1
|
Malcolm TR, Klein MJ, Petkovic K, Smith I, Blasdell KR. Exploring Mosquito Excreta as an Alternative Sample Type for Improving Arbovirus Surveillance in Australia. Pathogens 2025; 14:42. [PMID: 39861003 PMCID: PMC11769354 DOI: 10.3390/pathogens14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Current arbovirus surveillance strategies in Australia involve mosquito collection, species identification, and virus detection. These processes are labour-intensive, expensive, and time-consuming and can lead to delays in reporting. Mosquito excreta has been proposed as an alternative sample type to whole mosquito collection, with potential to streamline the virus surveillance pipeline. In this study, we investigated the feasibility of Aedes aegypti excreta as a sample type in the detection of Dengue virus serotype 2 (DENV2). DENV2 could be detected from as little as one DENV2-infected mosquito excreta spot, with virus levels in individual excreta spots varying within and between mosquitoes and depending highly on mosquito viral load. Detectability was improved by pooling up to 20 DENV2-infected mosquitoes and collecting excreta into liquid substrate, followed by virus concentration using magnetic nanoparticles. Virus concentration improves quantification accuracy in comparison to unconcentrated samples and increases the amount of material available for detection, expanding detection capabilities to techniques with higher limits of detection. Mosquito excreta as a sample type, coupled with magnetic virus concentration, expands the current detection toolbox for DENV2 and has the potential to improve arbovirus surveillance strategies in Australia.
Collapse
Affiliation(s)
- Tess R. Malcolm
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC 3220, Australia;
| | - Melissa J. Klein
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC 3220, Australia;
| | - Karolina Petkovic
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC 3168, Australia;
| | - Ina Smith
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia;
| | - Kim R. Blasdell
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC 3220, Australia;
| |
Collapse
|
2
|
Vieira CJSP, Onn MB, Shivas MA, Shearman D, Darbro JM, Graham M, Freitas L, van den Hurk AF, Frentiu FD, Wallau GL, Devine GJ. Long-term co-circulation of multiple arboviruses in southeast Australia revealed by xeno-monitoring and viral whole-genome sequencing. Virus Evol 2024; 10:0. [PMID: 39678352 PMCID: PMC11646120 DOI: 10.1093/ve/veae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Arbovirus surveillance of wild-caught mosquitoes is an affordable and sensitive means of monitoring virus transmission dynamics at various spatial-temporal scales, and emergence and re-emergence during epidemic and interepidemic periods. A variety of molecular diagnostics for arbovirus screening of mosquitoes (known as xeno-monitoring) are available, but most provide limited information about virus diversity. Polymerase chain reaction (PCR)-based screening coupled with RNA sequencing is an increasingly affordable and sensitive pipeline for integrating complete viral genome sequencing into surveillance programs. This enables large-scale, high-throughput arbovirus screening from diverse samples. We collected mosquitoes in CO2-baited light traps from five urban parks in Brisbane from March 2021 to May 2022. Mosquito pools of ≤200 specimens were screened for alphaviruses and flaviviruses using virus genus-specific primers and reverse transcription quantitative PCR (qRT-PCR). A subset of virus-positive samples was then processed using a mosquito-specific ribosomal RNA depletion method and then sequenced on the Illumina NextSeq. Overall, 54,670 mosquitoes representing 26 species were screened in 382 pools. Thirty detections of arboviruses were made in 28 pools. Twenty of these positive pools were further characterized using RNA sequencing generating 18 full-length genomes. These full-length sequences belonged to four medically relevant arboviruses: Barmah Forest, Ross River, Sindbis-like, and Stratford viruses. Phylogenetic and evolutionary analyses revealed the evolutionary progression of arbovirus lineages over the last 100 years, demonstrating that different epidemiological, immunological, and evolutionary processes may actively shape the evolution of Australian arboviruses. These results underscore the need for more genomic surveillance data to explore the complex evolutionary pressures acting on arboviruses. Overall, our findings highlight the effectiveness of our methodology, which can be applied broadly to enhance arbovirus surveillance in various ecological contexts and improve understanding of transmission dynamics.
Collapse
Affiliation(s)
- Carla Julia S. P Vieira
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Michael B Onn
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Martin A Shivas
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Damien Shearman
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Jonathan M Darbro
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, QLD 4051, Australia
| | - Lucas Freitas
- Global Data Science Initiative (GISAID) at, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Andrew F van den Hurk
- Department of Health, Public Health Virology, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Francesca D Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Gabriel L Wallau
- Department of Entomology and Bioinformatic Core, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Professor Moraes Rego, Recife, PE 50740-465, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Bernhard-Nocht-Street 74, Hamburg 20359, Germany
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| |
Collapse
|
3
|
Olson MF, Brooks C, Kakazu A, Promma P, Sornjai W, Smith DR, Davis TJ. Mosquito surveillance on U.S military installations as part of a Japanese encephalitis virus detection program: 2016 to 2021. PLoS Negl Trop Dis 2023; 17:e0011422. [PMID: 37856569 PMCID: PMC10617694 DOI: 10.1371/journal.pntd.0011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Japanese encephalitis virus (JEV) continues to circulate throughout Southeast Asia and the Western Pacific where approximately 3 billion people in 24 countries are at risk of infection. Surveillance targeting the mosquito vectors of JEV was conducted at four military installations on Okinawa, Japan, between 2016 and 2021. Out of a total of 10,426 mosquitoes from 20 different species, zero were positive for JEV. The most abundant mosquito species collected were Aedes albopictus (36.4%) followed by Culex sitiens (24.3%) and Armigeres subalbatus (19%). Statistically significant differences in mosquito species populations according to location were observed. Changes in land use over time appear to be correlated with the species and number of mosquitoes trapped in each location. JEV appears to be absent from mosquito populations on Okinawa, but further research on domestic pigs and ardeid birds is warranted.
Collapse
Affiliation(s)
- Mark F. Olson
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Caroline Brooks
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Akira Kakazu
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Ploenphit Promma
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Timothy J. Davis
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| |
Collapse
|
4
|
Manzi S, Nelli L, Fortuna C, Severini F, Toma L, Di Luca M, Michelutti A, Bertola M, Gradoni F, Toniolo F, Sgubin S, Lista F, Pazienza M, Montarsi F, Pombi M. A modified BG-Sentinel trap equipped with FTA card as a novel tool for mosquito-borne disease surveillance: a field test for flavivirus detection. Sci Rep 2023; 13:12840. [PMID: 37553350 PMCID: PMC10409816 DOI: 10.1038/s41598-023-39857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Early detection of pathogens in vectors is important in preventing the spread of arboviral diseases, providing a timely indicator of pathogen circulation before outbreaks occur. However, entomological surveillance may face logistical constraints, such as maintaining the cold chain, and resource limitations, such as the field and laboratory workload of mosquito processing. We propose an FTA card-based trapping system that aims to simplify both field and laboratory phases of arbovirus surveillance. We modified a BG-Sentinel trap to include a mosquito collection chamber and a sugar feeding source through an FTA card soaked in a long-lasting viscous solution of honey and hydroxy-cellulose hydrogel. The FTA card ensures environmental preservation of nucleic acids, allowing continuous collection and feeding activity of specimens for several days and reducing the effort required for viral detection. We tested the trap prototype during two field seasons (2019 and 2021) in North-eastern Italy and compared it to CDC-CO2 trapping applied in West Nile and Usutu virus regional surveillance. Collections by the BG-FTA approach detected high species diversity, including Culex pipiens, Aedes albopictus, Culex modestus, Anopheles maculipennis sensu lato and Ochlerotatus caspius. When used for two-days sampling, the BG-FTA trap performed equally to CDC also for the WNV-major vector Cx. pipiens. The FTA cards detected both WNV and USUV, confirming the reliability of this novel approach to detect viral circulation in infectious mosquitoes. We recommend this surveillance approach as a particularly useful alternative in multi-target surveillance, for sampling in remote areas and in contexts characterized by high mosquito densities and diversity.
Collapse
Affiliation(s)
- Sara Manzi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Luca Nelli
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Claudia Fortuna
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Severini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Luciano Toma
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - M Di Luca
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Michelutti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | | | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Florigio Lista
- Istituto di Scienze Biomediche Della Difesa, Rome, Italy
| | | | | | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
5
|
Meireles ACA, Rios FGF, Feitoza LHM, da Silva LR, Julião GR. Nondestructive Methods of Pathogen Detection: Importance of Mosquito Integrity in Studies of Disease Transmission and Control. Pathogens 2023; 12:816. [PMID: 37375506 DOI: 10.3390/pathogens12060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mosquitoes are vectors of many pathogens, including viruses, protozoans, and helminths, spreading these pathogens to humans as well as to wild and domestic animals. As the identification of species and the biological characterization of mosquito vectors are cornerstones for understanding patterns of disease transmission, and the design of control strategies, we conducted a literature review on the current use of noninvasive and nondestructive techniques for pathogen detection in mosquitoes, highlighting the importance of their taxonomic status and systematics, and some gaps in the knowledge of their vectorial capacity. Here, we summarized the alternative techniques for pathogen detection in mosquitoes based on both laboratory and field studies. Parasite infection and dissemination by mosquitoes can also be obtained via analyses of saliva- and excreta-based techniques or of the whole mosquito body, using a near-infrared spectrometry (NIRS) approach. Further research should be encouraged to seek strategies for detecting target pathogens while preserving mosquito morphology, especially in biodiversity hotspot regions, thus enabling the discovery of cryptic or new species, and the determination of more accurate taxonomic, parasitological, and epidemiological patterns.
Collapse
Affiliation(s)
- Anne Caroline Alves Meireles
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Biodiversity and Health, PhD in Sciences-Fiocruz Rondônia/Oswaldo Cruz Institute, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| | - Flávia Geovana Fontineles Rios
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Luiz Henrique Maciel Feitoza
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Lucas Rosendo da Silva
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Genimar Rebouças Julião
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
- National Institute of Epidemiology of Western Amazônia-INCT-EpiAmO, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| |
Collapse
|
6
|
Rios FGF, Alves do Nascimento V, Naveca FG, Vieira DS, Julião GR. Arbovirus detection in synanthropic mosquitoes from the Brazilian Amazon and in mosquito saliva using Flinders Technology Associates cards. Microbes Infect 2023; 25:105046. [PMID: 36167274 DOI: 10.1016/j.micinf.2022.105046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 02/03/2023]
Abstract
Although arbovirus transmission and identifying target vectors may provide a baseline for planning disease control strategies, there are many gaps in knowledge regarding these mosquitoes and viral species in urban, rural, or sylvatic habitats in the Brazilian Amazon. Our goal was to screen for dengue, chikungunya, and Zika viruses in synanthropic mosquitoes and with Flinders Technology Associates (FTA) cards using insect saliva. Mosquitoes were caught using ovitraps and aspirators in the city of Porto Velho, Rondônia, Brazil. Honey-baited FTA cards were placed in mosquito cages for 15 days; whole mosquitoes and FTA cards were analysed for viral RNA using RT-qPCR assays. One pool of Aedes aegypti females was found to be infected with the Zika virus and one male mosquito was infected with dengue-4, suggesting natural vertical/venereal transmission. Our study also reported evidence of vertical/venereal transmission of ZIKV in Culex quinquefasciatus males for the first time in the Brazilian Amazon, and the feasibility of using FTA cards to detect arboviruses in the saliva of field-collected mosquitoes. Vertical/venereal transmission of viruses by atypical mosquito species reinforces the need for combined viral and entomological screening in arbovirus surveillance programs.
Collapse
Affiliation(s)
- Flávia Geovana Fontineles Rios
- Laboratório de Entomologia I, Fiocruz Rondônia - Fundação Oswaldo Cruz, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil; Programa de Pós-Graduação em Biologia Experimental - PGBIOEXP, Fundação Universidade Federal de Rondônia - UNIR, BR-364, km 9.5, 76801-059, Porto Velho, Rondônia State, Brazil.
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Adrianópolis, 69057-070, Manaus, Amazonas State, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fiocruz, Manguinhos, 21040-360, Rio de Janeiro State, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Adrianópolis, 69057-070, Manaus, Amazonas State, Brazil; Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Adrianópolis, 69057-070, Manaus, Amazonas State, Brazil
| | - Deusilene Souza Vieira
- Programa de Pós-Graduação em Biologia Experimental - PGBIOEXP, Fundação Universidade Federal de Rondônia - UNIR, BR-364, km 9.5, 76801-059, Porto Velho, Rondônia State, Brazil; Laboratório de Virologia Molecular, Fiocruz Rondônia - Fundação Oswaldo Cruz, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil
| | - Genimar Rebouças Julião
- Laboratório de Entomologia I, Fiocruz Rondônia - Fundação Oswaldo Cruz, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil; Programa de Pós-Graduação em Biologia Experimental - PGBIOEXP, Fundação Universidade Federal de Rondônia - UNIR, BR-364, km 9.5, 76801-059, Porto Velho, Rondônia State, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil
| |
Collapse
|
7
|
Japanese Encephalitis Virus: The Emergence of Genotype IV in Australia and Its Potential Endemicity. Viruses 2022; 14:v14112480. [PMID: 36366578 PMCID: PMC9698845 DOI: 10.3390/v14112480] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
A fatal case of Japanese encephalitis (JE) occurred in northern Australia in early 2021. Sequence studies showed that the virus belonged to genotype IV (GIV), a genotype previously believed to be restricted to the Indonesian archipelago. This was the first locally acquired case of Japanese encephalitis virus (JEV) GIV to occur outside Indonesia, and the second confirmed fatal human case caused by a GIV virus. A closely related GIV JEV strain subsequently caused a widespread outbreak in eastern Australia in 2022 that was first detected by fetal death and abnormalities in commercial piggeries. Forty-two human cases also occurred with seven fatalities. This has been the first major outbreak of JEV in mainland Australia, and geographically the largest virgin soil outbreak recorded for JEV. This outbreak provides an opportunity to discuss and document the factors involved in the virus' spread and its ecology in a novel ecological milieu in which other flaviviruses, including members of the JE serological complex, also occur. The probable vertebrate hosts and mosquito vectors are discussed with respect to virus spread and its possible endemicity in Australia, and the need to develop a One Health approach to develop improved surveillance methods to rapidly detect future outbreak activity across a large geographical area containing a sparse human population. Understanding the spread of JEV in a novel ecological environment is relevant to the possible threat that JEV may pose in the future to other receptive geographic areas, such as the west coast of the United States, southern Europe or Africa.
Collapse
|
8
|
Hime NJ, Wickens M, Doggett SL, Rahman K, Toi C, Webb C, Vyas A, Lachireddy K. Weather extremes associated with increased Ross River virus and Barmah Forest virus notifications in NSW: learnings for public health response. Aust N Z J Public Health 2022; 46:842-849. [DOI: 10.1111/1753-6405.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Neil J. Hime
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
| | - Meredith Wickens
- Communicable Diseases Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Stephen L. Doggett
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Kazi Rahman
- North Coast Public Health Unit, Mid North Coast and Northern NSW Local Health Districts NSW Health Lismore New South Wales
| | - Cheryl Toi
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Cameron Webb
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Aditya Vyas
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Kishen Lachireddy
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| |
Collapse
|
9
|
Samsonova JV, Saushkin NY, Osipov AP. Dried Blood Spots technology for veterinary applications and biological investigations: technical aspects, retrospective analysis, ongoing status and future perspectives. Vet Res Commun 2022; 46:655-698. [PMID: 35771305 PMCID: PMC9244892 DOI: 10.1007/s11259-022-09957-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Dried Blood Spots (DBS) technology has become a valuable tool in medical studies, however, in veterinary and biological research DBS technology applications are still limited. Up-to-date no review has comprehensively integrated all the evidence existing across the fields, technologies and animal species. In this paper we summarize the current applications of DBS technology in the mentioned areas, and provide a scope of different types of dried sample carriers (cellulose and non-cellulose), sampling devices, applicable methods for analyte extraction and detection. Mammals, birds, insects and other species are represented as the study objects. Besides the blood, the review considers a variety of specimens, such as milk, saliva, tissue samples and others. The main applications of dried samples highlighted in the review include epidemiological surveys and monitoring for infections agents or specific antibodies for disease/vaccination control in households and wildlife. Besides the genetic investigations, the paper describes detection of environmental contaminants, pregnancy diagnosis and many other useful applications of animal dried samples. The paper also analyses dried sample stability and storage conditions for antibodies, viruses and other substances. Finally, recent developments and future research for DBS technology in veterinary medicine and biological sciences are discussed.
Collapse
Affiliation(s)
- Jeanne V Samsonova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
10
|
Kurucz N, McMahon JL, Warchot A, Hewitson G, Barcelon J, Moore F, Moran J, Harrison JJ, Colmant AMG, Staunton KM, Ritchie SA, Townsend M, Steiger DM, Hall RA, Isberg SR, Hall-Mendelin S. Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia. Viruses 2022; 14:v14061342. [PMID: 35746812 PMCID: PMC9227548 DOI: 10.3390/v14061342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
The Kunjin strain of West Nile virus (WNVKUN) is a mosquito-transmitted flavivirus that can infect farmed saltwater crocodiles in Australia and cause skin lesions that devalue the hides of harvested animals. We implemented a surveillance system using honey-baited nucleic acid preservation cards to monitor WNVKUN and another endemic flavivirus pathogen, Murray Valley encephalitis virus (MVEV), on crocodile farms in northern Australia. The traps were set between February 2018 and July 2020 on three crocodile farms in Darwin (Northern Territory) and one in Cairns (North Queensland) at fortnightly intervals with reduced trapping during the winter months. WNVKUN RNA was detected on all three crocodile farms near Darwin, predominantly between March and May of each year. Two of the NT crocodile farms also yielded the detection of MVE viral RNA sporadically spread between April and November in 2018 and 2020. In contrast, no viral RNA was detected on crocodile farms in Cairns during the entire trapping period. The detection of WNVKUN and MVEV transmission by FTATM cards on farms in the Northern Territory generally correlated with the detection of their transmission to sentinel chicken flocks in nearby localities around Darwin as part of a separate public health surveillance program. While no isolates of WNVKUN or MVEV were obtained from mosquitoes collected on Darwin crocodile farms immediately following the FTATM card detections, we did isolate another flavivirus, Kokobera virus (KOKV), from Culex annulirostris mosquitoes. Our studies support the use of the FTATM card system as a sensitive and accurate method to monitor the transmission of WNVKUN and other arboviruses on crocodile farms to enable the timely implementation of mosquito control measures. Our detection of MVEV transmission and isolation of KOKV from mosquitoes also warrants further investigation of their potential role in causing diseases in crocodiles and highlights a “One Health” issue concerning arbovirus transmission to crocodile farm workers. In this context, the introduction of FTATM cards onto crocodile farms appears to provide an additional surveillance tool to detect arbovirus transmission in the Darwin region, allowing for a more timely intervention of vector control by relevant authorities.
Collapse
Affiliation(s)
- Nina Kurucz
- Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia; (N.K.); (A.W.)
| | - Jamie Lee McMahon
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Allan Warchot
- Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia; (N.K.); (A.W.)
| | - Glen Hewitson
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Jean Barcelon
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Frederick Moore
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
| | - Agathe M. G. Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
| | - Kyran M. Staunton
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Scott A. Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Michael Townsend
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Dagmar Meyer Steiger
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
- Australian Infectious Diseases Centre, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
- Correspondence: (S.R.I.); (S.H.-M.)
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
- Correspondence: (S.R.I.); (S.H.-M.)
| |
Collapse
|
11
|
Fynmore N, Lühken R, Maisch H, Risch T, Merz S, Kliemke K, Ziegler U, Schmidt-Chanasit J, Becker N. Rapid assessment of West Nile virus circulation in a German zoo based on honey-baited FTA cards in combination with box gravid traps. Parasit Vectors 2021; 14:449. [PMID: 34488835 PMCID: PMC8419893 DOI: 10.1186/s13071-021-04951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Background For over a decade, monitoring of West Nile virus (WNV) in Germany has consisted of a bird monitoring programme as well as a mosquito-based surveillance programme employing CO2-baited encephalitis vector surveillance (EVS) traps for mass trapping and screening of mosquitoes. In contrast to the EVS traps, the Reiter/Cummings type box gravid trap collects gravid female mosquitoes, which have already taken a blood meal, increasing the likelihood of being infected with pathogens. The traps can be equipped with a honey-baited Flinders Technology Associates® (FTA) card to encourage sugar feeding by the trapped mosquitoes. FTA cards contain nucleic acid preserving substances, which prevent the degradation of viral RNA in the expectorated mosquito saliva and allows for testing the card for flavivirus RNA. This study aimed to assess the suitability of the method for WNV surveillance in Germany as an alternative to previous methods, which are expensive, time-consuming, and predominantly target host-seeking populations less likely to be infected with WNV. Methods In the Thüringer Zoopark Erfurt, snowy owls (Nyctea scandiaca) and greater flamingos (Phoenicopterus roseus) died of WNV infections in July and August 2020. In response, five Reiter/Cummings type box gravid traps were positioned during the daytime on the 10th, 13th, and 16th of September in five different locations. The FTA cards and mosquitoes in the chamber were collected, kept in a cool chain, and further processed for virus detection using a modified generic flavivirus reverse transcription PCR. Results A total of 15 trappings during September collected a total of 259 female mosquitoes, 97% of which were Culex pipiens sensu lato, as well as 14 honey-baited FTA cards. Eight mosquitoes tested PCR-positive for WNV. Four FTA cards tested PCR-positive for mosquito-borne flaviviruses, two of which were confirmed as WNV, and the remaining two confirmed as Usutu virus. Conclusion The suitability of the FTA cards in preserving viral RNA in the field and rapid turnaround time from collection to result is combined with a simple, cost-effective, and highly specific trapping method to create an arbovirus surveillance system, which circumvents many of the difficulties of previous surveillance programmes that required the analysis of mosquitoes in the laboratory. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Noelle Fynmore
- Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, 67346, Speyer, Germany.,The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Renke Lühken
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Heike Maisch
- Thüringer Zoopark Erfurt, Am Zoopark 1, 99087, Erfurt, Germany
| | - Tina Risch
- Thüringer Zoopark Erfurt, Am Zoopark 1, 99087, Erfurt, Germany
| | - Sabine Merz
- Thüringer Zoopark Erfurt, Am Zoopark 1, 99087, Erfurt, Germany
| | - Konstantin Kliemke
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Ute Ziegler
- Friedrich-Loeffler Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Norbert Becker
- Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, 67346, Speyer, Germany. .,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Guissou E, Waite JL, Jones M, Bell AS, Suh E, Yameogo KB, Djègbè N, Da DF, Hien DFDS, Yerbanga RS, Ouedraogo AG, Dabiré KR, Cohuet A, Thomas MB, Lefèvre T. A non-destructive sugar-feeding assay for parasite detection and estimating the extrinsic incubation period of Plasmodium falciparum in individual mosquito vectors. Sci Rep 2021; 11:9344. [PMID: 33927245 PMCID: PMC8085177 DOI: 10.1038/s41598-021-88659-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Despite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium-Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time. This technique has been tested across four natural malaria mosquito species of Africa and Asia, infected with Plasmodium falciparum (six field isolates from gametocyte-infected patients in Burkina Faso and the NF54 strain) and across a range of temperatures relevant to malaria transmission in field conditions. Monitoring individual infectious mosquitoes was feasible. The estimated median EIP of P. falciparum at 27 °C was 11 to 14 days depending on mosquito species and parasite isolate. Long-term individual tracking revealed that sporozoites transfer onto cotton wool can occur at least until day 40 post-infection. Short individual EIP were associated with short mosquito lifespan. Correlations between mosquito/parasite traits often reveal trade-offs and constraints and have important implications for understanding the evolution of parasite transmission strategies.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France.
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.
- Université Nazi Boni, Bobo Dioulasso, Burkina Faso.
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
- Green Mountain Antibodies, Inc. 1 Mill St. Suites 1-7, Burlington, VT, 05401, USA
| | - Matthew Jones
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew S Bell
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Eunho Suh
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Nicaise Djègbè
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
- York Environmental Sustainability Institute and Department of Biology, University of York, York, UK
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
13
|
Fourniol L, Madec Y, Mousson L, Vazeille M, Failloux AB. A laboratory-based study to explore the use of honey-impregnated cards to detect chikungunya virus in mosquito saliva. PLoS One 2021; 16:e0249471. [PMID: 33793656 PMCID: PMC8016228 DOI: 10.1371/journal.pone.0249471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Mosquito control is implemented when arboviruses are detected in patients or in field-collected mosquitoes. However, mass screening of mosquitoes is usually laborious and expensive, requiring specialized expertise and equipment. Detection of virus in mosquito saliva using honey-impregnated filter papers seems to be a promising method as it is non-destructive and allows monitoring the viral excretion dynamics over time from the same mosquito. Here we test the use of filter papers to detect chikungunya virus in mosquito saliva in laboratory conditions, before proposing this method in large-scale mosquito surveillance programs. We found that 0.9 cm2 cards impregnated with a 50% honey solution could replace the forced salivation technique as they offered a viral RNA detection until 7 days after oral infection of Aedes aegypti and Aedes albopictus mosquitoes with CHIKV.
Collapse
Affiliation(s)
- Lisa Fourniol
- Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Yoann Madec
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
| | - Laurence Mousson
- Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Marie Vazeille
- Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
14
|
High-Throughput Method for Detection of Arbovirus Infection of Saliva in Mosquitoes Aedes aegypti and Ae. albopictus. Viruses 2020; 12:v12111343. [PMID: 33238619 PMCID: PMC7700541 DOI: 10.3390/v12111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 01/03/2023] Open
Abstract
Vector competence refers to the ability of a vector to acquire, maintain, and transmit a pathogen. Collecting mosquito saliva in medium-filled capillary tubes has become the standard for approximating arbovirus transmission. However, this method is time-consuming and labor-intensive. Here we compare the capillary tube method to an alternative high-throughput detection method the collection of saliva on paper cards saturated with honey, with (FTA card) and without (filter paper) reagents for the preservation of nucleic acid for Aedes aegypti and Aedes albopictus mosquitoes infected with two emerging genotypes of the chikungunya virus (CHIKV). Model results showed that the Asian genotype CHIKV dissemination in the harvested legs of both Ae. aegypti and Ae. albopictus increased the odds of females having a positive salivary infection and higher salivary viral titers, while for the IOL genotype the same effect was observed only for Ae. aegypti. Of the three tested detection methods, the FTA card was significantly more effective at detecting infected saliva of Ae. aegypti and Ae. albopictus females than the capillary tube and filter paper was as effective as the capillary tube for the Asian genotype. We did not find significant effects of the detection method in detecting higher viral titer for both Asian and IOL genotypes. Our results are discussed in light of the limitations of the different tested detection methods.
Collapse
|
15
|
Abstract
When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance. Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future. IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.
Collapse
|
16
|
Olson MF, Garcia-Luna S, Juarez JG, Martin E, Harrington LC, Eubanks MD, Badillo-Vargas IE, Hamer GL. Sugar Feeding Patterns for Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) Mosquitoes in South Texas. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1111-1119. [PMID: 32043525 PMCID: PMC7334892 DOI: 10.1093/jme/tjaa005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 05/15/2023]
Abstract
Effective mosquito surveillance and management depend on a thorough understanding of the biology and feeding patterns unique to species and sex. Given that a propensity to sugar feed is necessary for some mosquito surveillance and newer control strategies, we sought to document the amount of total sugar in wild Aedes aegypti (L.) and Culex quinquefasciatus (Say) captured from five different locations in the Lower Rio Grande Valley (LRGV) of South Texas over 2 yr. We used Biogents Sentinel 2 (BGS2) traps in year 1 and aspirators, BGS2, and CDC resting traps in years 2 and 3 to collect adult mosquitoes. The hot anthrone test was used to quantify total sugar content in each mosquito. Additionally, the cold and hot anthrone tests were used to distinguish fructose content from total sugars for mosquitoes captured in 2019. Overall, Ae. aegypti females had significantly lower total sugar content than Ae. aegypti males as well as both sexes of Cx. quinquefasciatus. However, the percentage of Ae. aegypti positive for fructose consumption was four to eightfold higher than Ae. aegypti previously reported in other regions. The difference between locations was significant for males of both species, but not for females. Seasonality and trapping method also revealed significant differences in sugar content of captured mosquitoes. Our results reinforce that sugar feeding in female Ae. aegypti is less than Cx. quinquefasciatus, although not absent. This study provides necessary data to evaluate the potential effectiveness of sugar baits in surveillance and control of both Ae. aegypti and Cx. quinquefasciatus mosquitoes.
Collapse
Affiliation(s)
- Mark F Olson
- Department of Entomology, Texas A&M University, College Station, TX
| | | | - Jose G Juarez
- Department of Entomology, Texas A&M University, College Station, TX
| | - Estelle Martin
- Department of Entomology, Texas A&M University, College Station, TX
| | | | - Micky D Eubanks
- Department of Entomology, Texas A&M University, College Station, TX
| | | | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX
- Corresponding author, e-mail:
| |
Collapse
|
17
|
Panahi E, Shivas M, Hall-Mendelin S, Kurucz N, Rudd PA, De Araujo R, Skinner EB, Melville L, Herrero LJ. Utilising a novel surveillance system to investigate species of Forcipomyia ( Lasiohelea) (Diptera: Ceratopogonidae) as the suspected vectors of Leishmania macropodum (Kinetoplastida: Trypanosomatidae) in the Darwin region of Australia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:192-198. [PMID: 32637311 PMCID: PMC7327299 DOI: 10.1016/j.ijppaw.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022]
Abstract
Up until recently, Australia was considered free of Leishmania due to the absence of phlebotomine sandfly species (Diptera: Phlebotominae) known to transmit Leishmania parasites in other parts of the world. The discovery of Leishmania (Mundinia) macropodum (Kinetoplastida: Trypanosomatidae) in Northern Australia sparked questions as to the existence of alternative vectors of Leishmania. This has added to the complexity of fully understanding the parasite's interaction with its vector, which is known to be very specific. Previous findings demonstrated L. macropodum infection beyond the blood meal stage in the day-biting midges Forcipomyia (Lasiohelea) Kieffer (Diptera: Ceratopogonidae) implicating them in the parasite's life cycle. Currently, there is no conclusive evidence demonstrating this suspected vector to transmit L. macropodum to a naïve host. Therefore, this research aimed to investigate the vector competency of day-biting midge F. (Lasiohelea) to transmit L. macropodum utilising a novel technology that preserves nucleic acids. Honey-soaked Flinders Technology Associates (FTA®) filter-paper cards were used to obtain saliva expectorated from biting midges while sugar-feeding. F. (Lasiohelea) were aspirated directly off macropods from a known Leishmania-transmission site and were kept in a waxed-paper container holding a honey-coated FTA® card for feeding. Insect identification and Taqman quantitative real-time PCR (qPCR) screening assays revealed L. macropodum DNA in F. (Lasiohelea) up to 7 days post field-collection, and in an unidentified biting midge, previously known as F. (Lasiohelea) sp.1. Moreover, 7/145 (4.83%) of FTA® cards were confirmed positive with L. macropodum DNA after exposure to field-collected F. (Lasiohelea). Additionally, FTA® cards were found to be a valuable surveillance tool, given the ease of use in the field and laboratory. Overall, our findings support previous reports on L. macropodum transmission by an alternative vector to phlebotomine sandflies. Further studies identifying and isolating infective L. macropodum promastigotes is necessary to resolve questions on the L. macropodum vector.
Collapse
Affiliation(s)
- Elina Panahi
- Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Martin Shivas
- Mosquito Management, Brisbane City Council, Eagle Farm, QLD, 4009, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, 4108, Australia
| | - Nina Kurucz
- Medical Entomology, Centre for Disease Control, Top End Health Service, Casuarina, NT, 0811, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Rachel De Araujo
- Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Berrimah, NT, 0828, Australia
| | - Eloise B Skinner
- Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia
| | - Lorna Melville
- Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Berrimah, NT, 0828, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia.,Redland Hospital, Metro South, Queensland Health, Cleveland, QLD, 4163, Australia
| |
Collapse
|
18
|
Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T, Eloit M, Busquets N. Viromics on Honey-Baited FTA Cards as a New Tool for the Detection of Circulating Viruses in Mosquitoes. Viruses 2020; 12:E274. [PMID: 32121402 PMCID: PMC7150749 DOI: 10.3390/v12030274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Worldwide, emerging and re-emerging infectious diseases (EIDs) are a major burden on public and animal health. Arthropod vectors, with mosquitoes being the main contributors of global disease, transmit more than 70% of the recognized EIDs. To assess new alternatives for arthropod-borne viral diseases surveillance, and for the detection of new viruses, honey-baited Flinders Technology Associates (FTA) cards were used as sugar bait in mosquito traps during entomological surveys at the Llobregat River Delta (Catalonia, Spain). Next generation sequencing (NGS) metagenomics analysis was applied on honey-baited FTA cards, which had been exposed to field-captured mosquitoes to characterize their associated virome. Arthropod- and plant-infecting viruses governed the virome profile on FTA cards. Twelve near-complete viral genomes were successfully obtained, suggesting good quality preservation of viral RNAs. Mosquito pools linked to the FTA cards were screened for the detection of mosquito-associated viruses by specific RT-PCRs to confirm the presence of these viruses. The circulation of viruses related to Alphamesonivirus, Quaranjavirus and unclassified Bunyavirales was detected in mosquitoes, and phylogenetic analyses revealed their similarities to viruses previously reported in other continents. To the best our knowledge, our findings constitute the first distribution record of these viruses in European mosquitoes and the first hint of insect-specific viruses in mosquitoes' saliva in field conditions, demonstrating the feasibility of this approach to monitor the transmissible fraction of the mosquitoes' virome. In conclusion, this pilot viromics study on honey-baited FTA cards was shown to be a valid approach for the detection of viruses circulating in mosquitoes, thereby setting up an alternative tool for arbovirus surveillance and control programs.
Collapse
Affiliation(s)
- Lotty Birnberg
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Sarah Temmam
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
- Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, 08820 Barcelona, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Thomas Bigot
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
- Institut Pasteur – Bioinformatics and Biostatistics Hub—Computational Biology department, Institut Pasteur, USR 3756 CNRS—75015 Paris, France
| | - Marc Eloit
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
- National Veterinary School of Alfort, Paris-Est University, 94704 CEDEX, Maisons-Alfort, France
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| |
Collapse
|
19
|
Habarugira G, Moran J, Colmant AM, Davis SS, O’Brien CA, Hall-Mendelin S, McMahon J, Hewitson G, Nair N, Barcelon J, Suen WW, Melville L, Hobson-Peters J, Hall RA, Isberg SR, Bielefeldt-Ohmann H. Mosquito-Independent Transmission of West Nile virus in Farmed Saltwater Crocodiles ( Crocodylus porosus). Viruses 2020; 12:v12020198. [PMID: 32054016 PMCID: PMC7077242 DOI: 10.3390/v12020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
West Nile virus, Kunjin strain (WNVKUN) is endemic in Northern Australia, but rarely causes clinical disease in humans and horses. Recently, WNVKUN genomic material was detected in cutaneous lesions of farmed saltwater crocodiles (Crocodylus porosus), but live virus could not be isolated, begging the question of the pathogenesis of these lesions. Crocodile hatchlings were experimentally infected with either 105 (n = 10) or 104 (n = 11) TCID50-doses of WNVKUN and each group co-housed with six uninfected hatchlings in a mosquito-free facility. Seven hatchlings were mock-infected and housed separately. Each crocodile was rotationally examined and blood-sampled every third day over a 3-week period. Eleven animals, including three crocodiles developing typical skin lesions, were culled and sampled 21 days post-infection (dpi). The remaining hatchlings were blood-sampled fortnightly until experimental endpoint 87 dpi. All hatchlings remained free of overt clinical disease, apart from skin lesions, throughout the experiment. Viremia was detected by qRT-PCR in infected animals during 2–17 dpi and in-contact animals 11–21 dpi, indicating horizontal mosquito-independent transmission. Detection of viral genome in tank-water as well as oral and cloacal swabs, collected on multiple days, suggests that shedding into pen-water and subsequent mucosal infection is the most likely route. All inoculated animals and some in-contact animals developed virus-neutralizing antibodies detectable from 17 dpi. Virus-neutralizing antibody titers continued to increase in exposed animals until the experimental endpoint, suggestive of persisting viral antigen. However, no viral antigen was detected by immunohistochemistry in any tissue sample, including from skin and intestine. While this study confirmed that infection of saltwater crocodiles with WNVKUN was associated with the formation of skin lesions, we were unable to elucidate the pathogenesis of these lesions or the nidus of viral persistence. Our results nevertheless suggest that prevention of WNVKUN infection and induction of skin lesions in farmed crocodiles may require management of both mosquito-borne and water-borne viral transmission in addition to vaccination strategies.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, University of Queensland, Gatton, Qld 4343, Australia;
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
| | - Agathe M.G. Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
| | - Steven S. Davis
- Berrimah Veterinary Laboratories, NT 0828, Australia; (S.S.D.); (L.M.)
| | - Caitlin A. O’Brien
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
| | - Sonja Hall-Mendelin
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Jamie McMahon
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Glen Hewitson
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Neelima Nair
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Jean Barcelon
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Willy W. Suen
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
| | - Lorna Melville
- Berrimah Veterinary Laboratories, NT 0828, Australia; (S.S.D.); (L.M.)
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
- Correspondence: (R.A.H.); (S.R.I.); (H.B.-O.)
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
- Correspondence: (R.A.H.); (S.R.I.); (H.B.-O.)
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton, Qld 4343, Australia;
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
- Correspondence: (R.A.H.); (S.R.I.); (H.B.-O.)
| |
Collapse
|
20
|
Wipf NC, Guidi V, Tonolla M, Ruinelli M, Müller P, Engler O. Evaluation of honey-baited FTA cards in combination with different mosquito traps in an area of low arbovirus prevalence. Parasit Vectors 2019; 12:554. [PMID: 31753035 PMCID: PMC6873520 DOI: 10.1186/s13071-019-3798-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background The threat of mosquito-borne diseases is increasing in continental Europe as demonstrated by several autochthonous chikungunya, dengue and West Nile virus outbreaks. In Switzerland, despite the presence of competent vectors, routine surveillance of arboviruses in mosquitoes is not being carried out, mainly due to the high costs associated with the need of a constant cold chain and laborious processing of thousands of mosquitoes. An alternative approach is using honey-baited nucleic acid preserving cards (FTA cards) to collect mosquito saliva that may be analysed for arboviruses. Here, we evaluate whether FTA cards could be used to detect potentially emerging viruses in an area of low virus prevalence in combination with an effective mosquito trap. Methods In a field trial in southern Switzerland we measured side-by-side the efficacy of the BG-Sentinel 2, the BG-GAT and the Box gravid trap to catch Aedes and Culex mosquitoes in combination with honey-baited FTA cards during 80 trapping sessions of 48 hours. We then screened both the mosquitoes and the FTA cards for the presence of arboviruses using reverse-transcription PCR. The efficacy of the compared trap types was evaluated using generalized linear mixed models. Results The Box gravid trap collected over 11 times more mosquitoes than the BG-GAT and BG-Sentinel 2 trap. On average 75.9% of the specimens fed on the honey-bait with no significant difference in feeding rates between the three trap types. From the total of 1401 collected mosquitoes, we screened 507 Aedes and 500 Culex females for the presence of arboviruses. A pool of six Cx. pipiens/Cx. torrentium mosquitoes and also the FTA card from the same Box gravid trap were positive for Usutu virus. Remarkably, only two of the six Culex mosquitoes fed on the honey-bait, emphasising the high sensitivity of the method. In addition, two Ae. albopictus collections but no FTA cards were positive for mosquito-only flaviviruses. Conclusions Based on our results we conclude that honey-baited FTA cards, in combination with the Box gravid trap, are an effective method for arbovirus surveillance in areas of low prevalence, particularly where resources are limited for preservation and screening of individual mosquitoes.![]()
Collapse
Affiliation(s)
- Nadja C Wipf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, P.O. Box, 4001, Basel, Switzerland.,Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Valeria Guidi
- Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Michela Ruinelli
- Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Pie Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, P.O. Box, 4001, Basel, Switzerland.
| | - Olivier Engler
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700, Spiez, Switzerland
| |
Collapse
|
21
|
Huang B, West N, Vider J, Zhang P, Griffiths RE, Wolvetang E, Burtonclay P, Warrilow D. Inflammatory responses to a pathogenic West Nile virus strain. BMC Infect Dis 2019; 19:912. [PMID: 31664929 PMCID: PMC6819652 DOI: 10.1186/s12879-019-4471-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022] Open
Abstract
Background West Nile virus (WNV) circulates across Australia and was referred to historically as Kunjin virus (WNVKUN). WNVKUN has been considered more benign than other WNV strains circulating globally. In 2011, a more virulent form of the virus emerged during an outbreak of equine arboviral disease in Australia. Methods To better understand the emergence of this virulent phenotype and the mechanism by which pathogenicity is manifested in its host, cells were infected with either the virulent strain (NSW2012), or less pathogenic historical isolates, and their innate immune responses compared by digital immune gene expression profiling. Two different cell systems were used: a neuroblastoma cell line (SK-N-SH cells) and neuronal cells derived from induced pluripotent stem cells (iPSCs). Results Significant innate immune gene induction was observed in both systems. The NSW2012 isolate induced higher gene expression of two genes (IL-8 and CCL2) when compared with cells infected with less pathogenic isolates. Pathway analysis of induced inflammation-associated genes also indicated generally higher activation in infected NSW2012 cells. However, this differential response was not paralleled in the neuronal cultures. Conclusion NSW2012 may have unique genetic characteristics which contributed to the outbreak. The data herein is consistent with the possibility that the virulence of NSW2012 is underpinned by increased induction of inflammatory genes.
Collapse
Affiliation(s)
- Bixing Huang
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia
| | - Nic West
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Ping Zhang
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Rebecca E Griffiths
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Peter Burtonclay
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia.
| |
Collapse
|
22
|
Ramírez AL, van den Hurk AF, Mackay IM, Yang ASP, Hewitson GR, McMahon JL, Boddey JA, Ritchie SA, Erickson SM. Malaria surveillance from both ends: concurrent detection of Plasmodium falciparum in saliva and excreta harvested from Anopheles mosquitoes. Parasit Vectors 2019; 12:355. [PMID: 31319880 PMCID: PMC6639908 DOI: 10.1186/s13071-019-3610-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Malaria is the most important vector-borne disease in the world. Epidemiological and ecological studies of malaria traditionally utilize detection of Plasmodium sporozoites in whole mosquitoes or salivary glands by microscopy or serological or molecular assays. However, these methods are labor-intensive, and can over- or underestimate mosquito transmission potential. To overcome these limitations, alternative sample types have been evaluated for the study of malaria. It was recently shown that Plasmodium could be detected in saliva expectorated on honey-soaked cards by Anopheles stephensi, providing a better estimate of transmission risk. We evaluated whether excretion of Plasmodium falciparum nucleic acid by An. stephensi correlates with expectoration of parasites in saliva, thus providing an additional sample type for estimating transmission potential. Mosquitoes were exposed to infectious blood meals containing cultured gametocytes, and excreta collected at different time points post-exposure. Saliva was collected on honey-soaked filter paper cards, and salivary glands were dissected and examined microscopically for sporozoites. Excreta and saliva samples were tested by real time polymerase chain reaction (RT-rtPCR). Results Plasmodium falciparum RNA was detected in mosquito excreta as early as four days after ingesting a bloodmeal containing gametocytes. Once sporogony (the development of sporozoites) occurred, P. falciparum RNA was detected concurrently in both excreta and saliva samples. In the majority of cases, no difference was observed between the Ct values obtained from matched excreta and saliva samples, suggesting that both samples provide equally sensitive results. A positive association was observed between the molecular detection of the parasites in both samples and the proportion of mosquitoes with sporozoites in their salivary glands from each container. No distinguishable parasites were observed when excreta samples were stained and microscopically analyzed. Conclusions Mosquito saliva and excreta are easily collected and are promising for surveillance of malaria-causing parasites, especially in low transmission settings or in places where arboviruses co-circulate. Electronic supplementary material The online version of this article (10.1186/s13071-019-3610-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana L Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia. .,Australian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Ian M Mackay
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Annie S P Yang
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Medical Microbiology Parasitology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Glen R Hewitson
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Jamie L McMahon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Justin A Boddey
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Sara M Erickson
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
23
|
Ramírez AL, Hall-Mendelin S, Hewitson GR, McMahon JL, Staunton KM, Ritchie SA, van den Hurk AF. Stability of West Nile Virus (Flaviviridae: Flavivirus) RNA in Mosquito Excreta. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1135-1138. [PMID: 30937448 DOI: 10.1093/jme/tjz044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Arbovirus surveillance is crucial for the implementation of vector-borne disease control measures. Recently, it has been demonstrated that mosquitoes with a disseminated arbovirus infection excrete viral RNA, which can be detected by molecular methods. Thereby, mosquito excreta has been proposed as a sample type that could be utilized for arbovirus surveillance. In this study, we evaluated if West Nile virus (Kunjin strain, WNVKUN) RNA in Culex annulirostris Skuse (Diptera: Culicidae) excreta deposited on different substrates could be detected after storage for up to 2 wk at tropical conditions of high heat and humidity. No significant drop in relative quantity of WNVKUN RNA (determined by comparison of Ct values) in excreta deposited on Flinders Associate Technologies (FTA) cards was observed over 14 d, suggesting that RNA was stable for that time. There was no significant difference in relative quantity of WNVKUN RNA in excreta deposited on FTA cards or polycarbonate substrates after 24 h. However, after 7 and 14 d, there was a significant decline in the relative quantity of viral RNA in the excreta stored on polycarbonate substrates. For incorporation in arbovirus surveillance programs, we recommend the use of polycarbonate substrates for excreta collection in mosquito traps deployed overnight, and the integration of FTA cards in traps serviced weekly or fortnightly. Polycarbonate substrates facilitate the collection of the majority of excreta from a trap, and while FTA cards offer limited area coverage, they enable preservation of viral RNA in tropical conditions for extended periods of time.
Collapse
Affiliation(s)
- Ana L Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Coopers Plains, Australia
| | - Glen R Hewitson
- Public Health Virology, Forensic and Scientific Services, Department of Health, Coopers Plains, Australia
| | - Jamie L McMahon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Coopers Plains, Australia
| | - Kyran M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Coopers Plains, Australia
| |
Collapse
|
24
|
Meyer DB, Ramirez AL, van den Hurk AF, Kurucz N, Ritchie SA. Development and Field Evaluation of a System to Collect Mosquito Excreta for the Detection of Arboviruses. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1116-1121. [PMID: 30945738 DOI: 10.1093/jme/tjz031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Mosquito-borne diseases are a major public health concern globally and early detection of pathogens is critical to implement vector management and control strategies. Existing methods for pathogen detection include screening sentinel animals for antibodies and analyzing mosquitoes for pathogen presence. While these methods are effective, they are also expensive, labor-intense, and logistically challenging. To address these limitations, a new method was developed whereby mosquito saliva is collected on honey-coated nucleic acid preservation cards which are analyzed by molecular assays for detection of pathogens. However, mosquitoes only expel small amounts of saliva when feeding on these cards, potentially leading to false negatives. Another bodily fluid that is expelled by mosquitoes in larger volumes than saliva is excreta, and recent laboratory experiments have demonstrated that a range of mosquito-borne pathogens can be detected in mosquito excreta. In the current study, we have modified light and passive mosquito traps to collect their excreta and assessed their efficacy in field evaluations. From these field-collections, we detected West Nile, Ross River, and Murray Valley encephalitis viruses. Our findings suggest that mosquito traps are easily modified to collect excreta and, that this system has the potential to enhance detection of pathogens.
Collapse
Affiliation(s)
- Dagmar B Meyer
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ana L Ramirez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Queensland, Australia
| | - Nina Kurucz
- Medical Entomology, Centre for Disease Control, Department of Health, Darwin, Northern Territory, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
25
|
Kurucz N, Minney-Smith CA, Johansen CA. Arbovirus surveillance using FTA TM cards in modified CO 2 -baited encephalitis virus surveillance traps in the Northern Territory, Australia. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:187-194. [PMID: 31124223 DOI: 10.1111/jvec.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
In 2016, modified CO2 -baited encephalitis virus surveillance (EVS) traps were evaluated for flavivirus surveillance in the Northern Territory, Australia. The traps were fitted with honey-soaked nucleic acid preservation cards (FTATM ) for mosquitoes to expectorate virus while feeding on the cards. Cards were tested for the presence of selected arboviruses, with two cards testing positive for Kunjin virus and Alfuy, while sentinel chickens tested in parallel also showed Kunjin virus activity at the same time. The results from the cards and vector mosquito feeding rates indicate that CO2 -baited EVS traps coupled with honey-baited FTATM cards are an effective tool for broad-scale arbovirus surveillance.
Collapse
Affiliation(s)
- Nina Kurucz
- Medical Entomology, Centre for Disease Control, Department of Health, Darwin, Northern Territory, Australia
| | | | - Cheryl A Johansen
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| |
Collapse
|
26
|
Japanese Encephalitis Virus in Australia: From Known Known to Known Unknown. Trop Med Infect Dis 2019; 4:tropicalmed4010038. [PMID: 30791674 PMCID: PMC6473502 DOI: 10.3390/tropicalmed4010038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a major cause of neurological disease in Asia. It is a zoonotic flavivirus transmitted between water birds and/or pigs by Culex mosquitoes; humans are dead-end hosts. In 1995, JEV emerged for the first time in northern Australia causing an unprecedented outbreak in the Torres Strait. In this article, we revisit the history of JEV in Australia and describe investigations of JEV transmission cycles in the Australian context. Public health responses to the incipient outbreak included vaccination and sentinel pig surveillance programs. Virus isolation and vector competence experiments incriminated Culex annulirostris as the likely regional vector. The role this species plays in transmission cycles depends on the availability of domestic pigs as a blood source. Experimental evidence suggests that native animals are relatively poor amplifying hosts of JEV. The persistence and predominantly annual virus activity between 1995 and 2005 suggested that JEV had become endemic in the Torres Strait. However, active surveillance was discontinued at the end of 2005, so the status of JEV in northern Australia is unknown. Novel mosquito-based surveillance systems provide a means to investigate whether JEV still occurs in the Torres Strait or is no longer a risk to Australia.
Collapse
|
27
|
Danforth ME, Reisen WK, Barker CM. Detection of Arbovirus Transmission via Sugar Feeding in a Laboratory Setting. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1575-1579. [PMID: 29924335 DOI: 10.1093/jme/tjy089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Most species of mosquitoes consume sugar to survive and during sugar feeding can expectorate virus. Scientists have used this behavior to develop novel methods of mosquito control and arbovirus surveillance. In this study, we use sugar feeding and corresponding viral expectoration to develop an affordable method of monitoring individual mosquitoes for longitudinal data collection. Female Culex tarsalis Coquillett (Diptera: Culicidae) that consumed an infectious bloodmeal of West Nile virus were placed into separate containers and offered a sucrose-soaked cotton wick. Wicks were then collected daily and tested for virus with similar results to those from standard capillary tube method. This yielded a direct longitudinal estimate of the extrinsic incubation period, while using fewer mosquitoes. This approach could be used to further characterize variation in the amount and diversity of expectorated virus over the life span of individual mosquitoes.
Collapse
Affiliation(s)
- Mary E Danforth
- Davis Arbovirus Research and Training and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| | - William K Reisen
- Davis Arbovirus Research and Training and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| | - Christopher M Barker
- Davis Arbovirus Research and Training and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
28
|
Abstract
Australian mosquito species significantly impact human health through nuisance biting and the transmission of endemic and exotic pathogens. Surveillance programmes designed to provide an early warning of mosquito-borne disease risk require reliable identification of mosquitoes. This study aimed to investigate the viability of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid and inexpensive approach to the identification of Australian mosquitoes and was validated using a three-step taxonomic approach. A total of 300 mosquitoes representing 21 species were collected from south-eastern New South Wales and morphologically identified. The legs from the mosquitoes were removed and subjected to MALDI-TOF MS analysis. Fifty-eight mosquitoes were sequenced at the cytochrome c oxidase subunit I (cox1) gene region and genetic relationships were analysed. We create the first MALDI-TOF MS spectra database of Australian mosquito species including 19 species. We clearly demonstrate the accuracy of MALDI-TOF MS for identification of Australian mosquitoes. It is especially useful for assessing gaps in the effectiveness of DNA barcoding by differentiating closely related taxa. Indeed, cox1 DNA barcoding was not able to differentiate members of the Culex pipiens group, Cx. quinquefasciatus and Cx. pipiens molestus, but these specimens were correctly identified using MALDI-TOF MS.
Collapse
|
29
|
Steiner CD, Riemersma KK, Stuart JB, Singapuri A, Lothrop HD, Coffey LL. Scented Sugar Baits Enhance Detection of St. Louis Encephalitis and West Nile Viruses in Mosquitoes in Suburban California. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1307-1318. [PMID: 29718284 PMCID: PMC6113650 DOI: 10.1093/jme/tjy064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 05/28/2023]
Abstract
Scented sugar baits deployed in California deserts detected early West Nile virus (WNV) transmission by mosquitoes, representing a potential improvement to conventional arbovirus surveillance that relies heavily on infection rates in mosquito pools. In this study, we expanded deployment of scented sugar baits into suburban Sacramento and Yolo (2015, 2016) and Riverside Counties (2016), California. The goal of the study was to determine whether scented sugar baits detect WNV and St. Louis encephalitis virus (SLEV) concurrent with mosquito infections in trapped pools in areas of high human density. Between 8 and 10% of sugar baits were WNV RNA positive in both study years across the three counties. In Riverside County, where SLEV re-emerged in 2015, 1% of sugar baits were SLEV positive in 2016. Rates of sugar bait positives were at least 100 times higher than infection rates in trapped mosquitoes in the same districts. The prevalence of sugar bait positives varied temporally and did not coincide with infections in mosquitoes collected at the same sites each week. WNV RNA positive sugar baits were detected up to 2 wk before and after concurrent surveillance detected infection in mosquito pools at the same sites. Sugar baits also detected WNV in Riverside County at locations where no WNV activity was detected in mosquito pools. Sugar baits generated between 0.8 and 1.2 WNV positives per $1,000 and can be more economical than carbon dioxide baited traps that produce 0.8 positives per $1,000. These results indicate that the sugar bait approach enhances conventional arbovirus surveillance in mosquitoes in suburban California.
Collapse
Affiliation(s)
- Cody D Steiner
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA
| | - Kasen K Riemersma
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA
| | - Jackson B Stuart
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA
| | - Hugh D Lothrop
- Coachella Valley Mosquito and Vector Control District, Riverside County, CA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA
| |
Collapse
|
30
|
Ramírez AL, Hall-Mendelin S, Doggett SL, Hewitson GR, McMahon JL, Ritchie SA, van den Hurk AF. Mosquito excreta: A sample type with many potential applications for the investigation of Ross River virus and West Nile virus ecology. PLoS Negl Trop Dis 2018; 12:e0006771. [PMID: 30169512 PMCID: PMC6136815 DOI: 10.1371/journal.pntd.0006771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/13/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Emerging and re-emerging arthropod-borne viruses (arboviruses) cause human and animal disease globally. Field and laboratory investigation of mosquito-borne arboviruses requires analysis of mosquito samples, either individually, in pools, or a body component, or secretion such as saliva. We assessed the applicability of mosquito excreta as a sample type that could be utilized during studies of Ross River and West Nile viruses, which could be applied to the study of other arboviruses. METHODOLOGY/PRINCIPAL FINDINGS Mosquitoes were fed separate blood meals spiked with Ross River virus and West Nile virus. Excreta was collected daily by swabbing the bottom of containers containing batches and individual mosquitoes at different time points. The samples were analyzed by real-time RT-PCR or cell culture enzyme immunoassay. Viral RNA in excreta from batches of mosquitoes was detected continuously from day 2 to day 15 post feeding. Viral RNA was detected in excreta from at least one individual mosquito at all timepoints, with 64% and 27% of samples positive for RRV and WNV, respectively. Excretion of viral RNA was correlated with viral dissemination in the mosquito. The proportion of positive excreta samples was higher than the proportion of positive saliva samples, suggesting that excreta offers an attractive sample for analysis and could be used as an indicator of potential transmission. Importantly, only low levels of infectious virus were detected by cell culture, suggesting a relatively low risk to personnel handling mosquito excreta. CONCLUSIONS/SIGNIFICANCE Mosquito excreta is easily collected and provides a simple and efficient method for assessing viral dissemination, with applications ranging from vector competence experiments to complementing sugar-based arbovirus surveillance in the field, or potentially as a sample system for virus discovery.
Collapse
Affiliation(s)
- Ana L. Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, NSW Health Pathology-ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
| | - Glen R. Hewitson
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| | - Jamie L. McMahon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Andrew F. van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| |
Collapse
|
31
|
Bazin M, Williams CR. Mosquito traps for urban surveillance: collection efficacy and potential for use by citizen scientists. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:98-103. [PMID: 29757507 DOI: 10.1111/jvec.12288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
Mosquito-borne diseases are a pervasive public health problem on a global scale, and effective management of them requires well-designed surveillance programs for both vectors and pathogens. Mosquito traps are a common component of such programs, and their reach can be expanded by engaging citizen scientists. In this study in a southern Australian city, we compared the mosquito collection efficacy of two types of traps and assessed their suitability for use in citizen science programs. BG Sentinels and BG Gravid Aedes Trap (BG-GAT) traps both collected Aedes and Culex species in similar proportions, albeit with the former collecting approximately nine times as many mosquitoes. However, BG Sentinels have a greater per unit cost than BG-GATs and are restricted to deployment near power outlets. Importantly, despite being devised for collection of Aedes (Stegomyia) dengue vectors (such as Aedes aegypti), both traps can be effectively used in temperate climates for collection of a range of mosquito species. These traps could conceivably be used in citizen science programs to enhance the reach of surveillance at reduced cost.
Collapse
Affiliation(s)
- Mathieu Bazin
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471 Adelaide, South Australia 5001, Australia
| | - Craig R Williams
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471 Adelaide, South Australia 5001, Australia
| |
Collapse
|
32
|
Ramírez AL, van den Hurk AF, Meyer DB, Ritchie SA. Searching for the proverbial needle in a haystack: advances in mosquito-borne arbovirus surveillance. Parasit Vectors 2018; 11:320. [PMID: 29843778 PMCID: PMC5975710 DOI: 10.1186/s13071-018-2901-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
Surveillance is critical for the prevention and control of mosquito-borne arboviruses. Detection of elevated or emergent virus activity serves as a warning system to implement appropriate actions to reduce outbreaks. Traditionally, surveillance of arboviruses has relied on the detection of specific antibodies in sentinel animals and/or detection of viruses in pools of mosquitoes collected using a variety of sampling methods. These methods, although immensely useful, have limitations, including the need for a cold chain for sample transport, cross-reactivity between related viruses in serological assays, the requirement for specialized equipment or infrastructure, and overall expense. Advances have recently been made on developing new strategies for arbovirus surveillance. These strategies include sugar-based surveillance, whereby mosquitoes are collected in purpose-built traps and allowed to expectorate on nucleic acid preservation cards which are submitted for virus detection. New diagnostic approaches, such as next-generation sequencing, have the potential to expand the genetic information obtained from samples and aid in virus discovery. Here, we review the advancement of arbovirus surveillance systems over the past decade. Some of the novel approaches presented here have already been validated and are currently being integrated into surveillance programs. Other strategies are still at the experimental stage, and their feasibility in the field is yet to be evaluated.
Collapse
Affiliation(s)
- Ana L Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Dagmar B Meyer
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Astralian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Astralian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| |
Collapse
|
33
|
Brugman VA, Kristan M, Gibbins MP, Angrisano F, Sala KA, Dessens JT, Blagborough AM, Walker T. Detection of malaria sporozoites expelled during mosquito sugar feeding. Sci Rep 2018; 8:7545. [PMID: 29765136 PMCID: PMC5954146 DOI: 10.1038/s41598-018-26010-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Malaria is a severe disease of global importance transmitted by mosquitoes of the genus Anopheles. The ability to rapidly detect the presence of infectious mosquitoes able to transmit malaria is of vital importance for surveillance, control and elimination efforts. Current methods principally rely on large-scale mosquito collections followed by labour-intensive salivary gland dissections or enzyme-linked immunosorbent (ELISA) methods to detect sporozoites. Using forced salivation, we demonstrate here that Anopheles mosquitoes infected with Plasmodium expel sporozoites during sugar feeding. Expelled sporozoites can be detected on two sugar-soaked substrates, cotton wool and Whatman FTA cards, and sporozoite DNA is detectable using real-time PCR. These results demonstrate a simple and rapid methodology for detecting the presence of infectious mosquitoes with sporozoites and highlight potential laboratory applications for investigating mosquito-malaria interactions. Our results indicate that FTA cards could be used as a simple, effective and economical tool in enhancing field surveillance activities for malaria.
Collapse
Affiliation(s)
- V A Brugman
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Evolution Biotechnologies, Colworth Science Park, Sharnbrook, Bedford, MK44 1LZ, UK.
| | - M Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - M P Gibbins
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - F Angrisano
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - K A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - J T Dessens
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - A M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - T Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
34
|
Meyer DB, Johnson BJ, Fall K, Buhagiar TS, Townsend M, Ritchie SA. Development, Optimization, and Field Evaluation of the Novel Collapsible Passive Trap for Collection of Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:706-710. [PMID: 29385508 DOI: 10.1093/jme/tjx240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Disease surveillance for mosquito-borne pathogens in remote areas can be challenging. Most traps used to collect mosquitoes either need a source of electricity or are bulky and inflexible, making transportation awkward. To reduce these issues we developed three Collapsible Passive Traps (CPTs) and conducted trials in Cairns, Australia to evaluate the optimal design for a CPT and compared them to traditionally-used traps such as Centers for Disease Control and Prevention (CDC) and Encephalitis Vector Surveillance (EVS) light traps. We found that two of the CPTs collected comparable numbers of mosquitoes and that one of the CPTs outperformed the CDC light trap in collecting Aedes species. Mosquitoes did not have to pass through a fan while entering the CPT, and thus were not damaged and were often alive. Our results suggest that the CPT can be an effective trap for mosquito surveillance, especially in remote areas.
Collapse
Affiliation(s)
- Dagmar B Meyer
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Brian J Johnson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ken Fall
- Bioquip Products Inc., 2321 E Gladwick Street, Rancho Dominguez, Compton, CA
| | - Tamara S Buhagiar
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Michael Townsend
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
35
|
Burkhalter KL, Wiggins K, Burkett-Cadena N, Alto BW. Laboratory Evaluation of Commercially Available Platforms to Detect West Nile and Zika Viruses From Honey Cards. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:717-722. [PMID: 29462341 PMCID: PMC7147935 DOI: 10.1093/jme/tjy005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 06/08/2023]
Abstract
Commercially available assays utilizing antigen or nucleic acid detection chemistries provide options for mosquito control districts to screen their mosquito populations for arboviruses and make timely operational decisions regarding vector control. These assays may be utilized even more advantageously when combined with honey-soaked nucleic acid preservation substrate ('honey card') testing by reducing or replacing the time- and labor-intensive efforts of identifying and processing mosquito pools. We tested artificially inoculated honey cards and cards fed upon individually by West Nile virus (WNV) and Zika virus (ZIKV)-infected mosquitoes with three assays to compare detection rates and the limit of detection for each platform with respect to virus detection of a single infected mosquito and quantify the time interval of virus preservation on the cards. Assays evaluated included CDC protocols for real-time reverse transcriptase polymerase chain reaction (RT-PCR) for WNV and ZIKV, Pro-Lab Diagnostics ProAmpRT WNV loop-mediated amplification (LAMP) and ZIKV LAMP assays, and the Rapid Analyte Measurement Platform (RAMP) WNV assay. Real-time RT-PCR was the most sensitive assay and the most robust to viral RNA degradation over time. To maximize the detection of virus, honey cards should be left in the traps ≤1 d if using LAMP assays and ≤3 d if using real-time RT-PCR to detect viruses from field samples. The WNV RAMP assay, although effective for pool screening, lacks sensitivity required for honey card surveillance. Future studies may determine the minimum number of infectious mosquitoes required to feed on a honey card that would be reliably detected by the LAMP or RAMP assays.
Collapse
Affiliation(s)
- Kristen L Burkhalter
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Keenan Wiggins
- University of Florida IFAS, Florida Medical Entomology Laboratory, SE, Vero Beach, FL
| | - Nathan Burkett-Cadena
- University of Florida IFAS, Florida Medical Entomology Laboratory, SE, Vero Beach, FL
| | - Barry W Alto
- University of Florida IFAS, Florida Medical Entomology Laboratory, SE, Vero Beach, FL
| |
Collapse
|
36
|
Development of an improved RT-qPCR Assay for detection of Japanese encephalitis virus (JEV) RNA including a systematic review and comprehensive comparison with published methods. PLoS One 2018; 13:e0194412. [PMID: 29570739 PMCID: PMC5865736 DOI: 10.1371/journal.pone.0194412] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/02/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a major cause of encephalitis in Asia, and the commonest cause of mosquito-borne encephalitis worldwide. Detection of JEV RNA remains challenging due to the characteristic brief and low viraemia, with 0-25% of patients positive, and the mainstay of diagnosis remains detection of anti-JEV IgM antibody. METHODS We performed a systematic review of published RT-PCR protocols, and evaluated them in silico and in vitro alongside new primers and probes designed using a multiple genome alignment of all JEV strains >9,000nt from GenBank, downloaded from the NCBI website (November 2016). The new assays included pan-genotype and genotype specific assays targeting genotypes 1 and 3. RESULTS Ten RT-qPCR assays were compared, a pre-existing in-house assay, three published assays and six newly designed assays, using serial RNA dilutions. We selected three assays, one published and two novel assays, with the lowest limit of detection (LOD) for further optimisation and validation. One of the novel assays, detecting NS2A, showed the best results, with LOD approximately 4 copies/ reaction, and no cross-reaction on testing closely related viruses in the JEV serocomplex, West Nile Virus and St. Louis Virus. The optimised assays were validated in consecutive patients with central nervous system infections admitted to hospitals in Laos, testing paired CSF and serum samples. CONCLUSIONS We succeeded in developing a JEV specific RT-qPCR assay with at least 1 log10 improved sensitivity as compared to existing assays. Further evaluation is required, field-testing the assay in a larger group of patients.
Collapse
|
37
|
Prow NA, Edmonds JH, Williams DT, Setoh YX, Bielefeldt-Ohmann H, Suen WW, Hobson-Peters J, van den Hurk AF, Pyke AT, Hall-Mendelin S, Northill JA, Johansen CA, Warrilow D, Wang J, Kirkland PD, Doggett S, Andrade CC, Brault AC, Khromykh AA, Hall RA. Virulence and Evolution of West Nile Virus, Australia, 1960-2012. Emerg Infect Dis 2018; 22:1353-62. [PMID: 27433830 PMCID: PMC4982165 DOI: 10.3201/eid2208.151719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the absence of disease in humans and animals, virulent virus strains have been circulating for >30 years. Worldwide, West Nile virus (WNV) causes encephalitis in humans, horses, and birds. The Kunjin strain of WNV (WNVKUN) is endemic to northern Australia, but infections are usually asymptomatic. In 2011, an unprecedented outbreak of equine encephalitis occurred in southeastern Australia; most of the ≈900 reported cases were attributed to a newly emerged WNVKUN strain. To investigate the origins of this virus, we performed genetic analysis and in vitro and in vivo studies of 13 WNVKUN isolates collected from different regions of Australia during 1960–2012. Although no disease was recorded for 1984, 2000, or 2012, isolates collected during those years (from Victoria, Queensland, and New South Wales, respectively) exhibited levels of virulence in mice similar to that of the 2011 outbreak strain. Thus, virulent strains of WNVKUN have circulated in Australia for >30 years, and the first extensive outbreak of equine disease in Australia probably resulted from a combination of specific ecologic and epidemiologic conditions.
Collapse
|
38
|
Abstract
Mosquitoes are the most important vectors for arboviral human diseases across the world. Diseases such as Dengue Fever (DF), West Nile Virus (WNV), Yellow Fever (YF), Japanese Encephalitis (JE), Venezuelan Equine Encephalitis (VEE), and St. Louis Encephalitis (SLE), among others, have a deep impact in public health. Usually mosquitoes acquire the arboviral infection when they feed on viremic animals (birds or mammals), so their infection can be detected along the year or in short periods of time (seasons). All of this depends on the frequency and seasonality of the encounters between viremic animals and vectors.With the convergence of several phenomena like the increasing traveling of human populations, globalization of economy and more recently the global warming, the introduction of nonendemic arbovirus into new areas has become the current scenario. As examples of this new social and environmental frame we can mention the outbreak of West Nile Virus in North America in the late 1990s and more recently the outbreaks of chikungunya and Zika virus in the Americas. The present chapter deals with one of the first steps in the development of research studies and diagnosis programs, the surveillance of arboviruses in their vectors, the sampling design and mosquito trapping methods. The chapter also includes some important considerations and tips to be taken into account during the mosquito fieldwork.
Collapse
|
39
|
Hall-Mendelin S, Hewitson GR, Genge D, Burtonclay PJ, De Jong AJ, Pyke AT, van den Hurk AF. FTA Cards Facilitate Storage, Shipment, and Detection of Arboviruses in Infected Aedes aegypti Collected in Adult Mosquito Traps. Am J Trop Med Hyg 2017; 96:1241-1243. [PMID: 28500814 DOI: 10.4269/ajtmh.16-0981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractThe utility of applying infected Aedes aegypti to Flinders Technology Associates (FTA®) cards for storage, transport, and detection of dengue, Zika, and Barmah Forest viruses was assessed in laboratory-based experiments. The mosquitoes had been removed from Gravid Aedes Traps maintained under conditions of high temperature and humidity. RNA of all viruses could be detected in infected mosquitoes on FTA cards either individually or in pools with uninfected mosquitoes, and stored for up to 28 days. Importantly, there was only a minimal decrease in RNA levels in mosquitoes between days 0 and 28, indicating that viral RNA was relatively stable on the cards. FTA cards thus provide a mechanism for storing potentially infected mosquitoes collected in the field and transporting them to a central diagnostic facility for virus detection.
Collapse
Affiliation(s)
- Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Australia
| | - Glen R Hewitson
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Australia
| | - Doris Genge
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Australia
| | - Peter J Burtonclay
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Australia
| | - Amanda J De Jong
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Australia
| | - Alyssa T Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Australia
| |
Collapse
|
40
|
Flies EJ, Toi C, Weinstein P, Doggett SL, Williams CR. Converting Mosquito Surveillance to Arbovirus Surveillance with Honey-Baited Nucleic Acid Preservation Cards. Vector Borne Zoonotic Dis 2017; 15:397-403. [PMID: 26186511 DOI: 10.1089/vbz.2014.1759] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spatially and temporally accurate information about infectious mosquito distribution allows for pre-emptive public health interventions that can reduce the burden of mosquito-borne infections on human populations. However, the labile nature of arboviruses, the low prevalence of infection in mosquitoes, the expensive labor costs for mosquito identification and sorting, and the specialized equipment required for arbovirus testing can obstruct arbovirus surveillance efforts. The recently developed techniques of testing mosquito expectorate using honey-baited nucleic acid preservation cards or sugar bait stations allows a sensitive method of testing for infectious, rather than infected, mosquito vectors. Here we report the results from the first large-scale incorporation of honey-baited cards into an existing mosquito surveillance program. During 4 months of the peak virus season (January-April, 2014) for a total of 577 trap nights, we set CO2-baited encephalitis vector survey (EVS) light traps at 88 locations in South Australia. The collection container for the EVS trap was modified to allow for the placement of a honey-baited nucleic acid preservation card (FTA™ card) inside. After collection, mosquitoes were maintained in a humid environment and allowed access to the cards for 1 week. Cards were then analyzed for common endemic Australian arboviruses using a nested RT-PCR. Eighteen virus detections, including 11 Ross River virus, four Barmah Forest virus, and three Stratford virus (not previously reported from South Australia) were obtained. Our findings suggest that adding FTA cards to an existing mosquito surveillance program is a rapid and efficient way of detecting infectious mosquitoes with high spatial resolution.
Collapse
Affiliation(s)
- Emily J Flies
- 1 Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| | - Cheryl Toi
- 2 Department of Medical Entomology, Centre for Infectious Disease Microbiological Laboratory Services, Pathology West-ICPMR, Westmead Hospital , Westmead, Australia
| | - Philip Weinstein
- 3 School of Biological Sciences, University of Adelaide, and School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| | - Stephen L Doggett
- 2 Department of Medical Entomology, Centre for Infectious Disease Microbiological Laboratory Services, Pathology West-ICPMR, Westmead Hospital , Westmead, Australia
| | - Craig R Williams
- 1 Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| |
Collapse
|
41
|
Burkett-Cadena ND, Gibson J, Lauth M, Stenn T, Acevedo C, Xue RD, McNelly J, Northey E, Hassan HK, Fulcher A, Bingham AM, van Olphen J, van Olphen A, Unnasch TR. Evaluation of the Honey-Card Technique for Detection of Transmission of Arboviruses in Florida and Comparison With Sentinel Chicken Seroconversion. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1449-1457. [PMID: 27330092 DOI: 10.1093/jme/tjw106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
Zoonotic mosquito-borne viruses, such as the West Nile virus (WNV) and eastern equine encephalitis virus (EEEV), are major public health threats in the United States. Early detection of virus transmission and targeted vector management are critical to protect humans against these pathogens. Sentinel chickens and pool screening of mosquitoes, the most widely used methods of arbovirus early detection, have technical time-lags that compromise their early-detection value. The exploitation of sugar-feeding by trapped mosquitoes for arbovirus surveillance may represent a viable alternative to other methods. Here we compared effectiveness of sugar-impregnated nucleic-acid preserving substrates (SIPS) and sentinel chicken program for detecting WNV, EEEV, and St. Louis encephalitis virus in gravid traps, CO2-baited light traps, and resting traps at 10 locations in two Florida counties. In St. Johns County, comparable numbers of EEEV detections were made by SIPS traps (18) and sentinel chickens (22), but fewer WNV detections were made using SIPS (1) than sentinel chickens (13). In Volusia County, seven arbovirus detections were made via the sentinel chicken program (one EEEV and six WNV), whereas only one arbovirus detection (WNV) was made using SIPS. CO2-baited light traps captured >90% of total mosquitoes, yet yielded <30% of arbovirus detections. Resting traps and gravid traps captured a fraction of total mosquitoes, yet yielded roughly equivalent numbers of arbovirus detections, as did light traps. Challenges to successful deployment of SIPS include optimization of traps for collecting all vector species, increasing sugar-feeding rates of trapped vectors, and developing tractable methods for arbovirus detection.
Collapse
Affiliation(s)
- Nathan D Burkett-Cadena
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th St. SE, Vero Beach, FL 32962 (; ; )
| | - Jennifer Gibson
- Anastasia Mosquito Control District, 500 Old Beach Road, St. Augustine, FL 32080 (; ; )
| | - Miranda Lauth
- Volusia County Mosquito Control, 801 South St, New Smyrna Beach, FL 32168 (; ; )
| | - Tanise Stenn
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th St. SE, Vero Beach, FL 32962 (; ; )
| | - Carolina Acevedo
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th St. SE, Vero Beach, FL 32962 (; ; )
| | - Rui-de Xue
- Anastasia Mosquito Control District, 500 Old Beach Road, St. Augustine, FL 32080 (; ; )
| | - James McNelly
- Volusia County Mosquito Control, 801 South St, New Smyrna Beach, FL 32168 (; ; )
| | - Edward Northey
- Volusia County Mosquito Control, 801 South St, New Smyrna Beach, FL 32168 (; ; )
| | - Hassan K Hassan
- Global Health Infectious Disease Program, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612 (; ; ; ; )
| | - Ali Fulcher
- Anastasia Mosquito Control District, 500 Old Beach Road, St. Augustine, FL 32080 (; ; )
| | - Andrea M Bingham
- Global Health Infectious Disease Program, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612 (; ; ; ; )
- Present Address: Florida Department of Health, Division of Disease Control and Health Protection, Bureau of Epidemiology, 4052 Bald Cypress Way, Bin # A12, Tallahassee, Florida 32399-1710, and
| | - Jose van Olphen
- Global Health Infectious Disease Program, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612 (; ; ; ; )
| | - Alberto van Olphen
- Global Health Infectious Disease Program, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612 (; ; ; ; )
- Present Address: Clemson University, Clemson Veterinary Diagnostic Center, PO Box 102406, Columbia, South Carolina 29224-2406
| | - Thomas R Unnasch
- Global Health Infectious Disease Program, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612 (; ; ; ; )
| |
Collapse
|
42
|
Girod R, Guidez A, Carinci R, Issaly J, Gaborit P, Ferrero E, Ardillon V, Fontaine A, Dusfour I, Briolant S. Detection of Chikungunya Virus Circulation Using Sugar-Baited Traps during a Major Outbreak in French Guiana. PLoS Negl Trop Dis 2016; 10:e0004876. [PMID: 27606960 PMCID: PMC5015851 DOI: 10.1371/journal.pntd.0004876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Romain Girod
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
- * E-mail:
| | - Amandine Guidez
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Romuald Carinci
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Jean Issaly
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Pascal Gaborit
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Emma Ferrero
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Vanessa Ardillon
- Cellule de l’Institut de Veille Sanitaire en Région Antilles-Guyane, Cayenne, French Guiana
| | - Albin Fontaine
- Groupe Interactions Virus-Insectes, Institut Pasteur, Paris, France
- Equipe Résidente de Recherche d’Infectiologie Tropicale, Division Expertise, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Unité de Recherche Associée 3012, Centre National de la Recherche Scientifique, Paris, France
| | - Isabelle Dusfour
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Sébastien Briolant
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- Direction Interarmées du Service de Santé en Guyane, Cayenne, French Guiana
| |
Collapse
|
43
|
Suhrbier A, Devine G. Chikungunya virus, risks and responses for Australia. Aust N Z J Public Health 2016; 40:207-9. [PMID: 27028514 DOI: 10.1111/1753-6405.12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Queensland.,Australian Infectious Diseases Research Centre, University of Queensland & QIMR Berghofer, Queensland
| | - Greg Devine
- Mosquito Control Group, QIMR Berghofer Medical Research Institute, Queensland.,Australian Infectious Diseases Research Centre, University of Queensland & QIMR Berghofer, Queensland
| |
Collapse
|
44
|
Comparative study on the effectiveness of different mosquito traps in arbovirus surveillance with a focus on WNV detection. Acta Trop 2016; 153:93-100. [PMID: 26466982 DOI: 10.1016/j.actatropica.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 11/21/2022]
Abstract
The selection of the ideal trap for arbovirus surveillance is an issue of primary importance to increase the sensitivity of virus detection and the cost-effectiveness of the entomological surveillance. During the summer 2011, the effectiveness of five types of mosquito traps (CDC gravid trap, CO2(-)baited trap, BG-Sentinel™ and two experimental prototypes) to attract females potentially infected with West Nile virus were assessed. The study was carried out in three natural wetland sites located in the Emilia-Romagna Region (Northern Italy), using a Latin square scheme. Single night collections of adult females were performed and determination of species and physiological state (gravid, nulliparous or parous) was made upon return to the laboratory. The species most frequently collected in the gravid trap was Culex pipiens sl. L., being gravid females the large majority of the individuals. Species diversity was much higher in CO2(-)baited traps, which may therefore enable a more comprehensive description of the vector species composition and their role in arboviruses circulation. Our findings indicate that gravid traps can be a valid tool and should be integrated in the West Nile virus surveillance system in the Emilia-Romagna region, mainly based on collections made with CO2-baited traps.
Collapse
|
45
|
Jameson SB, Wesson DM. Field Surveillance Methods for West Nile Virus. Methods Mol Biol 2016; 1435:165-174. [PMID: 27188558 DOI: 10.1007/978-1-4939-3670-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surveillance of West Nile virus (WNV) in populations of mosquitoes or sentinel animals is of primary importance when assessing the risks to human health posed by naturally circulating WNV. In this chapter we focus on methods for detection of both WNV and its enzootic transmission. Methods for virus detection include CDC mini light trap, CDC gravid trap, and dead bird surveillance. Methods for transmission detection include passive box traps, chicken-baited traps, and sentinel chickens.
Collapse
Affiliation(s)
- Samuel B Jameson
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, JBJ Building, Room 509, 1430 Tulane Ave., SL-17, New Orleans, LA, 70119, USA
| | - Dawn M Wesson
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, JBJ Building, Room 509, 1430 Tulane Ave., SL-17, New Orleans, LA, 70119, USA.
| |
Collapse
|
46
|
Steiger DBM, Ritchie SA, Laurance SGW. Land Use Influences Mosquito Communities and Disease Risk on Remote Tropical Islands: A Case Study Using a Novel Sampling Technique. Am J Trop Med Hyg 2015; 94:314-21. [PMID: 26711512 DOI: 10.4269/ajtmh.15-0161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 11/08/2015] [Indexed: 11/07/2022] Open
Abstract
Land use changes, such as deforestation and urbanization, can influence interactions between vectors, hosts, and pathogens. The consequences may result in the appearance and rise of mosquito-borne diseases, especially in remote tropical regions. Tropical regions can be the hotspots for the emergence of diseases due to high biological diversity and complex species interactions. Furthermore, frontier areas are often haphazardly surveyed as a result of inadequate or expensive sampling techniques, which limit early detection and medical intervention. We trialed a novel sampling technique of nonpowered traps and a carbon dioxide attractant derived from yeast and sugar to explore how land use influences mosquito communities on four remote, tropical islands in the Australian Torres Strait. Using this technique, we collected > 11,000 mosquitoes from urban and sylvan habitats. We found that human land use significantly affected mosquito communities. Mosquito abundances and diversity were higher in sylvan habitats compared with urban areas, resulting in significantly different community compositions between the two habitats. An important outcome of our study was determining that there were greater numbers of disease-vectoring species associated with human habitations. On the basis of these findings, we believe that our novel sampling technique is a realistic tool for assessing mosquito communities in remote regions.
Collapse
Affiliation(s)
- Dagmar B Meyer Steiger
- Centre for Tropical Environmental and Sustainability Studies, James Cook University, Cairns, Queensland, Australia; College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia
| | - Scott Alex Ritchie
- Centre for Tropical Environmental and Sustainability Studies, James Cook University, Cairns, Queensland, Australia; College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Studies, James Cook University, Cairns, Queensland, Australia; College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
47
|
Johnson BJ, Kerlin T, Hall-Mendelin S, van den Hurk AF, Cortis G, Doggett SL, Toi C, Fall K, McMahon JL, Townsend M, Ritchie SA. Development and field evaluation of the sentinel mosquito arbovirus capture kit (SMACK). Parasit Vectors 2015; 8:509. [PMID: 26444264 PMCID: PMC4595114 DOI: 10.1186/s13071-015-1114-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/28/2015] [Indexed: 11/21/2022] Open
Abstract
Background Although sentinel animals are used successfully throughout the world to monitor arbovirus activity, ethical considerations and cross-reactions in serological assays highlight the importance of developing viable alternatives. Here we outline the development of a passive sentinel mosquito arbovirus capture kit (SMACK) that allows for the detection of arboviruses on honey-baited nucleic acid preservation cards (Flinders Technology Associates; FTA®) and has a similar trap efficacy as standard light traps in our trials. Methods The trap efficacy of the SMACK was assessed against Centers for Disease Control and Prevention (CDC) miniature light traps (standard and ultraviolet) and the Encephalitis Vector Survey (EVS) trap in a series of Latin square field trials conducted in North Queensland, Australia. The ability of the SMACK to serve as a sentinel arbovirus surveillance tool was assessed in comparison to Passive Box Traps (PBT) during the 2014 wet season in the Cairns, Australia region and individually in the remote Northern Peninsula Area (NPA) of Australia during the 2015 wet season. Results The SMACK caught comparable numbers of mosquitoes to both CDC light traps (mean capture ratio 0.86: 1) and consistently outperformed the EVS trap (mean capture ratio 2.28: 1) when CO2 was supplied by either a gas cylinder (500 ml/min) or dry ice (1 kg). During the 2014 arbovirus survey, the SMACK captured significantly (t6 = 2.1, P = 0.04) more mosquitoes than the PBT, and 2 and 1 FTA® cards were positive for Ross River virus and Barmah Forest virus, respectively, while no arboviruses were detected from PBTs. Arbovirus activity was detected at all three surveillance sites during the NPA survey in 2015 and ca. 27 % of FTA® cards tested positive for either Murray Valley encephalitis virus (2 detections), West Nile virus (Kunjin subtype; 13 detections), or both viruses on two occasions. Conclusions These results demonstrate that the SMACK is a versatile, simple, and effective passive arbovirus surveillance tool that may also be used as a traditional overnight mosquito trap and has the potential to become a practical substitute for sentinel animal programs.
Collapse
Affiliation(s)
- Brian J Johnson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, McGregor Rd, Cairns, 4878, QLD, Australia. .,Australian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.
| | - Tim Kerlin
- Department of Agriculture, 114 Catalina Crescent, Cairns International Airport, Cairns, QLD, 4870, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, 4108, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, 4108, Australia
| | - Giles Cortis
- Private Contracting Engineer, Canberra, ACT, 2600, Australia
| | - Stephen L Doggett
- Department of Medical Entomology, Pathology West-ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Cheryl Toi
- Department of Medical Entomology, Pathology West-ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ken Fall
- Bioquip Products, Inc., 2321 E Gladwick St., Rancho Dominguez, Compton, CA, 90220, USA
| | - Jamie L McMahon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, 4108, Australia
| | - Michael Townsend
- College of Public Health, Medical and Veterinary Sciences, James Cook University, McGregor Rd, Cairns, 4878, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, McGregor Rd, Cairns, 4878, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| |
Collapse
|
48
|
Claflin SB, Webb CE. Ross River Virus: Many Vectors and Unusual Hosts Make for an Unpredictable Pathogen. PLoS Pathog 2015; 11:e1005070. [PMID: 26335937 PMCID: PMC4559463 DOI: 10.1371/journal.ppat.1005070] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Suzi B. Claflin
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Cameron E. Webb
- Department of Medical Entomology, University of Sydney and Pathology West—ICPMR Westmead, Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail:
| |
Collapse
|
49
|
Biodistribution and trafficking of hydrogel nanoparticles in adult mosquitoes. PLoS Negl Trop Dis 2015; 9:e0003745. [PMID: 25996505 PMCID: PMC4440717 DOI: 10.1371/journal.pntd.0003745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background Nanotechnology offers great potential for molecular genetic investigations and potential control of medically important arthropods. Major advances have been made in mammalian systems to define nanoparticle (NP) characteristics that condition trafficking and biodistribution of NPs in the host. Such information is critical for effective delivery of therapeutics and molecules to cells and organs, but little is known about biodistribution of NPs in mosquitoes. Methodology/Principal Findings PRINT technology was used to construct a library of fluorescently labeled hydrogel NPs of defined size, shape, and surface charge. The biodistribution (organ, tissue, and cell tropisms and trafficking kinetics) of positively and negatively charged 200 nm x 200 nm, 80 nm x 320 nm, and 80 nm x 5000 nm NPs was determined in adult Anopheles gambiae mosquitoes as a function of the route of challenge (ingestion, injection or contact) using whole body imaging and fluorescence microscopy. Mosquitoes readily ingested NPs in sugar solution. Whole body fluorescence imaging revealed substantial NP accumulation (load) in the alimentary tracts of the adult mosquitoes, with the greatest loads in the diverticula, cardia and foregut. Positively and negatively charged NPs differed in their biodistribution and trafficking. Following oral challenge, negatively charged NPs transited the alimentary tract more rapidly than positively charged NPs. Following contact challenge, negatively charged NPs trafficked more efficiently in alimentary tract tissues. Following parenteral challenge, positively and negatively charged NPs differed in tissue tropisms and trafficking in the hemocoel. Injected NPs were also detected in cardia/foregut, suggesting trafficking of NPs from the hemocoel into the alimentary tract. Conclusions/Significance Herein we have developed a tool box of NPs with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector lethal cargoes for mosquito control. Emerging insecticide resistance in disease vectors is of great public health concern. Discovery of new targets and novel strategies for insecticidal interventions to control vector borne diseases is a public health imperative. Nanotechnology offers great potential for molecular genetic investigations and for delivery of effector molecules for control of disease vectors. We have developed a tool box of hydrogel nanoparticles (NPs) with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector lethal cargoes to adult mosquitoes. Nanotechnology will likely be useful for molecular investigations and potential control of the arthropod vectors of other neglected tropical diseases.
Collapse
|
50
|
O’Brien CA, Hobson-Peters J, Yam AWY, Colmant AMG, McLean BJ, Prow NA, Watterson D, Hall-Mendelin S, Warrilow D, Ng ML, Khromykh AA, Hall RA. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl Trop Dis 2015; 9:e0003629. [PMID: 25799391 PMCID: PMC4370754 DOI: 10.1371/journal.pntd.0003629] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/19/2015] [Indexed: 12/15/2022] Open
Abstract
Mosquito-borne viruses encompass a range of virus families, comprising a number of significant human pathogens (e.g., dengue viruses, West Nile virus, Chikungunya virus). Virulent strains of these viruses are continually evolving and expanding their geographic range, thus rapid and sensitive screening assays are required to detect emerging viruses and monitor their prevalence and spread in mosquito populations. Double-stranded RNA (dsRNA) is produced during the replication of many of these viruses as either an intermediate in RNA replication (e.g., flaviviruses, togaviruses) or the double-stranded RNA genome (e.g., reoviruses). Detection and discovery of novel viruses from field and clinical samples usually relies on recognition of antigens or nucleotide sequences conserved within a virus genus or family. However, due to the wide antigenic and genetic variation within and between viral families, many novel or divergent species can be overlooked by these approaches. We have developed two monoclonal antibodies (mAbs) which show co-localised staining with proteins involved in viral RNA replication in immunofluorescence assay (IFA), suggesting specific reactivity to viral dsRNA. By assessing binding against a panel of synthetic dsRNA molecules, we have shown that these mAbs recognise dsRNA greater than 30 base pairs in length in a sequence-independent manner. IFA and enzyme-linked immunosorbent assay (ELISA) were employed to demonstrate detection of a panel of RNA viruses from several families, in a range of cell types. These mAbs, termed monoclonal antibodies to viral RNA intermediates in cells (MAVRIC), have now been incorporated into a high-throughput, economical ELISA-based screening system for the detection and discovery of viruses from mosquito populations. Our results have demonstrated that this simple system enables the efficient detection and isolation of a range of known and novel viruses in cells inoculated with field-caught mosquito samples, and represents a rapid, sequence-independent, and cost-effective approach to virus discovery.
Collapse
Affiliation(s)
- Caitlin A. O’Brien
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alice Wei Yee Yam
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Agathe M. G. Colmant
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Breeanna J. McLean
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Natalie A. Prow
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - Mah-Lee Ng
- Department of Microbiology, National University Health System, National University of Singapore, Singapore
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Disease Research Centre, School of Chemical and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|