1
|
Jancarova M, Polanska N, Thiesson A, Arnaud F, Stejskalova M, Rehbergerova M, Kohl A, Viginier B, Volf P, Ratinier M. Susceptibility of diverse sand fly species to Toscana virus. PLoS Negl Trop Dis 2025; 19:e0013031. [PMID: 40315233 PMCID: PMC12047804 DOI: 10.1371/journal.pntd.0013031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
Toscana virus (TOSV) is an emerging but neglected human pathogen currently circulating around the Mediterranean basin including North Africa. Human illness ranges from asymptomatic or mild flu-like syndromes to severe neurological diseases such as meningitis or meningoencephalitis. Despite its significant impact, understanding of TOSV transmission and epidemiology remains limited. Sand flies (Diptera: Phlebotominae), specifically Phlebotomus perniciosus and Phlebotomus perfiliewi, are believed to be the primary vectors of TOSV. However, the spread of TOSV to new geographical areas and its detection in other sand fly species suggest that additional species play a role in the circulation and transmission of this virus. This study investigated the vector competence of four sand fly species - P. tobbi, P. sergenti, P. papatasi, and Sergentomyia schwetzi - for two TOSV strains: 1500590 (TOSV A lineage) and MRS20104319501 (TOSV B lineage). Sand flies were orally challenged with TOSV via bloodmeals. None of the tested species showed susceptibility to the TOSV A strain. However, for TOSV B strain, P. tobbi demonstrated a high potential as a new vector, exhibiting high infection and dissemination rates. P. sergenti also showed some susceptibility to TOSV B, with the virus dissemination observed in all infected females. These finding suggests that P. tobbi and P. sergenti are new potential vectors for TOSV B. Given that P. tobbi and P. sergenti are the primary vectors of human leishmaniases in the Balkans, Turkey and Middle East, their susceptibility to TOSV could have significant epidemiological consequences. On the other hand, P. papatasi and S. schwetzi appeared refractory to TOSV B infection. Refractoriness of P. papatasi, a highly anthropophilic species distributed from the Mediterranean to the Middle East and India, suggests that this species does not contribute to TOSV circulation.
Collapse
Affiliation(s)
- Magdalena Jancarova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikola Polanska
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Adrien Thiesson
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Marketa Stejskalova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marketa Rehbergerova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Barbara Viginier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Petr Volf
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| |
Collapse
|
2
|
Thiesson A, Confort MP, Desloire S, Kohl A, Arnaud F, Ratinier M. Genetic diversity of Toscana virus glycoproteins affects the kinetics of virus entry and the infectivity of newly produced virions. NPJ VIRUSES 2025; 3:28. [PMID: 40295709 PMCID: PMC12000347 DOI: 10.1038/s44298-025-00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Toscana virus (TOSV) is a pathogenic and transmissible Phlebovirus of the Bunyavirales order. To date, two principal genetic lineages (A and B) have been identified and the impact of TOSV genetic diversity on its biology is still unknown. We used a reverse genetic approach based on two TOSV strains belonging to lineage A or B (i.e., TOSV-A and TOSV-B) and displaying different in vitro replicative fitness. Our results demonstrate that the sequences of Gn and Gc glycoproteins are responsible for the differences in replicative fitness between the two TOSV strains. Moreover, our data show that TOSV-A and TOSV-B display different entry kinetics and that newly-produced virions have different infectivity. This comparative approach demonstrates that the genetic diversity of TOSV can significantly impact viral properties and highlights the need for better molecular characterisation of the genomes of circulating TOSV strains, with a particular focus on the viral Gn and Gc glycoproteins.
Collapse
Affiliation(s)
- Adrien Thiesson
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Marie-Pierre Confort
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Sophie Desloire
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
| |
Collapse
|
3
|
Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S. Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome. Microorganisms 2022; 10:microorganisms10122327. [PMID: 36557580 PMCID: PMC9785614 DOI: 10.3390/microorganisms10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic and heightened perception of the risk of emerging viral infections have boosted the efforts to better understand the virome or complete repertoire of viruses in health and disease, with a focus on infectious respiratory diseases. Next-generation sequencing (NGS) is widely used to study microorganisms, allowing the elucidation of bacteria and viruses inhabiting different body systems and identifying new pathogens. However, NGS studies suffer from a lack of standardization, in particular, due to various methodological approaches and no single format for processing the results. Here, we review the main methodological approaches and key stages for studies of the human virome, with an emphasis on virome changes during acute respiratory viral infection, with applications for clinical diagnostics and epidemiologic analyses.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Correspondence: ; Tel.: +7-778312-2058
| | - Vyacheslav Beloussov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| | - Maxim Solomadin
- School of Pharmacy, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Joanna Granica
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4LB, Canada
| |
Collapse
|
4
|
Dachraoui K, Chelbi I, Ben Said M, Ben Osman R, Cherni S, Charrel R, Zhioua E. Transmission Dynamics of Punique Virus in Tunisia. Viruses 2022; 14:v14050904. [PMID: 35632646 PMCID: PMC9147715 DOI: 10.3390/v14050904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
A novel phlebovirus, Punique virus (PUNV), was discovered and isolated in 2008 from sandflies from Northern Tunisia. PUNV is now classified as a unique member of the Punique phlebovirus species within the Phlebovirus genus in the Phenuiviridae family (order bunyavirales). In this study, we aimed to investigate the transmission dynamics of PUNV in Tunisia. Sandflies were collected during two consecutive years, 2009 and 2010, by CDC light traps. In 2009, a total of 873 sandflies were collected and identified to the species level. Phlebotomus perniciosus was the most abundant species. One pool of P. perniciosus females collected in autumn contained PUNV RNA, yielding an infection rate of 0.11%. The population densities of circulating sandfly species were assessed during May–November 2010 in Northern Tunisia by using sticky traps. Phlebotomus (Larroussius) perniciosus (71.74%) was the most abundant species, followed by Phlebotumus (Larroussius) longicuspis (17.47%), and Phlebotumus (Larroussius) perfiliewi (8.82%). The densities of dominant sandfly species were found to peak in early spring and again in the autumn. In 2010, species identification was not performed, and sandflies were only discriminated on the basis of sex and collection date. Out of 249 pools, three contained PUNV RNA. Each positive pool allowed virus isolation. The three pools of female sandflies containing PUNV RNA were collected in autumn with an infection rate of 0.05%. These findings provide further evidence that P. perniciosus is the main vector of PUNV in Tunisia, and this phlebovirus is endemic in Tunisia. Our findings provided strong evidence of intensive circulation of PUNV in sandflies and hosts through a viral infection buildup process between sandfly vectors and hosts starting at the beginning of the activity of sandflies in spring to reach a maximum during the second main peak in autumn.
Collapse
Affiliation(s)
- Khalil Dachraoui
- Pasteur Institute of Tunis, Unit of Vector Ecology, Tunis 1002, Tunisia; (K.D.); (I.C.); (S.C.)
| | - Ifhem Chelbi
- Pasteur Institute of Tunis, Unit of Vector Ecology, Tunis 1002, Tunisia; (K.D.); (I.C.); (S.C.)
| | - Mourad Ben Said
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia;
- Laboratory of Microbiology, National School of Veterinary Medicine of Sid Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Raja Ben Osman
- National Drug Control Laboratory, Vaccine Control Unit, Tunis 1002, Tunisia;
| | - Saifedine Cherni
- Pasteur Institute of Tunis, Unit of Vector Ecology, Tunis 1002, Tunisia; (K.D.); (I.C.); (S.C.)
| | - Rémi Charrel
- Unité des Virus Emergents, Aix-Marseille University, IRD 190, INSERM 1207, 13005 Marseille, France;
| | - Elyes Zhioua
- Pasteur Institute of Tunis, Unit of Vector Ecology, Tunis 1002, Tunisia; (K.D.); (I.C.); (S.C.)
- Correspondence:
| |
Collapse
|
5
|
Reusken C, Baronti C, Mögling R, Papa A, Leitmeyer K, Charrel RN. Toscana, West Nile, Usutu and tick-borne encephalitis viruses: external quality assessment for molecular detection of emerging neurotropic viruses in Europe, 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 31847946 PMCID: PMC6918591 DOI: 10.2807/1560-7917.es.2019.24.50.1900051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BackgroundNeurotropic arboviruses are increasingly recognised as causative agents of neurological disease in Europe but underdiagnosis is still suspected. Capability for accurate diagnosis is a prerequisite for adequate clinical and public health response.AimTo improve diagnostic capability in EVD-LabNet laboratories, we organised an external quality assessment (EQA) focusing on molecular detection of Toscana (TOSV), Usutu (USUV), West Nile (WNV) and tick-borne encephalitis viruses (TBEV).MethodsSixty-nine laboratories were invited. The EQA panel included two WNV RNA-positive samples (lineages 1 and 2), two TOSV RNA-positive samples (lineages A and B), one TBEV RNA-positive sample (Western subtype), one USUV RNA-positive sample and four negative samples. The EQA focused on overall capability rather than sensitivity of the used techniques. Only detection of one, clinically relevant, concentration per virus species and lineage was assessed.ResultsThe final EQA analysis included 51 laboratories from 35 countries; 44 of these laboratories were from 28 of 31 countries in the European Union/European Economic Area (EU/EEA). USUV diagnostic capability was lowest (28 laboratories in 18 countries), WNV detection capacity was highest (48 laboratories in 32 countries). Twenty-five laboratories were able to test the whole EQA panel, of which only 11 provided completely correct results. The highest scores were observed for WNV and TOSV (92%), followed by TBEV (86%) and USUV (75%).ConclusionWe observed wide variety in extraction methods and RT-PCR tests, showing a profound absence of standardisation across European laboratories. Overall, the results were not satisfactory; capacity and capability need to be improved in 40 laboratories.
Collapse
Affiliation(s)
- Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Cecile Baronti
- Unite des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Mediterranee Infection), Marseille, France
| | - Ramona Mögling
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katrin Leitmeyer
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Remi N Charrel
- Unite des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Mediterranee Infection), Marseille, France
| |
Collapse
|
6
|
Experimental Infection of Dogs with Toscana Virus and Sandfly Fever Sicilian Virus to Determine Their Potential as Possible Vertebrate Hosts. Microorganisms 2020; 8:microorganisms8040596. [PMID: 32326097 PMCID: PMC7232252 DOI: 10.3390/microorganisms8040596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
The sandfly-borne Toscana phlebovirus (TOSV), a close relative of the sandfly fever Sicilian phlebovirus (SFSV), is one of the most common causes of acute meningitis or meningoencephalitis in humans in the Mediterranean Basin. However, most of human phlebovirus infections in endemic areas either are asymptomatic or cause mild influenza-like illness. To date, a vertebrate reservoir for sandfly-borne phleboviruses has not been identified. Dogs are a prime target for blood-feeding phlebotomines and are the primary reservoir of human sandfly-borne Leishmania infantum. However, there are no definitive studies to assess whether dogs play a significant role as a reservoir host for human phlebovirus survival in the environment. Here, we have evaluated the susceptibility of domestic dogs to infection by TOSV and SFSV following the direct inoculation of the infectious virus. After experimental infection, the presence of viral RNA was investigated in plasma, urine, saliva, conjunctiva, faeces, semen, and bone marrow samples from 0 to 91 days postinoculation (dpi), as well as in plasma, saliva, and tears samples at 760 dpi. None of the challenged dogs developed clinical signs of infection with either TOSV or SFSV. SFSV RNA was never detected. TOSV RNA was not in any of the specimen types, except for plasma samples that showed low viral loads, although irregularly. None of the dogs developed detectable neutralizing antibodies after a single challenge dose of either TOSV or SFSV. However, a second challenge dose of virus given 56 days later elicited neutralizing antibodies, implying that the first inoculation of virus primed the animals for an anamnestic response following the second challenge. These results demonstrated that healthy domestic dogs are not highly susceptible to infection by TOSV or SFSV and do not develop significant viremia or excrete virus following infection. Consequently, dogs are unlikely natural reservoir hosts of infection and do not appear to play a significant role in phlebovirus transmission cycles.
Collapse
|
7
|
Ayhan N, Prudhomme J, Laroche L, Bañuls AL, Charrel RN. Broader Geographical Distribution of Toscana Virus in the Mediterranean Region Suggests the Existence of Larger Varieties of Sand Fly Vectors. Microorganisms 2020; 8:microorganisms8010114. [PMID: 31947561 PMCID: PMC7022675 DOI: 10.3390/microorganisms8010114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Toscana virus (TOSV) is endemic in the Mediterranean basin, where it is transmitted by sand flies. TOSV can infect humans and cause febrile illness as well as neuroinvasive infections affecting the central and peripheral nervous systems. Although TOSV is a significant human pathogen, it remains neglected and there are consequently many gaps of knowledge. Recent seroepidemiology studies and case reports showed that TOSV’s geographic distribution is much wider than was assumed a decade ago. The apparent extension of the TOSV circulation area raises the question of the sandfly species that are able to transmit the virus in natural conditions. Phlebotomus (Ph.)perniciosus and Ph. perfiliewi were historically identified as competent species. Recent results suggest that other species of sand flies could be competent for TOSV maintenance and transmission. Here we organize current knowledge in entomology, epidemiology, and virology supporting the possible existence of additional phlebotomine species such as Ph. longicuspis, Ph. sergenti, Ph. tobbi, Ph. neglectus, and Sergentomyia minuta in TOSV maintenance. We also highlight some of the knowledge gaps to be addressed in future studies.
Collapse
Affiliation(s)
- Nazli Ayhan
- Unité des Virus Emergents (Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13005 Marseille, France;
- Unité de Virologie EA7310 Bioscope, Université de Corse Pasquale Paoli (UCPP), 20250 Corte, France
- Correspondence: (N.A.); (J.P.); Tel.: +33-782-202794 (N.A.); +33-621-504351 (J.P.)
| | - Jorian Prudhomme
- UMR MIVEGEC (IRD—CNRS—Université de Montpellier), 911 avenue Agropolis, F34394 Montpellier, France; (L.L.); (A.-L.B.)
- Correspondence: (N.A.); (J.P.); Tel.: +33-782-202794 (N.A.); +33-621-504351 (J.P.)
| | - Lison Laroche
- UMR MIVEGEC (IRD—CNRS—Université de Montpellier), 911 avenue Agropolis, F34394 Montpellier, France; (L.L.); (A.-L.B.)
| | - Anne-Laure Bañuls
- UMR MIVEGEC (IRD—CNRS—Université de Montpellier), 911 avenue Agropolis, F34394 Montpellier, France; (L.L.); (A.-L.B.)
| | - Remi N. Charrel
- Unité des Virus Emergents (Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13005 Marseille, France;
| |
Collapse
|
8
|
An update on Toscana virus distribution, genetics, medical and diagnostic aspects. Clin Microbiol Infect 2020; 26:1017-1023. [PMID: 31904562 DOI: 10.1016/j.cmi.2019.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Toscana virus is an arbovirus transmitted by sand flies within the Mediterranean area where it can cause febrile illness and neuroinvasive infections during the seasonal circulation period of the vector. Although it is an important cause of meningitis and encephalitis, it remains a neglected virus with limited published data, as demonstrated by <250 peer-reviewed articles since the 1970s. OBJECTIVE The last review article on Toscana virus was published in 2012. The aim was to compile peer-reviewed articles to provide an updated review highlighting recent findings to complement previous review articles. SOURCES PubMed database was searched using the 'Toscana virus' keyword from 2010 to present. A total of 152 articles were retrieved and identified studies were assessed for novel information on virus genetics, and geographic and medical aspects compared with existing knowledge reported in previous review articles. CONTENT Studies addressing medical, veterinary and entomological aspects have provided evidence that Toscana virus is present in North Africa, in the Balkan Peninsula, and in most of the Mediterranean islands. Besides the two previously recognized genetic lineages, a novel evolutionary lineage has been identified in the Balkan Peninsula. Co-circulation of two genetic lineages has been demonstrated in France, in Turkey and in Croatia. In addition to meningitis and meningo-encephalitis, which have been reported for 40 years, various neuroinvasive forms have been recently reported such as Guillain-Barré syndrome, hydrocephalus, myositis, fasciitis, polymyeloradiculopathy, deafness and facial paralysis. IMPLICATION Because it is endemic in countries bordering the Mediterranean, physicians should include Toscana virus in the differential diagnosis of patients presenting with febrile illness and/or neurological manifestations.
Collapse
|
9
|
Circulation of Toscana Virus in a Sample Population of Corsica, France. Viruses 2019; 11:v11090817. [PMID: 31487870 PMCID: PMC6784206 DOI: 10.3390/v11090817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 12/27/2022] Open
Abstract
Sandfly-borne phleboviruses pathogenic to humans, such as Toscana virus (TOSV) and Sandfly Fever Sicilian virus (SFSV), are endemic in the Mediterranean region. In France, several autochthonous cases of TOSV infection have been described, causing either meningitis or encephalitis. The aim of the present study was to investigate the seroprevalence of TOSV and SFSV antibodies in a healthy population from Corsica. In this cross-sectional study, participants were enrolled (i) from a medical staff at the University of Corsica and (ii) from general practitioners of the Corsican Sentinelles Network. The seroprevalence study was based on a virus microneutralization assay. A total of 240 sera were tested. Altogether, 54 sera (22.5%) were confirmed positive for TOSV antibodies, whereas none were positive for SFSV (0/240). The residential district of participants was significantly associated with TOSV seropositivity (p value = 0.005). The rate of the seropositivity against TOSV in our study suggests that the Corsican population is well exposed to the TOSV. These results encourage the implementation of a systematic surveillance system including entomological, microbiological, and medical aspects for the collection of better information on the diseases that are associated with phleboviruses in Corsica and beyond in the regions where these viruses are present.
Collapse
|
10
|
High-throughput sequencing for the aetiologic identification of viral encephalitis, meningoencephalitis, and meningitis. A narrative review and clinical appraisal. Clin Microbiol Infect 2019; 25:422-430. [PMID: 30641229 PMCID: PMC7129948 DOI: 10.1016/j.cmi.2018.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
Abstract
Background Viral aetiologies are the most common cause of central nervous system (CNS) infections. Approximately one-half of CNS infections remain of undetermined origin. High-throughput sequencing (HTS) brought new perspectives to CNS infection investigations, allowing investigation of viral aetiologies with an unbiased approach. HTS use is still limited to specific clinical situations. Objectives The aim of this review was to evaluate the contribution and pitfalls of HTS for the aetiologic identification of viral encephalitis, meningoencephalitis, and meningitis in CNS patient samples. Sources PubMed was searched from 1 January 2008 to 2 August 2018 to retrieve available studies on the topic. Additional publications were included from a review of full-text sources. Content Among 366 studies retrieved, 29 used HTS as a diagnostic technique. HTS was performed in cerebrospinal fluid and brain biopsy samples of 307 patients, including immunocompromised, immunocompetent paediatric, and adult cases. HTS was performed retrospectively in 18 studies and prospectively in 11. HTS led to the identification of a potential causal virus in 41 patients, with 11 viruses known and ten not expected to cause CNS infections. Various HTS protocols were used. Implications The additional value of HTS is difficult to quantify because of various biases. Nevertheless, HTS led to the identification of a viral cause in 13% of encephalitis, meningoencephalitis, and meningitis cases in which various assays failed to identify the cause. HTS should be considered early in clinical management as a complement to routine assays. Standardized strategies and systematic studies are needed for the integration of HTS in clinical management.
Collapse
|
11
|
Lagier JC, Drancourt M, Charrel R, Bittar F, La Scola B, Ranque S, Raoult D. Many More Microbes in Humans: Enlarging the Microbiome Repertoire. Clin Infect Dis 2018; 65:S20-S29. [PMID: 28859350 DOI: 10.1093/cid/cix404] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proportion of cultured microorganisms is dramatically lower than those predicted to be involved in colonization, acute, or chronic infections. We report our laboratory's contribution to promoting culture methods. As a result of using culturomics in our clinical microbiology laboratories (including amoeba co-culture and shell-vial culture) and through the use of matrix-assisted laser desorption/ionization-time-of-flight and the 16S rRNA gene for identification, we cultured 329 new bacterial species. This is also the first time that 327 of species have been isolated from humans, increasing the known human bacterial repertoire by 29%. We isolated 4 archaeal species for the first time from human, including 2 new species. Of the 100 isolates of giant viruses, we demonstrated the human pathogenicity of Mimivirus in pneumonia and Marseillevirus in diverse clinical situations. From sand flies, we isolated most of the known Phlebovirus strains that potentially cause human infections. Increasing the repertoire of human-associated microorganisms through culture will allow us to test pathogenicity models with viable microorganisms.
Collapse
Affiliation(s)
| | | | - Rémi Charrel
- UMR Emergence des Pathologies Virales, IRD 190, Inserm 1207, EHESP, France Fondation, IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM) Public Hospitals of Marseille
| | | | | | - Stéphane Ranque
- Université Montpellier 1, IRBA, IP-TPT, Aix Marseille Université.,Parasitologie and Mycologie, IHU Méditerranée Infection, Hôpital de la Timone, AP-HM, Marseille, France
| | | |
Collapse
|
12
|
Ayhan N, Charrel RN. Of phlebotomines (sandflies) and viruses: a comprehensive perspective on a complex situation. CURRENT OPINION IN INSECT SCIENCE 2017; 22:117-124. [PMID: 28805633 DOI: 10.1016/j.cois.2017.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Old World sandfly-borne phleboviruses are classified into three serological complexes: Sandfly fever Sicilian, Sandfly fever Naples and Salehabad. Human pathogens (febrile illness ['sandfly fever'], neuroinvasive infections) belong to the two first complexes. The increasing number of newly discovered sandfly-borne phleboviruses raises concerns about their medical and veterinary importance. They occupy a wide geographic area from Mediterranean basin to North Africa and the Middle East to the central Asia. At least nine species of sandflies can transmit these viruses. Recent results suggest that sandfly vectors are not as specific for viruses as initially believed. Recent seroprevalence studies demonstrate that humans and domestic animals are heavily exposed. Specific molecular diagnostic methods must be developed and implemented in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Nazli Ayhan
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP - IHU Mediterranee Infection), Marseille, France
| | - Remi N Charrel
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP - IHU Mediterranee Infection), Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus discovery and virome analysis. Virus Res 2017; 239:172-179. [PMID: 28583442 PMCID: PMC5819613 DOI: 10.1016/j.virusres.2017.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Description of virus enrichment techniques for metagenomics based virome analysis. Usefulness of recently developed virome capture sequencing techniques. Perspective on negative and positive selection approaches for virome analysis.
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis.
Collapse
Affiliation(s)
- Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Papa A. Emerging arboviral human diseases in Southern Europe. J Med Virol 2017; 89:1315-1322. [PMID: 28252204 DOI: 10.1002/jmv.24803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/20/2017] [Indexed: 01/13/2023]
Abstract
Southern Europe is characterized by unique landscape and climate which attract tourists, but also arthropod vectors, some of them carrying pathogens. Among several arboviral diseases that emerged in the region during the last decade, West Nile fever accounted for high number of human cases and fatalities, while Crimean-Congo hemorrhagic fever expanded its geographic distribution, and is considered as a real threat for Europe. Viruses evolve rapidly and acquire mutations making themselves stronger and naive populations more vulnerable. In an effort to tackle efficiently the emerging arboviral diseases, preparedness and strategic surveillance are needed for the early detection of the pathogen and containment and mitigation of probable outbreaks. In this review, the main human arboviral diseases that emerged in Southern Europe are described.
Collapse
Affiliation(s)
- Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Alwassouf S, Christodoulou V, Bichaud L, Ntais P, Mazeris A, Antoniou M, Charrel RN. Seroprevalence of Sandfly-Borne Phleboviruses Belonging to Three Serocomplexes (Sandfly fever Naples, Sandfly fever Sicilian and Salehabad) in Dogs from Greece and Cyprus Using Neutralization Test. PLoS Negl Trop Dis 2016; 10:e0005063. [PMID: 27783676 PMCID: PMC5081206 DOI: 10.1371/journal.pntd.0005063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Phleboviruses transmitted by sandflies are endemic in the Mediterranean area. The last decade has witnessed the description of an accumulating number of novel viruses. Although, the risk of exposure of vertebrates is globally assessed, detailed geographic knowledge is poor even in Greece and Cyprus where sandfly fever has been recognized for a long time and repeatedly. A total of 1,250 dogs from mainland Greece and Greek archipelago on one hand and 422 dogs from Cyprus on the other hand have been sampled and tested for neutralising antibodies against Toscana virus (TOSV), Sandfly fever Sicilian virus (SFSV), Arbia virus, and Adana virus i.e. four viruses belonging to the 3 sandfly-borne serocomplexes known to circulate actively in the Mediterranean area. Our results showed that (i) SFSV is highly prevalent with 71.9% (50.7-84.9% depending on the region) in Greece and 60.2% (40.0-72.6%) in Cyprus; (ii) TOSV ranked second with 4.4% (0-15.4%) in Greece and 8.4% (0-11.4%) in Cyprus; (iii) Salehabad viruses (Arbia and Adana) displayed also substantial prevalence rates in both countries with values ranging from 0-22.6% depending on the region and on the virus strain used in the test. These results demonstrate that circulation of viruses transmitted by sand flies can be estimated qualitatively using dog sera. As reported in other regions of the Mediterranean, these results indicate that it is time to shift these viruses from the "neglected" status to the "priority" status in order to stimulate studies aiming at defining and quantifying their medical and veterinary importance and possible public health impact. Specifically, viruses belonging to the Sandfly fever Sicilian complex should be given careful consideration. This calls for implementation of direct and indirect diagnosis in National reference centers and in hospital microbiology laboratories and systematic testing of unelucidated febrile illness and central and peripheral nervous system febrile manifestations.
Collapse
Affiliation(s)
- Sulaf Alwassouf
- UMR “Emergence des Pathologies Virales” (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP), Marseille, France
- Institut hospitalo-universitaire Méditerranée infection, APHM Public Hospitals of Marseille, Marseille, France
| | | | - Laurence Bichaud
- UMR “Emergence des Pathologies Virales” (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP), Marseille, France
- Institut hospitalo-universitaire Méditerranée infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Pantelis Ntais
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Voutes. Heraklion. Crete, Greece
| | | | - Maria Antoniou
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Voutes. Heraklion. Crete, Greece
| | - Remi N. Charrel
- UMR “Emergence des Pathologies Virales” (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP), Marseille, France
- Institut hospitalo-universitaire Méditerranée infection, APHM Public Hospitals of Marseille, Marseille, France
| |
Collapse
|
16
|
Alwassouf S, Maia C, Ayhan N, Coimbra M, Cristovao JM, Richet H, Bichaud L, Campino L, Charrel RN. Neutralization-based seroprevalence of Toscana virus and sandfly fever Sicilian virus in dogs and cats from Portugal. J Gen Virol 2016; 97:2816-2823. [PMID: 27589865 DOI: 10.1099/jgv.0.000592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sandfly-borne phleboviruses are endemic in the Mediterranean basin. However, levels of exposure of human and animal populations are inadequately researched. Toscana virus (TOSV) is present in Portugal where it causes human infection and disease; in contrast there are few data for sandfly fever Sicilian virus (SFSV) which has neither been isolated nor detected by molecular tests and for which there are only limited serological data. The sera collected from 1160 dogs and 189 cats in southern Portugal were tested for the presence of neutralizing antibodies against TOSV and SFSV, two viruses recognized as distinct serocomplexes in the Mediterranean region. Our data showed (i) seropositivity to TOSV and SFSV in dogs at a rate of 6.8 and 50.8 %, respectively, and (ii) that 3.7 % of cats were seropositive for TOSV. TOSV findings are in line with previous results obtained with less stringent serological assays. Our results for SFSV in dogs clearly indicate that the virus is circulating widely and that humans may be exposed to infection via the dogs. Although the presence of SFSV was suggested by haemagglutination inhibition in 4/1690 human sera in 1974, this is the first time, as far as we know, that SFSV has been shown to circulate so widely in dogs in Portugal. Future studies should be directed at isolating strains of SFSV in Portugal from dogs, humans and sandflies collected in high prevalence regions. As dogs appear to be good sentinels for SFSV, their role as a possible reservoir in the natural cycle should also be considered.
Collapse
Affiliation(s)
- Sulaf Alwassouf
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille University-IRD 190-Inserm 1207-EHESP), Marseille, France.,Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Carla Maia
- Global Health and Tropical Medicine, GHMT, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal.,Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Nazli Ayhan
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille University-IRD 190-Inserm 1207-EHESP), Marseille, France.,Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | | | - Jose Manuel Cristovao
- Global Health and Tropical Medicine, GHMT, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Herve Richet
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille University-IRD 190-Inserm 1207-EHESP), Marseille, France.,Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Laurence Bichaud
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille University-IRD 190-Inserm 1207-EHESP), Marseille, France.,Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France.,Department of Parasitology, Faculty of Science, Charles University, Prague 2 128 44, Czech Republic
| | - Lenea Campino
- Global Health and Tropical Medicine, GHMT, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal.,Department of Biomedical Sciences and Medicine, Universidade do Algarve, Faro, Portugal
| | - Remi N Charrel
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille University-IRD 190-Inserm 1207-EHESP), Marseille, France.,Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| |
Collapse
|
17
|
Dahmani M, Alwassouf S, Grech-Angelini S, Marié JL, Davoust B, Charrel RN. Seroprevalence of Toscana virus in dogs from Corsica, France. Parasit Vectors 2016; 9:381. [PMID: 27368162 PMCID: PMC4930604 DOI: 10.1186/s13071-016-1665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/23/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Toscana virus (TOSV) is an arbovirus belonging to the Bunyaviridae, a family of negative-stranded, enveloped RNA viruses. The virus can be transmitted to humans through the bite of an infected female sand fly of the genus Phlebotomus. Infections are usually asymptomatic but the virus is known to cause aseptic meningitis and/or meningo-encephalitis in the Mediterranean countries. Dogs are good sentinels for detection of viral circulation and are more easily accessible than wild animals. FINDINGS In 2013 and 2014, we collected sera from 231 adult dogs living in 26 counties in two departments in Corsica, a French island in the Mediterranean. The virus microneutralization-based seroprevalence assay revealed a seropositivity of 3.9 % dogs on the eastern coast of Corsica. CONCLUSIONS Our study confirms the circulation of TOSV in Corsica. Accordingly, in geographical areas where dogs possess TOSV neutralizing antibodies, direct and indirect TOSV diagnosis should be implemented in patients presenting with febrile illnesses and central nervous system infections such as meningitis and encephalitis.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Research Unit of Emerging Infectious and Tropical Diseases (URMITE) UMR CNRS 7278 IRD 198 INSERM U1015, Aix-Marseille University, Marseille, France. .,Fondation Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France.
| | - Sulaf Alwassouf
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Marseille, France.,Fondation Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | | | - Jean-Lou Marié
- Working Group of Animal Epidemiology of French Army Health Service, DRSSA Toulon, French Military Health Service Academy - École du Val-de-Grâce, Paris, France
| | - Bernard Davoust
- Research Unit of Emerging Infectious and Tropical Diseases (URMITE) UMR CNRS 7278 IRD 198 INSERM U1015, Aix-Marseille University, Marseille, France.,Fondation Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France.,French National Institute for Agricultural Research (INRA), LRDE UR045, Corte, France
| | - Rémi N Charrel
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Marseille, France.,Fondation Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| |
Collapse
|
18
|
Complete Coding Sequences of Six Toscana Virus Strains Isolated from Human Patients in France. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00454-16. [PMID: 27231377 PMCID: PMC4882958 DOI: 10.1128/genomea.00454-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Toscana virus (TOSV) is an arthropod-borne phlebovirus belonging to the Sandfly fever Naples virus species (genus Phlebovirus, family Bunyaviridae). Here, we report the complete coding sequences of six TOSV strains isolated from human patients having acquired the infection in southeastern France during a 12-year period.
Collapse
|
19
|
Es-Sette N, Ajaoud M, Charrel RN, Lemrani M. [Molecular epidemiology of phlebovirus in four provinces in Morocco]. ACTA ACUST UNITED AC 2016; 109:143-50. [PMID: 27193286 DOI: 10.1007/s13149-016-0498-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
Sandflies are vectors of protozoa, viruses, and bacteria. To investigate the transmission of phleboviruses, a total of 8753 sandflies were collected in four foci of leishmania. A total of 16 distinct species were morphologically identified. Nested-PCR and cell culture screening for phleboviruses, using an assay targeting the polymerase gene, showed positive results for 19 pools of sandflies. Sequencing of the corresponding products confirmed the results and allowed identification of Toscana virus exclusively. Corresponding sandfly species originated from four different foci, and were different from those commonly reported in the literature. Sequence analysis shows that the Moroccan Toscana viruses belong to genotype B and appear close to the Toscana viruses isolated in France and Spain. This study reported the existence of the virus in the north, center and south of the country. The abundance and diversity of sandflies in Morocco, Mediterranean climate, would support the continuous circulation of Toscana virus in our country, posing a potential risk of emergence of these arboviruses.
Collapse
Affiliation(s)
- N Es-Sette
- Laboratoire de parasitologie et de maladies vectorielles, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Maroc.
| | - M Ajaoud
- Laboratoire de parasitologie et de maladies vectorielles, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Maroc
| | - R N Charrel
- UMR EPV « Emergence des pathologies virales », Aix Marseille Université, IRD U190, INSERM U1207, IRBA, EFS, EHESP, Marseille, France
- France & Fondation Méditerranée Infection, APHM Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - M Lemrani
- Laboratoire de parasitologie et de maladies vectorielles, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Maroc
| |
Collapse
|
20
|
Complete Coding Sequences of Three Toscana Virus Strains Isolated from Sandflies in France. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01676-15. [PMID: 26868387 PMCID: PMC4751311 DOI: 10.1128/genomea.01676-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toscana virus (TOSV) is an arthropod-borne virus belonging to the sandfly fever Naples virus species within the genus Phlebovirus. We report here the complete coding sequences of three TOSV strains belonging to lineage B and isolated from sandflies trapped in the Southeast of France between 2009 and 2013.
Collapse
|
21
|
Marlinge M, Crespy L, Zandotti C, Piorkowski G, Kaphan E, Charrel RN, Ninove L. Afebrile meningoencephalitis with transient central facial paralysis due to Toscana virus infection, southeastern France, 2014 [corrected]. ACTA ACUST UNITED AC 2014; 19:20974. [PMID: 25496570 DOI: 10.2807/1560-7917.es2014.19.48.20974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report a case of meningoencephalitis caused by Toscana virus (TOSV) with central facial paralysis lasting over two days acquired in south-eastern France. The patient was not febrile either before or during the course of the disease. The diagnosis was established by both real-time RT-PCR and virus isolation with complete genome sequencing. This case emphasises the need to consider TOSV in non-febrile neurological syndromes in people living in or having travelled to the Mediterranean area.
Collapse
Affiliation(s)
- Mc Marlinge
- IHU Mediterranee Infection, APHM Public Hospitals of Marseille, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Sakhria S, Alwassouf S, Fares W, Bichaud L, Dachraoui K, Alkan C, Zoghlami Z, de Lamballerie X, Zhioua E, Charrel RN. Presence of sandfly-borne phleboviruses of two antigenic complexes (Sandfly fever Naples virus and Sandfly fever Sicilian virus) in two different bio-geographical regions of Tunisia demonstrated by a microneutralisation-based seroprevalence study in dogs. Parasit Vectors 2014; 7:476. [PMID: 25306250 PMCID: PMC4197250 DOI: 10.1186/s13071-014-0476-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/03/2014] [Indexed: 11/24/2022] Open
Abstract
Background Sandfly-borne phleboviruses are present in North Africa where they can infect humans in regions where Leishmania infantum, the causative agent of zoonotic visceral leishmaniasis in the Western Mediterranean basin is present affecting both humans and dogs. We investigated the capacity of dogs to be used as sentinels for sandfly-borne phleboviruses as previously shown for leishmaniasis. Findings A total of 312 sera were collected from guard dogs in two different bioclimatic regions (governorates of Kairouan and Bizerte) of Tunisia where zoonotic visceral leishmaniasis has been reported. These sera were tested for the presence of neutralising antibodies against 3 phleboviruses: Toscana virus, Punique virus and Sicilian virus. In the governorate of Kairouan, seroprevalence rates of 7.5%, 43.5%, and 38.1% were observed for Toscana, Punique and Sicilian virus, respectively. A high proportion of sera from the governorate of Bizerte were hemolyzed and showed high cytotoxicity for the cells and subsequently precluded detailed interpretation of this batch. However, validated results for 27 sera were in agreement with data observed in the governorate of Kairouan. Conclusions Toscana virus is present in the governorate of Kairouan but at a lower rate compared to Punique and Sicilian viruses. These three sandfly-borne phleboviruses can infect dogs. Direct detection and isolation of the viruses are now to be attempted in animals as well as in humans. Our findings showed that guard dogs are good sentinels for virus transmitted by sandflies and strongly suggested that the high seroprevalence rates observed in dogs merit further attention.
Collapse
Affiliation(s)
- Sonia Sakhria
- Institut Pasteur de Tunis, Laboratory of Vector Ecology, Tunis, Tunisia.
| | - Sulaf Alwassouf
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", 13385, Marseille, France. .,IHU Méditerranée Infection, APHM Public Hospitals of Marseille, 13385, Marseille, France.
| | - Wasfi Fares
- Institut Pasteur de Tunis, Laboratory of Vector Ecology, Tunis, Tunisia.
| | - Laurence Bichaud
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", 13385, Marseille, France. .,IHU Méditerranée Infection, APHM Public Hospitals of Marseille, 13385, Marseille, France.
| | - Khalil Dachraoui
- Institut Pasteur de Tunis, Laboratory of Vector Ecology, Tunis, Tunisia.
| | - Cigdem Alkan
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", 13385, Marseille, France. .,IHU Méditerranée Infection, APHM Public Hospitals of Marseille, 13385, Marseille, France.
| | - Ziad Zoghlami
- Institut Pasteur de Tunis, Laboratory of Vector Ecology, Tunis, Tunisia.
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", 13385, Marseille, France. .,IHU Méditerranée Infection, APHM Public Hospitals of Marseille, 13385, Marseille, France.
| | - Elyes Zhioua
- Institut Pasteur de Tunis, Laboratory of Vector Ecology, Tunis, Tunisia.
| | - Remi N Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", 13385, Marseille, France. .,IHU Méditerranée Infection, APHM Public Hospitals of Marseille, 13385, Marseille, France.
| |
Collapse
|
23
|
Charrel RN. Toscana Virus Infection. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Dupouey J, Bichaud L, Ninove L, Zandotti C, Thirion-Perrier L, de Lamballerie X, Charrel RN. Toscana virus infections: a case series from France. J Infect 2013; 68:290-5. [PMID: 24247068 DOI: 10.1016/j.jinf.2013.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 12/18/2022]
Abstract
Toscana virus (TOSV) is a neglected sandfly-borne pathogen in Mediterranean countries. Although discovered four decades ago, articles that describe the clinical aspects are scarce and consist mostly of case reports, with few series of cases. We studied retrospectively symptomatic TOSV infections in patients hospitalized in Marseille (France) from 2004 to 2011. Seventeen patients were classified as probable or confirmed cases. Fourteen cases (82%) occurred between June and September, and 3 cases in March, April and November. Two cases were potentially imported from Croatia and Tuscany. All patients presented with fever and neurological signs were observed such as aseptic meningitis (n = 6), muscular symptoms (n = 3), or encephalitis (n = 4). The outcome was always favorable. At the acute stage, anti TOSV IgM were observed in 14/17 patients, neutralization tests were positive for 3/8 patients, and RT-PCR confirmed TOSV infections in 5/8 CSF specimens.
Collapse
Affiliation(s)
- J Dupouey
- UMR_D 190 "Emergence des Pathologies Virales", Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, 13005 Marseille, France; IHU Mediterranee Infection, APHM Public Hospitals of Marseille, 13005 Marseille, France
| | - L Bichaud
- UMR_D 190 "Emergence des Pathologies Virales", Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, 13005 Marseille, France; IHU Mediterranee Infection, APHM Public Hospitals of Marseille, 13005 Marseille, France
| | - L Ninove
- UMR_D 190 "Emergence des Pathologies Virales", Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, 13005 Marseille, France; IHU Mediterranee Infection, APHM Public Hospitals of Marseille, 13005 Marseille, France
| | - C Zandotti
- UMR_D 190 "Emergence des Pathologies Virales", Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, 13005 Marseille, France; IHU Mediterranee Infection, APHM Public Hospitals of Marseille, 13005 Marseille, France
| | - L Thirion-Perrier
- UMR_D 190 "Emergence des Pathologies Virales", Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, 13005 Marseille, France; IHU Mediterranee Infection, APHM Public Hospitals of Marseille, 13005 Marseille, France
| | - X de Lamballerie
- UMR_D 190 "Emergence des Pathologies Virales", Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, 13005 Marseille, France; IHU Mediterranee Infection, APHM Public Hospitals of Marseille, 13005 Marseille, France
| | - R N Charrel
- UMR_D 190 "Emergence des Pathologies Virales", Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, 13005 Marseille, France; IHU Mediterranee Infection, APHM Public Hospitals of Marseille, 13005 Marseille, France.
| |
Collapse
|
25
|
Sakhria S, Bichaud L, Mensi M, Salez N, Dachraoui K, Thirion L, Cherni S, Chelbi I, De Lamballerie X, Zhioua E, Charrel RN. Co-circulation of Toscana virus and Punique virus in northern Tunisia: a microneutralisation-based seroprevalence study. PLoS Negl Trop Dis 2013; 7:e2429. [PMID: 24069484 PMCID: PMC3772032 DOI: 10.1371/journal.pntd.0002429] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/02/2013] [Indexed: 02/07/2023] Open
Abstract
Background In northern Tunisia, the co-circulation of two related sand fly-borne phleboviruses, Toscana virus (TOSV) and Punique virus (PUNV) was previously demonstrated. In contrast to TOSV, a prominent human pathogen, there is no data supporting that PUNV is capable to infect and cause disease to humans. We studied the respective involvement of TOSV and PUNV in human infections in northern Tunisia through a seroprevalence study. Methods The presence of TOSV and PUNV neutralising antibodies (NT-Ab) was tested in human sera collected from 5 districts of the governorate of Bizerte, and the titres of NT-Ab were estimated by microneutralisation (MN) assay. Principal Findings A total of 1,273 sera were processed. TOSV and PUNV NT-Ab were detected in 522 (41%) and 111 sera (8.72%) respectively. TOSV seroprevalence varied from 17.2% to 59.4% depending on the district. Analysis of TOSV geometric mean titre values demonstrated a constant increase according to the age. The vast majority of sera containing NT-Ab were found to be more reactive toward TOSV than PUNV. Indeed, past infections with PUNV and TOSV were undisputable for 5 and 414 sera, respectively. Conclusions PUNV may be capable to infect humans but at a low rate. TOSV is responsible for the vast majority of human infections by sand fly-borne phleboviruses in northern Tunisia. TOSV must be considered by physician and tested in diagnostic laboratories for patients with meningitis and unexplained fever in northern Tunisia. In northern Tunisia, two different pheboviruses are known to circulate in sand fly population, Toscana virus (TOSV) and Punique virus (PUNV). In contrast to TOSV, a prominent human pathogen, there is no data supporting that PUNV is capable to infect humans and to cause a disease. We studied the respective involvement of TOSV and PUNV in human infections in northern Tunisia through a seroprevalence study. Because TOSV and PUNV are antigenically and genetically closely related, it is difficult to distinguish between them by using broadly reactive serological tests, such as enzyme-linked immunosorbent assay (ELISA). Thus, we developed a method of microneutralisation assay using the two viruses in a comparative manner. A total of 1,273 sera were processed. We provide first evidence to support (i) that Punique virus may be capable to infect humans but at a low rate, (ii) that TOSV, the most prevalent arbovirus in Southern Europe, is responsible for the vast majority of human infections by sand fly-borne phleboviruses in northern Tunisia. Therefore, it is important to consider TOSV as an important pathogen that needs to be included in all virological diagnostic concerning patients with meningitis and unexplained febrile illness originated from Northern Tunisia.
Collapse
Affiliation(s)
| | - Laurence Bichaud
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- IHU Mediterranee Infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Mohamed Mensi
- Regional Health Department, Governorate of Bizerte, Bizerte, Tunisia
| | - Nicolas Salez
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | | | - Laurence Thirion
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | | | | | - Xavier De Lamballerie
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- IHU Mediterranee Infection, APHM Public Hospitals of Marseille, Marseille, France
| | | | - Rémi N. Charrel
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- IHU Mediterranee Infection, APHM Public Hospitals of Marseille, Marseille, France
- * E-mail:
| |
Collapse
|