1
|
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023; 16:012003. [PMID: 37944186 PMCID: PMC10658349 DOI: 10.1088/1758-5090/ad0b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.
Collapse
Affiliation(s)
- Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Anwita Sarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Irem Deniz Derman
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, United States of America
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
2
|
Milazzo M, Fitzpatrick V, Owens CE, Carraretto IM, McKinley GH, Kaplan DL, Buehler MJ. 3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications. ACS Biomater Sci Eng 2023; 9:1285-1295. [PMID: 36857509 DOI: 10.1021/acsbiomaterials.2c01357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA-silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.
Collapse
Affiliation(s)
- Mario Milazzo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Massachusetts Avenue 77, Cambridge, Massachusetts 02139, United States
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Crystal E Owens
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Igor M Carraretto
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Energy, Politecnico di Milano, via Lambruschini 4a, 20156 Milano, MI, Italy
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Massachusetts Avenue 77, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Duan X, Li N, Cooper DML, Ding XF, Chen X, Zhu N. Low-density tissue scaffold imaging by synchrotron radiation propagation-based imaging computed tomography with helical acquisition mode. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:417-429. [PMID: 36891855 PMCID: PMC10000810 DOI: 10.1107/s1600577523000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Visualization of low-density tissue scaffolds made from hydrogels is important yet challenging in tissue engineering and regenerative medicine (TERM). For this, synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT) has great potential, but is limited due to the ring artifacts commonly observed in SR-PBI-CT images. To address this issue, this study focuses on the integration of SR-PBI-CT and helical acquisition mode (i.e. SR-PBI-HCT) to visualize hydrogel scaffolds. The influence of key imaging parameters on the image quality of hydrogel scaffolds was investigated, including the helical pitch (p), photon energy (E) and the number of acquisition projections per rotation/revolution (Np), and, on this basis, those parameters were optimized to improve image quality and to reduce noise level and artifacts. The results illustrate that SR-PBI-HCT imaging shows impressive advantages in avoiding ring artifacts with p = 1.5, E = 30 keV and Np = 500 for the visualization of hydrogel scaffolds in vitro. Furthermore, the results also demonstrate that hydrogel scaffolds can be visualized using SR-PBI-HCT with good contrast while at a low radiation dose, i.e. 342 mGy (voxel size of 26 µm, suitable for in vivo imaging). This paper presents a systematic study on hydrogel scaffold imaging using SR-PBI-HCT and the results reveal that SR-PBI-HCT is a powerful tool for visualizing and characterizing low-density scaffolds with a high image quality in vitro. This work represents a significant advance toward the non-invasive in vivo visualization and characterization of hydrogel scaffolds at a suitable radiation dose.
Collapse
Affiliation(s)
- Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - David M. L. Cooper
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiao Fan Ding
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
4
|
Tashman JW, Shiwarski DJ, Coffin B, Ruesch A, Lanni F, Kainerstorfer JM, Feinberg AW. In situvolumetric imaging and analysis of FRESH 3D bioprinted constructs using optical coherence tomography. Biofabrication 2022; 15. [PMID: 36195056 DOI: 10.1088/1758-5090/ac975e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
As 3D bioprinting has grown as a fabrication technology, so too has the need for improved analytical methods to characterize engineered constructs. This is especially challenging for engineered tissues composed of hydrogels and cells, as these materials readily deform when trying to assess print fidelity and other properties non-destructively. Establishing that the 3D architecture of the bioprinted construct matches its intended anatomic design is critical given the importance of structure-function relationships in most tissue types. Here we report development of a multimaterial bioprinting platform with integrated optical coherence tomography forin situvolumetric imaging, error detection, and 3D reconstruction. We also report improvements to the freeform reversible embedding of suspended hydrogels bioprinting process through new collagen bioink compositions, gelatin microparticle support bath optical clearing, and optimized machine pathing. This enables quantitative 3D volumetric imaging with micron resolution over centimeter length scales, the ability to detect a range of print defect types within a 3D volume, and real-time imaging of the printing process at each print layer. These advances provide a comprehensive methodology for print quality assessment, paving the way toward the production and process control required for achieving regulatory approval and ultimately clinical translation of engineered tissues.
Collapse
Affiliation(s)
- Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Brian Coffin
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Alexander Ruesch
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America.,Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
5
|
Duan X, Li N, Chen X, Zhu N. Characterization of Tissue Scaffolds Using Synchrotron Radiation Microcomputed Tomography Imaging. Tissue Eng Part C Methods 2021; 27:573-588. [PMID: 34670397 DOI: 10.1089/ten.tec.2021.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Distinguishing from other traditional imaging, synchrotron radiation microcomputed tomography (SR-μCT) imaging allows for the visualization of three-dimensional objects of interest in a nondestructive and/or in situ way with better spatial resolution, deep penetration, relatively fast speed, and/or high contrast. SR-μCT has been illustrated promising for visualizing and characterizing tissue scaffolds for repairing or replacing damaged tissue or organs in tissue engineering (TE), which is of particular advance for longitudinal monitoring and tracking the success of scaffolds once implanted in animal models and/or human patients. This article presents a comprehensive review on recent studies of characterization of scaffolds based on SR-μCT and takes scaffold architectural properties, mechanical properties, degradation, swelling and wettability, and biological properties as five separate sections to introduce SR-μCT wide applications. We also discuss and highlight the unique opportunities of SR-μCT in various TE applications; conclude this article with the suggested future research directions, including the prospective applications of SR-μCT, along with its challenges and methods for improvement in the field of TE.
Collapse
Affiliation(s)
- Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Canadian Light Source, Saskatoon, Canada
| |
Collapse
|
6
|
Oberdiek F, Vargas CI, Rider P, Batinic M, Görke O, Radenković M, Najman S, Baena JM, Jung O, Barbeck M. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration. Int J Mol Sci 2021; 22:3588. [PMID: 33808303 PMCID: PMC8037651 DOI: 10.3390/ijms22073588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: The aim of this study was examining the ex vivo and in vivo properties of a composite made from polycaprolactone (PCL) and biphasic calcium phosphate (BCP) (synprint, ScientiFY GmbH) fabricated via fused deposition modelling (FDM); (2) Methods: Scaffolds were tested ex vivo for their mechanical properties using porous and solid designs. Subcutaneous implantation model analyzed the biocompatibility of PCL + BCP and PCL scaffolds. Calvaria implantation model analyzed the osteoconductive properties of PCL and PCL + BCP scaffolds compared to BCP as control group. Established histological, histopathological and histomorphometrical methods were performed to evaluate new bone formation.; (3) Results Mechanical testing demonstrated no significant differences between PCL and PCL + BCP for both designs. Similar biocompatibility was observed subcutaneously for PCL and PCL + BCP scaffolds. In the calvaria model, new bone formation was observed for all groups with largest new bone formation in the BCP group, followed by the PCL + BCP group, and the PCL group. This finding was influenced by the initial volume of biomaterial implanted and remaining volume after 90 days. All materials showed osteoconductive properties and PCL + BCP tailored the tissue responses towards higher cellular biodegradability. Moreover, this material combination led to a reduced swelling in PCL + BCP; (4) Conclusions: Altogether, the results show that the newly developed composite is biocompatible and leads to successful osteoconductive bone regeneration. The new biomaterial combines the structural stability provided by PCL with bioactive characteristics of BCP-based BSM. 3D-printed BSM provides an integration behavior in accordance with the concept of guided bone regeneration (GBR) by directing new bone growth for proper function and restoration.
Collapse
Affiliation(s)
| | - Carlos Ivan Vargas
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Calle José Gutierrez Abascal, 2, 28006 Madrid, Spain
- REGEMAT 3D, Avenida del conocimiento 41, A-111, 18016 Granada, Spain;
| | | | - Milijana Batinic
- Research Department, BerlinAnalytix GmbH, 12109 Berlin, Germany;
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, 10623 Berlin, Germany;
| | - Oliver Görke
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, 10623 Berlin, Germany;
| | - Milena Radenković
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.R.); (S.N.)
| | - Stevo Najman
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.R.); (S.N.)
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Jose Manuel Baena
- REGEMAT 3D, Avenida del conocimiento 41, A-111, 18016 Granada, Spain;
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Mike Barbeck
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, 10623 Berlin, Germany;
| |
Collapse
|
7
|
Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev 2020; 120:11028-11055. [PMID: 32856892 PMCID: PMC7564085 DOI: 10.1021/acs.chemrev.0c00084] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.
Collapse
Affiliation(s)
- Andrea Schwab
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Riccardo Levato
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Matteo D’Este
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Susanna Piluso
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - David Eglin
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Jos Malda
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
8
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Heraud S, Delalleau A, Houcine A, Guiraud B, Bacqueville D, Payre B, Delisle MB, Bessou-Touya S, Damour O. Structural and Biomechanical Characterization of a Scaffold-Free Skin Equivalent Model via Biophysical Methods. Skin Pharmacol Physiol 2019; 33:17-29. [PMID: 31852002 DOI: 10.1159/000503154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
Abstract
AIMS Among in vitro skin models, the scaffold-free skin equivalent (SFSE), without exogenous material, is interesting for pharmacotoxicological studies. Our aim was to adapt in vivo biophysical methods to study the structure, thickness, and extracellular matrix of our in vitro model without any chemical fixation needed as for histology. METHODS We evaluated 3 batches of SFSE and characterized them by histology, transmission electron microscopy (TEM), and immunofluorescence. In parallel, we investigated 3 biophysical methods classically used for in vivo evaluation, optical coherence tomography (OCT), and laser scanning microscopy (LSM) imaging devices as well as the cutometer suction to study the biomechanical properties. RESULTS OCT allowed the evaluation of SFSE total thickness and its different compartments. LSM has a greater resolution enabling an evaluation at the cell scale and the orientation of collagen fibers. The viscoelasticity measurement by cutometry was possible on our thin skin model and might be linked with mature collagen bundles visible in TEM and LSM and with elastic fibers seen in immunofluorescence. CONCLUSION Our data demonstrated the simplicity and sensitivity of these different in vivo biophysical devices on our thin skin model. These noninvasive tools allow to study the morphology and the biomechanics of in vitro models.
Collapse
Affiliation(s)
- Sandrine Heraud
- Banque de Tissus et Cellules, Hospices Civils de Lyon and LBTI, UMR 5305, Lyon, France, .,Pierre Fabre, R&D PFDC, Département Pharmacologie, Toulouse, France,
| | | | - Audrey Houcine
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France
| | - Béatrice Guiraud
- Pierre Fabre, R&D PFDC, Département Pharmacologie, Toulouse, France
| | | | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France
| | - Marie-Bernadette Delisle
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France.,CHU Toulouse and INSERM U 1037, Toulouse, France
| | | | - Odile Damour
- Banque de Tissus et Cellules, Hospices Civils de Lyon and LBTI, UMR 5305, Lyon, France
| |
Collapse
|
10
|
Piard C, Jeyaram A, Liu Y, Caccamese J, Jay SM, Chen Y, Fisher J. 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials 2019; 222:119423. [PMID: 31442885 DOI: 10.1016/j.biomaterials.2019.119423] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 08/11/2019] [Indexed: 12/12/2022]
Abstract
Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on their crosstalk. In the present study, we showed that the separation and distance between ECs and MSCs populations affects angiogenesis by modulating cell-cell communication. HUVECs grown farther apart from MSCs (˃400 μm) presented characteristics of an early stage of angiogenesis (migration/proliferation). Results showed an increase in the up-regulation of VEGF, FGF-2, and ITGA3 (integrins) but a smaller fold change in the expression of VE-Cadherin and Ang-1. HUVECs were also still highly proliferative. On the contrary, HUVECs incubated closer (≤200 μm) to MSCs, showed signs of stabilization, mainly an increase in Ang-1 and VE-cadherin expression, as well as tighter monolayers. Conditioned media collected from HUVECs and MSCs grown ≤200 μm apart preferentially promoted tube formation, a later stage of angiogenesis, due in part to a significant increase in Ang-1 paracrine secretion. In addition, in groups in which fibers were printed farther apart (400 μm), cells produced EVs with a significantly increase cargo. Finally, in vivo experiment results showed an increase in blood vessels density and new bone thickness after 12 weeks of implantation in rat cranial defect, further suggesting the higher efficiency of indirect ECs/MSCs contact in prompting the release of paracrine signals that stimulate the angiogenesis of local tissues, and enhanced subsequent bone regeneration.
Collapse
Affiliation(s)
- Charlotte Piard
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - John Caccamese
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, University of Maryland Medical Center, R Adams Cowley Shock Trauma Center, Baltimore, MD, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States.
| |
Collapse
|
11
|
Firouzian KF, Zhang T, Zhang H, Song Y, Su X, Lin F. An Image-Guided Intrascaffold Cell Assembly Technique for Accurate Printing of Heterogeneous Tissue Constructs. ACS Biomater Sci Eng 2019; 5:3499-3510. [PMID: 33405733 DOI: 10.1021/acsbiomaterials.9b00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For tissue engineering and regenerative medicine, creating thick and heterogeneous scaffold-based tissue constructs requires deep and precise multicellular deposition. Traditional cell seeding strategies lack the ability to create multicellular tissue constructs with high cell penetration and distribution, while emerging strategies aim to simultaneously combine cell-laden tissue segments with scaffold fabrication. Here we describe a technique that allows for three-dimensional (3D) intrascaffold cell assembly in which scaffolds are prefabricated and pretreated, followed by accurate cell distribution within the scaffold using an image-guided technique. This two-step process yields less limitation in scaffold material choice as well as additional treatments, provides accurate cell distribution, and has less potential to harm cells. The image processing technique captures a 2D geometric image of the scaffold, followed by a series of processes, mainly including grayscale transformation, threshold segmentation, and boundary extraction, to ultimately locate scaffold macropore centroids. Coupled with camera calibration data, accurate 3D cell assembly pathway plans can be made. Intrascaffold assembly parameter optimization and complex intrascaffold gradient, multidirectional, and vascular structure assembly were studied. Demonstration was also made with path planning and cell assembly experiments using NIH3T3-cell-laden hydrogels and collagen-coated poly(lactic-co-glycolic acid) (PLGA) scaffolds. Experiments with CellTracker fluorescent monitoring, live/dead staining, and phalloidin-F-actin/DAPI immunostaining and comparison with two control groups (bioink manual injection and cell suspension static surface pipetting) showed accurate cell distribution and positioning and high cell viability (>93%). The PrestoBlue assay showed obvious cell proliferation over seven culture days in vitro. This technique provides an accurate method to aid simple and complex cell colonization with variant depth within 3D-scaffold-based constructs using multiple cells. The modular method can be used with any existing printing platform and shows potential in facilitating direct spatial organization and hierarchal 3D assembly of multiple cells and/or drugs within scaffolds for further tissue engineering studies and clinical applications.
Collapse
Affiliation(s)
- Kevin F Firouzian
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hefeng Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Song
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolei Su
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Shazeeb MS, Corazzini R, Konowicz PA, Fogle R, Bangari DS, Johnson J, Ying X, Dhal PK. Assessment of in vivo degradation profiles of hyaluronic acid hydrogels using temporal evolution of chemical exchange saturation transfer (CEST) MRI. Biomaterials 2018; 178:326-338. [PMID: 29861090 DOI: 10.1016/j.biomaterials.2018.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Abstract
Hyaluronic acid (HA) hydrogels have found a wide range of applications in biomedicine: regenerative medicine to drug delivery applications. In vivo quantitative assessment of these hydrogels using magnetic resonance imaging (MRI) provides an effective, accurate, safe, and non-invasive translational approach to assess the biodegradability of HA hydrogels. Chemical exchange saturation transfer (CEST) is an MRI contrast enhancement technique that overcomes the concentration limitation of other techniques like magnetic resonance spectroscopy (MRS) by detecting metabolites at up to two orders of magnitude or higher. In this study, HA hydrogels were synthesized based on different crosslinking agents and assessed using CEST MRI to investigate the in vivo degradation profiles of these gels in a mouse subcutaneous injection model over a three-month period. Nature of crosslinking agents was found to influence their degradation profiles. Since CEST MRI provides a unique chemical signature to visualize HA hydrogels, our studies proved that this technique could be used as a guide in the hydrogel optimization process for drug delivery and regenerative medicine applications.
Collapse
Affiliation(s)
| | - Rubina Corazzini
- Diabetes Research, Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02451, USA
| | - Paul A Konowicz
- Diabetes Research, Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02451, USA
| | - Robert Fogle
- Bioimaging Research, Sanofi Global R&D, 49 New York Avenue, Framingham, MA 01701, USA
| | - Dinesh S Bangari
- Pathology Research, Sanofi Global R&D, 5 Mountain Road, Framingham, MA 01701, USA
| | - Jennifer Johnson
- Pathology Research, Sanofi Global R&D, 5 Mountain Road, Framingham, MA 01701, USA
| | - Xiaoyou Ying
- Bioimaging Research, Sanofi Global R&D, 49 New York Avenue, Framingham, MA 01701, USA.
| | - Pradeep K Dhal
- Diabetes Research, Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02451, USA.
| |
Collapse
|
13
|
Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:362-376. [PMID: 30100812 PMCID: PMC6082025 DOI: 10.1016/j.mattod.2017.10.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Blood vessels and nerve fibers are distributed throughout the entirety of skeletal tissue, and play important roles during bone development and fracture healing by supplying oxygen, nutrients, and cells. However, despite the successful development of bone mimetic materials that can replace damaged bone from a structural point of view, most of the available bone biomaterials often do not induce sufficient formation of blood vessels and nerves. In part, this is due to the difficulty of integrating and regulating multiple tissue types within artificial materials, which causes a gap between native skeletal tissue. Therefore, understanding the anatomy and underlying interaction mechanisms of blood vessels and nerve fibers in skeletal tissue is important to develop biomaterials that can recapitulate its complex microenvironment. In this perspective, we highlight the structure and osteogenic functions of the vascular and nervous system in bone, in a coupled manner. In addition, we discuss important design criteria for engineering vascularized, innervated, and neurovascularized bone implant materials, as well as recent advances in the development of such biomaterials. We expect that bone implant materials with neurovascularized networks can more accurately mimic native skeletal tissue and improve the regeneration of bone tissue.
Collapse
Affiliation(s)
- Alessandra Marrella
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Tae Yong Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong Hoon Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Sobha Karuthedom
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Denata Syla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci Rep 2018; 8:2802. [PMID: 29434327 PMCID: PMC5809410 DOI: 10.1038/s41598-018-21274-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop, we defined the most appropriate design constraints and optimized the printing process to improve the geometrical fidelity. The effectiveness of IFBP was verified from the second run using gelatin/alginate hydrogel scaffolds laden with C3A cells. The mismatch of the morphological parameters greatly decreased from 40% to within 7%, which significantly optimized the cell viability, proliferation, and morphology, as well as the representative expression of hepatocyte markers, including CYP3A4 and albumin, of the printed cell-laden hydrogel scaffolds. The demonstrated protocol paves the way for the mass fabrication of cell-laden hydrogel scaffolds, engineered tissues, and scaled-up applications of the 3D bio-printing technique.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Ming-En Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Li Luo
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongyong Zhou
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Peijian Si
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
15
|
Teodori L, Crupi A, Costa A, Diaspro A, Melzer S, Tarnok A. Three-dimensional imaging technologies: a priority for the advancement of tissue engineering and a challenge for the imaging community. JOURNAL OF BIOPHOTONICS 2017; 10:24-45. [PMID: 27110674 DOI: 10.1002/jbio.201600049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Tissue engineering/regenerative medicine (TERM) is an interdisciplinary field that applies the principle of engineering and life sciences to restore/replace damaged tissues/organs with in vitro artificially-created ones. Research on TERM quickly moves forward. Today newest technologies and discoveries, such as 3D-/bio-printing, allow in vitro fabrication of ex-novo made tissues/organs, opening the door to wide and probably never-ending application possibilities, from organ transplant to drug discovery, high content screening and replacement of laboratory animals. Imaging techniques are fundamental tools for the characterization of tissue engineering (TE) products at any stage, from biomaterial/scaffold to construct/organ analysis. Indeed, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular features, allowing three-dimensional (3D) and time-lapse in vivo analysis, in a non-destructive, quantitative, multidimensional analysis of TE constructs, to analyze their pre-implantation quality assessment and their fate after implantation. This review focuses on the newest developments in imaging technologies and applications in the context of requirements of the different steps of the TERM field, describing strengths and weaknesses of the current imaging approaches.
Collapse
Affiliation(s)
- Laura Teodori
- Diagnostics and Metrology Laboratory FSN-TECFIS-DIM ENEA CR Frascati, Via Enrico Fermi 44, 00044, Rome, Italy
| | - Annunziata Crupi
- Diagnostics and Metrology Laboratory FSN-TECFIS-DIM ENEA CR Frascati, Via Enrico Fermi 44, 00044, Rome, Italy
- Fondazione San Raffaele, S.S. Ceglie San Michele km 1200, 72013, Ceglie Messapica, Italy
| | - Alessandra Costa
- University of Pittsburgh McGowan Institute, 3550 Terrace St 5606, Pittsburgh, PA 15261, USA
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy
- Nikon Imaging Center, Genova, Italy, www.nic.iit.it
| | - Susanne Melzer
- Sächsische Inkubator für klinische Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
- Department of Pediatric Cardiology, HELIOS Heart Center Leipzig, University of Leipzig, Strümpellstraße 39, 04289, Leipzig, Germany
| | - Attila Tarnok
- Sächsische Inkubator für klinische Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
- Department of Pediatric Cardiology, HELIOS Heart Center Leipzig, University of Leipzig, Strümpellstraße 39, 04289, Leipzig, Germany
| |
Collapse
|
16
|
Wang L, Xu M, Zhang L, Zhou Q, Luo L. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:894-910. [PMID: 27231597 PMCID: PMC4866464 DOI: 10.1364/boe.7.000894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 05/13/2023]
Abstract
Reconstructing and quantitatively assessing the internal architecture of opaque three-dimensional (3D) bioprinted hydrogel scaffolds is difficult but vital to the improvement of 3D bioprinting techniques and to the fabrication of functional engineered tissues. In this study, swept-source optical coherence tomography was applied to acquire high-resolution images of hydrogel scaffolds. Novel 3D gelatin/alginate hydrogel scaffolds with six different representative architectures were fabricated using our 3D bioprinting system. Both the scaffold material networks and the interconnected flow channel networks were reconstructed through volume rendering and binarisation processing to provide a 3D volumetric view. An image analysis algorithm was developed based on the automatic selection of the spatially-isolated region-of-interest. Via this algorithm, the spatially-resolved morphological parameters including pore size, pore shape, strut size, surface area, porosity, and interconnectivity were quantified precisely. Fabrication defects and differences between the designed and as-produced scaffolds were clearly identified in both 2D and 3D; the locations and dimensions of each of the fabrication defects were also defined. It concludes that this method will be a key tool for non-destructive and quantitative characterization, design optimisation and fabrication refinement of 3D bioprinted hydrogel scaffolds. Furthermore, this method enables investigation into the quantitative relationship between scaffold structure and biological outcome.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Mingen Xu
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; Hangzhou Regenovo Corporation, Hangzhou 310018, China;
| | - LieLie Zhang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - QingQing Zhou
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Li Luo
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
17
|
Wang L, Ding Y. Creating micro-structured hydrogel-forming polymer films by photopolymerization in an evaporating solvent: Compositional and morphological evolutions. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Edmunds KJ, Gargiulo P. Imaging Approaches in Functional Assessment of Implantable Myogenic Biomaterials and Engineered Muscle Tissue. Eur J Transl Myol 2015; 25:4847. [PMID: 26913149 PMCID: PMC4749010 DOI: 10.4081/ejtm.2015.4847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022] Open
Abstract
The fields of tissue engineering and regenerative medicine utilize implantable biomaterials and engineered tissues to regenerate damaged cells or replace lost tissues. There are distinct challenges in all facets of this research, but functional assessments and monitoring of such complex environments as muscle tissues present the current strategic priority. Many extant methods for addressing these questions result in the destruction or alteration of tissues or cell populations under investigation. Modern advances in non-invasive imaging modalities present opportunities to rethink some of the anachronistic methods, however, their standard employment may not be optimal when considering advancements in myology. New image analysis protocols and/or combinations of established modalities need to be addressed. This review focuses on efficacies and limitations of available imaging modalities to the functional assessment of implantable myogenic biomaterials and engineered muscle tissues.
Collapse
Affiliation(s)
- Kyle J. Edmunds
- Institute for Biomedical and Neural Engineering, University of Reykjavík
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, University of Reykjavík
- University Hospital Landspítali, Reykjavík, Iceland
| |
Collapse
|
19
|
Wang L, Lu S, Lam J, Kasper FK, Mikos AG. Fabrication of cell-laden macroporous biodegradable hydrogels with tunable porosities and pore sizes. Tissue Eng Part C Methods 2015; 21:263-73. [PMID: 25156274 PMCID: PMC4346546 DOI: 10.1089/ten.tec.2014.0224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/29/2014] [Indexed: 02/02/2023] Open
Abstract
In this work, we investigated a cytocompatible particulate leaching method for the fabrication of cell-laden macroporous hydrogels. We used dehydrated and uncrosslinked gelatin microspheres as leachable porogens to create macroporous oligo(poly(ethylene glycol) fumarate) hydrogels. Varying gelatin content and size resulted in a wide range of porosities and pore sizes, respectively. Encapsulated mesenchymal stem cells (MSCs) exhibited high viability immediately following the fabrication process, and culture of cell-laden hydrogels revealed improved cell viability with increasing porosity. Additionally, the osteogenic potential of the encapsulated MSCs was evaluated over 16 days. Overall, this study presents a robust method for the preparation of cell-laden macroporous hydrogels with desired porosity and pore size for tissue engineering applications.
Collapse
Affiliation(s)
- Limin Wang
- Department of Bioengineering, Rice University , Houston, Texas
| | | | | | | | | |
Collapse
|
20
|
Nam SY, Ricles LM, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineering applications. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:88-102. [PMID: 25012069 PMCID: PMC4322020 DOI: 10.1089/ten.teb.2014.0180] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022]
Abstract
Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies.
Collapse
Affiliation(s)
- Seung Yun Nam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura M. Ricles
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Kirchmajer DM, Gorkin III R, in het Panhuis M. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B 2015; 3:4105-4117. [DOI: 10.1039/c5tb00393h] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review hydrogel-forming polymers that are suitable for extrusion-based 3D printing are evaluated.
Collapse
Affiliation(s)
- D. M. Kirchmajer
- Soft Materials Group
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - R. Gorkin III
- Intelligent Polymer Research Institute
- ARC Centre of Excellence for Electromaterials Science
- AIIM Facility
- University of Wollongong
- Australia
| | - M. in het Panhuis
- Soft Materials Group
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
22
|
Piccinini F, Pierini M, Lucarelli E, Bevilacqua A. Semi-quantitative monitoring of confluence of adherent mesenchymal stromal cells on calcium-phosphate granules by using widefield microscopy images. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2395-2410. [PMID: 24863020 DOI: 10.1007/s10856-014-5242-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The analysis of cell confluence and proliferation is essential to design biomaterials and scaffolds to use as bone substitutes in clinical applications. Accordingly, several approaches have been proposed in the literature to estimate the area of the scaffold covered by cells. Nevertheless, most of the approaches rely on sophisticated equipment not employed for routine analyses, while the rest of them usually do not provide significant statistics about the cell distribution. This research aims at studying confluence and proliferation of mesenchymal stromal cells (MSC) adherent on OSPROLIFE(®), a commercial biomaterial in the form of granules. In particular, we propose a Computer Vision approach that can routinely be employed to monitor the surface of the single granules covered by cells because only a standard widefield fluorescent microscope is required. In order to acquire significant statistics data, we analyse wide-area images built by using MicroMos v2.0, an updated version of a previously published software specific for stitching brightfield and phase-contrast images manually acquired via a widefield microscope. In particular, MicroMos v2.0 permits to build accurate "mosaics" of fluorescent images, after correcting vignetting and photo-bleaching effects, providing a consistent representation of a sample region containing numerous granules. Then, our method allows to make automatically a statistically significant estimate of the percentage of the area of the single granules covered by cells. Finally, by analysing hundreds of granules at different time intervals we also obtained reliable data regarding cell proliferation, confirming that not only MSC adhere onto the OSPROLIFE(®) granules, but even proliferate over time.
Collapse
Affiliation(s)
- Filippo Piccinini
- Advanced Research Center on Electronic Systems for Information and Communication Technologies "E. De Castro" (ARCES), University of Bologna, Via Toffano 2/2, I-40125, Bologna, Italy,
| | | | | | | |
Collapse
|
23
|
Guarino V, Galizia M, Alvarez-Perez M, Mensitieri G, Ambrosio L. Improving surface and transport properties of macroporous hydrogels for bone regeneration. J Biomed Mater Res A 2014; 103:1095-105. [DOI: 10.1002/jbm.a.35246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials; National Research Council of Italy, Mostra d'Oltremare Pad. 20, V.le Kennedy 54; 80125 Naples Italy
| | - Michele Galizia
- Department of Chemical, Materials and Industrial Production Engineering; University of Naples Federico II, P.leTecchio 80; 80125 Naples Italy
| | - Marco Alvarez-Perez
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P. 04510 Coyoacán; Mexico DF Mexico
| | - Giuseppe Mensitieri
- Department of Chemical, Materials and Industrial Production Engineering; University of Naples Federico II, P.leTecchio 80; 80125 Naples Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composite and Biomaterials; National Research Council of Italy, Mostra d'Oltremare Pad. 20, V.le Kennedy 54; 80125 Naples Italy
| |
Collapse
|
24
|
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials 2013; 34:6615-30. [PMID: 23768903 PMCID: PMC3799904 DOI: 10.1016/j.biomaterials.2013.05.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 12/11/2022]
Abstract
Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| |
Collapse
|
25
|
Xu Z, Ozcelikkale A, Kim YL, Han B. Spatiotemporal Characterization of Extracellular Matrix Microstructures in Engineered Tissue: A Whole-Field Spectroscopic Imaging Approach. J Nanotechnol Eng Med 2013; 4:110051-110059. [PMID: 23908694 DOI: 10.1115/1.4024130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Quality and functionality of engineered tissues are closely related to the microstructures and integrity of their extracellular matrix (ECM). However, currently available methods for characterizing ECM structures are often labor-intensive, destructive, and limited to a small fraction of the total area. These methods are also inappropriate for assessing temporal variations in ECM structures. In this study, to overcome these limitations and challenges, we propose an elastic light scattering approach to spatiotemporally assess ECM microstructures in a relatively large area in a nondestructive manner. To demonstrate its feasibility, we analyze spectroscopic imaging data obtained from acellular collagen scaffolds and dermal equivalents as model ECM structures. For spatial characterization, acellular scaffolds are examined after a freeze/thaw process mimicking a cryopreservation procedure to quantify freezing-induced structural changes in the collagen matrix. We further analyze spatial and temporal changes in ECM structures during cell-driven compaction in dermal equivalents. The results show that spectral dependence of light elastically backscattered from engineered tissue is sensitively associated with alterations in ECM microstructures. In particular, a spectral decay rate over the wavelength can serve as an indicator for the pore size changes in ECM structures, which are at nanometer scale. A decrease in the spectral decay rate suggests enlarged pore sizes of ECM structures. The combination of this approach with a whole-field imaging platform further allows visualization of spatial heterogeneity of EMC microstructures in engineered tissues. This demonstrates the feasibility of the proposed method that nano- and micrometer scale alteration of the ECM structure can be detected and visualized at a whole-field level. Thus, we envision that this spectroscopic imaging approach could potentially serve as an effective characterization tool to nondestructively, accurately, and rapidly quantify ECM microstructures in engineered tissue in a large area.
Collapse
Affiliation(s)
- Zhengbin Xu
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, IN 47907
| | | | | | | |
Collapse
|
26
|
Lambert P, Ankem S, Wyatt Z, Ferlin KM, Fisher J. Finite element analysis and cellular studies on advanced, controlled porous structures with subsurface continuity in bio-implantable titanium alloys. J Biomed Mater Res A 2013; 102:225-33. [DOI: 10.1002/jbm.a.34684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/19/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
Affiliation(s)
- P. Lambert
- Department of Materials Science and Engineering; University of Maryland; College Park Maryland 20742
| | - S. Ankem
- Department of Materials Science and Engineering; University of Maryland; College Park Maryland 20742
| | - Z. Wyatt
- Department of Materials Science and Engineering; University of Maryland; College Park Maryland 20742
| | - K. M. Ferlin
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland 20742
| | - J. Fisher
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland 20742
| |
Collapse
|
27
|
Bailey BM, Fei R, Munoz-Pinto D, Hahn MS, Grunlan MA. PDMS(star)-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds. Acta Biomater 2012; 8:4324-33. [PMID: 22842033 DOI: 10.1016/j.actbio.2012.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Inorganic-organic hydrogels based on methacrylated star polydimethylsiloxane (PDMS(star)-MA) and diacrylated poly(ethylene glycol) (PEG-DA) macromers were prepared via solvent-induced phase separation (SIPS). The macromers were combined in a dichloromethane precursor solution and sequentially photopolymerized, dried and hydrated. The chemical and physical properties of the hydrogels were further tailored by varying the number average molecular weight (M(n)) of PEG-DA (M(n)=3.4k and 6k gmol(-1)) as well as the weight percent ratio of PDMS(star)-MA (M(n)=7k gmol(-1)) to PEG-DA from 0:100 to 20:80. Compared to analogous hydrogels fabricated from aqueous precursor solutions, SIPS produced hydrogels with a macroporous morphology, a more even distribution of PDMS(star)-MA, increased modulus and enhanced degradation rates. The morphology, swelling ratio, mechanical properties, bioactivity, non-specific protein adhesion, controlled introduction of cell adhesion, and cytocompatibility of the hydrogels were characterized. As a result of their tunable properties, this library of hydrogels is useful to study material-guided cell behavior and ultimate tissue regeneration.
Collapse
Affiliation(s)
- Brennan M Bailey
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | | | | | | | | |
Collapse
|
28
|
Paxton JZ, Wudebwe UNG, Wang A, Woods D, Grover LM. Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs. Tissue Eng Part A 2012; 18:1596-607. [PMID: 22439983 DOI: 10.1089/ten.tea.2011.0535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.
Collapse
Affiliation(s)
- Jennifer Z Paxton
- School of Chemical Engineering, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | | | | | | | |
Collapse
|
29
|
Pisanti P, Yeatts AB, Cardea S, Fisher JP, Reverchon E. Tubular perfusion system culture of human mesenchymal stem cells on poly-L-lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process. J Biomed Mater Res A 2012; 100:2563-72. [PMID: 22528808 DOI: 10.1002/jbm.a.34191] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 11/12/2022]
Abstract
In vitro human mesenchymal stem cell (hMSC) proliferation and differentiation is dependent on scaffold design parameters and specific culture conditions. In this study, we investigate how scaffold microstructure influences hMSC behavior in a perfusion bioreactor system. Poly-L-lactic acid (PLLA) scaffolds are fabricated using supercritical carbon dioxide (SC-CO(2)) gel drying. This production method results in scaffolds fabricated with nanostructure. To introduce a microporous structure, porogen leaching was used in addition to this technique to produce scaffolds of average pore size of 100, 250, and 500 μm. These scaffolds were then cultured in static culture in well plates or dynamic culture in the tubular perfusion system (TPS) bioreactor. Results indicated that hMSCs were able to attach and maintain viability on all scaffolds with higher proliferation in the 250 μm and 500 μm pore sizes of bioreactor cultured scaffolds and 100 μm pore size of statically cultured scaffolds. Osteoblastic differentiation was enhanced in TPS culture as compared to static culture with the highest alkaline phosphatase expression observed in the 250 μm pore size group. Bone morphogenetic protein-2 was also analyzed and expression levels were highest in the 250 μm and 500 μm pore size bioreactor cultured samples. These results demonstrate cellular response to pore size as well as the ability of dynamic culture to enhance these effects.
Collapse
Affiliation(s)
- Paola Pisanti
- Department of Industrial Engineering, University of Salerno, Fisciano, Salerno, Italy
| | | | | | | | | |
Collapse
|
30
|
Yeatts AB, Geibel EM, Fears FF, Fisher JP. Human mesenchymal stem cell position within scaffolds influences cell fate during dynamic culture. Biotechnol Bioeng 2012; 109:2381-91. [PMID: 22422570 DOI: 10.1002/bit.24497] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/08/2012] [Accepted: 03/05/2012] [Indexed: 12/24/2022]
Abstract
Cell-based tissue engineering is limited by the size of cell-containing constructs that can be successfully cultured in vitro. This limit is largely a result of the slow diffusion of molecules such as oxygen into the interior of three-dimensional scaffolds in static culture. Bioreactor culture has been shown to overcome these limits. In this study we utilize a tubular perfusion system (TPS) bioreactor for the three-dimensional dynamic culture of human mesenchymal stem cells (hMSCs) in spherical alginate bead scaffolds. The goal of this study is to examine the effect of shear stress in the system and then quantify the proliferation and differentiation of hMSCs in different radial annuli of the scaffold. Shear stress was shown to have a temporal effect on hMSC osteoblastic differentiation with a strong correlation of shear stress, osteopontin, and bone morphogenic protein-2 occurring on day 21, and weaker correlation occurring at early timepoints. Further results revealed an approximate 2.5-fold increase in cell number in the inner annulus of TPS cultured constructs as compared to statically cultured constructs after 21 days. This result demonstrated a nutrient transfer limitation in static culture which can be mitigated by dynamic culture. A significant increase (P < 0.05) in mineralization in the inner and outer annuli of bioreactor cultured 4 mm scaffolds occurred on day 21 with 79 ± 29% and 53 ± 25% mineralization area, respectively, compared to 6 ± 4% and 19 ± 6% mineralization area, respectively, in inner and outer annuli of 4 mm statically cultured scaffolds. Surprising lower mineralization area was observed in 2 mm bioreactor cultured beads which had the highest levels of proliferation. These results may demonstrate a relationship between scaffold position and stem cell fate. In addition the decreased proliferation and matrix production in statically cultured scaffolds compared to bioreactor cultured constructs demonstrate the need for bioreactor systems and the effectiveness of the TPS bioreactor in promoting hMSC proliferation and differentiation in three-dimensional scaffolds.
Collapse
Affiliation(s)
- Andrew B Yeatts
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
31
|
Dunkers JP, Lee YJ, Chatterjee K. Single cell viability measurements in 3D scaffolds using in situ label free imaging by optical coherence microscopy. Biomaterials 2011; 33:2119-26. [PMID: 22192538 DOI: 10.1016/j.biomaterials.2011.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
The focus on creating tissue engineered constructs of clinically relevant sizes requires new approaches for monitoring construct health during tissue development. A few key requirements are that the technology be in situ, non-invasive, and provide temporal and spatial information. In this work, we demonstrate that optical coherence microscopy (OCM) can be used to assess cell viability without the addition of exogenous probes in three-dimensional (3D) tissue scaffolds maintained under standard culture conditions. This is done by collecting time-lapse images of speckle generated by sub-cellular features. Image cross-correlation is used to calculate the number of features the final image has in common with the initial image. If the cells are live, the number of common features is low. The number of common features approaches 100% if the cells are dead. In control experiments, cell viability is verified by the addition of a two-photon fluorescence channel to the OCM. Green fluorescent protein transfected human bone marrow stromal cells cultured in a transparent poly(ethylene glycol) tetramethacrylate hydrogel scaffold is used as the control system. Then, the utility of this approach is demonstrated by determining L929 fibroblast cell viability in a more challenging matrix, collagen, an optical scatterer. These results demonstrate a new technique for in situ mapping of single cell viability without any exogenous probes that is capable of providing continuous monitoring of construct health.
Collapse
Affiliation(s)
- Joy P Dunkers
- Polymers Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|
32
|
In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography. J Transl Med 2011; 91:1596-604. [PMID: 21808233 PMCID: PMC3312876 DOI: 10.1038/labinvest.2011.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Doppler optical coherence tomography (DOCT) is a functional extension of optical coherence tomography (OCT) and is currently being employed in several clinical arenas to quantify blood flow in vivo. In this study, the objective was to investigate the feasibility of DOCT to image kidney microcirculation, specifically, glomerular blood flow. DOCT is able to capture three-dimensional (3D) data sets consisting of a series of cross-sectional images in real time, which enables label-free and non-destructive quantification of glomerular blood flow. The kidneys of adult, male Munich-Wistar rats were exposed through laparotomy procedure after being anesthetized. Following exposure of the kidney beneath the DOCT microscope, glomerular blood flow was observed. The effects of acute mannitol and angiotensin II infusion were also observed. Glomerular blood flow was quantified for the induced physiological states and compared with baseline measurements. Glomerular volume, cumulative Doppler volume, and Doppler flow range parameters were computed from 3D OCT/DOCT data sets. Glomerular size was determined from OCT, and DOCT readily revealed glomerular blood flow. After infusion of mannitol, a significant increase in blood flow was observed and quantified, and following infusion of angiontensin II, a significant decrease in blood flow was observed and quantified. Also, blood flow histograms were produced to illustrate differences in blood flow rate and blood volume among the induced physiological states. We demonstrated 3D DOCT imaging of rat kidney microcirculation in the glomerulus in vivo. Dynamic changes in blood flow were detected under altered physiological conditions demonstrating the real-time imaging capability of DOCT. This method holds promise to allow non-invasive imaging of kidney blood flow for transplant graft evaluation or monitoring of altered-renal hemodynamics related to disease progression.
Collapse
|
33
|
Bailey BM, Hui V, Fei R, Grunlan MA. Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)(). ACTA ACUST UNITED AC 2011; 21:18776-18782. [PMID: 22956857 DOI: 10.1039/c1jm13943f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are widely utilized to probe cell-material interactions and ultimately for a material-guided approach to tissue regeneration. In this study, PEG-DA hydrogels were fabricated via solvent-induced phase separation (SIPS) to obtain hydrogels with a broader range of tunable physical properties including morphology (e.g. porosity), swelling and modulus (G'). In contrast to conventional PEG-DA hydrogels prepared from an aqueous precursor solution, the reported SIPS protocol utilized a dichloromethane (DCM) precursor solution which was sequentially photopolymerized, dried and hydrated. Physical properties were further tailored by varying the PEG-DA wt% concentration (5 wt%-25 wt%) and M(n) (3.4k and 6k g mol (-1)). SIPS produced PEG-DA hydrogels with a macroporous morphology as well as increased G' values versus the corresponding conventional PEG-DA hydrogels. Notably, since the total swelling was not significantly changed versus the corresponding conventional PEG-DA hydrogels, pairs or series of hydrogels represent scaffolds in which morphology and hydration or G' and hydration are uncoupled. In addition, PEG-DA hydrogels prepared via SIPS exhibited enhanced degradation rates.
Collapse
Affiliation(s)
- Brennan Margaret Bailey
- Texas A&M University, Department of Biomedical Engineering, Materials Science and Engineering Program, 3120 TAMU College Station, TX, USA. ; Tel: (+979) 845-2406
| | | | | | | |
Collapse
|
34
|
Yeatts AB, Gordon CN, Fisher JP. Formation of an aggregated alginate construct in a tubular perfusion system. Tissue Eng Part C Methods 2011; 17:1171-8. [PMID: 21895493 DOI: 10.1089/ten.tec.2011.0263] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering strategies are often limited by in vitro culture techniques of three dimensional scaffolds. Here we develop a method to form an aggregated cell-containing construct in vitro in a bioreactor system. Human mesenchymal stem cells (hMSCs) are cultured in individual alginate beads in a tubular perfusion system (TPS) bioreactor and then aggregated to form a single large construct. Mechanical evaluation of this construct demonstrated that aggregated alginate constructs (AACs) made from beads with 2.15 mm diameters had a Young's modulus of 85.6±15.8 kPa, a tensile strength of 3.24±0.55 kPa and a yield strength of 1.44±0.27 kPa. These mechanical properties were shown to be dependent on the bead size used to fabricate the AACs with smaller bead sizes resulting in stronger constructs. Analysis of metabolic activity revealed that hMSCs encapsulated in alginate exposed to AAC treatment sustained metabolic activity while live dead staining indicated cells remain viable. These results demonstrate the formation of AACs in the TPS bioreactor as an elegant method to create tissue engineering constructs in vitro.
Collapse
Affiliation(s)
- Andrew B Yeatts
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
35
|
The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 2011; 32:6045-51. [DOI: 10.1016/j.biomaterials.2011.04.066] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/23/2011] [Indexed: 11/23/2022]
|
36
|
Huang GY, Zhou LH, Zhang QC, Chen YM, Sun W, Xu F, Lu TJ. Microfluidic hydrogels for tissue engineering. Biofabrication 2011; 3:012001. [DOI: 10.1088/1758-5082/3/1/012001] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|