed to mimic osteochondral unit. CGC cryogel was tested for their biocompatibility using the enzymatically isolated chondrcoytes from goat articular cartilage while HG cryogel was tested using pre-osteoblast cell line. Extracellular vesicles, specifically exosomes were isolated from the spent media of chondrocytes to validate their effect over cell proliferation and migration which are required for defect healing and infiltration respectively. These isolated exosomes were characterized and analyzed for confirming their size distribution profile and visualized morphologically using advanced microscopy techniques. For cartilage part, CGC cryogels were examined as delivery system for delivering exosomes at defect site, where 80% of release was observed in 72 h. Release of 18.7 µg chondroitin sulfate/mg cryogel was obtained in a period of one week from CGC cryogel (termed cryogel extract) which has chondroprotective effect. Further, effect of exosome concentration (10 and 20 µg/ml), CGC extract and combination of exosome and CGC extract (Exo-Ex) were assessed over the chondrocytes. In addition, in vitro scratch wound assay was performed to analyse the migration capacity over the micro-injury when treated with exosomes, cryogel extract and Exo-Ex. The overall results thus answer key questions of therapeutic potential of chondrocyte exosomes, cryogel extract in addition to potential of CGC and HG cryogel for osteochondral repair.
Collapse
Affiliation(s)
- Aman Nikhil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
38
|
Jeuken RM, van Hugten PPW, Roth AK, Timur UT, Boymans TAEJ, van Rhijn LW, Bugbee WD, Emans PJ. A Systematic Review of Focal Cartilage Defect Treatments in Middle-Aged Versus Younger Patients. Orthop J Sports Med 2021; 9:23259671211031244. [PMID: 34676269 PMCID: PMC8524698 DOI: 10.1177/23259671211031244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Focal cartilage defects are often debilitating, possess limited potential for
regeneration, are associated with increased risk of osteoarthritis, and are
predictive for total knee arthroplasty. Cartilage repair studies typically
focus on the outcome in younger patients, but a high proportion of treated
patients are 40 to 60 years of age (ie, middle-aged). The reality of current
clinical practice is that the ideal patient for cartilage repair is not the
typical patient. Specific attention to cartilage repair outcomes in
middle-aged patients is warranted. Purpose: To systematically review available literature on knee cartilage repair in
middle-aged patients and include studies comparing results across different
age groups. Study Design: Systematic review; Level of evidence, 4. Methods: A systematic search was performed in EMBASE, MEDLINE, and the Cochrane
Library database. Articles were screened for relevance and appraised for
quality. Results: A total of 21 articles (mean Coleman Methodology Score, 64 points) were
included. Two out of 3 bone marrow stimulation (BMS) studies, including 1
using the microfracture technique, revealed inferior clinical outcomes in
middle-aged patients in comparison with younger patients. Nine cell-based
studies were included showing inconsistent comparisons of results across age
groups for autologous chondrocyte implantation (ACI). Bone marrow aspirate
concentrate showed age-independent results at up to 8 years of follow-up. A
negative effect of middle age was reported in 1 study for both ACI and BMS.
Four out of 5 studies on bone-based resurfacing therapies (allografting and
focal knee resurfacing implants [FKRIs]) showed age-independent results up
to 5 years. One study in only middle-aged patients reported better clinical
outcomes for FKRIs when compared with biological repairs. Conclusion: Included studies were heterogeneous and had low methodological quality. BMS
in middle-aged patients seems to only result in short-term improvements.
More research is warranted to elucidate the ameliorating effects of
cell-based therapies on the aging joint homeostasis. Bone-based therapies
seem to be relatively insensitive to aging and may potentially result in
effective joint preservation. Age subanalyses in cohort studies, randomized
clinical trials, and international registries should generate more evidence
for the large but underrepresented (in terms of cartilage repair)
middle-aged population in the literature.
Collapse
Affiliation(s)
- Ralph M Jeuken
- Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Alex K Roth
- Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ufuk Tan Timur
- Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | - William D Bugbee
- Department of Orthopaedic Surgery, Scripps Clinic, La Jolla, California, USA
| | - Pieter J Emans
- Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
39
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
40
|
Functional Characterization of Ovine Dorsal Root Ganglion Neurons Reveal Peripheral Sensitization after Osteochondral Defect. eNeuro 2021; 8:ENEURO.0237-21.2021. [PMID: 34544757 PMCID: PMC8577045 DOI: 10.1523/eneuro.0237-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 01/25/2023] Open
Abstract
Knee joint trauma can cause an osteochondral defect (OD), a risk factor for osteoarthritis (OA) and cause of debilitating pain in patients. Rodent OD models are less translatable because of their smaller joint size and open growth plate. This study proposes sheep as a translationally relevant model to understand the neuronal basis of OD pain. A unilateral 6-mm deep OD was induced in adult female sheep. Two to six weeks after operation, lumbar dorsal root ganglia (DRG) neurons were collected from the contralateral (Ctrl) and OD side of operated sheep. Functional assessment of neuronal excitability and activity of the pain-related ion channels transient receptor potential vanilloid receptor 1 (TRPV1) and P2X3 was conducted using electrophysiology and Ca2+ imaging. Immunohistochemistry was used to verify expression of pain-related proteins. We observed that an increased proportion of OD DRG neurons (sheep, N = 3; Ctrl neurons, n = 15, OD neurons, n = 16) showed spontaneous electrical excitability (Ctrl: 20.33 ± 4.5%; OD: 50 ± 10%; p = 0.009, unpaired t test) and an increased proportion fired a greater number of spikes above baseline in response to application of a TRPV1 agonist (capsaicin) application (Ctrl: 40%; OD: 75%; p = 0.04, χ2 test). Capsaicin also produced Ca2+ influx in an increased proportion of isolated OD DRG neurons (Ctrl: 25%; OD: 44%; p = 0.001, χ2 test). Neither protein expression, nor functionality of the P2X3 ion channel were altered in OD neurons. Overall, we provide evidence of increased excitability of DRG neurons (an important neural correlate of pain) and TRPV1 function in an OD sheep model. Our data show that functional assessment of sheep DRG neurons can provide important insights into the neural basis of OD pain and thus potentially prevent its progression into arthritic pain.
Collapse
|
41
|
Molfetta L, Casabella A, Rosini S, Saviola G, Palermo A. Role of the osteochondral unit in the pathogenesis of osteoarthritis: focus on the potential use of clodronate. Curr Rheumatol Rev 2021; 18:2-11. [PMID: 34615451 DOI: 10.2174/1573397117666211006094117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is a chronic disease characterized by inflammation and progressive deterioration of the joint. The etiology of OA includes genetic, phlogistic, dismetabolic and mechanical factors. Historically, cartilage was considered the target of the disease and therapy was aimed at protecting and lubricating the articular cartilage. The osteochondral unit is composed of articular cartilage, calcified cartilage, and subchondral and trabecular bone, which work synergistically to support the functional loading of the joint. Numerous studies today show that OA involves the osteochondral unit, with the participation therefore of the bone in the starting and progression of the disease, which is associated with chondropathy. Cytokines involved in the process leading to cartilage damage are also mediators of subchondral bone edema. Therefore, OA therapy must be based on the use of painkillers and bisphosphonates for both the control of osteometabolic damage and its analgesic activity. Monitoring of the disease of the osteochondral unit must be extensive, since bone marrow edema can be considered as a marker of the evolution of OA. In the present review we discuss some of the pathogenetic mechanisms associated with osteoarthritis, with particular focus on the osteochondral unit and the use of clodronate.
Collapse
Affiliation(s)
- Luigi Molfetta
- DISC Department of Integrated Surgical and Diagnostic science, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa. Italy
| | - Andrea Casabella
- DiMI Department of Internal Medicine Osteoporosis, Bone and Joint Disease Research Center, CROPO, Geno. Italy
| | | | - Gianantonio Saviola
- Istituti Clinici Scientifici Maugeri IRCCS, Rheumatology and Rehabilitation Unit of the Institute of Castel Goffredo, Mantua. Italy
| | - Andrea Palermo
- IRCCS Auxologico Italian Institute - 3 Unit of Orthopaedic Surgery - Capitanio Hospital, Milan. Italy
| |
Collapse
|
42
|
Feng M, Liu W, Ding J, Qiu Y, Chen Q. Sonic Hedgehog Induces Mesenchymal Stromal Cell Senescence-Associated Secretory Phenotype and Chondrocyte Apoptosis in Human Osteoarthritic Cartilage. Front Cell Dev Biol 2021; 9:716610. [PMID: 34646822 PMCID: PMC8502980 DOI: 10.3389/fcell.2021.716610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Hedgehog (HH) signaling plays a critical role in osteoarthritis (OA) pathogenesis, but the molecular mechanism remains to be elucidated. We show here that Sonic Hedgehog (SHH) gene expression is initiated in human normal cartilage stromal cells (NCSC) and increased in OA cartilage mesenchymal stromal cells (OA-MSCs) during aging. Manifesting a reciprocal cellular distribution pattern, the SHH receptors PTCH1 and SMO and transcription factors GLI2 and GLI3 are expressed by chondrocytes (OAC) in OA cartilage. SHH autocrine treatment of osteoarthritis MSC stimulates proliferation, chondrogenesis, hypertrophy, and replicative senescence with elevated SASP gene expression including IL1B, IL6, CXCL1, and CXCL8. SHH paracrine treatment of OAC suppresses COL2A1, stimulates MMP13, and induces chondrocyte apoptosis. The OA-MSC conditioned medium recapitulates the stimulatory effects of SHH on OAC catabolism and apoptosis. SHH knock-down in OA-MSC not only inhibits catabolic and senescence marker expression in OA-MSC, but also abolishes the effect of the OA-MSC conditioned medium on OAC catabolism and apoptosis. We propose that SHH is a key mediator between OA-MSC and OA chondrocytes interaction in human OA cartilage via two mechanisms: (1) SHH mediates MSC growth and aging by activating not only its proliferation and chondrogenesis, but also low-grade inflammation and replicative senescence, and (2) SHH mediates OA-MSC-induced OAC catabolism and apoptosis by creating a pro-inflammatory microenvironment favoring tissue degeneration during OA pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Qian Chen
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
43
|
Zhang S, Xie D, Zhang Q. Mesenchymal stem cells plus bone repair materials as a therapeutic strategy for abnormal bone metabolism: Evidence of clinical efficacy and mechanisms of action implied. Pharmacol Res 2021; 172:105851. [PMID: 34450314 DOI: 10.1016/j.phrs.2021.105851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
The regeneration process of human bones is very complicated, the management and treatment of bone damage caused by diseases are the main problems faced by clinicians worldwide. It is known that cell-based stem cell therapy together with biomaterials is a fast-developing method of tissue regeneration. This review focuses on the different types and main characteristics of scaffolds and stem cells suitable for bone regeneration, and aims to provide a state-of-the-art description of the current treatment of common bone metabolism related diseases such as osteoarthritis, osteoporosis and osteosarcoma and the strategies based on stem cell biological scaffolds used in bone tissue engineering. This method may provide a new treatment option for the treatment of common bone metabolism-related diseases that cannot be cured by ordinary and routine applications. Three databases (PubMed, CNKI and Web of Science) search terms used to write this review are: "arthritis", "osteoporosis", "osteosarcoma", "bone tissue engineering", "mesenchymal stem cells", "materials", "bioactive scaffolds" and their combinations, and the most relevant studies are selected. As a conclusion, it needs to be emphasized that despite the encouraging results, further development is needed due to the need for more in-depth research, standardization of stem cell manufacturing processes, large-scale development of clinical methods for bone tissue engineering, and market regulatory approval. Although the research and application of tissue regeneration technology and stem cells are still in their infancy, the application prospect is broad and it is expected to solve the current clinical problems.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| |
Collapse
|
44
|
Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13:983. [PMID: 34209671 PMCID: PMC8309012 DOI: 10.3390/pharmaceutics13070983] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.
Collapse
Affiliation(s)
| | - Anabela Moreira
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| | - Achim Weber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| |
Collapse
|
45
|
Liao HX, Zhang ZH, Chen HL, Huang YM, Liu ZL, Huang J. CircHYBID regulates hyaluronan metabolism in chondrocytes via hsa-miR-29b-3p/TGF-β1 axis. Mol Med 2021; 27:56. [PMID: 34058990 PMCID: PMC8165762 DOI: 10.1186/s10020-021-00319-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hyaluronan (HA) metabolism by chondrocytes is important for cartilage development and homeostasis. However, information about the function of circular RNAs (circRNAs) in HA metabolism is limited. We therefore profiled the role of the novel HA-related circRNA circHYBID in the progression of osteoarthritis (OA). Methods CircHYBID function in HA metabolism in chondrocytes was investigated using gain-of-function experiments, and circHYBID mechanism was confirmed via bioinformatics analysis and luciferase assays. The expression of circHYBID–hsa-miR-29b-3p–transforming growth factor (TGF)-β1 axis was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. CircHYBID, TGF-β1, and HA levels in cartilage samples were evaluated using qRT-PCR and pathological examination. Enzyme-linked immunosorbent assay was used to assess HA accumulation in chondrocyte supernatant. Results CircHYBID expression was significantly downregulated in damaged cartilage samples compared with that in the corresponding intact cartilage samples. CircHYBID expression was positively correlated with alcian blue score. Interleukin-1β stimulation in chondrocytes downregulated circHYBID expression and decreased HA accumulation. Gain-of-function experiments revealed that circHYBID overexpression in chondrocytes increased HA accumulation by regulating HA synthase 2 and HYBID expression. Further mechanism analysis showed that circHYBID upregulated TGF-β1 expression by sponging hsa-miR-29b-3p. Conclusions Our results describe a novel HA-related circRNA that could promote HA synthesis and accumulation. The circHYBID–hsa-miR-29b-3p–TGF-β1 axis may play a powerful regulatory role in HA metabolism and OA progression. Thus, these findings will provide new perspectives for studies on OA pathogenesis, and circHYBID may serve as a potential target for OA therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00319-x.
Collapse
Affiliation(s)
- Hong-Xing Liao
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China.
| | - Zhi-Hui Zhang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Hui-Lin Chen
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Ying-Mei Huang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Zhan-Liang Liu
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Jian Huang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| |
Collapse
|
46
|
Velot É, Madry H, Venkatesan JK, Bianchi A, Cucchiarini M. Is Extracellular Vesicle-Based Therapy the Next Answer for Cartilage Regeneration? Front Bioeng Biotechnol 2021; 9:645039. [PMID: 33968913 PMCID: PMC8102683 DOI: 10.3389/fbioe.2021.645039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
"Extracellular vesicles" (EVs) is a term gathering biological particles released from cells that act as messengers for cell-to-cell communication. Like cells, EVs have a membrane with a lipid bilayer, but unlike these latter, they have no nucleus and consequently cannot replicate. Several EV subtypes (e.g., exosomes, microvesicles) are described in the literature. However, the remaining lack of consensus on their specific markers prevents sometimes the full knowledge of their biogenesis pathway, causing the authors to focus on their biological effects and not their origins. EV signals depend on their cargo, which can be naturally sourced or altered (e.g., cell engineering). The ability for regeneration of adult articular cartilage is limited because this avascular tissue is partly made of chondrocytes with a poor proliferation rate and migration capacity. Mesenchymal stem cells (MSCs) had been extensively used in numerous in vitro and preclinical animal models for cartilage regeneration, and it has been demonstrated that their therapeutic effects are due to paracrine mechanisms involving EVs. Hence, using MSC-derived EVs as cell-free therapy tools has become a new therapeutic approach to improve regenerative medicine. EV-based therapy seems to show similar cartilage regenerative potential compared with stem cell transplantation without the associated hindrances (e.g., chromosomal aberrations, immunogenicity). The aim of this short review is to take stock of occurring EV-based treatments for cartilage regeneration according to their healing effects. The article focuses on cartilage regeneration through various sources used to isolate EVs (mature or stem cells among others) and beneficial effects depending on cargos produced from natural or tuned EVs.
Collapse
Affiliation(s)
- Émilie Velot
- Faculté de Médecine, Biopôle de l’Université de Lorraine, Campus Brabois-Santé, Laboratoire UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Vandoeuvre-Lès-Nancy, France
- Campus Brabois-Santé, Laboratoire de Travaux Pratiques de Physiologie, Faculté de Pharmacie, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Arnaud Bianchi
- Campus Brabois-Santé, Laboratoire de Travaux Pratiques de Physiologie, Faculté de Pharmacie, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| |
Collapse
|
47
|
Cai X, Daniels O, Cucchiarini M, Madry H. Ectopic models recapitulating morphological and functional features of articular cartilage. Ann Anat 2021; 237:151721. [PMID: 33753232 DOI: 10.1016/j.aanat.2021.151721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Articular cartilage is an extremely specialized connective tissue which covers all diarthrodial joints. Implantation of chondrogenic cells without or with additional biomaterial scaffolds in ectopic locationsin vivo generates substitutes of cartilage with structural and functional characteristics that are used in fundamental investigations while also serving as a basis for translational studies. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant ectopic models, among which subcutaneous, intramuscular, and kidney capsule transplantation and elaborates on implanted cells and biomaterial scaffolds and on their use to recapitulate morphological and functional features of articular cartilage. Although the absence of a physiological joint environment and biomechanical stimuli is the major limiting factor, ectopic models are an established component for articular cartilage research aiming to generate a bridge between in vitro data and the clinically more relevant translational orthotopic in vivo models when their limitations are considered.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Oliver Daniels
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
48
|
Trengove A, Di Bella C, O'Connor AJ. The Challenge of Cartilage Integration: Understanding a Major Barrier to Chondral Repair. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:114-128. [PMID: 33307976 DOI: 10.1089/ten.teb.2020.0244] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Articular cartilage defects caused by injury frequently lead to osteoarthritis, a painful and costly disease. Despite widely used surgical methods to treat articular cartilage defects and a plethora of research into regenerative strategies as treatments, long-term clinical outcomes are not satisfactory. Failure to integrate repair tissue with native cartilage is a recurring issue in surgical and tissue-engineered strategies, seeing eventual degradation of the regenerated or surrounding tissue. This review delves into the current understanding of why continuous and robust integration with native cartilage is so difficult to achieve. Both the intrinsic limitations of chondrocytes to remodel injured cartilage, and the significant challenges posed by a compromised biomechanical environment are described. Recent scaffold and cell-based techniques to repair cartilage are also discussed, and limitations of existing methods to evaluate integrative repair. In particular, the importance of evaluating the mechanical integrity of the interface between native and repair tissue is highlighted as a meaningful assessment of any strategy to repair this load-bearing tissue. Impact statement The failure to integrate grafts or biomaterials with native cartilage is a major barrier to cartilage repair. An in-depth understanding of the reasons cartilage integration remains a challenge is required to inform cartilage repair strategies. In particular, this review highlights that integration of cartilage repair strategies is frequently assessed in terms of the continuity of tissue, but not the mechanical integrity. Given the load-bearing nature of cartilage, evaluating integration in terms of interfacial strength is essential to assessing the potential success of cartilage repair methods.
Collapse
Affiliation(s)
- Anna Trengove
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Claudia Di Bella
- Department of Surgery, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Department of Orthopedics, St. Vincent's Hospital Melbourne, Melbourne, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
49
|
Chen CY, Li C, Ke CJ, Sun JS, Lin FH. Kartogenin Enhances Chondrogenic Differentiation of MSCs in 3D Tri-Copolymer Scaffolds and the Self-Designed Bioreactor System. Biomolecules 2021; 11:115. [PMID: 33467170 PMCID: PMC7829855 DOI: 10.3390/biom11010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Human cartilage has relatively slow metabolism compared to other normal tissues. Cartilage damage is of great clinical consequence since cartilage has limited intrinsic healing potential. Cartilage tissue engineering is a rapidly emerging field that holds great promise for tissue function repair and artificial/engineered tissue substitutes. However, current clinical therapies for cartilage repair are less than satisfactory and rarely recover full function or return the diseased tissue to its native healthy state. Kartogenin (KGN), a small molecule, can promote chondrocyte differentiation both in vitro and in vivo. The purpose of this research is to optimize the chondrogenic process in mesenchymal stem cell (MSC)-based chondrogenic constructs with KGN for potential use in cartilage tissue engineering. In this study, we demonstrate that KGN treatment can promote MSC condensation and cell cluster formation within a tri-copolymer scaffold. Expression of Acan, Sox9, and Col2a1 was significantly up-regulated in three-dimensional (3D) culture conditions. The lacuna-like structure showed active deposition of type II collagen and aggrecan deposition. We expect these results will open new avenues for the use of small molecules in chondrogenic differentiation protocols in combination with scaffolds, which may yield better strategies for cartilage tissue engineering.
Collapse
Affiliation(s)
- Ching-Yun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; or
| | - Chunching Li
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10002, Taiwan;
| | - Cherng-Jyh Ke
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, Taiwan;
- Center for General Education, China Medical University, Taichung 40202, Taiwan
- Master Program for Digital Health Innovation, China Medical University, Taichung 40202, Taiwan
- Master Program in Technology Management, China Medical University, Taichung 40202, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40202, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10002, Taiwan;
- Institute of Biomedical Engineering and Nanomedicine (I-BEN), National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
50
|
Zhao Z, Wang Y, Wang Q, Liang J, Hu W, Zhao S, Li P, Zhu H, Li Z. Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo. Stem Cell Res Ther 2021; 12:19. [PMID: 33413606 PMCID: PMC7792202 DOI: 10.1186/s13287-020-02076-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Radial extracorporeal shockwave (r-ESW), an innovative and noninvasive technique, is gaining increasing attention in regenerative medicine due to its mechanobiological effects. Subchondral bone stem/progenitor cells (SCB-SPCs), originating from the pivotal zone of the osteochondral unit, have been shown to have multipotency and self-renewal properties. However, thus far, little information is available regarding the influences of r-ESW on the biological properties of SCB-SPCs and their therapeutic effects in tissue regeneration. METHODS SCB-SPCs were isolated from human knee plateau osteochondral specimens and treated with gradient doses of r-ESW in a suspension stimulation system. The optimized parameters for SCB-SPC self-renewal were screened out by colony-forming unit fibroblast assay (CFU-F). Then, the effects of r-ESW on the proliferation, apoptosis, and multipotency of SCB-SPCs were evaluated. Moreover, the repair efficiency of radial shockwave-preconditioned SCB-SPCs was evaluated in vivo via an osteochondral defect model. Potential mechanisms were explored by western blotting, confocal laser scanning, and high-throughput sequencing. RESULTS The CFU-F data indicate that r-ESW could augment the self-renewal of SCB-SPCs in a dose-dependent manner. The CCK-8 and flow cytometry results showed that the optimized shockwave markedly promoted SCB-SPC proliferation but had no significant influence on cell apoptosis. Radial shockwave exerted no significant influence on osteogenic capacity but strongly suppressed adipogenic ability in the current study. For chondrogenic potentiality, the treated SCB-SPCs were mildly enhanced, while the change was not significant. Importantly, the macroscopic scores and further histological analysis strongly demonstrated that the in vivo therapeutic effects of SCB-SPCs were markedly improved post r-ESW treatment. Further analysis showed that the cartilage-related markers collagen II and proteoglycan were expressed at higher levels compared to their counterpart group. Mechanistic studies suggested that r-ESW treatment strongly increased the expression of YAP and promoted YAP nuclear translocation in SCB-SPCs. More importantly, self-renewal was partially blocked by the YAP-specific inhibitor verteporfin. Moreover, the high-throughput sequencing data indicated that other self-renewal-associated pathways may also be involved in this process. CONCLUSION We found that r-ESW is capable of promoting the self-renewal of SCB-SPCs in vitro by targeting YAP activity and strengthening its repair efficiency in vivo, indicating promising application prospects.
Collapse
Affiliation(s)
- Zhidong Zhao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuxing Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Qian Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jiawu Liang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wei Hu
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Sen Zhao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Peilin Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Graduate School of Anhui Medical University, No. 81 Meishan Road, Shu Shan District, Hefei, 230032, Anhui Province, China.
| | - Zhongli Li
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|