1
|
Minayo Martín S, Villar M, Sánchez-Cano A, Fontoura-Gonçalves C, Hernández JM, Williams RAJ, Quevedo MÁ, Höfle U. Impact of urbanization on the house sparrow (Passer domesticus): Serum proteome and pathogen prevalence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178920. [PMID: 39987830 DOI: 10.1016/j.scitotenv.2025.178920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The house sparrow (Passer domesticus) is a globally distributed species found in rural, urban and other humanised environments. In Europe, sparrow populations have significantly declined in recent decades, especially in urbanised areas. In the present study, we analysed the impact of urbanization on sparrow body condition, pathogen prevalence, and serum proteome changes. Sparrows were captured in four locations with two different urbanization status (rural/urban). Biometric data, blood samples and oral and cloacal swabs were collected. Rural sparrows exhibited significantly better body condition compared to urban sparrows, with no notable differences between sexes. Haemoparasite prevalence was higher in rural sparrows 70.16 % (87/124) than in urban sparrows 50 % (27/54). No avian influenza virus (AIV) or West Nile virus (WNV) genetic material was found, although one urban sparrow (0.58 %) had antibodies to AIV. Serum proteomics revealed that rural sparrows showed an up-regulation of proteins involved in the metabolism, in contrast to proteins of the immune system and the coagulation system, which were found to be over-represented in urban sparrows. Thus, we documented a worse body condition and immune system activation in urban sparrows in contrast to a more active metabolism and a higher prevalence of avian malaria in rural sparrows, and at least occasional exposure to AIV in urban habitats. This information suggests exposure to urban environments may alter the host-pathogen relationship. Urbanization in combination with exposure to AIV, could modulate their role in viral spread and transmission.
Collapse
Affiliation(s)
- Sara Minayo Martín
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| | - Margarita Villar
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Alberto Sánchez-Cano
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Catarina Fontoura-Gonçalves
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; CIBIO- Centro de Investigação em Biodiversidade e Recursos Genéticos. Rua Padre Armando Quintas, N° 7, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - José Manuel Hernández
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Richard A J Williams
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid (UCM), Calle Antonio Nováis 12, Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Ángel Quevedo
- Centro de Conservación de la Biodiversidad Zoobotánico Jerez. Calle Madreselva, s/n, 11408, Jerez de la Frontera, Spain
| | - Ursula Höfle
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| |
Collapse
|
2
|
Loureiro F, Mesquita JR, Cardoso L, Matos AC, Matos M, Coelho AC. Detection of Bagaza Virus in Europe: A Scoping Review. Vet Sci 2025; 12:113. [PMID: 40005872 PMCID: PMC11860654 DOI: 10.3390/vetsci12020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
The Bagaza virus (BAGV) belongs to the genus Orthoflavivirus (Ntaya serocomplex) and emerged in Europe, Spain, in 2010. The natural transmission cycle of this virus is perpetuated by Culex spp. mosquitoes and viraemic birds. The ability of BAGV to cause infection in several game birds from the family Phasianidae has been well-studied. BAGV is antigenically similar to other orthoflaviviruses from the Japanese encephalitis serocomplex, such as the West Nile and Usutu viruses, a circumstance which can lead to cross-reactivity in less specific serological techniques (e.g., ELISA). Severe implications in animal health has already been described, but some aspects of the dynamics of transmission and the limits of zoonotic potential of BAGV still need to be clarified. Further investigation focused on epidemiological surveillance in high-risk areas would be beneficial for prevention and control of new outbreaks. The present study is a systematic review of the BAGV reports in Europe.
Collapse
Affiliation(s)
- Filipa Loureiro
- Wildlife Rehabilitation Centre (CRAS), Veterinary Teaching Hospital, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.C.C.)
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4099-022 Porto, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.C.C.)
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana C. Matos
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.C.C.)
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Loureiro F, Cardoso L, Matos AC, Pintado C, Silva F, Ferreira M, Brandão R, Lopes C, Lopes AP, Mesquita JR, Matos M, Coelho AC. Serological evidence of antibodies to Flaviviridae in wild birds in Portugal. ANIMAL DISEASES 2024; 4:35. [DOI: 10.1186/s44149-024-00136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 01/23/2025] Open
Abstract
AbstractEmerging infectious diseases are a major threat to biodiversity and an important public health issue. Flaviviruses are the cause of several emerging vector-borne zoonotic arboviruses whose distribution is currently increasing in Europe. The evidence that West Nile virus (WNV) circulates in resident and migratory species has implications for both animal and public health and should therefore be studied in depth. USUTU (USUV), Bagaza (BAGV) and tick-borne encephalitis virus (TBEV) are other viruses that are beginning to spread more widely. An integrated surveillance program, namely in birds, is essential for reducing the risk of infection in human populations within the One Health principles. In the present study, wild birds admitted to wildlife rehabilitation centers in Portugal were sampled. Two hundred eight blood samples were assayed serologically for antibodies to flaviviruses by using a commercial ELISA kit. An overall seroprevalence of 19.6% (95% confidence interval [CI]: 13.7–26.7%) was observed. Antibodies against flaviviruses were detected in 13 (35.1%) different species of wild birds. Accipitriformes (26.7%; 95% CI: 18.5–36.2%) and Strigiformes (26.7%; 95% CI: 14.6–42.0%) were the orders with the highest seroprevalence rates recorded. There were no statistically significant differences (p = 0.725) between the geographical regions (NUTS II) studied, but a statistically significant difference (p = 0.017) was found between sex (male: 34.4%; female: 4.8%). A higher seroprevalence was detected in adults (32.1%) than in juvenile birds (9.3%) (p = 0.014), and age was considered a risk factor for flavivirus infection in wild birds (odds ratio 1.4; 95% CI: 0.5–4.0). More epidemiological studies are needed in Portugal since the actual spread of the genus Flavivirus throughout the country is unknown.
Collapse
|
4
|
Williams RAJ, Criollo Valencia HA, López Márquez I, González González F, Llorente F, Jiménez-Clavero MÁ, Busquets N, Mateo Barrientos M, Ortiz-Díez G, Ayllón Santiago T. West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain. Vet Sci 2024; 11:259. [PMID: 38922006 PMCID: PMC11209238 DOI: 10.3390/vetsci11060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases and eight fatalities. WNV has been serologically detected in horses in the Community of Madrid, but to our knowledge, it has never been reported from wild birds in this region. To estimate the seroprevalence of WNV in wild birds and horses in the Community of Madrid, 159 wild birds at a wildlife rescue center and 25 privately owned equines were sampled. Serum from thirteen birds (8.2%) and one equine (4.0%) tested positive with a WNV competitive enzyme-linked immunosorbent assay (cELISA) designed for WNV antibody detection but sensitive to cross-reacting antibodies to other flaviviruses. Virus-neutralization test (VNT) confirmed WNV antibodies in four bird samples (2.5%), and antibodies to undetermined flavivirus in four additional samples. One equine sample (4.0%) tested positive for WNV by VNT, although this horse previously resided in a WN-endemic area. ELISA-positive birds included both migratory and resident species, juveniles and adults. Two seropositive juvenile birds suggest local flavivirus transmission within the Community of Madrid, while WNV seropositive adult birds may have been infected outside Madrid. The potential circulation of flaviviruses, including WNV, in birds in the Madrid Community raises concerns, although further surveillance of mosquitoes, wild birds, and horses in Madrid is necessary to establish the extent of transmission and the principal species involved.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
| | | | - Irene López Márquez
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
| | - Fernando González González
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Center (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (F.L.)
| | | | - Núria Busquets
- IRTA, Animal Health Program, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Mixed Research Unit IRTA-UAB in Animal Health, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marta Mateo Barrientos
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Gustavo Ortiz-Díez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Tania Ayllón Santiago
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, 28691 Madrid, Spain;
| |
Collapse
|
5
|
Ferraguti M, Magallanes S, Mora-Rubio C, Bravo-Barriga D, Marzal A, Hernandez-Caballero I, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Guerrero-Carvajal F, Jiménez-Clavero MÁ, Frontera E, Ortiz JA, de Lope F. Implications of migratory and exotic birds and the mosquito community on West Nile virus transmission. Infect Dis (Lond) 2024; 56:206-219. [PMID: 38160682 DOI: 10.1080/23744235.2023.2288614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Vector-borne diseases like West Nile virus (WNV) pose a global health challenge, with rising incidence and distribution. Culex mosquitoes are crucial WNV vectors. Avian species composition and bird community diversity, along with vector communities, influence WNV transmission patterns. However, limited knowledge exists on their impact in southwestern Spain, an area with active WNV circulation in wild birds, mosquitoes, and humans. METHODS To address this, we conducted a comprehensive study investigating the contributions of migratory and exotic bird species to WNV transmission and the influence of mosquito community composition. RESULTS Analysing 1194 serum samples from 44 avian species, we detected WNV antibodies in 32 samples from 11 species, four for the first time in Europe. Migratory birds had higher WNV exposure likelihood than native and exotic species, and higher phylogenetic diversity in bird communities correlated with lower exposure rates. Moreover, in 5859 female mosquitoes belonging to 12 species, we identified WNV competent vectors like Cx. pipiens s.l. and the Univittatus subgroup. Birds with WNV antibodies were positively associated with competent vector abundance, but negatively with overall mosquito species richness. CONCLUSIONS These findings highlight the complex interactions between bird species, their phylogenetics, and mosquito vectors in WNV transmission. Understanding these dynamics will help to implement effective disease control strategies in southwestern Spain.
Collapse
Affiliation(s)
- Martina Ferraguti
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Mora-Rubio
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | - Daniel Bravo-Barriga
- Universidad de Córdoba, Departamento de Sanidad Animal, Grupo de Investigación en Zoonosis y Sanidad Animal (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Córdoba, Spain
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Cáceres, Spain
| | - Alfonso Marzal
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | - Irene Hernandez-Caballero
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | | | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Eva Frontera
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | | | - Florentino de Lope
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| |
Collapse
|
6
|
Lu L, Zhang F, Oude Munnink BB, Munger E, Sikkema RS, Pappa S, Tsioka K, Sinigaglia A, Dal Molin E, Shih BB, Günther A, Pohlmann A, Ziegler U, Beer M, Taylor RA, Bartumeus F, Woolhouse M, Aarestrup FM, Barzon L, Papa A, Lycett S, Koopmans MPG. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog 2024; 20:e1011880. [PMID: 38271294 PMCID: PMC10810478 DOI: 10.1371/journal.ppat.1011880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.
Collapse
Affiliation(s)
- Lu Lu
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Feifei Zhang
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bas B. Oude Munnink
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Emmanuelle Munger
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Reina S. Sikkema
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Tsioka
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Barbara B. Shih
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Günther
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, United Kingdom
| | - Frederic Bartumeus
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
- Centre for Research on Ecology and Forestry Applications (CREAF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mark Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Samantha Lycett
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marion P. G. Koopmans
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| |
Collapse
|
7
|
García-Carrasco JM, Muñoz AR, Olivero J, Figuerola J, Fa JE, Real R. Gone (and spread) with the birds: Can chorotype analysis highlight the spread of West Nile virus within the Afro-Palaearctic flyway? One Health 2023; 17:100585. [PMID: 37359749 PMCID: PMC10285635 DOI: 10.1016/j.onehlt.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
West Nile virus (WNV) is a globally significant vector-borne disease that is primarily transmitted between birds and mosquitoes. Recently, there has been an increase in WNV in southern Europe, with new cases reported in more northern regions. Bird migration plays a crucial role in the introduction of WNV in distant areas. To better understand and address this complex issue, we adopted a One Health approach, integrating clinical, zoological, and ecological data. We analyzed the role of migratory birds in the Palaearctic-African region in the spread of WNV across Africa and Europe. We categorized bird species into breeding and wintering chorotypes based on their distribution during the breeding season in the Western Palaearctic and the wintering season in the Afrotropical region, respectively. By linking these chorotypes to the occurrence of WNV outbreaks in both continents throughout the annual bird migration cycle, we investigated the relationship between migratory patterns and virus spread. We demonstrate that WNV-risk areas are interconnected through the migration of birds. We identified a total of 61 species that potentially contribute to the intercontinental spread of the virus or its variants, as well as pinpointed high-risk areas for future outbreaks. This interdisciplinary approach, which considers the interconnectedness of animals, humans, and ecosystems, represents a pioneering effort to establish connections between zoonotic diseases across continents. The findings of our study can aid in anticipating the arrival of new WNV strains and predicting the occurrence of other re-emerging diseases. By incorporating various disciplines, we can enhance our understanding of these complex dynamics and provide valuable insights for proactive and comprehensive disease management strategies.
Collapse
Affiliation(s)
- José-María García-Carrasco
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Antonio-Román Muñoz
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Jesús Olivero
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Malaga, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Julia E. Fa
- Department of Natural Sciences, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor, Indonesia
| | - Raimundo Real
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Malaga, Spain
| |
Collapse
|
8
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
9
|
West Nile and Usutu Virus Introduction via Migratory Birds: A Retrospective Analysis in Italy. Viruses 2022; 14:v14020416. [PMID: 35216009 PMCID: PMC8880244 DOI: 10.3390/v14020416] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
The actual contribution of migratory birds in spreading West Nile (WNV) and Usutu virus (USUV) across Europe and from Africa to old countries is still controversial. In this study, we reported the results of molecular and serological surveys on migrating birds sampled during peaks of spring and autumn migration at 11 Italian sites located along important flyways, from 2012 to 2014. A total of 1335 specimens made of individual or pooled sera, and organs from 275 dead birds were tested for WNV and USUV RNA by real time PCR (RT-PCR). Furthermore, sera were tested by serum neutralization assay for detecting WNV and USUV neutralizing antibodies. Molecular tests detected WNV lineage 2 RNA in a pool made of three Song Thrush (Turdus philomelos) sera sampled in autumn, and lineage 1 in kidneys of six trans-Saharan birds sampled in spring. Neutralizing antibodies against WNV and USUV were found in 5.80% (n = 72; 17 bird species) and 0.32% (n = 4; 4 bird species) of the tested sera, respectively. Our results do not exclude the role of migratory birds as potential spreaders of WNV and USUV from Africa and Central Europe to Mediterranean areas and highlight the importance of a more extensive active surveillance of zoonotic viruses.
Collapse
|
10
|
Srihi H, Chatti N, Ben Mhadheb M, Gharbi J, Abid N. Phylodynamic and phylogeographic analysis of the complete genome of the West Nile virus lineage 2 (WNV-2) in the Mediterranean basin. BMC Ecol Evol 2021; 21:183. [PMID: 34579648 PMCID: PMC8477494 DOI: 10.1186/s12862-021-01902-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background The West Nile virus is a highly contagious agent for a wide range of hosts. Its spread in the Mediterranean region raises several questions about its origin and the risk factors underlying the virus’s dispersal. Materials and methods The present study aims to reconstruct the temporal and spatial phylodynamics of West Nile virus lineage 2 in the Mediterranean region using 75 complete genome sequences from different host species retrieved from international databases. Results This data set suggests that current strains of WNV-2 began spreading in South Africa or nearby regions in the early twentieth century, and it migrated northwards via at least one route crossing the Mediterranean to reach Hungary in the early 2000s, before spreading throughout Europe. Another introduction event, according to the data set collected and analyses performed, is inferred to have occurred in around 1978. Migratory birds constitute, among others, additional risk factors that enhance the geographical transmission of the infection.
Conclusion Our data underline the importance of the spatial–temporal tracking of migratory birds and phylodynamic reconstruction in setting up an efficient surveillance system for emerging and reemerging zoonoses in the Mediterranean region. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01902-w.
Collapse
Affiliation(s)
- Haythem Srihi
- Research Unit UR17ES30 "Genomics, Biotechnology and Antiviral Strategies", Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB 74, 5000, Monastir, Tunisia.
| | - Noureddine Chatti
- Research Unit UR17ES30 "Genomics, Biotechnology and Antiviral Strategies", Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB 74, 5000, Monastir, Tunisia
| | - Manel Ben Mhadheb
- Research Unit UR17ES30 "Genomics, Biotechnology and Antiviral Strategies", Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB 74, 5000, Monastir, Tunisia
| | - Jawhar Gharbi
- Research Unit UR17ES30 "Genomics, Biotechnology and Antiviral Strategies", Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Hadded Avenue, PB 74, 5000, Monastir, Tunisia.,Department of Biological Sciences, College of Science, King Faisal University, PB 400, Post Code 31982, Al-Ahsa, Saudi Arabia
| | - Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia. .,High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University of Manouba, BiotechPôlet Sidi Thabet, PB 66, 2020, Ariana-Tunis, Tunisia.
| |
Collapse
|
11
|
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, Jiménez-Clavero MÁ, Frontera E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol 2021; 255:109020. [PMID: 33677369 DOI: 10.1016/j.vetmic.2021.109020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted generally by mosquitoes of Culex genus. It is maintained in an enzootic life cycle where birds act as reservoir hosts. Humans and horses are also susceptible to infection, and occasionally, they suffer from neurological complications. However, they do not transmit the virus to other vectors, behaving as dead-end hosts. Sporadic WNV outbreaks observed in horses and wild birds from Extremadura (western Spain) during 2016 and 2017 seasons prompted to carry out this survey in wild birds, focused on specimens coming from two wildlife rehabilitation centres. Between October 2017 and December 2019, samples from 391 wild birds, belonging to 56 different species were collected and analysed in search of evidence of WNV infection. The analysis of serum samples for WNV-specific antibodies by ELISA, whose specificity was subsequently confirmed by virus-neutralisation test (VNT) showed positive results in 18.23 % birds belonging to 18 different species. Pelecaniformes (33.33 %), Accipitriformes (25.77 %) and Strigiformes (22.92 %) orders had the higher seroprevalences. Remarkably, WNV-specific antibodies were found in a black stork for the first time in Europe. Analysis by real time RT-PCR in symptomatic birds confirmed the presence of WNV lineage 1 RNA in griffon vulture and little owls. Specificity analysis of ELISA positive and doubtful sera was performed by differential VNT titration against WNV and two other cross-reacting avian flaviviruses found in Spain: Usutu virus (USUV) and Bagaza virus (BAGV). Only four samples showed USUV-specific antibodies (1.04 %) corresponding to three species: Eurasian eagle-owl, griffon vulture and great bustard (first detection in Europe) whereas no samples were found reactive to BAGV. Differential VNT yielded undetermined flavivirus result in 16 samples (4.17 %). This is the first study carried out on wild birds from Extremadura (western Spain). It highlights the widespread circulation of WNV in the region and its co-circulation with USUV.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | | | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | - David Reina
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - J Enrique Pérez-Martín
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| |
Collapse
|
12
|
Yap G, Mailepessov D, Lim XF, Chan S, How CB, Humaidi M, Yeo G, Chong CS, Lam-Phua SG, Lee R, Okumura C, Vythilingam I, Ng LC. Detection of Japanese Encephalitis Virus in Culex Mosquitoes in Singapore. Am J Trop Med Hyg 2020; 103:1234-1240. [PMID: 32700679 PMCID: PMC7470584 DOI: 10.4269/ajtmh.19-0377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mosquito-borne flaviviruses are emerging pathogens of an increasing global public health concern because of their rapid increase in geographical range and the impact of climate change. Japanese encephalitis virus (JEV) and West Nile virus (WNV) are of concern because of the risk of reemergence and introduction by migratory birds. In Singapore, human WNV infection has never been reported and human JEV infection is rare. Four sentinel vector surveillance sites were established in Singapore to understand the potential risk posed by these viruses. Surveillance was carried out from August 2011 to December 2012 at Pulau Ubin, from March 2011 to March 2013 at an Avian Sanctuary (AS), from December 2010 from October 2012 at Murai Farmway, and from December 2010 to December 2013 at a nature reserve. The present study revealed active JEV transmission in Singapore through the detection of JEV genotype II in Culex tritaeniorhynchus collected from an Avian Sanctuary. Culex flavivirus (CxFV), similar to the Quang Binh virus isolated from Cx. tritaeniorhynchus in Vietnam and CxFV-LSFlaviV-A20-09 virus isolated in China, was also detected in Culex spp. (vishnui subgroup). No WNV was detected. This study demonstrates the important role that surveillance plays in public health and strongly suggests the circulation of JEV among wildlife in Singapore, despite the absence of reported human cases. A One Health approach involving surveillance, the collaboration between public health and wildlife managers, and control of mosquito populations remains the key measures in risk mitigation of JEV transmission in the enzootic cycle between birds and mosquitoes.
Collapse
Affiliation(s)
- Grace Yap
- Environmental Health Institute, National Environment Agency, Singapore
| | - Diyar Mailepessov
- Environmental Health Institute, National Environment Agency, Singapore
| | - Xiao Fang Lim
- Environmental Health Institute, National Environment Agency, Singapore
| | | | | | - Mahathir Humaidi
- Environmental Health Institute, National Environment Agency, Singapore
| | - Gladys Yeo
- Environmental Health Institute, National Environment Agency, Singapore
| | - Chee Seng Chong
- Environmental Health Institute, National Environment Agency, Singapore
| | - Sai Gek Lam-Phua
- Environmental Health Institute, National Environment Agency, Singapore
| | - Ruth Lee
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Indra Vythilingam
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala-Lumpur, Malaysia
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
| |
Collapse
|
13
|
Yeo G, Chan S, How CB, Humaidi M, Lim XF, Mailepessov D, Chong CS, Phua-Lam SG, Lee R, Hapuarachchi HC, Ng LC, Yap G. Molecular Analysis of the Bloodmeals of Culex spp. Mosquitoes at Natural Habitats in Singapore to Investigate the Potential Risk of Japanese Encephalitis Virus and West Nile Virus Transmission. Vector Borne Zoonotic Dis 2020; 20:703-714. [PMID: 32931404 DOI: 10.1089/vbz.2019.2576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Japanese encephalitis virus (JEV) and West Nile virus (WNV) are arboviruses primarily transmitted by Culex spp. mosquitoes. Birds are the primary hosts for JEV and WNV. Recent WNV outbreaks in Europe and United States and their association with migratory birds highlight the importance of understanding the feeding host preference of potential vectors for outbreak preparedness, especially in nonendemic settings. Singapore is nonendemic to JEV and WNV, but is a stopover site for migratory birds of the East Asian-Australasian Flyway. Therefore, we elucidated the feeding host range of Culex spp. mosquitoes captured in four natural (bird) habitats in Singapore from January 2011 to December 2012. We characterized feeding host DNA in field-caught mosquitoes using a PCR sequencing-based assay targeting the mitochondrial gene regions. Of 22,648 mosquitoes captured, 21,287 belonged to the Culex vishnui subgroup. The host DNA analysis showed that mosquitoes from the Cx. vishnui subgroup are opportunistic biters, feeding on a range of birds and mammals. Cx. vishnui subgroup, Culex sitiens and Culex bitaeniorhynchus, was primarily ornithophagic, although they fed opportunistically on mammals, including humans. Culex gelidus and Culex quinquefasciatus, in contrast, fed mainly on mammals. The presence of ornitho- and anthropophilic mosquito vectors and susceptible avian and mammalian hosts poses a risk spill-over transmission of JEV and WNV among humans, should these viruses be introduced through migratory birds and establish persistent transmission in resident birds and animal hosts in Singapore.
Collapse
Affiliation(s)
- Gladys Yeo
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Sharon Chan
- Sungei Buloh Wetlands Reserve, National Parks Board, Singapore, Singapore
| | - Choon Beng How
- Sungei Buloh Wetlands Reserve, National Parks Board, Singapore, Singapore
| | - Mahathir Humaidi
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Xiao Fang Lim
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Diyar Mailepessov
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Chee Seng Chong
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Sai Gek Phua-Lam
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Ruth Lee
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Grace Yap
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| |
Collapse
|
14
|
Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Expert Rev Anti Infect Ther 2020; 18:145-154. [PMID: 31914833 DOI: 10.1080/14787210.2020.1713751] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: West Nile virus (WNV) is a mosquito-borne human and animal pathogen with nearly worldwide distribution. In Europe, the virus is endemic with seasonal regional outbreaks that have increased in frequency over the last 10 years. A massive outbreak occurred across southern and central Europe in 2018 with the number of confirmed human cases increasing up to 7.2-fold from the previous year, and expanding to include previously virus-free regions.Areas covered: This review focuses on potential causes that may explain the 2018 European WNV outbreak. We discuss the role genetic, ecological, and environmental aspects may have played in the increased activity during the 2018 transmission season, summarizing the latest epidemiological and virological publications.Expert opinion: Optimal environmental conditions, specifically increased temperature, were most likely responsible for the observed outbreak. Other factors cannot be ruled out due to limited available information, including factors that may influence host/vector abundance and contact. Europe will likely experience even larger-scale outbreaks in the coming years. Increased surveillance efforts should be implemented with a focus on early-warning detection methods, and large-scale host and vector surveys should continue to fill gaps in knowledge.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
15
|
Bhowmick S, Gethmann J, Conraths FJ, Sokolov IM, Lentz HHK. Locally temperature - driven mathematical model of West Nile virus spread in Germany. J Theor Biol 2019; 488:110117. [PMID: 31866397 DOI: 10.1016/j.jtbi.2019.110117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023]
Abstract
West Nile virus (WNV) is an arthropod-borne virus (arbovirus) transmitted by the bites of infected mosquitoes. WNV can also infect horses and humans, where it may cause serious illness and can be fatal. Birds are the natural reservoir, and humans, equines and probably other mammals are dead-end hosts. In 2018, WNV occurred for the first time in Germany, affecting birds and horses. Seroconversion of an exposed veterinarian has also been reported. It is therefore of importance to evaluate the circumstances, under which WNV may establish in Germany as a whole or in particular favourable regions. In our current work, we formulate a dynamic model to describe the spreading process of West Nile virus in the presence of migratory birds. To investigate the possible role of migratory birds in the dissemination of WNV in Germany, we include the recurring presence of migratory birds through a mechanistic ordinary differential equations (ODE) model system. We also perform a sensitivity analysis of the infection curves. Seasonal impacts are also taken into consideration. As result, we present an analytical expression for the basic reproduction number R0. We find that after introducing WNV into Germany, R0 will be above the critical value in many regions of the country. Furthermore, we observe that in the south of Germany, the disease reoccurs in the following season after the introduction. We include a potential distribution map associated with WNV cases in Germany to illustrate our findings in a spatial scale.
Collapse
Affiliation(s)
- Suman Bhowmick
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Südufer 10, Greifswald 17493, Germany; Institute of Physics, Humboldt University of Berlin, Newtonstraße 15, Berlin 12489, Germany
| | - Jörn Gethmann
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Südufer 10, Greifswald 17493, Germany
| | - Franz J Conraths
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Südufer 10, Greifswald 17493, Germany
| | - Igor M Sokolov
- Institute of Physics, Humboldt University of Berlin, Newtonstraße 15, Berlin 12489, Germany
| | - Hartmut H K Lentz
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Südufer 10, Greifswald 17493, Germany.
| |
Collapse
|
16
|
López-Ruiz N, Montaño-Remacha MDC, Durán-Pla E, Pérez-Ruiz M, Navarro-Marí JM, Salamanca-Rivera C, Miranda B, Oyonarte-Gómez S, Ruiz-Fernández J. West Nile virus outbreak in humans and epidemiological surveillance, west Andalusia, Spain, 2016. ACTA ACUST UNITED AC 2019; 23. [PMID: 29637890 PMCID: PMC5894251 DOI: 10.2807/1560-7917.es.2018.23.14.17-00261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In Andalusia, Spain, West Nile virus (WNV) surveillance takes place from April to November, during the active vector period. Within this area seroconversion to this virus was evidenced in wild birds in 2004, affecting horses and two humans for the first time in 2010. Since 2010, the virus has been isolated every year in horses, and national and regional surveillance plans have been updated with the epidemiological changes found. WNV is spreading rapidly throughout southern Europe and has caused outbreaks in humans. Here we describe the second WNV outbreak in humans in Andalusia, with three confirmed cases, which occurred between August and September 2016, and the measures carried out to control it. Surveillance during the transmission season is essential to monitor and ensure prompt identification of any outbreaks.
Collapse
Affiliation(s)
- Nuria López-Ruiz
- Department of Preventive Medicine and Public Health, University Hospital Puerta del Mar, Cadiz, Spain.,Surveillance Department, Andalusian Regional Ministry of Health, Seville, Spain
| | | | - Enric Durán-Pla
- Surveillance Department, Andalusian Regional Ministry of Health, Seville, Spain
| | - Mercedes Pérez-Ruiz
- Network Cooperative Research in Tropical Diseases (RICET), Carlos III Institute of Health (ISCIII), Madrid, Spain.,Institute of Biosanitary Research, Granada, Spain.,Department of Microbiology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Jose María Navarro-Marí
- Network Cooperative Research in Tropical Diseases (RICET), Carlos III Institute of Health (ISCIII), Madrid, Spain.,Institute of Biosanitary Research, Granada, Spain.,Department of Microbiology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Celia Salamanca-Rivera
- Department of Preventive Medicine and Public Health, University Hospital Virgen del Rocío, Seville, Spain
| | | | | | - Josefa Ruiz-Fernández
- General Secretary for Public Health and Consumption, Regional Ministry of Health, Andalusia, Spain
| |
Collapse
|
17
|
Nyaruaba R, Mwaliko C, Mwau M, Mousa S, Wei H. Arboviruses in the East African Community partner states: a review of medically important mosquito-borne Arboviruses. Pathog Glob Health 2019; 113:209-228. [PMID: 31664886 PMCID: PMC6882432 DOI: 10.1080/20477724.2019.1678939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mosquito-borne diseases, including arbovirus-related diseases, make up a large proportion of infectious disease cases worldwide, causing a serious global public health burden with over 700,000 deaths annually. Mosquito-borne arbovirus outbreaks can range from global to regional. In the East African Community (EAC) region, these viruses have caused a series of emerging and reemerging infectious disease outbreaks. Member states in the EAC share a lot in common including regional trade and transport, some of the factors highlighted to be the cause of mosquito-borne arbovirus disease outbreaks worldwide. In this review, characteristics of 24 mosquito-borne arboviruses indigenous to the EAC are reviewed, including lesser or poorly understood viruses, like Batai virus (BATV) and Ndumu virus (NDUV), which may escape their origins under perfect conditions to establish a foothold in new geographical locations. Factors that may influence the future spread of these viruses within the EAC are addressed. With the continued development observed in the EAC, strategies should be developed by the Community in improving mosquito and mosquito-borne arbovirus surveillance to prevent future outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Samar Mousa
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
18
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
19
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Sci Rep 2018; 8:14005. [PMID: 30228340 PMCID: PMC6143586 DOI: 10.1038/s41598-018-32401-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
An intensified and continuous West Nile virus (WNV) spread across northern Italy has been observed since 2008, which caused more than one hundred reported human infections until 2016. Veneto is one of the Italian regions where WNV is considered endemic, and the greatest intensity of circulation was observed during 2013 and 2016. By using entomological data collected across the region in those years, we calibrated a temperature-driven mathematical model through a Bayesian approach that simulates the WNV infection in an avian population with seasonal demography. We considered two alternative routes of life cycle re-activation of the virus at the beginning of each vector breeding season: in the first one the virus is maintained by infected birds, in the other by diapausing mosquitoes previously infected. Afterwards, we computed seasonal risk curves for human infection and quantified how they translate into reported symptomatic cases. According to our results, WNV is more likely to be re-activated each year via previously infected mosquitoes. The highest probability of human infection is expected to occur in August, consistently with observations. Our epidemiological estimates can be of particular interest for public health authorities, to support decisions in term of designing efficient surveillance plans and preventive measures.
Collapse
|
21
|
Sule WF, Oluwayelu DO, Hernández-Triana LM, Fooks AR, Venter M, Johnson N. Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasit Vectors 2018; 11:414. [PMID: 30005653 PMCID: PMC6043977 DOI: 10.1186/s13071-018-2998-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is the aetiological agent of the mosquito-borne zoonotic disease West Nile fever. The virus, first isolated in Uganda in 1937, evolved into two distinct lineages in sub-Saharan Africa (SSA) that subsequently spread to most continents where the virus has evolved further as evident through phylogenetic analysis of extant genomes. Numerous published reports from the past 70 years from countries in SSA indicate that the virus is endemic across the region. However, due in part to the limited availability of diagnostic methods across large areas of the continent, the human burden of WNV is poorly understood. So too are the drivers for translocation of the virus from countries south of the Sahara Desert to North Africa and Europe. Migratory birds are implicated in this translocation although the transient viraemia, measured in days, and the time taken to migrate, measured in weeks, suggest a more complex mechanism is in play. This review considers the evidence for the presence of WNV across SSA and the role of migratory birds in the emergence of the virus in other continents.
Collapse
Affiliation(s)
- Waidi F Sule
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Daniel O Oluwayelu
- Department of Veterinary Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Anthony R Fooks
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT153NB, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Marietjie Venter
- Emerging Arbo and Respiratory Program, Centre for Viral Zoonosis, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Nicholas Johnson
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT153NB, UK. .,Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU27XH, UK.
| |
Collapse
|
22
|
Durand B, Tran A, Balança G, Chevalier V. Geographic variations of the bird-borne structural risk of West Nile virus circulation in Europe. PLoS One 2017; 12:e0185962. [PMID: 29023472 PMCID: PMC5638290 DOI: 10.1371/journal.pone.0185962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022] Open
Abstract
The structural risk of West Nile Disease results from the usual functioning of the socio-ecological system, which may favour the introduction of the pathogen, its circulation and the occurrence of disease cases. Its geographic variations result from the local interactions between three components: (i) reservoir hosts, (ii) vectors, both characterized by their diversity, abundance and competence, (iii) and the socio-economic context that impacts the exposure of human to infectious bites. We developed a model of bird-borne structural risk of West Nile Virus (WNV) circulation in Europe, and analysed the association between the geographic variations of this risk and the occurrence of WND human cases between 2002 and 2014. A meta-analysis of WNV serosurveys conducted in wild bird populations was performed to elaborate a model of WNV seropositivity in European bird species, considered a proxy for bird exposure to WNV. Several eco-ethological traits of bird species were linked to seropositivity and the statistical model adequately fitted species-specific seropositivity data (area under the ROC curve: 0.85). Combined with species distribution maps, this model allowed deriving geographic variations of the bird-borne structural risk of WNV circulation. The association between this risk, and the occurrence of WND human cases across the European Union was assessed. Geographic risk variations of bird-borne structural risk allowed predicting WND case occurrence in administrative districts of the EU with a sensitivity of 86% (95% CI: 0.79-0.92), and a specificity of 68% (95% CI: 0.66-0.71). Disentangling structural and conjectural health risks is important for public health managers as risk mitigation procedures differ according to risk type. The results obtained show promise for the prevention of WND in Europe. Combined with analyses of vector-borne structural risk, they should allow designing efficient and targeted prevention measures.
Collapse
Affiliation(s)
- Benoit Durand
- University Paris Est, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Annelise Tran
- Cirad, UMR TETIS, Montpellier, France
- Cirad, UMR ASTRE, Montpellier, France
| | | | - Véronique Chevalier
- Cirad, UMR ASTRE, Montpellier, France
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| |
Collapse
|
23
|
Sánchez-Gómez A, Amela C, Fernández-Carrión E, Martínez-Avilés M, Sánchez-Vizcaíno JM, Sierra-Moros MJ. Risk mapping of West Nile virus circulation in Spain, 2015. Acta Trop 2017; 169:163-169. [PMID: 28212847 DOI: 10.1016/j.actatropica.2017.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
Abstract
West Nile fever is an emergent disease in Europe. The objective of this study was to conduct a predictive risk mapping of West Nile Virus (WNV) circulation in Spain based on historical data of WNV circulation. Areas of Spain with evidence of WNV circulation were mapped based on data from notifications to the surveillance systems and a literature review. A logistic regression-based spatial model was used to assess the probability of WNV circulation. Data were analyzed at municipality level. Mean temperatures of the period from June to October, presence of wetlands and presence of Special Protection Areas for birds were considered as potential predictors. Two predictors of WNV circulation were identified: higher temperature [adjusted odds ratio (AOR) 2.07, 95% CI 1.82-2.35, p<0.01] and presence of wetlands (3.37, 95% CI 1.89-5.99, p<0.01). Model validations indicated good predictions: area under the ROC curve was 0.895 (95% CI 0.870-0.919) for internal validation and 0.895 (95% CI 0.840-0.951) for external validation. This model could support improvements of WNV risk- based surveillance in Spain. The importance of a comprehensive surveillance for WNF, including human, animal and potential vectors is highlighted, which could additionally result in model refinements.
Collapse
Affiliation(s)
- Amaya Sánchez-Gómez
- Coordinating Centre for Health Alerts and Emergencies, General Directorate of Public Health, Quality and Innovation, Ministry of Health, Social Services and Equality, Madrid, Spain Paseo del Prado 18-20, 28071 Madrid, Spain.
| | - Carmen Amela
- Coordinating Centre for Health Alerts and Emergencies, General Directorate of Public Health, Quality and Innovation, Ministry of Health, Social Services and Equality, Madrid, Spain Paseo del Prado 18-20, 28071 Madrid, Spain.
| | - Eduardo Fernández-Carrión
- VISAVET Centre and Animal Health Department, Faculty of Veterinary Sciences, Complutense University, Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.
| | - Marta Martínez-Avilés
- VISAVET Centre and Animal Health Department, Faculty of Veterinary Sciences, Complutense University, Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Centre and Animal Health Department, Faculty of Veterinary Sciences, Complutense University, Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.
| | - María José Sierra-Moros
- Coordinating Centre for Health Alerts and Emergencies, General Directorate of Public Health, Quality and Innovation, Ministry of Health, Social Services and Equality, Madrid, Spain Paseo del Prado 18-20, 28071 Madrid, Spain.
| |
Collapse
|
24
|
Brugman VA, Hernández-Triana LM, England ME, Medlock JM, Mertens PPC, Logan JG, Wilson AJ, Fooks AR, Johnson N, Carpenter S. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasit Vectors 2017; 10:163. [PMID: 28347323 PMCID: PMC5369192 DOI: 10.1186/s13071-017-2098-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The range of vertebrate hosts on which species of mosquito blood-feed is an important parameter for identifying potential vectors and in assessing the risk of incursion and establishment of vector-borne pathogens. In the United Kingdom, studies of mosquito host range have collected relatively few specimens and used techniques that could only broadly identify host species. This study conducted intensive collection and analysis of mosquitoes from a grazing marsh environment in southeast England. This site provides extensive wetland habitat for resident and migratory birds and has abundant human nuisance biting mosquitoes. The aim was to identify the blood-feeding patterns of mosquito species present at the site which could contribute to the transmission of pathogens. METHODS Twice-weekly collections of mosquitoes were made from Elmley Nature Reserve, Kent, between June and October 2014. Mosquitoes were collected using resting boxes, by aspiration from man-made structures and using a Mosquito Magnet Pro baited with 1-octen-3-ol. Blood-fed specimens were classified according to the degree of blood meal digestion using the Sella scale and vertebrate origin determined using sequencing of a fragment of the mitochondrial cytochrome C oxidase subunit I gene. Mosquitoes that were morphologically cryptic were identified to species level using multiplex PCR and sequencing methods. RESULTS A total of 20,666 mosquitoes of 11 species were collected, and 2,159 (10.4%) were blood-fed (Sella scale II-VI); of these 1,341 blood-fed specimens were selected for blood meal analysis. Vertebrate origin was successfully identified in 964 specimens (72%). Collections of blood-fed individuals were dominated by Anopheles maculipennis complex (73.5%), Culiseta annulata (21.2%) and Culex pipiens form pipiens (10.4%). Nineteen vertebrate hosts comprising five mammals and 14 birds were identified as hosts for mosquitoes, including two migratory bird species. Feeding on birds by Culex modestus and Anopheles atroparvus populations in England was demonstrated. CONCLUSIONS This study expands the vertebrate host range of mosquitoes in the Thames estuary region of the UK. Feeding on both resident and migratory bird species by potential arbovirus vectors including Cx. pipiens f. pipiens and Cx. modestus indicates the potential for enzootic transmission of an introduced arbovirus between migratory and local bird species by native mosquito species.
Collapse
Affiliation(s)
- V A Brugman
- The Pirbright Institute, Ash Road, Woking, Surrey, UK. .,London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | | | - M E England
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - J M Medlock
- Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - P P C Mertens
- The Pirbright Institute, Ash Road, Woking, Surrey, UK.,The University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - J G Logan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - A J Wilson
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - A R Fooks
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - N Johnson
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - S Carpenter
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| |
Collapse
|
25
|
Abad-Cobo A, Llorente F, Barbero MDC, Cruz-López F, Forés P, Jiménez-Clavero MÁ. Serosurvey Reveals Exposure to West Nile Virus in Asymptomatic Horse Populations in Central Spain Prior to Recent Disease Foci. Transbound Emerg Dis 2016; 64:1387-1392. [PMID: 27156847 DOI: 10.1111/tbed.12510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/28/2022]
Abstract
West Nile fever/encephalitis (WNF) is an infectious disease affecting horses, birds and humans, with a cycle involving birds as natural reservoirs and mosquitoes as transmission vectors. It is a notifiable disease, re-emerging in Europe. In Spain, it first appeared in horses in the south (Andalusia) in 2010, where outbreaks occur every year since. However, in 2014, an outbreak was declared in horses in central Spain, approximately 200 km away from the closest foci in Andalusia. Before that, evidence of West Nile virus (WNV) circulation in central Spain had been obtained only from wildlife, but never in horses. The purpose of this work was to perform a serosurvey to retrospectively detect West Nile virus infections in asymptomatic horses in central Spain from 2011 to 2013, that is before the occurrence of the first outbreaks in the area. For that, serum samples from 369 horses, collected between September 2011 and November 2013 in central Spain, were analysed by ELISA (blocking and IgM) and confirmed by virus neutralization, proving its specificity using parallel titration with another flavivirus (Usutu virus). As a result, 10 of 369 horse serum samples analysed gave positive results by competitive ELISA, 5 of which were confirmed as positive to WNV by virus neutralization (seropositivity rate: 1.35%). One of these WNV seropositive samples was IgM-positive. Chronologically, the first positive samples, including the IgM-positive, corresponded to sera collected in 2012 in Madrid province. From these results, we concluded that WNV circulated in asymptomatic equine populations of central Spain at least since 2012, before the first disease outbreak reported in this area.
Collapse
Affiliation(s)
- A Abad-Cobo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - F Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - M Del Carmen Barbero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - F Cruz-López
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - P Forés
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - M Á Jiménez-Clavero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
26
|
West Nile virus-neutralizing antibodies in wild birds from southern Spain. Epidemiol Infect 2016; 144:1907-11. [PMID: 26846720 DOI: 10.1017/s0950268816000133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
West Nile virus (WNV) is an emerging vector-borne arbovirus with a zoonotic life-cycle whose main reservoir hosts are birds. In humans and horses, WNV infections rarely result in clinical disease but on occasions - depending on factors such as climatic conditions, insect communities and background immunity levels in local populations - they can lead to outbreaks that threaten public and animal health. We tested for the presence of WNV antibodies in 149 birds belonging to 32 different species. Samples were first tested using a bird-specific ELISA kit and then both positive and doubtful results were confirmed by neutralization tests using WNV and Usutu virus. WNV antibodies were confirmed in a resident Sylvia melanocephala juvenile, supporting the idea of local transmission of WNV in southern Spain in 2013. In addition, the serum from an adult blackbird (Turdus merula) showed neutralization of both WNV and Usutu virus. We discuss our results in light of the occurrence of WNV on horse farms in southern Spain in 2013.
Collapse
|
27
|
Paştiu AI, Pap PL, Vágási CI, Niculae M, Páll E, Domşa C, Brudaşcă FG, Spînu M. Wild Birds in Romania Are More Exposed to West Nile Virus Than to Newcastle Disease Virus. Vector Borne Zoonotic Dis 2016; 16:176-80. [PMID: 26824796 DOI: 10.1089/vbz.2015.1805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to evaluate the seroprevalence of West Nile virus (WNV) and Newcastle disease virus (NDV) in wild and domestic birds from Romania. During 2011-2014, 159 plasma samples from wild birds assigned to 11 orders, 27 families, and 61 species and from 21 domestic birds (Gallus gallus domesticus, Anas platyrhynchos domesticus) were collected. The sera were assayed by two commercial competitive enzyme-linked immunosorbent assay (cELISA) kits for antibodies against WNV and NDV. We found a high prevalence of WNV antibodies in both domestic (19.1%) and wild (32.1%) birds captured after the human epidemic in 2010. Moreover, the presence of anti-NDV antibodies among wild birds from Romania (5.4%) was confirmed serologically for the first time, as far as we are aware. Our findings provide evidence that wild birds, especially resident ones are involved in local West Nile and Newcastle disease enzootic and epizootic cycles. These may allow virus maintenance and spread and also enhance the chance of new outbreaks.
Collapse
Affiliation(s)
- Anamaria Ioana Paştiu
- 1 Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Péter László Pap
- 2 Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University , Cluj Napoca, Romania
| | - Csongor István Vágási
- 2 Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University , Cluj Napoca, Romania .,3 MTA-DE "Lendület" Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen , Debrecen, Hungary
| | - Mihaela Niculae
- 1 Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Emőke Páll
- 1 Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Cristian Domşa
- 4 Parasitology and Parasitic Diseases Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Florinel Ghe Brudaşcă
- 1 Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Marina Spînu
- 1 Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| |
Collapse
|
28
|
Llorente F, Pérez-Ramírez E, Fernández-Pinero J, Elizalde M, Figuerola J, Soriguer RC, Jiménez-Clavero MÁ. Bagaza virus is pathogenic and transmitted by direct contact in experimentally infected partridges, but is not infectious in house sparrows and adult mice. Vet Res 2015; 46:93. [PMID: 26338714 PMCID: PMC4559182 DOI: 10.1186/s13567-015-0233-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/31/2015] [Indexed: 11/15/2022] Open
Abstract
Bagaza virus (BAGV) is a mosquito-borne flavivirus belonging to the Ntaya serocomplex. In 2010, a disease outbreak was reported in Cádiz (Southern Spain) affecting game birds (red-legged partridges and common pheasants). In this work, red-legged partridges were inoculated experimentally with infectious BAGV isolated from this outbreak in order to make a complete clinical and analytical assessment of the disease caused by the pathogen in this species. Viral load (by real-time RT-PCR) in blood, oral and cloacal swabs, and feathers, and neutralizing antibody titres (by VNT) were measured. In order to determine direct contact transmission, non-inoculated partridges were caged together with the inoculated ones. To assess infectiousness in other species, house sparrows and mice were also inoculated with the virus. All the inoculated partridges were clinically affected, and 30% of them died. All the infected individuals lost weight, with larger losses being recorded in females. Conversely, no mortality or disease symptoms were observed in the sparrows or mice. Remarkably, all the contact partridges acquired the infection by direct (non-vectored) transmission. This study confirms that the red-legged partridge is a susceptible host for BAGV infection, and that this pathogen is transmitted by direct contact. Long-lasting viral loads detected in calami of immature feathers demonstrate that feather sampling could be a useful strategy in active surveillance programs for early detection of BAGV.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Maia Elizalde
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Avenida de Americo Vespucio s/n, Seville, Spain.
| | - Ramón C Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Avenida de Americo Vespucio s/n, Seville, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| |
Collapse
|
29
|
Llopis IV, Rossi L, Di Gennaro A, Mosca A, Teodori L, Tomassone L, Grego E, Monaco F, Lorusso A, Savini G. Further circulation of West Nile and Usutu viruses in wild birds in Italy. INFECTION GENETICS AND EVOLUTION 2015; 32:292-7. [DOI: 10.1016/j.meegid.2015.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/16/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
|
30
|
Abstract
SUMMARYDuring the last few years, several cases of West Nile virus (WNV) infection in humans have been reported in Tunisia. However, detailed information on WNV infection in wild birds, the primary amplifying host of WNV, are lacking. In this work, we investigated the exposure of wild sparrows (hybrid Passer domesticus × hispaniolensis) living in two oases in southern Tunisia (Gabès and Kébili oases) to WNV, through the detection of WNV-specific antibodies by using ELISA and microneutralization tests. In total, 208 birds were sampled (54 from Kébili, 154 from Gabès). Anti-WNV antibodies were detected in two birds, corresponding to an overall seroprevalence of 1%. There was no significant difference between the two sampled populations [1·85% (1/54) in Kébili, 0·65% (1/154) in Gabès]. These data provide indirect evidence of the exposure of resident sparrows in southern Tunisia to WNV.
Collapse
|
31
|
Rizzoli A, Bolzoni L, Chadwick EA, Capelli G, Montarsi F, Grisenti M, de la Puente JM, Muñoz J, Figuerola J, Soriguer R, Anfora G, Di Luca M, Rosà R. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit Vectors 2015; 8:213. [PMID: 25888754 PMCID: PMC4411713 DOI: 10.1186/s13071-015-0831-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding wildlife disease ecology is becoming an urgent need due to the continuous emergence and spread of several wildlife zoonotic diseases. West Nile Virus (WNV) is the most widespread arthropod-borne virus in the world, and in recent decades there has been an increase both in geographic range, and in the frequency of symptomatic infections in humans and wildlife. The principal vector for WNV in Europe is the common house Culex pipiens mosquito, which feeds on a wide variety of vertebrate host species. Variation in mosquito feeding preference has been described as one of the most influential parameters driving intensity and timing of WNV infection in the United States, but feeding preferences for this species have been little studied in Europe. METHODS Here, we estimated feeding preference for wild Cx. pipiens in northern Italy, using molecular analysis to identify the origin of blood meals, and avian census to control host abundance variations. Additionally, we used host bird odour extracts to test experimentally mosquito preferences in the absence of environmental variations. RESULTS For the first time, we demonstrate a clear feeding preference for the common blackbird (Turdus merula), both for wild collected specimens and in the lab, suggesting a potential important role for this species in the WNV epidemiology in Europe. A seasonal decrease in abundance of blackbirds is associated with increased feeding on Eurasian magpies (Pica pica), and this may be linked to seasonal emergence of WNV in humans. Feeding preferences on blackbirds are more marked in rural areas, while preference for magpies is higher in peridomestic areas. Other species, such as the house sparrow (Passer domesticus) appear to be selected by mosquitoes opportunistically in relation to its abundance. CONCLUSIONS Our findings provide new insights into the ecology of Cx. pipiens in Europe and may give useful indications in terms of implementing targeted WNV surveillance plans. However, a clearer understanding of spatio-temporal variations of Cx. pipiens feeding preferences, and targeted studies on reservoir competence for WNV for these species are therefore now urgently needed as this is essential to describe disease dynamics and quantify virus transmission risk.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach. 1, 38010 San Michele all'Adige, Trento, Italy.
| | - Luca Bolzoni
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach. 1, 38010 San Michele all'Adige, Trento, Italy.
- Direzione Sanitaria - Servizio di Analisi del Rischio, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via dei Mercati 13, 43100, Parma, Italy.
| | - Elizabeth A Chadwick
- Cardiff University, School of Biosciences, Biomedical Science Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom.
| | - Gioia Capelli
- Laboratory of Parasitology - Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro (Padova), Italy.
| | - Fabrizio Montarsi
- Laboratory of Parasitology - Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro (Padova), Italy.
| | - Michela Grisenti
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach. 1, 38010 San Michele all'Adige, Trento, Italy.
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| | - Josue Martínez de la Puente
- Department of Wetland Ecology Estación Biológica Doñana, Consejo Superior de Investigaciones Cientificas, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain.
| | - Joaquin Muñoz
- Department of Wetland Ecology Estación Biológica Doñana, Consejo Superior de Investigaciones Cientificas, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain.
| | - Jordi Figuerola
- Department of Wetland Ecology Estación Biológica Doñana, Consejo Superior de Investigaciones Cientificas, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain.
| | - Ramon Soriguer
- Department of Wetland Ecology Estación Biológica Doñana, Consejo Superior de Investigaciones Cientificas, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain.
| | - Gianfranco Anfora
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach. 1, 38010 San Michele all'Adige, Trento, Italy.
| | - Marco Di Luca
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach. 1, 38010 San Michele all'Adige, Trento, Italy.
| |
Collapse
|
32
|
Abstract
This study describes the first large-scale serosurvey on West Nile virus (WNV) conducted in the equine population in Pakistan. Sera were collected from 449 equids from two provinces of Pakistan during 2012-2013. Equine serum samples were screened using a commercial ELISA kit detecting antibodies against WNV and related flaviviruses. ELISA-positive samples were further investigated using virus-specific microneutralization tests (MNTs) to identify infections with Japanese encephalitis virus (JEV), WNV and tick-borne encephalitis virus (TBEV). Anti-WNV antibodies were detected in 292 samples by ELISA (seroprevalence 65.0%) and WNV infections were confirmed in 249 animals by MNT. However, there was no animal found infected by JEV or TBEV. The detection of WNV-seropositive equines in Pakistan strongly suggests a widespread circulation of WNV in Pakistan.
Collapse
|
33
|
Figuerola J, López G, Soriguer R. Plasma carotenoid levels in passerines are related to infection by (some) parasites. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile virus in Greece. PLoS One 2014; 9:e96935. [PMID: 24806216 PMCID: PMC4013071 DOI: 10.1371/journal.pone.0096935] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
West Nile Virus (WNV) is the causative agent of a vector-borne, zoonotic disease with a worldwide distribution. Recent expansion and introduction of WNV into new areas, including southern Europe, has been associated with severe disease in humans and equids, and has increased concerns regarding the need to prevent and control future WNV outbreaks. Since 2010, 524 confirmed human cases of the disease have been reported in Greece with greater than 10% mortality. Infected mosquitoes, wild birds, equids, and chickens have been detected and associated with human disease. The aim of our study was to establish a monitoring system with wild birds and reported human cases data using Geographical Information System (GIS). Potential distribution of WNV was modelled by combining wild bird serological surveillance data with environmental factors (e.g. elevation, slope, land use, vegetation density, temperature, precipitation indices, and population density). Local factors including areas of low altitude and proximity to water were important predictors of appearance of both human and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723-1,386). Using GIS analysis, the identified risk factors were applied across Greece identifying the northern part of Greece (Macedonia, Thrace) western Greece and a number of Greek islands as being at highest risk of future outbreaks. The results of the analysis were evaluated and confirmed using the 161 reported human cases of the 2012 outbreak predicting correctly (Odds = 130/31 = 4,194 95%CI = 2,841-6,189) and more areas were identified for potential dispersion in the following years. Our approach verified that WNV risk can be modelled in a fast cost-effective way indicating high risk areas where prevention measures should be implemented in order to reduce the disease incidence.
Collapse
|
35
|
Chevalier V, Tran A, Durand B. Predictive modeling of West Nile virus transmission risk in the Mediterranean Basin: how far from landing? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 11:67-90. [PMID: 24362544 PMCID: PMC3924437 DOI: 10.3390/ijerph110100067] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022]
Abstract
The impact on human and horse health of West Nile fever (WNF) recently and dramatically increased in Europe and neighboring countries. Involving several mosquito and wild bird species, WNF epidemiology is complex. Despite the implementation of surveillance systems in several countries of concern, and due to a lack of knowledge, outbreak occurrence remains unpredictable. Statistical models may help identifying transmission risk factors. When spatialized, they provide tools to identify areas that are suitable for West Nile virus transmission. Mathematical models may be used to improve our understanding of epidemiological process involved, to evaluate the impact of environmental changes or test the efficiency of control measures. We propose a systematic literature review of publications aiming at modeling the processes involved in WNF transmission in the Mediterranean Basin. The relevance of the corresponding models as predictive tools for risk mapping, early warning and for the design of surveillance systems in a changing environment is analyzed.
Collapse
Affiliation(s)
- Véronique Chevalier
- Cirad, UPR AGIRs, Montpellier F-34398, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-4-6759-3706; Fax: +33-4-6759-3754
| | - Annelise Tran
- Cirad, UPR AGIRs, Montpellier F-34398, France
- Cirad, UMR TETIS, Montpellier F-34398, France; E-Mail:
| | - Benoit Durand
- Anses, Epidemiology Unit, Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort F-94706, France; E-Mail:
| |
Collapse
|
36
|
Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N, Leparc-Goffart I, Zientara S, Jourdain E, Lecollinet S. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6049-83. [PMID: 24225644 PMCID: PMC3863887 DOI: 10.3390/ijerph10116049] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses) or occasionally imported (dengue, yellow fever viruses). Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.
Collapse
Affiliation(s)
- Cécile Beck
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | | | - Agnès Leblond
- Département Hippique, VetAgroSup, Marcy l’Etoile 69280, France; E-Mail:
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Benoît Durand
- Epidemiology Unit, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mail:
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna 1210, Austria; E-Mail:
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | | | - Stéphan Zientara
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | - Elsa Jourdain
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Sylvie Lecollinet
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| |
Collapse
|
37
|
Chowdhury P, Khan SA, Dutta P, Topno R, Mahanta J. Characterization of West Nile virus (WNV) isolates from Assam, India: insights into the circulating WNV in northeastern India. Comp Immunol Microbiol Infect Dis 2013; 37:39-47. [PMID: 24268432 DOI: 10.1016/j.cimid.2013.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/27/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that causes subclinical symptoms, febrile illness with possible kidney infarction and encephalitis. Since WNV was first serologically detected in Assam during 2006, it has become recognized as an important etiological agent that causes acute encephalitis syndrome (AES) in addition to endemic Japanese encephalitis virus (JEV). Therefore, isolating and characterizing the currently circulating strain of WNV is important. The virus was isolated from the cerebrospinal fluid (CSF) of two patients that presented with AES. The genotyping of the isolates HQ246154 (WNIRGC07) and JQ037832 (WNIRTC08) based on the partial sequencing of 921 nucleotides (C-prM-E) of the genome placed them within lineage 5 along with other Indian strains isolated prior to 1982, but the present circulating virus formed a distinct subclade. The derived amino acid sequence alignment indicated substitution in A81T and A84P of the capsid region in HQ246154. A cross-neutralization assay suggested substantial antigenic variation between isolates. The pathogenesis in mice that suggested the circulating WNV was neuroinvasive and comparatively more pathogenic than previous strains from India.
Collapse
Affiliation(s)
- Pritom Chowdhury
- Entomology and Filariasis Division, Arbovirology Group, Regional Medical Research Centre (ICMR), N.E. Region, Post-Box. 105 Dibrugarh, Assam, India.
| | - Siraj Ahmed Khan
- Entomology and Filariasis Division, Arbovirology Group, Regional Medical Research Centre (ICMR), N.E. Region, Post-Box. 105 Dibrugarh, Assam, India.
| | - Prafulla Dutta
- Entomology and Filariasis Division, Arbovirology Group, Regional Medical Research Centre (ICMR), N.E. Region, Post-Box. 105 Dibrugarh, Assam, India.
| | - Rashmee Topno
- Entomology and Filariasis Division, Arbovirology Group, Regional Medical Research Centre (ICMR), N.E. Region, Post-Box. 105 Dibrugarh, Assam, India.
| | - Jagadish Mahanta
- Entomology and Filariasis Division, Arbovirology Group, Regional Medical Research Centre (ICMR), N.E. Region, Post-Box. 105 Dibrugarh, Assam, India.
| |
Collapse
|
38
|
Petrović T, Blazquez AB, Lupulović D, Lazić G, Escribano-Romero E, Fabijan D, Kapetanov M, Lazić S, Saiz J. Monitoring West Nile virus (WNV) infection in wild birds in Serbia during 2012: first isolation and characterisation of WNV strains from Serbia. ACTA ACUST UNITED AC 2013; 18. [PMID: 24176657 DOI: 10.2807/1560-7917.es2013.18.44.20622] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
West Nile virus (WNV), a neurovirulent mosquito-transmissible zoonotic virus, has caused recent outbreaks in Europe, including Serbia from August until October 2012. Although humans can be infected, birds are the main natural WNV reservoir. To assess WNV circulation in northern Serbia, 133 wild birds were investigated. These comprised resident and migratory birds, collected between January and September 2012 in the Vojvodina province. The birds belonged to 45 species within 27 families. Blood sera (n=92) and pooled tissues from respective birds (n=81) were tested by enzyme-linked immunosorbent assay (ELISA), plaque reduction neutralisation test (PRNT) and real-time reverse transcription-polymerase chain reaction (RT-qPCR). WNV antibodies were detected in seven (8%) sera: four from Mute Swans (Cygnus olor), two from White-tailed Eagles (Haliaeetus albicillas), and one from a Common Pheasant (Phasianus colchicus). Five sera neutralised WNV but not Usutu virus. For the first time in Serbia, WNV RNA was detected by RT-qPCR in pooled tissue samples of eight respective birds. WNV RNA was also derived from an additional bird, after a serum sample resulted infective in cell culture. The total nine WNV RNA positive birds included three Northern Goshawks (Accipiter gentilis), two White-tailed Eagles, one Legged Gull (Larus michahelis), one Hooded Crow (Corvus cornix), one Bearded Parrot-bill (Panarus biramicus), and one Common Pheasant. Phylogenetic analysis of partial E region sequences showed the presence of, at least, two lineage 2 Serbian clusters closely related to those responsible for recent human and animal outbreaks in Greece, Hungary and Italy. Full genomic sequence from a goshawk isolate corroborated this data. These results confirm WNV circulation in Serbia and highlight the risk of infection for humans and horses, pointing to the need for implementing WNV surveillance programmes.
Collapse
Affiliation(s)
- T Petrović
- Scientific Veterinary Institute Novi Sad , Novi Sad, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Charron MVP, Balenghien T, Seegers H, Langlais M, Ezanno P. How much can diptera-borne viruses persist over unfavourable seasons? PLoS One 2013; 8:e74213. [PMID: 24023929 PMCID: PMC3762737 DOI: 10.1371/journal.pone.0074213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
Diptera are vectors of major human and animal pathogens worldwide, such as dengue, West-Nile or bluetongue viruses. In seasonal environments, vector-borne disease occurrence varies with the seasonal variations of vector abundance. We aimed at understanding how diptera-borne viruses can persist for years under seasonal climates while vectors overwinter, which should stop pathogen transmission during winter. Modeling is a relevant integrative approach for investigating the large panel of persistence mechanisms evidenced through experimental and observational studies on specific biological systems. Inter-seasonal persistence of virus may occur in hosts due to viremia duration, chronic infection, or vertical transmission, in vector resistance stages, and due to a low continuous transmission in winter. Using a generic stochastic modeling framework, we determine the parameter ranges under which virus persistence could occur via these different mechanisms. The parameter ranges vary according to the host demographic regime: for a high host population turnover, persistence increases with the mechanism parameter, whereas for a low turnover, persistence is maximal for an optimal range of parameter. Persistence in hosts due to long viremia duration in a few hosts or due to vertical transmission is an effective strategy for the virus to overwinter. Unexpectedly, a low continuous transmission during winter does not give rise to certain persistence, persistence barely occurring for a low turnover of the susceptible population. We propose a generic framework adaptable to most diptera-borne diseases. This framework allows ones to assess the plausibility of each persistence mechanism in real epidemiological situations and to compare the range of parameter values theoretically allowing persistence with the range of values determined experimentally.
Collapse
Affiliation(s)
- Maud V. P. Charron
- UMR1300 Biologie, Epidémiologie et Analyse de Risques en santé animale, INRA, LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- UMR 5251, Université de Bordeaux, IMB, Bordeaux, France
- UMR 5251, CNRS, IMB, Talence, France
- * E-mail:
| | | | - Henri Seegers
- UMR1300 Biologie, Epidémiologie et Analyse de Risques en santé animale, INRA, LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Michel Langlais
- UMR 5251, Université de Bordeaux, IMB, Bordeaux, France
- UMR 5251, CNRS, IMB, Talence, France
| | - Pauline Ezanno
- UMR1300 Biologie, Epidémiologie et Analyse de Risques en santé animale, INRA, LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| |
Collapse
|
40
|
Paz S, Semenza JC. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia--a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3543-62. [PMID: 23939389 PMCID: PMC3774453 DOI: 10.3390/ijerph10083543] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022]
Abstract
Abiotic and biotic conditions are both important determinants of West Nile Fever (WNF) epidemiology. Ambient temperature plays an important role in the growth rates of vector populations, the interval between blood meals, viral replication rates and transmission of West Nile Virus (WNV). The contribution of precipitation is more complex and less well understood. In this paper we discuss impacts of climatic parameters (temperature, relative humidity, precipitation) and other environmental drivers (such as bird migration, land use) on WNV transmission in Europe. WNV recently became established in southeastern Europe, with a large outbreak in the summer of 2010 and recurrent outbreaks in 2011 and 2012. Abundant competent mosquito vectors, bridge vectors, infected (viremic) migrating and local (amplifying) birds are all important characteristics of WNV transmission. In addition, certain key climatic factors, such as increased ambient temperatures, and by extension climate change, may also favor WNF transmission, and they should be taken into account when evaluating the risk of disease spread in the coming years. Monitoring epidemic precursors of WNF, such as significant temperature deviations in high risk areas, could be used to trigger vector control programs and public education campaigns.
Collapse
Affiliation(s)
- Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Mt. Carmel, Haifa 3498837, Israel
| | - Jan C. Semenza
- European Centre for Disease Prevention and Control (ECDC), Tomtebodavägen 11A, Stockholm 17183, Sweden; E-Mail:
| |
Collapse
|
41
|
Serological evidence of West Nile virus infection in wild migratory and resident water birds in Eastern and Northern India. Comp Immunol Microbiol Infect Dis 2012; 35:591-8. [DOI: 10.1016/j.cimid.2012.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 11/20/2022]
|
42
|
Gutiérrez-Guzmán AV, Vicente J, Sobrino R, Perez-Ramírez E, Llorente F, Höfle U. Antibodies to West Nile virus and related flaviviruses in wild boar, red foxes and other mesomammals from Spain. Vet Microbiol 2012; 159:291-7. [DOI: 10.1016/j.vetmic.2012.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 11/29/2022]
|
43
|
Martín-Acebes MA, Saiz JC. West Nile virus: A re-emerging pathogen revisited. World J Virol 2012; 1:51-70. [PMID: 24175211 PMCID: PMC3782267 DOI: 10.5501/wjv.v1.i2.51] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
West Nile virus (WNV), a flavivirus of the Flaviviridae family, is maintained in nature in an enzootic transmission cycle between avian hosts and ornithophilic mosquito vectors, although the virus occasionally infects other vertebrates. WNV causes sporadic disease outbreaks in horses and humans, which may result in febrile illness, meningitis, encephalitis and flaccid paralysis. Until recently, its medical and veterinary health concern was relatively low; however, the number, frequency and severity of outbreaks with neurological consequences in humans and horses have lately increased in Europe and the Mediterranean basin. Since its introduction in the Americas, the virus spread across the continent with worrisome consequences in bird mortality and a considerable number of outbreaks among humans and horses, which have resulted in the largest epidemics of neuroinvasive WNV disease ever documented. Surprisingly, its incidence in human and animal health is very different in Central and South America, and the reasons for it are not yet understood. Even though great advances have been obtained lately regarding WNV infection, and although efficient equine vaccines are available, no specific treatments or vaccines for human use are on the market. This review updates the most recent investigations in different aspects of WNV life cycle: molecular virology, transmission dynamics, host range, clinical presentations, epidemiology, ecology, diagnosis, control, and prevention, and highlights some aspects that certainly require further research.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Miguel A Martín-Acebes, Juan-Carlos Saiz, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | | |
Collapse
|
44
|
Sotelo E, Fernández-Pinero J, Jiménez-Clavero MÁ. La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España. Enferm Infecc Microbiol Clin 2012; 30:75-83. [DOI: 10.1016/j.eimc.2011.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 12/29/2022]
|
45
|
Lelli R, Calistri P, Bruno R, Monaco F, Savini G, Di Sabatino D, Corsi I, Pascucci I. West Nile Transmission in Resident Birds in Italy. Transbound Emerg Dis 2011; 59:421-8. [DOI: 10.1111/j.1865-1682.2011.01287.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Agüero M, Fernández-Pinero J, Buitrago D, Sánchez A, Elizalde M, San Miguel E, Villalba R, Llorente F, Jiménez-Clavero MA. Bagaza virus in partridges and pheasants, Spain, 2010. Emerg Infect Dis 2011; 17:1498-501. [PMID: 21801633 PMCID: PMC3381565 DOI: 10.3201/eid1708.110077] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In September 2010, an unusually high number of wild birds (partridges and pheasants) died in Cádiz in southwestern Spain. Reverse transcription PCR and virus isolation detected flavivirus infections. Complete nucleotide sequence analysis identified Bagaza virus, a flavivirus with a known distribution that includes sub-Saharan Africa and India, as the causative agent.
Collapse
|
47
|
Identification of suitable areas for West Nile virus outbreaks in equid populations for application in surveillance plans: the example of the Castile and Leon region of Spain. Epidemiol Infect 2011; 140:1617-31. [DOI: 10.1017/s0950268811002366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
SUMMARYThe introduction and rapid spread of West Nile virus (WNV) into new areas such as the American continent, associated also with the severity of the disease in humans and equids has increased concerns regarding the need to better prevent and control future WNV incursions. WNV outbreaks in equids usually occur under specific climatic and environmental conditions and, typically, before detection of WNV cases in humans. Targeting surveillance strategies in areas and time periods identified as suitable for WNV outbreaks in equids may act as an early-warning system to prevent disease in both equids and humans. This study used a GIS-based framework to identify suitable areas and time periods for WNV outbreak occurrence in one of the most important areas of equid production in Spain, i.e. Castile and Leon. Methods and results presented here may help to improve the early detection and control of future WNV outbreaks in Spain and other regions.
Collapse
|
48
|
Chevalier V, Lecollinet S, Durand B. West Nile Virus in Europe: A Comparison of Surveillance System Designs in a Changing Epidemiological Context. Vector Borne Zoonotic Dis 2011; 11:1085-91. [DOI: 10.1089/vbz.2010.0234] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Veronique Chevalier
- International Centre of Research in Agronomy for Development (CIRAD), Montpellier, France
| | - Sylvie Lecollinet
- European Union Reference Laboratory for Equine Diseases, Virology Unit, Maisons-Alfort, France
- Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Benoit Durand
- Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
49
|
García-Bocanegra I, Busquets N, Napp S, Alba A, Zorrilla I, Villalba R, Arenas A. Serosurvey of West Nile Virus and Other Flaviviruses of the Japanese Encephalitis Antigenic Complex in Birds from Andalusia, Southern Spain. Vector Borne Zoonotic Dis 2011; 11:1107-13. [DOI: 10.1089/vbz.2009.0237] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitarios de Rabanales, Córdoba, Spain
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sebastián Napp
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ana Alba
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irene Zorrilla
- Centro de Análisis y Diagnóstico de la Fauna Silvestre (CAD), Conserjería de Medio Ambiente (EGMASA), Junta de Andalucía, Spain
| | - Rubén Villalba
- Laboratorio Central de Veterinaria, Algete (Madrid), Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitarios de Rabanales, Córdoba, Spain
| |
Collapse
|
50
|
Brown CR, O'Brien VA. Are Wild Birds Important in the Transport of Arthropod-borne Viruses? ACTA ACUST UNITED AC 2011. [DOI: 10.1525/om.2011.71.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|