1
|
Tapia G, Fuenzalida S, Rivera C, Apablaza P, Silva M, Jaimovich E, Juretić N. L-Arginine Activates the Neuregulin-1/ErbB Receptor Signaling Pathway and Increases Utrophin mRNA Levels in C2C12 Cells. Biochem Res Int 2025; 2025:2171745. [PMID: 40224962 PMCID: PMC11991828 DOI: 10.1155/bri/2171745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 04/15/2025] Open
Abstract
L-arginine induces the expression of utrophin in skeletal muscle cells, so it has been proposed as a pharmacological treatment to attenuate the symptoms of Duchenne muscular dystrophy (DMD). On the other hand, it has been described that one of the pathways that participates in the expression of utrophin in muscle is the Neuregulin-1 (NRG-1)/ErbB receptors pathway. Several studies have postulated that disintegrin and metalloprotease-17 (ADAM17) causes the proteolytic processing of NRG of transmembrane, allowing the release of NRG to the medium, which when joining its ErbB receptor activates the signaling pathway that triggers utrophin transcription. The aim of this study was to evaluate the effect of L-arginine in the activation of NRG-1/ErbB pathway and utrophin mRNA levels in C2C12 cells, and the participation of ADAM17 in this process. Our results indicate that L-arginine induces phosphorylation of ErbB2 and increases utrophin mRNA levels in C2C12 myotubes, with a maximum increase of 2-fold at 4 h post-stimulation. This effect is not observed when the myotubes are stimulated in the presence of GM6001 (general metalloprotease inhibitor) or PD-158780 (specific inhibitor of ErbB receptor phosphorylation). Experiments performed by flow cytometry suggest that L-arginine stimulates ADAM17 activation in our study model. Furthermore, immunofluorescence analysis supports our findings that L-arginine stimulates ADAM17 increase in treated myotubes. However, our results using pharmacological inhibitors suggest that ADAM17 does not participate in utrophin expression in C2C12 cells treated with L-arginine. The results obtained help to clarify the mechanism of action of L-arginine in the expression of utrophin in muscle cells, which will contribute to the design of new therapeutic strategies in pathologies such as DMD.
Collapse
Affiliation(s)
- Gladys Tapia
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Sebastián Fuenzalida
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Constanza Rivera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Pía Apablaza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Mónica Silva
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Enrique Jaimovich
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Nevenka Juretić
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
2
|
Ham AS, Lin S, Tse A, Thürkauf M, McGowan TJ, Jörin L, Oliveri F, Rüegg MA. Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance. Nat Commun 2025; 16:2220. [PMID: 40044687 PMCID: PMC11882927 DOI: 10.1038/s41467-025-57487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
The neuromuscular junction (NMJ) is the synapse formed between motor neurons and skeletal muscle fibers. Its stability relies on the continued expression of genes in a subset of myonuclei, called NMJ myonuclei. Here, we use single-nuclei RNA-sequencing (snRNA-seq) to identify numerous NMJ-specific transcripts. To elucidate how the NMJ transcriptome is regulated, we also performed snRNA-seq on sciatic nerve transected, botulinum toxin injected, and Musk knockout muscles. The data show that NMJ gene expression is not only driven by agrin-Lrp4/MuSK signaling but is also affected by electrical activity and trophic factors other than agrin. By selecting the three NMJ genes Etv4, Lrtm1, and Pdzrn4, we further characterize novel contributors to NMJ stability and function. AAV-mediated overexpression shows that Etv4 is sufficient to upregulate the expression of -50% of the NMJ genes in non-synaptic myonuclei, while AAV-CRISPR/Cas9-mediated muscle-specific knockout of Pdzrn4 induces NMJ fragmentation. Further investigation of Pdzrn4 revealed that it localizes to the Golgi apparatus and interacts with MuSK protein. Collectively, our data provide a rich resource of NMJ transcripts, highlight the importance of ETS transcription factors at the NMJ, and suggest a novel pathway for NMJ post-translational modifications.
Collapse
Affiliation(s)
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alice Tse
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Lena Jörin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
3
|
Arif S, Larochelle S, Trudel B, Gounou C, Bordeleau F, Brisson AR, Moulin VJ. The diffusion of normal skin wound myofibroblast-derived microvesicles differs according to matrix composition. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e131. [PMID: 38938680 PMCID: PMC11080821 DOI: 10.1002/jex2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024]
Abstract
Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information over long distances, affecting normal and pathological processes including skin wound healing. However, the diffusion of MVs into tissues can be impeded by the extracellular matrix (ECM). We investigated the diffusion of dermal wound myofibroblast-derived MVs into the ECM by using hydrogels composed of different ECM molecules such as fibrin, type III collagen and type I collagen that are present during the healing process. Fluorescent MVs mixed with hydrogels were employed to detect MV diffusion using fluorometric methods. Our results showed that MVs specifically bound type I collagen and diffused freely out of fibrin and type III collagen. Further analysis using flow cytometry and specific inhibitors revealed that MVs bind to type I collagen via the α2β1 integrin. These data demonstrate that MV transport depends on the composition of the wound environment.
Collapse
Affiliation(s)
- Syrine Arif
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
| | - Sébastien Larochelle
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
| | - Benjamin Trudel
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Centre de Recherche sur le Cancer de l'Université Laval QuebecQuebec CityCanada
| | | | - François Bordeleau
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Centre de Recherche sur le Cancer de l'Université Laval QuebecQuebec CityCanada
| | | | - Véronique J. Moulin
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuebec CityCanada
| |
Collapse
|
4
|
Wu R, Song Y, Wu S, Chen Y. Promising therapeutic approaches of utrophin replacing dystrophin in the treatment of Duchenne muscular dystrophy. FUNDAMENTAL RESEARCH 2022; 2:885-893. [PMID: 38933385 PMCID: PMC11197810 DOI: 10.1016/j.fmre.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a serious genetic neuromuscular rare disease that is prevalent and caused by the mutation/deletion of the X-linked DMD gene that encodes dystrophin. Utrophin is a dystrophin homologous protein on human chromosome 6. Dystrophin and utrophin are highly homologous. They can recruit many dystrophin-glycoprotein complex (DGC)-related proteins and co-localize at the sarcolemma in the early stage of human embryonic development. Moreover, utrophin is overexpressed naturally at the mature myofiber sarcolemma in DMD patients. Therefore, utrophin is considered the most promising homologous protein to replace dystrophin. This review summarizes various modulating drugs and gene therapy approaches for utrophin replacement. As a universal method to treat DMD disease, utrophin has a promising therapeutic prospect and deserves further investigation.
Collapse
Affiliation(s)
- Ruo Wu
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yafeng Song
- Institute of Sport and Health Science, Beijing Sport University, No.48 Xinxi Road, Haidian District, Beijing 100084, China
| | - Shiwen Wu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
5
|
Jing H, Chen P, Hui T, Yu Z, Zhou J, Fei E, Wang S, Ren D, Lai X, Li B. Synapse-specific Lrp4 mRNA enrichment requires Lrp4/MuSK signaling, muscle activity and Wnt non-canonical pathway. Cell Biosci 2021; 11:105. [PMID: 34090516 PMCID: PMC8180081 DOI: 10.1186/s13578-021-00619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background The neuromuscular junction (NMJ) is a peripheral synapse critical to muscle contraction. Like acetylcholine receptors (AChRs), many essential proteins of NMJ are extremely concentrated at the postjunctional membrane. However, the mechanisms of synapse-specific concentration are not well understood; furthermore, it is unclear whether signaling molecules critical to NMJ formation and maintenance are also locally transcribed. Results We studied the β-gal activity encoded by a lacZ cassette driven by the promoter of the Lrp4 gene. As reported for Lrp4 mRNA, β-gal was in the central region in embryonic muscles and at the NMJ after its formation. However, β-gal was no longer in the central areas of muscle fibers in Lrp4 or MuSK mutant mice, indicating a requirement of Lrp4/MuSK signaling. This phenotype could be rescued by transgenic expression of LRP4 with a transmembrane domain but not soluble ECD in Lrp4 mutant mice. β-gal and AChR clusters were distributed in a broader region in lacZ/ECD than that of heterozygous lacZ/+ mice, indicating an important role of the transmembrane domain in Lrp4 signaling. Synaptic β-gal activity became diffused after denervation or treatment with µ-conotoxin, despite its mRNA was increased, indicating synaptic Lrp4 mRNA enrichment requires muscle activity. β-gal was also diffused in aged mice but became re-concentrated after muscle stimulation. Finally, Lrp4 mRNA was increased in C2C12 myotubes by Wnt ligands in a manner that could be inhibited by RKI-1447, an inhibitor of ROCK in Wnt non-canonical signaling. Injecting RKI-1447 into muscles of adult mice diminished Lrp4 synaptic expression. Conclusions This study demonstrates that synapse-specific enrichment of Lrp4 mRNA requires a coordinated interaction between Lrp4/MuSK signaling, muscle activity, and Wnt non-canonical signaling. Thus, the study provides a new mechanism for Lrp4 mRNA enrichment. It also provides a potential target for the treatment of NMJ aging and other NMJ-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00619-z.
Collapse
Affiliation(s)
- Hongyang Jing
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Peng Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tiankun Hui
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zheng Yu
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jin Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Human Aging Research Institute, Nanchang University, Nanchang, 330031, China
| | - Erkang Fei
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shunqi Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongyan Ren
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Baoming Li
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China. .,Department of Psychology and Institute of Brain Science, School of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
6
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 2020; 735:135163. [PMID: 32553805 DOI: 10.1016/j.neulet.2020.135163] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
Gene expression in skeletal muscle is profoundly changed upon innervation. 50 years of research on the neuromuscular system have greatly increased our understanding of the mechanisms underlying these changes. By controlling the expression and the activity of key transcription factors, nerve-evoked electrical activity in the muscle fiber positively and negatively regulates the expression of hundreds of genes. Innervation also compartmentalizes gene expression into synaptic and extra-synaptic regions of muscle fibers. In addition, electrically-evoked, release of several factors (e.g. Agrin, Neuregulin, Wnt ligands) induce the clustering of synaptic proteins and of a few muscle nuclei. The sub-synaptic nuclei acquire a particular chromatin organization and develop a specific gene expression program dedicated to building and maintaining a functional neuromuscular synapse. Deciphering synapse-specific, transcriptional regulation started with the identification of the N-box, a six base pair element present in the promoters of the acetylcholine δ and ε subunits. Most genes with synapse-specific expression turned out to contain at least one N-box in their promoters. The N-box is a response element for the synaptic signals Agrin and Neuregulins as well as a binding site for transcription factors of the Ets family. The Ets transcription factors GABP and Erm are implicated in the activation of post-synaptic genes via the N-box. In muscle fibers, Erm expression is restricted to the NMJ whereas GABP is expressed in all muscle nuclei but phosphorylated and activated by the JNK and ERK signaling pathways in response to Agrin and Neuregulins. Post-synaptic gene expression also correlates with chromatin modifications at the genomic level as evidenced by the strong enrichment of decondensed chromatin and acetylated histones in sub-synaptic nuclei. Here we discuss these transcriptional pathways for synaptic specialization at NMJs.
Collapse
Affiliation(s)
- Edwige Belotti
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France
| | - Laurent Schaeffer
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France; Centre De Biotechnologie Cellulaire, Hospices Civils De Lyon, Lyon, France.
| |
Collapse
|
8
|
Péladeau C, Adam N, Bronicki LM, Coriati A, Thabet M, Al-Rewashdy H, Vanstone J, Mears A, Renaud JM, Holcik M, Jasmin BJ. Identification of therapeutics that target eEF1A2 and upregulate utrophin A translation in dystrophic muscles. Nat Commun 2020; 11:1990. [PMID: 32332749 PMCID: PMC7181625 DOI: 10.1038/s41467-020-15971-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Up-regulation of utrophin in muscles represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy. We previously demonstrated that eEF1A2 associates with the 5’UTR of utrophin A to promote IRES-dependent translation. Here, we examine whether eEF1A2 directly regulates utrophin A expression and identify via an ELISA-based high-throughput screen, FDA-approved drugs that upregulate both eEF1A2 and utrophin A. Our results show that transient overexpression of eEF1A2 in mouse muscles causes an increase in IRES-mediated translation of utrophin A. Through the assessment of our screen, we reveal 7 classes of FDA-approved drugs that increase eEF1A2 and utrophin A protein levels. Treatment of mdx mice with the 2 top leads results in multiple improvements of the dystrophic phenotype. Here, we report that IRES-mediated translation of utrophin A via eEF1A2 is a critical mechanism of regulating utrophin A expression and reveal the potential of repurposed drugs for treating DMD via this pathway. One potential approach for the treatment of Duchenne muscular dysrophy is to increase expression of the dystrophin homolog utrophin. Here, the authors show that eEF1A2 regulates utrophin expression, and show that 2 FDA-approved drugs upregulate eEIF1A2 and utrophin level in mice, leading to improvement of the dystrophic phenotype.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Nadine Adam
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Adèle Coriati
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Hasanen Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jason Vanstone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Alan Mears
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
9
|
Gajendran N. The root cause of Duchenne muscular dystrophy is the lack of dystrophin in smooth muscle of blood vessels rather than in skeletal muscle per se. F1000Res 2018. [DOI: 10.12688/f1000research.15889.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:The dystrophin protein is part of the dystrophin associated protein complex (DAPC) linking the intracellular actin cytoskeleton to the extracellular matrix. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy (D/BMD). Neuronal nitric oxide synthase associates with dystrophin in the DAPC to generate the vasodilator nitric oxide (NO). Systemic dystrophin deficiency, such as in D/BMD, results in muscle ischemia, injury and fatigue during exercise as dystrophin is lacking, affecting NO production and hence vasodilation. The role of neuregulin 1 (NRG) signaling through the epidermal growth factor family of receptors ERBB2 and ERBB4 in skeletal muscle has been controversial, but it was shown to phosphorylate α-dystrobrevin 1 (α-DB1), a component of the DAPC. The aim of this investigation was to determine whether NRG signaling had a functional role in muscular dystrophy.Methods:Primary myoblasts (muscle cells) were isolated from conditional knock-out mice containing lox P flanked ERBB2 and ERBB4 receptors, immortalized and exposed to Cre recombinase to obtainErbb2/4double knock-out (dKO) myoblasts where NRG signaling would be eliminated. Myotubes, thein vitroequivalent of muscle fibers, formed by fusion of the lox P flankedErbb2/4myoblasts as well as theErbb2/4dKO myoblasts were then used to identify changes in dystrophin expression.Results:Elimination of NRG signaling resulted in the absence of dystrophin demonstrating that it is essential for dystrophin expression. However, unlike the DMD mouse model mdx, with systemic dystrophin deficiency, lack of dystrophin in skeletal muscles ofErbb2/4dKO mice did not result in muscular dystrophy. In these mice, ERBB2/4, and thus dystrophin, is still expressed in the smooth muscle of blood vessels allowing normal blood flow through vasodilation during exercise.Conclusions:Dystrophin deficiency in smooth muscle of blood vessels, rather than in skeletal muscle, is the main cause of disease progression in DMD.
Collapse
|
10
|
Juretić N, Díaz J, Romero F, González G, Jaimovich E, Riveros N. Interleukin-6 and neuregulin-1 as regulators of utrophin expression via the activation of NRG-1/ErbB signaling pathway in mdx cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:770-780. [DOI: 10.1016/j.bbadis.2016.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
|
11
|
Ghosh T, Basu U. Cis-Acting Sequence Elements and Upstream Open Reading Frame in Mouse Utrophin-A 5'-UTR Repress Cap-Dependent Translation. PLoS One 2015; 10:e0134809. [PMID: 26230628 PMCID: PMC4521823 DOI: 10.1371/journal.pone.0134809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Utrophin, the autosomal homologue of dystrophin can functionally compensate for dystrophin deficiency. Utrophin upregulation could therefore be a therapeutic strategy in Duchenne Muscular Dystrophy (DMD) that arises from mutation in dystrophin gene. In contrast to its transcriptional regulation, mechanisms operating at post-transcriptional level of utrophin expression have not been well documented. Although utrophin-A 5'-UTR has been reported with internal ribosome entry site (IRES), its inhibitory effect on translation is also evident. In the present study we therefore aimed to compare relative contribution of cap-independent and cap-dependent translation with mouse utrophin-A 5'-UTR through m7G-capped and A-capped mRNA transfection based reporter assay. Our results demonstrate that cap-independent translation with utrophin-A 5'-UTR is not as strong as viral IRES. However, cap-independent mode has significant contribution as cap-dependent translation is severely repressed with utrophin-A 5'-UTR. We further identified two sequence elements and one upstream open reading frame in utrophin-A 5'-UTR responsible for repression. The repressor elements in utrophin-A 5'-UTR may be targeted for utrophin upregulation.
Collapse
Affiliation(s)
- Trinath Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, West Bengal, India
| | - Utpal Basu
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, West Bengal, India
- * E-mail:
| |
Collapse
|
12
|
Gintjee TJJ, Magh ASH, Bertoni C. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics. BIOLOGY 2014; 3:752-80. [PMID: 25405319 PMCID: PMC4280510 DOI: 10.3390/biology3040752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023]
Abstract
Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.
Collapse
Affiliation(s)
- Thomas J J Gintjee
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Alvin S H Magh
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Zhu W, Swaminathan G, Plowey ED. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes. Autophagy 2014; 10:1622-36. [PMID: 25046113 DOI: 10.4161/auto.29454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.
Collapse
Affiliation(s)
- Wan Zhu
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| | - Gayathri Swaminathan
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| | - Edward D Plowey
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| |
Collapse
|
14
|
Functions of the podocyte proteins nephrin and Neph3 and the transcriptional regulation of their genes. Clin Sci (Lond) 2013; 126:315-28. [DOI: 10.1042/cs20130258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nephrin and Neph-family proteins [Neph1–3 (nephrin-like 1–3)] belong to the immunoglobulin superfamily of cell-adhesion receptors and are expressed in the glomerular podocytes. Both nephrin and Neph-family members function in cell adhesion and signalling, and thus regulate the structure and function of podocytes and maintain normal glomerular ultrafiltration. The expression of nephrin and Neph3 is altered in human proteinuric diseases emphasizing the importance of studying the transcriptional regulation of the nephrin and Neph3 genes NPHS1 (nephrosis 1, congenital, Finnish type) and KIRREL2 (kin of IRRE-like 2) respectively. The nephrin and Neph3 genes form a bidirectional gene pair, and they share transcriptional regulatory mechanisms. In the present review, we summarize the current knowledge of the functions of nephrin and Neph-family proteins and transcription factors and agents that control nephrin and Neph3 gene expression.
Collapse
|
15
|
D'Arcy CE, Feeney SJ, McLean CA, Gehrig SM, Lynch GS, Smith JE, Cowling BS, Mitchell CA, McGrath MJ. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Hum Mol Genet 2013; 23:618-36. [PMID: 24087791 DOI: 10.1093/hmg/ddt449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Utrophin is a potential therapeutic target for the fatal muscle disease, Duchenne muscular dystrophy (DMD). In adult skeletal muscle, utrophin is restricted to the neuromuscular and myotendinous junctions and can compensate for dystrophin loss in mdx mice, a mouse model of DMD, but requires sarcolemmal localization. NFATc1-mediated transcription regulates utrophin expression and the LIM protein, FHL1 which promotes muscle hypertrophy, is a transcriptional activator of NFATc1. By generating mdx/FHL1-transgenic mice, we demonstrate that FHL1 potentiates NFATc1 activation of utrophin to ameliorate the dystrophic pathology. Transgenic FHL1 expression increased sarcolemmal membrane stability, reduced muscle degeneration, decreased inflammation and conferred protection from contraction-induced injury in mdx mice. Significantly, FHL1 expression also reduced progressive muscle degeneration and fibrosis in the diaphragm of aged mdx mice. FHL1 enhanced NFATc1 activation of the utrophin promoter and increased sarcolemmal expression of utrophin in muscles of mdx mice, directing the assembly of a substitute utrophin-glycoprotein complex, and revealing a novel FHL1-NFATc1-utrophin signaling axis that can functionally compensate for dystrophin.
Collapse
Affiliation(s)
- Colleen E D'Arcy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med 2013; 19:614-24. [PMID: 23891277 DOI: 10.1016/j.molmed.2013.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD.
Collapse
|
17
|
Amirouche A, Tadesse H, Lunde JA, Bélanger G, Côté J, Jasmin BJ. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics. Hum Mol Genet 2013; 22:3093-111. [PMID: 23575223 DOI: 10.1093/hmg/ddt165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several therapeutic approaches are currently being developed for Duchenne muscular dystrophy (DMD) including upregulating the levels of endogenous utrophin A in dystrophic fibers. Here, we examined the role of post-transcriptional mechanisms in controlling utrophin A expression in skeletal muscle. We show that activation of p38 leads to an increase in utrophin A independently of a transcriptional induction. Rather, p38 controls the levels of utrophin A mRNA by extending the half-life of transcripts via AU-rich elements (AREs). This mechanism critically depends on a decrease in the functional availability of KSRP, an RNA-binding protein known to promote decay of ARE-containing transcripts. In vitro and in vivo binding studies revealed that KSRP interacts with specific AREs located within the utrophin A 3' UTR. Electroporation experiments to knockdown KSRP led to an increase in utrophin A in wild-type and mdx mouse muscles. In pre-clinical studies, treatment of mdx mice with heparin, an activator of p38, causes a pronounced increase in utrophin A in diaphragm muscle fibers. Together, these studies identify a pathway that culminates in the post-transcriptional regulation of utrophin A through increases in mRNA stability. Furthermore, our results constitute proof-of-principle showing that pharmacological activation of p38 may prove beneficial as a novel therapeutic approach for DMD.
Collapse
Affiliation(s)
- Adel Amirouche
- Faculty of Medicine, Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
18
|
Moorwood C, Khurana TS. Duchenne muscular dystrophy drug discovery - the application of utrophin promoter activation screening. Expert Opin Drug Discov 2013; 8:569-81. [PMID: 23473647 DOI: 10.1517/17460441.2013.777040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastating genetic muscle wasting disease caused by mutations in the DMD gene that in turn lead to an absence of dystrophin. Currently, there is no definitive therapy for DMD. Gene- and cell-based therapies designed to replace dystrophin have met some degree of success, as have strategies that seek to improve the dystrophic pathology independent of dystrophin. AREAS COVERED In this review the authors focus on utrophin promoter activation-based strategies and their implications on potential therapeutics for DMD. These strategies in common are designed to identify drugs/small molecules that can activate the utrophin promoter and would allow the functional substitution of dystrophin by upregulating utrophin expression in dystrophic muscle. The authors provide an overview of utrophin biology with a focus on regulation of the utrophin promoter and discuss current attempts in identifying utrophin promoter-activating molecules using high-throughput screening (HTS). EXPERT OPINION The characterisation of utrophin promoter regulatory mechanisms coupled with advances in HTS have allowed researchers to undertake screens and identify a number of promising lead compounds that may prove useful for DMD. In principle, these pharmacological compounds offer significant advantages from a translational viewpoint for developing DMD therapeutics.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Dental Medicine, Department of Anatomy & Cell Biology, 438 Levy Research Building, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
19
|
Moorwood C, Soni N, Patel G, Wilton SD, Khurana TS. A cell-based high-throughput screening assay for posttranscriptional utrophin upregulation. ACTA ACUST UNITED AC 2012; 18:400-6. [PMID: 23112083 DOI: 10.1177/1087057112465648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease caused by mutations in the dystrophin gene. Utrophin is a homologue of dystrophin that can compensate for its absence when overexpressed in DMD animal models. Utrophin upregulation is therefore a promising therapeutic approach for DMD. Utrophin is regulated at both transcriptional and posttranscriptional levels. Transcriptional regulation has been studied extensively, and assays have been described for the identification of utrophin promoter-targeting molecules. However, despite the profound impact that posttranscriptional regulation has on utrophin expression, screening assays have not yet been described that could be used to discover pharmaceuticals targeting this key phase of regulation. We describe the development and validation of a muscle cell line-based assay in which a stably expressed luciferase coding sequence is flanked by the utrophin 5'- and 3'-untranslated regions (UTRs). The assay was validated using the posttranscriptional regulation of utrophin by miR-206. The assay has a Z' of 0.7, indicating robust performance in high-throughput format. This assay can be used to study utrophin regulatory mechanisms or to screen chemical libraries for compounds that upregulate utrophin posttranscriptionally via its UTRs. Compounds identified via this assay, used alone or in a synergistic combination with utrophin promoter-targeting molecules, would be predicted to have therapeutic potential for DMD.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
20
|
Basu U, Lozynska O, Moorwood C, Patel G, Wilton SD, Khurana TS. Translational regulation of utrophin by miRNAs. PLoS One 2011; 6:e29376. [PMID: 22216264 PMCID: PMC3246502 DOI: 10.1371/journal.pone.0029376] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/28/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne Muscular Dystrophy (DMD) locus. Its regulation is of therapeutic interest as its overexpression can compensate for dystrophin's absence in animal models of DMD. The tissue distribution and transcriptional regulation of utrophin have been characterized extensively, and more recently translational control mechanisms that may underlie its complex expression patterns have begun to be identified. METHODOLOGY/PRINCIPAL FINDINGS Using a variety of bioinformatic, molecular and cell biology techniques, we show that the muscle isoform utrophin-A is predominantly suppressed at the translational level in C2C12 myoblasts. The extent of translational inhibition is estimated to be ~99% in C2C12 cells and is mediated by both the 5'- and 3'-UTRs of the utrophin-A mRNA. In this study we identify five miRNAs (let-7c, miR-150, miR-196b, miR-296-5p, miR-133b) that mediate the repression, and confirm repression by the previously identified miR-206. We demonstrate that this translational repression can be overcome by blocking the actions of miRNAs, resulting in an increased level of utrophin protein in C2C12 cells. CONCLUSIONS/SIGNIFICANCE The present study has identified key inhibitory mechanisms featuring miRNAs that regulate utrophin expression, and demonstrated that these mechanisms can be targeted to increase endogenous utrophin expression in cultured muscle cells. We suggest that miRNA-mediated inhibitory mechanisms could be targeted by methods similar to those described here as a novel strategy to increase utrophin expression as a therapy for DMD.
Collapse
Affiliation(s)
- Utpal Basu
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Olga Lozynska
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Catherine Moorwood
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gopal Patel
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Steve D. Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia
| | - Tejvir S. Khurana
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Moorwood C, Lozynska O, Suri N, Napper AD, Diamond SL, Khurana TS. Drug discovery for Duchenne muscular dystrophy via utrophin promoter activation screening. PLoS One 2011; 6:e26169. [PMID: 22028826 PMCID: PMC3197614 DOI: 10.1371/journal.pone.0026169] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/21/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin, a muscle cytoskeletal protein. Utrophin is a homologue of dystrophin that can functionally compensate for its absence when expressed at increased levels in the myofibre, as shown by studies in dystrophin-deficient mice. Utrophin upregulation is therefore a promising therapeutic approach for DMD. The use of a small, drug-like molecule to achieve utrophin upregulation offers obvious advantages in terms of delivery and bioavailability. Furthermore, much of the time and expense involved in the development of a new drug can be eliminated by screening molecules that are already approved for clinical use. METHODOLOGY/PRINCIPAL FINDINGS We developed and validated a cell-based, high-throughput screening assay for utrophin promoter activation, and used it to screen the Prestwick Chemical Library of marketed drugs and natural compounds. Initial screening produced 20 hit molecules, 14 of which exhibited dose-dependent activation of the utrophin promoter and were confirmed as hits. Independent validation demonstrated that one of these compounds, nabumetone, is able to upregulate endogenous utrophin mRNA and protein, in C2C12 muscle cells. CONCLUSIONS/SIGNIFICANCE We have developed a cell-based, high-throughput screening utrophin promoter assay. Using this assay, we identified and validated a utrophin promoter-activating drug, nabumetone, for which pharmacokinetics and safety in humans are already well described, and which represents a lead compound for utrophin upregulation as a therapy for DMD.
Collapse
Affiliation(s)
- Catherine Moorwood
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Olga Lozynska
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Neha Suri
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Andrew D. Napper
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott L. Diamond
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tejvir S. Khurana
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J Biomed Biotechnol 2010; 2010:849426. [PMID: 20625423 PMCID: PMC2896903 DOI: 10.1155/2010/849426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/14/2010] [Indexed: 12/23/2022] Open
Abstract
Two decades of molecular, cellular, and functional studies considerably increased our understanding of dystrophins function and unveiled the complex etiology of the cognitive deficits in Duchenne muscular dystrophy (DMD), which involves altered expression of several dystrophin-gene products in brain. Dystrophins are normally part of critical cytoskeleton-associated membrane-bound molecular scaffolds involved in the clustering of receptors, ion channels, and signaling proteins that contribute to synapse physiology and blood-brain barrier function. The utrophin gene also drives brain expression of several paralogs proteins, which cellular expression and biological roles remain to be elucidated. Here we review the structural and functional properties of dystrophins and utrophins in brain, the consequences of dystrophins loss-of-function as revealed by numerous studies in mouse models of DMD, and we discuss future challenges and putative therapeutic strategies that may compensate for the cognitive impairment in DMD based on experimental manipulation of dystrophins and/or utrophins brain expression.
Collapse
|
23
|
Baby SM, Bogdanovich S, Willmann G, Basu U, Lozynska O, Khurana TS. Differential expression of utrophin-A and -B promoters in the central nervous system (CNS) of normal and dystrophic mdx mice. Brain Pathol 2009; 20:323-42. [PMID: 19486009 DOI: 10.1111/j.1750-3639.2009.00275.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Utrophin (Utrn) is the autosomal homolog of dystrophin, the Duchene Muscular Dystrophy (DMD) locus product and of therapeutic interest, as its overexpression can compensate dystrophin's absence. Utrn is transcribed by Utrn-A and -B promoters with mRNAs differing at their 5' ends. However, previous central nervous system (CNS) studies used C-terminal antibodies recognizing both isoforms. As this distinction may impact upregulation strategies, we generated Utrn-A and -B promoter-specific antibodies, Taqman Polymerase chain reaction (PCR)-based absolute copy number assays, and luciferase-reporter constructs to study CNS of normal and dystrophic mdx mice. Differential expression of Utrn-A and -B was noted in microdissected and capillary-enriched fractions. At the protein level, Utrn-B was predominantly expressed in vasculature and ependymal lining, whereas Utrn-A was expressed in neurons, astrocytes, choroid plexus and pia mater. mRNA quantification demonstrated matching patterns of differential expression; however, transcription-translation mismatch was noted for Utrn-B in caudal brain regions. Utrn-A and Utrn-B proteins were significantly upregulated in olfactory bulb and cerebellum of mdx brain. Differential promoter activity, mRNA and protein expressions were studied in cultured C2C12, bEnd3, neurons and astrocytes. Promoter activity ranking for Utrn-A and -B was neurons > astrocytes > C2C12 > bEnd3 and bEnd3 > astrocytes > neurons > C2C12, respectively. Our results identify promoter usage patterns for therapeutic targeting and define promoter-specific differential distribution of Utrn isoforms in normal and dystrophic CNS.
Collapse
Affiliation(s)
- Santhosh M Baby
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, A-601 Richards Building, 3700 Hamilton Walk, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lu Y, Tian C, Danialou G, Gilbert R, Petrof BJ, Karpati G, Nalbantoglu J. Targeting artificial transcription factors to the utrophin A promoter: effects on dystrophic pathology and muscle function. J Biol Chem 2008; 283:34720-7. [PMID: 18945675 PMCID: PMC3259868 DOI: 10.1074/jbc.m804518200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/15/2008] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy is caused by a genetic defect in the dystrophin gene. The absence of dystrophin results in muscle fiber necrosis and regeneration, leading to progressive muscle fiber loss. Utrophin is a close analogue of dystrophin. A substantial, ectopic expression of utrophin in the extrasynaptic sarcolemma of dystrophin-deficient muscle fibers can prevent deleterious effects of dystrophin deficiency. An alternative approach for the extrasynaptic up-regulation of utrophin involves the augmentation of utrophin transcription via the endogenous utrophin A promoter using custom-designed transcriptional activator proteins with zinc finger (ZFP) motifs. We tested a panel of custom-designed ZFP for their ability to activate the utrophin A promoter. Expression of one such ZFP efficiently increased, in a time-dependent manner, utrophin transcript and protein levels both in vitro and in vivo. In dystrophic mouse (mdx) muscles, administration of adenoviral vectors expressing this ZFP led to significant enhancement of muscle function with decreased necrosis, restoration of the dystrophin-associated proteins, and improved resistance to eccentric contractions. These studies provide evidence that specifically designed ZFPs can act as strong transcriptional activators of the utrophin A promoter. These may thus serve as attractive therapeutic agents for dystrophin deficiency states such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Yifan Lu
- Montreal Neurological Institute and
Department of Neurology & Neurosurgery, McGill University, Montreal,
Quebec H3A 2B4, the Respiratory Division, McGill
University Health Center and Meakins-Christie Laboratories, McGill University,
Montreal, Quebec H3A 1A1, and the Biotechnology
Research Institute, National Research Council Canada, Montreal, Quebec H4P
2R2, Canada
| | - Chai Tian
- Montreal Neurological Institute and
Department of Neurology & Neurosurgery, McGill University, Montreal,
Quebec H3A 2B4, the Respiratory Division, McGill
University Health Center and Meakins-Christie Laboratories, McGill University,
Montreal, Quebec H3A 1A1, and the Biotechnology
Research Institute, National Research Council Canada, Montreal, Quebec H4P
2R2, Canada
| | - Gawiyou Danialou
- Montreal Neurological Institute and
Department of Neurology & Neurosurgery, McGill University, Montreal,
Quebec H3A 2B4, the Respiratory Division, McGill
University Health Center and Meakins-Christie Laboratories, McGill University,
Montreal, Quebec H3A 1A1, and the Biotechnology
Research Institute, National Research Council Canada, Montreal, Quebec H4P
2R2, Canada
| | - Rénald Gilbert
- Montreal Neurological Institute and
Department of Neurology & Neurosurgery, McGill University, Montreal,
Quebec H3A 2B4, the Respiratory Division, McGill
University Health Center and Meakins-Christie Laboratories, McGill University,
Montreal, Quebec H3A 1A1, and the Biotechnology
Research Institute, National Research Council Canada, Montreal, Quebec H4P
2R2, Canada
| | - Basil J. Petrof
- Montreal Neurological Institute and
Department of Neurology & Neurosurgery, McGill University, Montreal,
Quebec H3A 2B4, the Respiratory Division, McGill
University Health Center and Meakins-Christie Laboratories, McGill University,
Montreal, Quebec H3A 1A1, and the Biotechnology
Research Institute, National Research Council Canada, Montreal, Quebec H4P
2R2, Canada
| | - George Karpati
- Montreal Neurological Institute and
Department of Neurology & Neurosurgery, McGill University, Montreal,
Quebec H3A 2B4, the Respiratory Division, McGill
University Health Center and Meakins-Christie Laboratories, McGill University,
Montreal, Quebec H3A 1A1, and the Biotechnology
Research Institute, National Research Council Canada, Montreal, Quebec H4P
2R2, Canada
| | - Josephine Nalbantoglu
- Montreal Neurological Institute and
Department of Neurology & Neurosurgery, McGill University, Montreal,
Quebec H3A 2B4, the Respiratory Division, McGill
University Health Center and Meakins-Christie Laboratories, McGill University,
Montreal, Quebec H3A 1A1, and the Biotechnology
Research Institute, National Research Council Canada, Montreal, Quebec H4P
2R2, Canada
| |
Collapse
|
25
|
Chakkalakal JV, Miura P, Bélanger G, Michel RN, Jasmin BJ. Modulation of utrophin A mRNA stability in fast versus slow muscles via an AU-rich element and calcineurin signaling. Nucleic Acids Res 2008; 36:826-38. [PMID: 18084024 PMCID: PMC2241908 DOI: 10.1093/nar/gkm1107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/19/2007] [Accepted: 11/26/2007] [Indexed: 12/12/2022] Open
Abstract
We examined the role of post-transcriptional mechanisms in controlling utrophin A mRNA expression in slow versus fast skeletal muscles. First, we determined that the half-life of utrophin A mRNA is significantly shorter in the presence of proteins isolated from fast muscles. Direct plasmid injection experiments using reporter constructs containing the full-length or truncated variants of the utrophin 3'UTR into slow soleus and fast extensor digitorum longus muscles revealed that a region of 265 nucleotides is sufficient to confer lower levels of reporter mRNA in fast muscles. Further analysis of this region uncovered a conserved AU-rich element (ARE) that suppresses expression of reporter mRNAs in cultured muscle cells. Moreover, stability of reporter mRNAs fused to the utrophin full-length 3'UTR was lower in the presence of fast muscle protein extracts. This destabilization effect seen in vivo was lost upon deletion of the conserved ARE. Finally, we observed that calcineurin signaling affects utrophin A mRNA stability through the conserved ARE. These results indicate that ARE-mediated mRNA decay is a key mechanism that regulates expression of utrophin A mRNA in slow muscle fibers. This is the first demonstration of ARE-mediated mRNA decay regulating the expression of a gene associated with the slow myogenic program.
Collapse
Affiliation(s)
- Joe V. Chakkalakal
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Robin N. Michel
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| |
Collapse
|
26
|
Basu U, Gyrd-Hansen M, Baby SM, Lozynska O, Krag TOB, Jensen CJ, Frödin M, Khurana TS. Heregulin-induced epigenetic regulation of the utrophin-A promoter. FEBS Lett 2007; 581:4153-8. [PMID: 17692845 PMCID: PMC2699486 DOI: 10.1016/j.febslet.2007.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/22/2007] [Accepted: 07/10/2007] [Indexed: 12/12/2022]
Abstract
Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne's muscular dystrophy (DMD) locus. Utrophin is of therapeutic interest since its over-expression can compensate dystrophin's absence. Utrophin is enriched at neuromuscular junctions due to heregulin-mediated utrophin-A promoter activation. We demonstrate that heregulin activated MSK1/2 and phosphorylated histone H3 at serine 10 in cultured C2C12 muscle cells, in an ERK-dependent manner. MSK1/2 inhibition suppressed heregulin-mediated utrophin-A activation. MSK1 over-expression potentiated heregulin-mediated utrophin-A activation and chromatin remodeling at the utrophin-A promoter. These results identify MSK1/2 as key effectors modulating utrophin-A expression as well as identify novel targets for DMD therapy.
Collapse
Affiliation(s)
- Utpal Basu
- Department of Physiology & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mads Gyrd-Hansen
- Department of Clinical Biochemistry, Glostrup Hospital, University of Copenhagen, Denmark
| | - Santhosh M. Baby
- Department of Physiology & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olga Lozynska
- Department of Physiology & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas O. B. Krag
- Department of Physiology & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Copenhagen Muscle Research Centre, University of Copenhagen, Denmark
| | - Claus J. Jensen
- Biotech Research and Innovation Centre and Center for Epigenetics, University of Copenhagen, Denmark
| | - Morten Frödin
- Biotech Research and Innovation Centre and Center for Epigenetics, University of Copenhagen, Denmark
| | - Tejvir S. Khurana
- Department of Physiology & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Address for correspondence: Tejvir S. Khurana, M.D., Ph.D. Dept. of Physiology & Pennsylvania Muscle Institute, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104-6085 Tel: +1 215 573 2640 Fax: +1 215 573 5851
| |
Collapse
|
27
|
Perkins KJ, Basu U, Budak MT, Ketterer C, Baby SM, Lozynska O, Lunde JA, Jasmin BJ, Rubinstein NA, Khurana TS. Ets-2 repressor factor silences extrasynaptic utrophin by N-box mediated repression in skeletal muscle. Mol Biol Cell 2007; 18:2864-72. [PMID: 17507653 PMCID: PMC1949368 DOI: 10.1091/mbc.e06-12-1069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Utrophin is the autosomal homologue of dystrophin, the protein product of the Duchenne's muscular dystrophy (DMD) locus. Utrophin expression is temporally and spatially regulated being developmentally down-regulated perinatally and enriched at neuromuscular junctions (NMJs) in adult muscle. Synaptic localization of utrophin occurs in part by heregulin-mediated extracellular signal-regulated kinase (ERK)-phosphorylation, leading to binding of GABPalpha/beta to the N-box/EBS and activation of the major utrophin promoter-A expressed in myofibers. However, molecular mechanisms contributing to concurrent extrasynaptic silencing that must occur to achieve NMJ localization are unknown. We demonstrate that the Ets-2 repressor factor (ERF) represses extrasynaptic utrophin-A in muscle. Gel shift and chromatin immunoprecipitation studies demonstrated physical association of ERF with the utrophin-A promoter N-box/EBS site. ERF overexpression repressed utrophin-A promoter activity; conversely, small interfering RNA-mediated ERF knockdown enhanced promoter activity as well as endogenous utrophin mRNA levels in cultured muscle cells in vitro. Laser-capture microscopy of tibialis anterior NMJ and extrasynaptic transcriptomes and gene transfer studies provide spatial and direct evidence, respectively, for ERF-mediated utrophin repression in vivo. Together, these studies suggest "repressing repressors" as a potential strategy for achieving utrophin up-regulation in DMD, and they provide a model for utrophin-A regulation in muscle.
Collapse
Affiliation(s)
- Kelly J Perkins
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
O'Leary DA, Noakes PG, Lavidis NA, Kola I, Hertzog PJ, Ristevski S. Targeting of the ETS factor GABPalpha disrupts neuromuscular junction synaptic function. Mol Cell Biol 2007; 27:3470-80. [PMID: 17325042 PMCID: PMC1899955 DOI: 10.1128/mcb.00659-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The GA-binding protein (GABP) transcription factor has been shown in vitro to regulate the expression of the neuromuscular proteins utrophin, acetylcholine esterase, and acetylcholine receptor subunits delta and epsilon through the N-box promoter motif (5'-CCGGAA-3'), but its in vivo function remains unknown. A single point mutation within the N-box of the gene encoding the acetylcholine receptor epsilon subunit has been identified in several patients suffering from postsynaptic congenital myasthenic syndrome, implicating the GA-binding protein in neuromuscular function and disease. Since conventional gene targeting results in an embryonic-lethal phenotype, we used conditional targeting to investigate the role of GABPalpha in neuromuscular junction and skeletal muscle development. The diaphragm and soleus muscles from mutant mice display alterations in morphology and distribution of acetylcholine receptor clusters at the neuromuscular junction and neurotransmission properties consistent with reduced receptor function. Furthermore, we confirmed decreased expression of the acetylcholine receptor epsilon subunit and increased expression of the gamma subunit in skeletal muscle tissues. Therefore, the GABP transcription factor aids in the structural formation and function of neuromuscular junctions by regulating the expression of postsynaptic genes.
Collapse
Affiliation(s)
- Debra A O'Leary
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Hayashi R, Ueda T, Farwell MA, Takeuchi N. Nuclear respiratory factor 2 activates transcription of human mitochondrial translation initiation factor 2 gene. Mitochondrion 2006; 7:195-203. [PMID: 17161026 DOI: 10.1016/j.mito.2006.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 11/18/2022]
Abstract
We studied the transcriptional regulation of the human mitochondrial translation initiation factor 2 (IF2mt) gene. The minimal promoter region for the human IF2mt gene contains binding sites for Nuclear Respiratory Factor 2 (NRF-2), which is often involved in the transcription of mitochondrial-related genes. Electrophoresis mobility shift assay (EMSA) analyses indicated that NRF-2alpha/beta binds to the IF2mt promoter. Reporter assays, where HEK293T cells were co-transfected with an NRF-2alpha/beta-expressing vector and/or an IF2mt promoter reporter vector, revealed that NRF-2 trans-activates the IF2mt promoter. NRF-2 sites were also found in the promoters of several other mitochondrial translation factors, which suggests NRF-2 may play a key role in the regulation of mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Rippei Hayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Building FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | | | | | | |
Collapse
|
31
|
Cohen TV, Randall WR. The regulation of acetylcholinesterase by cis-elements within intron I in cultured contracting myotubes. J Neurochem 2006; 98:723-34. [PMID: 16787423 DOI: 10.1111/j.1471-4159.2006.03897.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The onset of spontaneous contraction in rat primary muscle cultures coincides with an increase in acetylcholinesterase (AChE) activity. In order to establish whether contractile activity modulates the rate of AChE transcript synthesis, and what elements of the gene are determinant, we examined the promoter and intron I in contracting muscle cultures. Ache genomic fragments attached to a luciferase reporter were transfected into muscle cultures that were either electrically stimulated or paralyzed with tetrodotoxin to enhance or inhibit contractions, respectively. Cultures transfected with intron I-containing constructs showed a 2-fold increase in luciferase activity following electrical stimulation, compared to tetrodotoxin treatment, suggesting that this region contains elements responding to contractile activity. Deleting a 780 bp distal region within intron I, containing an N-box element at +890 bp, or introducing a 2-bp mutation within its core sequence, eliminated the contraction-induced response. In contrast, mutating an N-box element at +822 bp had no effect on the response. Furthermore, co-transfecting a dominant negative GA-binding protein (GABP), a transcription factor known to selectively bind N-box elements, reduced the stimulation-mediated increase. Our results suggest that the N-box within intron I at +890 bp is a regulatory element important in the transcriptional response of Ache to contractile activity in muscle.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Department of Pharmacology and Experimental Therapeutics, School of Medicine University of Maryland, Baltimore, MD 21201-1559, USA
| | | |
Collapse
|
32
|
Hnia K, Tuffery-Giraud S, Vermaelen M, Hugon G, Chazalette D, Masmoudi A, Rivier F, Mornet D. Pathological pattern of Mdx mice diaphragm correlates with gradual expression of the short utrophin isoform Up71. Biochim Biophys Acta Mol Basis Dis 2006; 1762:362-72. [PMID: 16457992 PMCID: PMC1974843 DOI: 10.1016/j.bbadis.2005.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022]
Abstract
Utrophin gene is transcribed in a large mRNA of 13 kb that codes for a protein of 395 kDa. It shows amino acid identity with dystrophin of up to 73% and is widely expressed in muscle and non-muscle tissues. Up71 is a short utrophin product of the utrophin gene with the same cysteine-rich and C-terminal domains as full-length utrophin (Up395). Using RT-PCR, Western blots analysis, we demonstrated that Up71 is overexpressed in the mdx diaphragm, the most pathological muscle in dystrophin-deficient mdx mice, compared to wild-type C57BL/10 or other mdx skeletal muscles. Subsequently, we demonstrated that this isoform displayed an increased expression level up to 12 months, whereas full-length utrophin (Up395) decreased. In addition, beta-dystroglycan, the transmembrane glycoprotein that anchors the cytoplasmic C-terminal domain of utrophin, showed similar increase expression in mdx diaphragm, as opposed to other components of the dystrophin-associated protein complex (DAPC) such as alpha-dystrobrevin1 and alpha-sarcoglycan. We demonstrated that Up71 and beta-dystroglycan were progressively accumulated along the extrasynaptic region of regenerating clusters in mdx diaphragm. Our data provide novel functional insights into the pathological role of the Up71 isoform in dystrophinopathies.
Collapse
Affiliation(s)
- Karim Hnia
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
- Institut Supérieur de Biotechnologie
Faculté de MédecineMonastir,TN
| | - Sylvie Tuffery-Giraud
- Laboratoire de génétique des maladies rares. Pathologie moléculaire, études fonctionnelles et banque de données génétiques
INSERM : U827 IFR3Université Montpellier IIURC
CHU de Montpellier
34093 MONTPELLIER ,FR
| | - Marianne Vermaelen
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Gerald Hugon
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Delphine Chazalette
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Ahmed Masmoudi
- Institut Supérieur de Biotechnologie
Faculté de MédecineMonastir,TN
| | - François Rivier
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Dominique Mornet
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
- * Correspondence should be adressed to: Dominique Mornet
| |
Collapse
|
33
|
Chakkalakal JV, Michel SA, Chin ER, Michel RN, Jasmin BJ. Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet 2006; 15:1423-35. [PMID: 16551657 DOI: 10.1093/hmg/ddl065] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this study, we crossbred mdx mice with transgenic mice expressing a small peptide inhibitor for calmodulin (CaM), known as the CaM-binding protein (CaMBP), driven by the slow fiber-specific troponin I slow promoter. This strategy allowed us to determine the impact of interfering with Ca(2+)/CaM-based signaling in dystrophin-deficient slow myofibers. Consistent with impairments in the Ca(2+)/CaM-regulated enzymes calcineurin and Ca(2+)/CaM-dependent kinase, the nuclear accumulation of nuclear factor of activated T-cell c1 and myocyte enhancer factor 2C was reduced in slow fibers from mdx/CaMBP mice. We also detected significant reductions in the levels of peroxisome proliferator gamma co-activator 1alpha and GA-binding protein alpha mRNAs in slow fiber-rich soleus muscles of mdx/CaMBP mice. In parallel, we observed significantly lower expression of myosin heavy chain I mRNA in mdx/CaMBP soleus muscles. This correlated with fiber-type shifts towards a faster phenotype. Examination of mdx/CaMBP slow muscle fibers revealed significant reductions in A-utrophin, a therapeutically relevant protein that can compensate for the lack of dystrophin in skeletal muscle. In accordance with lower levels of A-utrophin, we noted a clear exacerbation of the dystrophic phenotype in mdx/CaMBP slow fibers as exemplified by several pathological indices. These results firmly establish Ca(2+)/CaM-based signaling as key to regulating expression of A-utrophin in muscle. Furthermore, this study illustrates the therapeutic potential of using targets of Ca(2+)/CaM-based signaling as a strategy for treating Duchenne muscular dystrophy (DMD). Finally, our results further support the concept that strategies aimed at promoting the slow oxidative myofiber program in muscle may be effective in altering the relentless progression of DMD.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada K1H 8M5
| | | | | | | | | |
Collapse
|
34
|
Miura P, Jasmin BJ. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol Med 2006; 12:122-9. [PMID: 16443393 DOI: 10.1016/j.molmed.2006.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/16/2005] [Accepted: 01/13/2006] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder for which there is currently no effective treatment. This disorder is caused by mutations or deletions in the gene encoding dystrophin that prevent expression of dystrophin at the sarcolemma. A promising pharmacological treatment for DMD aims to increase levels of utrophin, a homolog of dystrophin, in muscle fibers of affected patients to compensate for the absence of dystrophin. Here, we review recent developments in our understanding of the regulatory pathways that govern utrophin expression, and highlight studies that have used activators of these pathways to alleviate the dystrophic symptoms in DMD animal models. The results of these preclinical studies are promising and bring us closer to implementing appropriate utrophin-based drug therapies for DMD patients.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|
35
|
Barton ER, Morris L, Kawana M, Bish LT, Toursel T. Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve 2006; 32:751-60. [PMID: 16116642 DOI: 10.1002/mus.20425] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A major consequence of muscular dystrophy is that increased membrane fragility leads to high calcium influx and results in muscle degeneration and myonecrosis. Prior reports have demonstrated that increased nitric oxide production via L-arginine treatment of normal and mdx mice resulted in increased expression of utrophin and increased activation of muscle satellite cells, which could ameliorate the dystrophic pathology. We delivered L-arginine to normal and mdx mice, and examined muscles for any functional changes associated with its administration. Treated mdx muscles were less susceptible to contraction-induced damage and exhibited a rightward shift of the force-frequency relationship. Immunoblotting revealed increases in utrophin and gamma-sarcoglycan in the treated muscles. There was also a decrease in Evans blue dye uptake, indicating a reduction in myonecrosis. However, there was no decrease in serum creatine kinase or the proportion of central nuclei, nor any improvement in specific force. Together, these results show that L-arginine treatment can be beneficial to mdx muscle function, perhaps through a combination of enhanced calcium handling and increased utrophin, thereby decreasing muscle degeneration.
Collapse
Affiliation(s)
- Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, 441 Levy Building, 240 South 40th Street, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
36
|
Bonet-Kerrache A, Fortier M, Comunale F, Gauthier-Rouvière C. The GTPase RhoA increases utrophin expression and stability, as well as its localization at the plasma membrane. Biochem J 2006; 391:261-8. [PMID: 15963030 PMCID: PMC1276923 DOI: 10.1042/bj20050024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Rho family of small GTPases are signalling molecules involved in cytoskeleton remodelling and gene transcription. Their activities are important for many cellular processes, including myogenesis. In particular, RhoA positively regulates skeletal-muscle differentiation. We report in the present study that the active form of RhoA increases the expression of utrophin, the autosomal homologue of dystrophin in the mouse C2C12 and rat L8 myoblastic cell lines. Even though this RhoA-dependent utrophin increase is higher in proliferating myoblasts, it is maintained during myogenic differentiation. This occurs via two mechanisms: (i) transcriptional activation of the utrophin promoter A and (ii) post-translational stabilization of utrophin. In addition, RhoA increases plasma-membrane localization of utrophin. Thus RhoA activation up-regulates utrophin levels and enhances its localization at the plasma membrane.
Collapse
Affiliation(s)
- Armelle Bonet-Kerrache
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
| | - Mathieu Fortier
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
| | - Franck Comunale
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
| | - Cécile Gauthier-Rouvière
- CRBM (Centre de Recherches en Biochimie Macromoléculaire), CNRS FRE2593, 1919 Route de Mende, 34293 Montpellier Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
37
|
Abstract
The neuromuscular junction (NMJ) is a complex structure that serves to efficiently communicate the electrical impulse from the motor neuron to the skeletal muscle to signal contraction. Over the last 200 years, technological advances in microscopy allowed visualization of the existence of a gap between the motor neuron and skeletal muscle that necessitated the existence of a messenger, which proved to be acetylcholine. Ultrastructural analysis identified vesicles in the presynaptic nerve terminal, which provided a beautiful structural correlate for the quantal nature of neuromuscular transmission, and the imaging of synaptic folds on the muscle surface demonstrated that specializations of the underlying protein scaffold were required. Molecular analysis in the last 20 years has confirmed the preferential expression of synaptic proteins, which is guided by a precise developmental program and maintained by signals from nerve. Although often overlooked, the Schwann cell that caps the NMJ and the basal lamina is proving to be critical in maintenance of the junction. Genetic and autoimmune disorders are known that compromise neuromuscular transmission and provide further insights into the complexities of NMJ function as well as the subtle differences that exist among NMJ that may underlie the differential susceptibility of muscle groups to neuromuscular transmission diseases. In this review we summarize the synaptic physiology, architecture, and variations in synaptic structure among muscle types. The important roles of specific signaling pathways involved in NMJ development and acetylcholine receptor (AChR) clustering are reviewed. Finally, genetic and autoimmune disorders and their effects on NMJ architecture and neuromuscular transmission are examined.
Collapse
Affiliation(s)
- Benjamin W Hughes
- Department of Neurology, Case Western University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
38
|
Shimokawa T, Ra C. C/EBPα functionally and physically interacts with GABP to activate the human myeloid IgA Fc receptor (FcαR, CD89) gene promoter. Blood 2005; 106:2534-42. [PMID: 15928042 DOI: 10.1182/blood-2004-06-2413] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman Fcα receptor (FcαR; CD89), the receptor for the crystallizable fragment (Fc) of immunoglobulin A (IgA), is expressed exclusively in myeloid cells, including granulocytes and monocytes/macrophages, and is considered to define a crucial role of these cells in immune and inflammatory responses. A 259-base pair fragment of the FCAR promoter is sufficient to direct myeloid expression of a reporter gene and contains functionally important binding sites for CCAAT/enhancer-binding protein α (C/EBPα) (CE1, CE2, and CE3) and an unidentified Ets-like nuclear protein. Here, we show that the Ets-binding site is bound by a heterodimer composed of GA-binding protein α (GABPα), an Ets-related factor, and GABPβ, a Notch-related protein. Cotransfection of GABP increased FCAR promoter activity 3.7-fold through the Ets-binding site. GABP and C/EBPα synergistically activated the FCAR promoter 280-fold. Consistent with these observations, in vitro binding analyses revealed a physical interaction between the GABPα subunit and C/EBPα. This is the first report demonstrating both physical and functional interactions between GABP and C/EBPα and will provide new insights into the molecular basis of myeloid gene expression. (Blood. 2005;106:2534-2542)
Collapse
Affiliation(s)
- Toshibumi Shimokawa
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, Itabashi-ku, Tokyo, Japan
| | | |
Collapse
|
39
|
Angus LM, Chakkalakal JV, Méjat A, Eibl JK, Bélanger G, Megeney LA, Chin ER, Schaeffer L, Michel RN, Jasmin BJ. Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1α, drives utrophin gene expression at the neuromuscular junction. Am J Physiol Cell Physiol 2005; 289:C908-17. [PMID: 15930144 DOI: 10.1152/ajpcell.00196.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We examined whether calcineurin-NFAT (nuclear factors of activated T cells) signaling plays a role in specifically directing the expression of utrophin in the synaptic compartment of muscle fibers. Immunofluorescence experiments revealed the accumulation of components of the calcineurin-NFAT signaling cascade within the postsynaptic membrane domain of the neuromuscular junction. RT-PCR analysis using synaptic vs. extrasynaptic regions of muscle fibers confirmed these findings by showing an accumulation of calcineurin transcripts within the synaptic compartment. We also examined the effect of calcineurin on utrophin gene expression. Pharmacological inhibition of calcineurin in mice with either cyclosporin A or FK506 resulted in a marked decrease in utrophin A expression at synaptic sites, whereas constitutive activation of calcineurin had the opposite effect. Mutation of the previously identified NFAT binding site in the utrophin A promoter region, followed by direct gene transfer studies in mouse muscle, led to an inhibition in the synaptic expression of a lacZ reporter gene construct. Transfection assays performed with cultured myogenic cells indicated that calcineurin acted additively with GA binding protein (GABP) to transactivate utrophin A gene expression. Because both GABP- and calcineurin-mediated pathways are targeted by peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), we examined whether this coactivator contributes to utrophin gene expression. In vitro and in vivo transfection experiments showed that PGC-1α alone induces transcription from the utrophin A promoter. Interestingly, this induction is largely potentiated by coexpression of PGC-1α with GABP. Together, these studies indicate that the synaptic expression of utrophin is also driven by calcineurin-NFAT signaling and occurs in conjunction with signaling events that involve GABP and PGC-1α.
Collapse
Affiliation(s)
- Lindsay M Angus
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tsuchimochi K, Yagishita N, Yamasaki S, Amano T, Kato Y, Kawahara KI, Aratani S, Fujita H, Ji F, Sugiura A, Izumi T, Sugamiya A, Maruyama I, Fukamizu A, Komiya S, Nishioka K, Nakajima T. Identification of a crucial site for synoviolin expression. Mol Cell Biol 2005; 25:7344-56. [PMID: 16055742 PMCID: PMC1190266 DOI: 10.1128/mcb.25.16.7344-7356.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synoviolin is an E3 ubiquitin ligase localized in the endoplasmic reticulum (ER) and serving as ER-associated degradation system. Analysis of transgenic mice suggested that synoviolin gene dosage is implicated in the pathogenesis of arthropathy. Complete deficiency of synoviolin is fatal embryonically. Thus, alternation of Synoviolin could cause breakdown of ER homeostasis and consequently lead to disturbance of cellular homeostasis. Hence, the expression level of Synoviolin appears to be important for its biological role in cellular homeostasis under physiological and pathological conditions. To examine the control of protein level, we performed promoter analysis to determine transcriptional regulation. Here we characterize the role of synoviolin transcription in cellular homeostasis. The Ets binding site (EBS), termed EBS-1, from position -76 to -69 of the proximal promoter, is responsible for synoviolin expression in vivo and in vitro. Interestingly, transfer of EBS-1 decoy into NIH 3T3 cells conferred not only the repression of synoviolin gene expression but also a decrease in cell number. Fluorescence-activated cell sorter analysis using annexin V staining confirmed the induction of apoptosis by EBS-1 decoy and demonstrated recovery of apoptosis by overexpression of Synoviolin. Our results suggest that transcriptional regulation of synoviolin via EBS-1 plays an important role in cellular homeostasis. Our study provides novel insight into the transcriptional regulation for cellular homeostasis.
Collapse
Affiliation(s)
- Kaneyuki Tsuchimochi
- Department of Genomic Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Miura P, Thompson J, Chakkalakal JV, Holcik M, Jasmin BJ. The utrophin A 5'-untranslated region confers internal ribosome entry site-mediated translational control during regeneration of skeletal muscle fibers. J Biol Chem 2005; 280:32997-3005. [PMID: 16061482 DOI: 10.1074/jbc.m503994200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Utrophin up-regulation in muscle fibers of Duchenne muscular dystrophy patients represents a potential therapeutic strategy. It is thus important to delineate the regulatory events presiding over utrophin in muscle in attempts to develop pharmacological interventions aimed at increasing utrophin expression. A number of studies have now shown that under several experimental conditions, the abundance of utrophin is increased without a corresponding elevation in its mRNA. Here, we examine whether utrophin expression is regulated at the translational level in regenerating muscle fibers. Treatment of mouse tibialis anterior muscles with cardiotoxin to induce muscle degeneration/regeneration led to a large (approximately 14-fold) increase in the levels of utrophin A with a modest change in expression of its transcript (40%). Isolation of the mouse utrophin A 5'-untranslated region (UTR) revealed that it is relatively long with a predicted high degree of secondary structure. In control muscles, the 5'-UTR of utrophin A caused an inhibition upon translation of a reporter protein. Strikingly, this inhibition was removed during regeneration, indicating that expression of utrophin A in regenerating muscles is translationally regulated via its 5'-UTR. Using bicistronic reporter vectors, we observed that this translational effect involves an internal ribosome entry site in the utrophin A 5'-UTR. Thus, internal ribosome entry site-mediated translation of utrophin A can, at least partially, account for the discordant expression of utrophin A protein and transcript in regenerating muscle. These findings provide a novel target for up-regulating levels of utrophin A in Duchenne muscular dystrophy muscle fibers via pharmacological interventions.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Cobra Cardiotoxin Proteins/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Genetic Vectors
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Models, Genetic
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Muscles/metabolism
- Plasmids/metabolism
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA/metabolism
- RNA, Messenger/metabolism
- Regeneration
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/metabolism
- Up-Regulation
- Utrophin/chemistry
- Utrophin/genetics
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
42
|
Stocksley MA, Chakkalakal JV, Bradford A, Miura P, De Repentigny Y, Kothary R, Jasmin BJ. A 1.3 kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscul Disord 2005; 15:437-49. [PMID: 15907291 DOI: 10.1016/j.nmd.2005.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/02/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Upregulation of utrophin in muscle is currently being examined as a potential therapy for Duchenne muscular dystrophy patients. In this context, we generated transgenic mice harboring a 1.3 kb human utrophin A promoter fragment driving expression of the lacZ gene. Characterization of reporter expression during postnatal muscle development revealed that the levels and localization of beta-galactosidase parallel expression of utrophin A transcripts. Moreover, we noted that the utrophin A promoter is more active in slow soleus muscles. Additionally, expression of the reporter gene was regulated during muscle regeneration in a manner similar to utrophin A transcripts. Together, these results show that the utrophin A promoter-lacZ construct mirrors expression of utrophin A mRNAs indicating that this utrophin A promoter fragment confers temporal and spatial patterns of expression in skeletal muscle. This transgenic mouse will be valuable as an in vivo model for developing and testing molecules aimed at increasing utrophin A expression.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Female
- Gene Expression
- Genes, Reporter
- Genetic Therapy
- Lac Operon
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Neuromuscular Junction/physiology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Regeneration/physiology
- Utrophin/genetics
Collapse
Affiliation(s)
- Mark A Stocksley
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ont., Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
43
|
Chakkalakal JV, Thompson J, Parks RJ, Jasmin BJ. Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB J 2005; 19:880-91. [PMID: 15923398 DOI: 10.1096/fj.04-1956rev] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the molecular defect causing Duchenne/Becker muscular dystrophy (DMD/BMD) was identified nearly 20 years ago, the development of effective therapeutic strategies has nonetheless remained a daunting challenge. Over the years, a variety of different approaches have been explored in an effort to compensate for the lack of the DMD gene product called dystrophin. This review not only presents some of the most promising molecular, cellular, and pharmacological strategies but also highlights some issues that need to be addressed before considering their implementation. Specifically, we describe current strategies being developed to exogenously deliver healthy copies of the dystrophin gene to dystrophic muscles. We present the findings of several studies that have focused on repairing the mutant dystrophin gene using various approaches. We include a discussion of cell-based therapies that capitalize on the use of myoblast or stem cell transfer. Finally, we summarize the results of several studies that may eventually lead to the development of appropriate drug-based therapies. In this context, we review our current knowledge of the mechanisms regulating expression of utrophin, the autosomal homologue of dystrophin. Given the complexity associated with the dystrophic phenotype, it appears likely that a combinatorial approach involving different therapeutic strategies will be necessary for the appropriate management and eventual treatment of this devastating neuromuscular disease.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Bardet PL, Schubert M, Horard B, Holland LZ, Laudet V, Holland ND, Vanacker JM. Expression of estrogen-receptor related receptors in amphioxus and zebrafish: implications for the evolution of posterior brain segmentation at the invertebrate-to-vertebrate transition. Evol Dev 2005; 7:223-33. [PMID: 15876195 DOI: 10.1111/j.1525-142x.2005.05025.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Summary The evolutionary origin of vertebrate hindbrain segmentation is unclear since the amphioxus, the closest living invertebrate relative to the vertebrates, possesses a hindbrain homolog that displays no gross morphological segmentation. Three of the estrogen-receptor related (ERR) receptors are segmentally expressed in the zebrafish hindbrain, suggesting that their common ancestor was expressed in a similar, reiterated manner. We have also cloned and determined the developmental expression of the single homolog of the vertebrate ERR genes in the amphioxus (AmphiERR). This gene is also expressed in a segmented manner in a region considered homologous to the vertebrate hindbrain. In contrast to the expression of amphioxus islet (a LIM-homeobox gene that also labels motoneurons), AmphiERR expression persists longer in the hindbrain homolog and does not later extend to additional posterior cells. In addition, AmphiERR and one of its vertebrate homologs (ERRalpha) are expressed in the developing somitic musculature of amphioxus and zebrafish, respectively. Altogether, our results are consistent with fine structural evidence suggesting that the amphioxus hindbrain is segmented, and indicate that chordate ERR gene expression is a marker for both hindbrain and muscle segmentation. Furthermore, our data support an evolution model of chordate brain segmentation: originally, the program for anterior segmentation in the protochordate ancestors of the vertebrates resided in the developing axial mesoderm which imposed reiterated patterning on the adjacent neural tube; during early vertebrate evolution, this segmentation program was transferred to and controlled by the neural tube.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5161, IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Bogdanovich S, Perkins KJ, Krag TOB, Whittemore LA, Khurana TS. Myostatin propeptide‐mediated amelioration of dystrophic pathophysiology. FASEB J 2005; 19:543-9. [PMID: 15791004 DOI: 10.1096/fj.04-2796com] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in myostatin (GDF8) cause marked increases in muscle mass, suggesting that this transforming growth factor-beta (TGF-beta) superfamily member negatively regulates muscle growth. Myostatin blockade therefore offers a strategy for reversing muscle wasting in Duchenne's muscular dystrophy (DMD) without resorting to genetic manipulation. Here, we demonstrate that pharmacological blockade using a myostatin propeptide stabilized by fusion to IgG-Fc improved pathophysiology of the mdx mouse model of DMD. Functional benefits evidenced by specific force improvement, exceeded those reported previously using myostatin antibody-mediated blockade. More importantly, use of a propeptide blockade strategy obviates possibilities of anti-idiotypic responses that could potentially limit the effectiveness of antibody-mediated myostatin blockade strategies over time. This study provides a novel pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD and since it uses an endogenous inhibitor of myostatin should help circumvent technical hurdles and toxicity associated with conventional gene or cell based therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin G/chemistry
- Injections, Intraperitoneal
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/therapy
- Myostatin
- Protein Precursors/administration & dosage
- Protein Precursors/chemistry
- Protein Precursors/immunology
- RNA, Messenger/analysis
- Recombinant Fusion Proteins
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/immunology
- Utrophin/genetics
Collapse
Affiliation(s)
- Sasha Bogdanovich
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | |
Collapse
|
46
|
Krag TOB, Bogdanovich S, Jensen CJ, Fischer MD, Hansen-Schwartz J, Javazon EH, Flake AW, Edvinsson L, Khurana TS. Heregulin ameliorates the dystrophic phenotype in mdx mice. Proc Natl Acad Sci U S A 2004; 101:13856-60. [PMID: 15365169 PMCID: PMC518764 DOI: 10.1073/pnas.0405972101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne's muscular dystrophy (DMD) is a fatal neuromuscular disease caused by absence of dystrophin. Utrophin is a chromosome 6-encoded dystrophin-related protein (DRP), sharing functional motifs with dystrophin. Utrophin's ability to compensate for dystrophin during development and when transgenically overexpressed has provided an important impetus for identifying activators of utrophin expression. The utrophin promoter A is transcriptionally regulated in part by heregulin-mediated, extracellular signal-related kinase-dependent activation of the GABP(alpha/beta) transcription factor complex. Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. We tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of a small peptide encoding the epidermal growth factor-like region of heregulin ectodomain for 3 months in vivo resulted in up-regulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin up-regulation offers a pharmacological therapeutic modality and obviates many of the toxicity and delivery issues associated with viral vector-based gene therapy for DMD.
Collapse
Affiliation(s)
- Thomas O B Krag
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xue HH, Bollenbacher J, Rovella V, Tripuraneni R, Du YB, Liu CY, Williams A, McCoy JP, Leonard WJ. GA binding protein regulates interleukin 7 receptor alpha-chain gene expression in T cells. Nat Immunol 2004; 5:1036-44. [PMID: 15361867 DOI: 10.1038/ni1117] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 08/13/2004] [Indexed: 11/08/2022]
Abstract
The interleukin 7 receptor alpha-chain (IL-7Ralpha) is essential for T cell development in both humans and mice and for B cell development in mice. Whereas the transcription factor PU.1 regulates IL-7Ralpha expression in mouse pro-B cells via a GGAA motif, we demonstrate here that GA binding protein (GABP) bound to this site and was essential in the regulation of IL-7Ralpha expression in T cells, where PU.1 is not expressed. Moreover, IL-7Ralpha expression was diminished substantially in thymocytes but was normal on B220(+) fetal liver cells from mouse embryos with diminished expression of GABPalpha. Thus, GABP is essential for the regulation of IL-7Ralpha expression in T cells, and the differential regulation of IL-7Ralpha in distinct lymphoid lineages is achieved at least in part by differential recruitment of factors to the same GGAA motif.
Collapse
Affiliation(s)
- Hai-Hui Xue
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 7N252, Bethesda, Maryland 20892-1674, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ristevski S, O'Leary DA, Thornell AP, Owen MJ, Kola I, Hertzog PJ. The ETS transcription factor GABPalpha is essential for early embryogenesis. Mol Cell Biol 2004; 24:5844-9. [PMID: 15199140 PMCID: PMC480913 DOI: 10.1128/mcb.24.13.5844-5849.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ETS transcription factor complex GABP consists of the GABPalpha protein, containing an ETS DNA binding domain, and an unrelated GABPbeta protein, containing a transactivation domain and nuclear localization signal. GABP has been shown in vitro to regulate the expression of nuclear genes involved in mitochondrial respiration and neuromuscular signaling. We investigated the in vivo function of GABP by generating a null mutation in the murine Gabpalpha gene. Embryos homozygous for the null Gabpalpha allele die prior to implantation, consistent with the broad expression of Gabpalpha throughout embryogenesis and in embryonic stem cells. Gabpalpha(+/-) mice demonstrated no detectable phenotype and unaltered protein levels in the panel of tissues examined. This indicates that Gabpalpha protein levels are tightly regulated to protect cells from the effects of loss of Gabp complex function. These results show that Gabpalpha function is essential and is not compensated for by other ETS transcription factors in the mouse, and they are consistent with a specific requirement for Gabp expression for the maintenance of target genes involved in essential mitochondrial cellular functions during early cleavage events of the embryo.
Collapse
Affiliation(s)
- Sika Ristevski
- Centre for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Voisin V, de la Porte S. Therapeutic Strategies for Duchenne and Becker Dystrophies. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:1-30. [PMID: 15548414 DOI: 10.1016/s0074-7696(04)40001-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Duchenne muscular dystrophy (DMD), a severe X-linked genetic disease affecting one in 3500 boys, is the most common myopathy in children. DMD is due to a lack of dystrophin, a submembrane protein of the cytoskeleton, which leads to the progressive degeneration of skeletal, cardiac, and smooth muscle tissue. A milder form of the disease, Becker muscular dystrophy (BMD), is characterized by the presence of a semifunctional truncated dystrophin, or reduced levels of full-length dystrophin. DMD is the focus of three different supportive or therapeutic approaches: gene therapy, cell therapy, and drug therapy. Here we consider these approaches in terms of three potential goals: improvement of dystrophic phenotype, expression of dystrophin, and overexpression of utrophin. Utrophin exhibits 80% homology with dystrophin and is able to perform similar functions. Pharmacological strategies designed to overexpress utrophin appear promising and may circumvent many obstacles to gene and cell-based therapies.
Collapse
Affiliation(s)
- Vincent Voisin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, 91198 Gif sur Yvette, France
| | | |
Collapse
|
50
|
Sunesen M, Huchet-Dymanus M, Christensen MO, Changeux JP. Phosphorylation-elicited quaternary changes of GA binding protein in transcriptional activation. Mol Cell Biol 2003; 23:8008-18. [PMID: 14585962 PMCID: PMC262348 DOI: 10.1128/mcb.23.22.8008-8018.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enrichment of nicotinic acetylcholine receptors (nAChR) on the tip of the subjunctional folds of the postsynaptic membrane is a central event in the development of the vertebrate neuromuscular junction. This is attained, in part, through a selective transcription in the subsynaptic nuclei, and it has recently been shown that the GA binding protein (GABP) plays an important role in this compartmentalized expression. The neural factor heregulin (HRG) activates nAChR transcription in cultured cells by stimulating a signaling cascade of protein kinases. Hence, it is speculated that GABP becomes activated by phosphorylation, but the mechanism has remained elusive. To fully understand the consequences of GABP phosphorylation, we examined the effect of heregulin-elicited GABP phosphorylation on cellular localization, DNA binding, transcription, and mobility. We demonstrate that HRG-elicited phosphorylation dramatically changes the transcriptional activity and mobility of GABP. While phosphorylation of GABPbeta seems to be dispensable for these changes, phosphorylation of GABPalpha is crucial. Using fluorescence resonance energy transfer, we furthermore showed that phosphorylation of threonine 280 in GABPalpha triggers reorganizations of the quaternary structure of GABP. Taken together, these results support a model in which phosphorylation-elicited structural changes of GABP enable engagement in certain interactions leading to transcriptional activation.
Collapse
Affiliation(s)
- Morten Sunesen
- Laboratoire Récepteurs et Cognition, CNRS URA 2182, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|