1
|
Liu Q, Wang X, Fang ZT, Zhao JN, Rui XX, Zhang BG, He Y, Liu RJ, Chen J, Chai GS, Liu GP. Upregulation of ISG15 induced by MAPT/tau accumulation represses autophagic flux by inhibiting HDAC6 activity: a vicious cycle in Alzheimer disease. Autophagy 2025; 21:807-826. [PMID: 39635882 PMCID: PMC11925114 DOI: 10.1080/15548627.2024.2431472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer disease (AD), a prevalent neurodegenerative condition in the elderly, is marked by a deficit in macroautophagy/autophagy, leading to intracellular MAPT/tau accumulation. While ISG15 (ISG15 ubiquitin like modifier) has been identified as a regulator of selective autophagy in ataxia telangiectasia (A-T), its role in AD remains unexplored. Our study reveals elevated ISG15 levels in the brains of patients with sporadic AD and AD models in vivo and in vitro. ISG15 overexpression in cells and the hippocampus inhibited HDAC6 (histone deacetylase 6) activity through C-terminal LRLRGG binding to HDAC6. Consequently, this increased CTTN (cortactin) acetylation, disrupted CTTN and F-actin recruitment to lysosomes, and impaired autophagosome (AP)-lysosome (LY) fusion. These disruptions led to MAPT/tau accumulation, synaptic damage, neuronal loss, and cognitive deficits. Conversely, ISG15 knockdown in our HsMAPT (human MAPT) pathology model restored HDAC6 activity, promoted AP-LY fusion, and improved cognitive function. This study identifies ISG15 as a key regulator of autophagic flux in AD, suggesting that targeting ISG15-mediated autophagy could offer therapeutic potential for AD.Abbreviation: AAV: adeno-associated virus; AD: Alzheimer disease; ALP: autophagy-lysosomal pathway; ANOVA: analysis of variance; AP: autophagosome; BafA1: bafilomycin A1; CHX: cycloheximide; CQ: chloroquine; CTTN: cortactin; FC: fear conditioning; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRIN/NMDARs: N-methyl-D-aspartate glutamate ionotropic receptor NMDA types; HDAC6: histone deacetylase 6; HEK293: human embryonic kidney 293; HsMAPT: human MAPT; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; ISG15: ISG15 ubiquitin like modifier; LAMP1: lysosomal associated membrane protein 1; LY: lysosome; MAPT: microtubule associated protein tau; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MWM: Morris water maze; NOR: novel object recognition; SQSTM1/p62: sequestosome 1; ZnF UBP: zinc finger ubiquitin-binding protein.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xin Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Ting Fang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Ning Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Xiang Rui
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Ge Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao-Shang Chai
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
2
|
Woronowicz K, Flaumenhaft R. Assays of Platelet SNARE-actin Interactions. Methods Mol Biol 2025; 2887:135-147. [PMID: 39806151 DOI: 10.1007/978-1-0716-4314-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs. The platelet is an excellent cellular model to evaluate SNARE-actin interactions because of the marked reorganization of its actin cytoskeleton that occurs with activation and because of its abundance of secretory granules. This chapter will describe methods to evaluate SNARE-actin interactions in platelets using isolated platelet actin cytoskeleton, granule-enriched membrane fractions in a cell-free secretory system, and purified actin and recombinant SNAREs.
Collapse
Affiliation(s)
- Kamil Woronowicz
- The School of Science, Technology, Engineering and Mathematics, Rockland County College, State University of New York (SUNY), Suffern, NY, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Xue S, Benvie AM, Blum JE, Kolba NJ, Cosgrove BD, Thalacker-Mercer A, Berry DC. Suppressing PDGFRβ Signaling Enhances Myocyte Fusion to Promote Skeletal Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618247. [PMID: 39464006 PMCID: PMC11507758 DOI: 10.1101/2024.10.15.618247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Muscle cell fusion is critical for forming and maintaining multinucleated myotubes during skeletal muscle development and regeneration. However, the molecular mechanisms directing cell-cell fusion are not fully understood. Here, we identify platelet-derived growth factor receptor beta (PDGFRβ) signaling as a key modulator of myocyte fusion in adult muscle cells. Our findings demonstrate that genetic deletion of Pdgfrβ enhances muscle regeneration and increases myofiber size, whereas PDGFRβ activation impairs muscle repair. Inhibition of PDGFRβ activity promotes myonuclear accretion in both mouse and human myotubes, whereas PDGFRβ activation stalls myotube development by preventing cell spreading to limit fusion potential. Transcriptomics analysis show that PDGFRβ signaling cooperates with TGFβ signaling to direct myocyte size and fusion. Mechanistically, PDGFRβ signaling requires STAT1 activation, and blocking STAT1 phosphorylation enhances myofiber repair and size during regeneration. Collectively, PDGFRβ signaling acts as a regenerative checkpoint and represents a potential clinical target to rapidly boost skeletal muscle repair.
Collapse
Affiliation(s)
- Siwen Xue
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Abigail M Benvie
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | - Jamie E Blum
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Current address: Department of Chemical Engineering; Stanford University; Stanford, CA
| | - Nikolai J Kolba
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
| | | | - Anna Thalacker-Mercer
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Berry
- The Divisional of Nutritional Sciences at Cornell University, Ithaca, NY
- Corresponding author
| |
Collapse
|
4
|
Yu Y, Chen D, Farmer SM, Xu S, Rios B, Solbach A, Ye X, Ye L, Zhang S. Endolysosomal trafficking controls yolk granule biogenesis in vitellogenic Drosophila oocytes. PLoS Genet 2024; 20:e1011152. [PMID: 38315726 PMCID: PMC10898735 DOI: 10.1371/journal.pgen.1011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/27/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.
Collapse
Affiliation(s)
- Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, People’s Republic of China
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Beatriz Rios
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
5
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
6
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
7
|
Tertrais M, Bigot C, Martin E, Poincloux R, Labrousse A, Maridonneau-Parini I. Phagocytosis is coupled to the formation of phagosome-associated podosomes and a transient disruption of podosomes in human macrophages. Eur J Cell Biol 2021; 100:151161. [PMID: 33836409 DOI: 10.1016/j.ejcb.2021.151161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure.
Collapse
Affiliation(s)
- Margot Tertrais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Bigot
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Martin
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Nguyen JA, Yates RM. Better Together: Current Insights Into Phagosome-Lysosome Fusion. Front Immunol 2021; 12:636078. [PMID: 33717183 PMCID: PMC7946854 DOI: 10.3389/fimmu.2021.636078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Following phagocytosis, the nascent phagosome undergoes maturation to become a phagolysosome with an acidic, hydrolytic, and often oxidative lumen that can efficiently kill and digest engulfed microbes, cells, and debris. The fusion of phagosomes with lysosomes is a principal driver of phagosomal maturation and is targeted by several adapted intracellular pathogens. Impairment of this process has significant consequences for microbial infection, tissue inflammation, the onset of adaptive immunity, and disease. Given the importance of phagosome-lysosome fusion to phagocyte function and the many virulence factors that target it, it is unsurprising that multiple molecular pathways have evolved to mediate this essential process. While the full range of these pathways has yet to be fully characterized, several pathways involving proteins such as members of the Rab GTPases, tethering factors and SNAREs have been identified. Here, we summarize the current state of knowledge to clarify the ambiguities in the field and construct a more comprehensive phagolysosome formation model. Lastly, we discuss how other cellular pathways help support phagolysosome biogenesis and, consequently, phagocyte function.
Collapse
Affiliation(s)
- Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Snyder Institute of Chronic Disease, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Flores-Muñoz C, Maripillán J, Vásquez-Navarrete J, Novoa-Molina J, Ceriani R, Sánchez HA, Abbott AC, Weinstein-Oppenheimer C, Brown DI, Cárdenas AM, García IE, Martínez AD. Restraint of Human Skin Fibroblast Motility, Migration, and Cell Surface Actin Dynamics, by Pannexin 1 and P2X7 Receptor Signaling. Int J Mol Sci 2021; 22:1069. [PMID: 33499026 PMCID: PMC7865282 DOI: 10.3390/ijms22031069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a dynamic process required to maintain skin integrity and which relies on the precise migration of different cell types. A key molecule that regulates this process is ATP. However, the mechanisms involved in extracellular ATP management are poorly understood, particularly in the human dermis. Here, we explore the role, in human fibroblast migration during wound healing, of Pannexin 1 channels and their relationship with purinergic signals and in vivo cell surface filamentous actin dynamics. Using siRNA against Panx isoforms and different Panx1 channel inhibitors, we demonstrate in cultured human dermal fibroblasts that the absence or inhibition of Panx1 channels accelerates cell migration, increases single-cell motility, and promotes actin redistribution. These changes occur through a mechanism that involves the release of ATP to the extracellular space through a Panx1-dependent mechanism and the activation of the purinergic receptor P2X7. Together, these findings point to a pivotal role of Panx1 channels in skin fibroblast migration and suggest that these channels could be a useful pharmacological target to promote damaged skin healing.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ana C. Abbott
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Valparaíso 2360102, Chile
| | - Donald I. Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| |
Collapse
|
10
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Zhang H, Xiao Y, Deng X, Feng H, Li Z, Zhang L, Chen H. OsVPE3 Mediates GA-induced Programmed Cell Death in Rice Aleurone Layers via Interacting with Actin Microfilaments. RICE (NEW YORK, N.Y.) 2020; 13:22. [PMID: 32232682 PMCID: PMC7105518 DOI: 10.1186/s12284-020-00376-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Vacuolar processing enzymes (VPEs) have been identified as the enzymes that regulate vacuole-mediated programmed cell death (PCD) in plants. The mechanism that VPE regulates the PCD in rice aleurone layers remains unknown. RESULTS The aleurone layers treated with distilled water exerted caspase-1 and VPE activity, both of which were inhibited by the caspase-1 specific inhibitor Ac-YVAD-CMK but not by the caspase-3 specific inhibitor Ac-DEVD-CHO. However, the caspase-1 and caspase-3 inhibitors weakened the activity of caspase-3. Combined with the effects of endogenous gibberellin (GA) on the induction of OsVPEs, we suggest that the OsVPE3 in the aleurone layers, which exhibits caspase-1-like activity, is a key molecule in GA-induced PCD via regulating the protease with caspase-3-like activity. Many studies have confirmed that vacuolar fusion is an important feature of vacuole-mediated PCD in plants. In this experiment, the process of vacuole fusion was accompanied by changes in the structure of actin filaments (AFs), specifically, their depolymerization and polymerization. The process of vacuolar fusion was accelerated or delayed by the promotion or inhibition of the depolymerization of AFs, respectively. Here, the inhibition of OsVPE3 blocked the depolymerization of AFs and delayed the fusion of vacuoles, indicating that OsVPE3 can regulate the fusion of vacuoles in rice aleurone layers via mediating AFs. Furthermore, the depolymerization of AFs contributed to the up-regulation of OsVPE3 gene expression and VPE activity, resulting in accelerated PCD in rice aleurone layers. However, the inhibitor of VPE reversed the effects of AF depolymerization on the activity of VPE, then postponing the process of PCD, implying that AF can involve in GA-induced PCD of rice aleurone layers by mediating OsVPE3. CONCLUSIONS Together, activation of OsVPE3 and depolymerization of AFs shortened the process of vacuolation and PCD in rice aleurone layers, and OsVPE3 interacted with AFs during regulation.
Collapse
Affiliation(s)
- Heting Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Yu Xiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Xiaojiang Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Hongyu Feng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Zhe Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Lulu Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Huiping Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Pradhan G, Raj Abraham P, Shrivastava R, Mukhopadhyay S. Calcium Signaling Commands Phagosome Maturation Process. Int Rev Immunol 2020; 38:57-69. [PMID: 31117900 DOI: 10.1080/08830185.2019.1592169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagosome-lysosome (P-L) fusion is one of the central immune-effector responses of host. It is known that phagosome maturation process is associated with numerous signaling cascades and among these, important role of calcium (Ca2+) signaling has been realized recently. Ca2+ plays key roles in actin rearrangement, activation of NADPH oxidase and protein kinase C (PKC). Involvement of Ca2+ in these cellular processes directs phagosomal maturation process. Some of the intracellular pathogens have acquired the strategies to modulate Ca2+ associated pathways to block P-L fusion process. In this review we have described the mechanism of Ca2+ signals that influence P-L fusion by controlling ROS, actin and PKC signaling cascades. We have also discussed the strategies implemented by the intracellular pathogens to manipulate Ca2+ signaling to consequently subvert P-L fusion. A detail study of factors associated in manipulating Ca2+ signaling may provide new insights for the development of therapeutic tools for more effective treatment options against infectious diseases.
Collapse
Affiliation(s)
- Gourango Pradhan
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Philip Raj Abraham
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India
| | - Rohini Shrivastava
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India
| |
Collapse
|
13
|
Abstract
In the present study, we identify and describe an important cross-talk between leptin signaling and macrophage functions in the context of Salmonella Typhimurium infection. Genetic ablation of leptin receptor or pharmacological antagonization of leptin augmented lysosomal functions in macrophages, reduced S. Typhimurium burden, and diminished inflammation both in vitro and in vivo. Leptin signaling activates mTORC2/Akt pathway through the down-regulation of Phlpp1 phosphatase, thus impairs lysosome-mediated pathogen clearance. The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S. Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections.
Collapse
|
14
|
Guo CY, Xiong TQ, Tan BH, Gui Y, Ye N, Li SL, Li YC. The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia. Brain Res 2019; 1720:146297. [PMID: 31233713 DOI: 10.1016/j.brainres.2019.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Transient global ischemia usually results in delayed neuronal death in selective brain regions, prior to which a rapid loss of dendritic spines has been widely reported in these regions. Dendritic spines are characterized by a highly branched meshwork of actin cytoskeleton (F-actin), which is extremely vulnerable to the ATP-depleted conditions such as hypoxia/ischemia. However, the ischemia-induced changes of F-actin are still not clarified in the vulnerable brain areas. This study was designed to examine the temporal and spatial alterations of F-actin in the CA1 subfield of rat hippocampus following reperfusion after global cerebral ischemia. Phalloidin staining and confocal microscopic examination showed that F-actin disappeared from the dentritic spines in the CA1 stratum radiatum, but aggregated into thread- or fiber-like structures on days 1.5-2 after ischemia. This was followed by a nearly complete loss of F-actin in the CA1 subfield on days 3-7 after ischemia. Colocalization analysis demonstrated that the F-actin threads or fibers were located mainly within the dentritic trunks. As revealed by Nissl and Fluoro-Jade B staining, the decrease of F-actin proceeded concurrently with the evolution of ischemic damage. Consistently, western blots detected a significant decrease of F-/G-actin ratio in the dissected CA1 subfield after ischemia. To our knowledge, this is the first report on the change of F-actin in the ischemic brain. Although the underlying mechanisms remain to be elucidated, our findings may provide an important structural clue for the neuronal dysfunction induced by ischemia.
Collapse
Affiliation(s)
- Chun-Yan Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Tian-Qing Xiong
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yue Gui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Ning Ye
- Department of Geriatrics and General Medicine, The Second Hospital of Jilin University, Changchun, Jilin, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China.
| |
Collapse
|
15
|
Duhamel M, Rose M, Rodet F, Murgoci AN, Zografidou L, Régnier-Vigouroux A, Vanden Abeele F, Kobeissy F, Nataf S, Pays L, Wisztorski M, Cizkova D, Fournier I, Salzet M. Paclitaxel Treatment and Proprotein Convertase 1/3 (PC1/3) Knockdown in Macrophages is a Promising Antiglioma Strategy as Revealed by Proteomics and Cytotoxicity Studies. Mol Cell Proteomics 2018. [PMID: 29531019 DOI: 10.1074/mcp.ra117.000443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
High grade gliomas are the most common brain tumors in adult. These tumors are characterized by a high infiltration in microglial cells and macrophages. The immunosuppressive tumor environment is known to orient immune cells toward a pro-tumoral and anti-inflammatory phenotype. Therefore, the current challenge for cancer therapy is to find a way to reorient macrophages toward an antitumoral phenotype. Previously, we demonstrated that macrophages secreted antitumoral factors when they were invalidated for the proprotein converstase 1/3 (PC1/3) and treated with LPS. However, achieving an activation of macrophages via LPS/TLR4/Myd88-dependent pathway appears yet unfeasible in cancer patients. On the contrary, the antitumor drug Paclitaxel is also known to activate the TLR4 MyD88-dependent signaling pathway and mimics LPS action. Therefore, we evaluated if PC1/3 knock-down (KD) macrophages could be activated by Paclitaxel and efficient against glioma. We report here that such a treatment of PC1/3 KD macrophages drove to the overexpression of proteins mainly involved in cytoskeleton rearrangement. In support of this finding, we found that these cells exhibited a Ca2+ increase after Paclitaxel treatment. This is indicative of a possible depolymerization of microtubules and may therefore reflect an activation of inflammatory pathways in macrophages. In such a way, we found that PC1/3 KD macrophages displayed a repression of the anti-inflammatory pathway STAT3 and secreted more pro-inflammatory cytokines. Extracellular vesicles isolated from these PC1/3 KD cells inhibited glioma growth. Finally, the supernatant collected from the coculture between glioma cells and PC1/3 KD macrophages contained more antitumoral factors. These findings unravel the potential value of a new therapeutic strategy combining Paclitaxel and PC1/3 inhibition to switch macrophages toward an antitumoral immunophenotype.
Collapse
Affiliation(s)
- Marie Duhamel
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France;
| | - Mélanie Rose
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France.,§Oncovet Clinical Research (OCR), SIRIC ONCOLille, Villeneuve d'Ascq, France
| | - Franck Rodet
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Adriana Natalia Murgoci
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France.,§§Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic
| | - Lea Zografidou
- ¶Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 15, D-55128 Mainz, Germany
| | - Anne Régnier-Vigouroux
- ¶Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 15, D-55128 Mainz, Germany
| | - Fabien Vanden Abeele
- ‖Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Firas Kobeissy
- **Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut, Lebanon
| | - Serge Nataf
- ‡‡Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, Hôpital Edouard Herriot, 69437 Lyon cedex 03, France
| | - Laurent Pays
- ‡‡Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, Hôpital Edouard Herriot, 69437 Lyon cedex 03, France
| | - Maxence Wisztorski
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Dasa Cizkova
- §§Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic
| | - Isabelle Fournier
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Michel Salzet
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| |
Collapse
|
16
|
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:351-385. [PMID: 29594868 DOI: 10.1007/978-3-319-55858-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Bretou M, Kumari A, Malbec O, Moreau HD, Obino D, Pierobon P, Randrian V, Sáez PJ, Lennon-Duménil AM. Dynamics of the membrane-cytoskeleton interface in MHC class II-restricted antigen presentation. Immunol Rev 2016; 272:39-51. [DOI: 10.1111/imr.12429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marine Bretou
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Anita Kumari
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Odile Malbec
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Hélène D. Moreau
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Dorian Obino
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Paolo Pierobon
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Violaine Randrian
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Pablo J. Sáez
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | | |
Collapse
|
18
|
Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Commun Integr Biol 2016; 9:e1174798. [PMID: 27489580 PMCID: PMC4951175 DOI: 10.1080/19420889.2016.1174798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes. Some bacterial pathogens manipulate the phosphoinositide (PIP) composition of phagosome membranes and are not delivered to phagolysosomes, pointing at a role of PIPs in phagosome maturation. This hypothesis is supported by comprehensive microscopic studies. Recently, cell-free reconstitution of fusion between phagosomes and endo(lyso)somes identified phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 3-phosphate [PI(3)P] as key regulators of phagolysosome biogenesis. Here, we describe the emerging roles of PIPs in phagosome maturation and we present tools to study PIP involvement in phagosome trafficking using intact cells or purified compartments.
Collapse
|
19
|
Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci U S A 2015; 112:4636-41. [PMID: 25825728 DOI: 10.1073/pnas.1423456112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Professional phagocytic cells ingest microbial intruders by engulfing them into phagosomes, which subsequently mature into microbicidal phagolysosomes. Phagosome maturation requires sequential fusion of the phagosome with early endosomes, late endosomes, and lysosomes. Although various phosphoinositides (PIPs) have been detected on phagosomes, it remained unclear which PIPs actually govern phagosome maturation. Here, we analyzed the involvement of PIPs in fusion of phagosomes with various endocytic compartments and identified phosphatidylinositol 4-phosphate [PI(4)P], phosphatidylinositol 3-phosphate [PI(3)P], and the lipid kinases that generate these PIPs, as mediators of phagosome-lysosome fusion. Phagosome-early endosome fusion required PI(3)P, yet did not depend on PI(4)P. Thus, PI(3)P regulates phagosome maturation at early and late stages, whereas PI(4)P is selectively required late in the pathway.
Collapse
|
20
|
Myogenesis defect due to Toca-1 knockdown can be suppressed by expression of N-WASP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1930-41. [PMID: 24861867 DOI: 10.1016/j.bbamcr.2014.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/09/2023]
Abstract
Skeletal muscle formation is a multistep process involving proliferation, differentiation, alignment and fusion of myoblasts to form myotubes which fuse with additional myoblast to form myofibers. Toca-1 (Transducer of Cdc42-dependent actin assembly), is an adaptor protein which activates N-WASP in conjunction with Cdc42 to facilitate membrane invagination, endocytosis and actin cytoskeleton remodeling. Expression of Toca-1 in mouse primary myoblasts and C2C12 myoblasts was up-regulated on day 1 of differentiation and subsequently down-regulated during differentiation. Knocking down Toca-1 expression in C2C12 cells (Toca-1(KD) cells) resulted in a significant decrease in myotube formation and expression of shRNA-resistant Toca-1 in Toca-1(KD) cells rescued the myogenic defect, suggesting that the knockdown was specific and Toca-1 is essential for myotube formation. Toca-1(KD) cells exhibited elongated spindle-like morphology, expressed myogenic markers (MyoD and MyHC) and localized N-Cadherin at cell periphery similar to control cells suggesting that Toca-1 is not essential for morphological changes or expression of proteins critical for differentiation. Toca-1(KD) cells displayed prominent actin fibers suggesting a defect in actin cytoskeleton turnover necessary for cell-cell fusion. Toca-1(KD) cells migrated faster than control cells and had a reduced number of vinculin patches similar to N-WASP(KO) MEF cells. Transfection of N-WASP-expressing plasmid into Toca-1(KD) cells restored myotube formation of Toca-1(KD) cells. Thus, our results suggest that Toca-1(KD) cells have defects in formation of myotubes probably due to reduced activity of actin cytoskeleton regulators such as N-WASP. This is the first study to identify and characterize the role of Toca-1 in myogenesis.
Collapse
|
21
|
Kolonko M, Geffken AC, Blumer T, Hagens K, Schaible UE, Hagedorn M. WASH-driven actin polymerization is required for efficient mycobacterial phagosome maturation arrest. Cell Microbiol 2013; 16:232-46. [PMID: 24119059 DOI: 10.1111/cmi.12217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/21/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022]
Abstract
Pathogenic mycobacteria survive in phagocytic host cells primarily as a result of their ability to prevent fusion of their vacuole with lysosomes, thereby avoiding a bactericidal environment. The molecular mechanisms to establish and maintain this replication compartment are not well understood. By combining molecular and microscopical approaches we show here that after phagocytosis the actin nucleation-promoting factor WASH associates and generates F-actin on the mycobacterial vacuole. Disruption of WASH or depolymerization of F-actin leads to the accumulation of the proton-pumping V-ATPase around the mycobacterial vacuole, its acidification and reduces the viability of intracellular mycobacteria. This effect is observed for M. marinum in the model phagocyte Dictyostelium but also for M. marinum and M. tuberculosis in mammalian phagocytes. This demonstrates an evolutionarily conserved mechanism by which pathogenic mycobacteria subvert the actin-polymerization activity of WASH to prevent phagosome acidification and maturation, as a prerequisite to generate and maintain a replicative niche.
Collapse
Affiliation(s)
- Margot Kolonko
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Derivery E, Helfer E, Henriot V, Gautreau A. Actin polymerization controls the organization of WASH domains at the surface of endosomes. PLoS One 2012; 7:e39774. [PMID: 22737254 PMCID: PMC3380866 DOI: 10.1371/journal.pone.0039774] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/30/2012] [Indexed: 12/24/2022] Open
Abstract
Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel colocalization method that is insensitive to the heterogeneity of size and shape of endosomes, we further show that preventing the generation of branched actin networks induces endosomal accumulation of the WASH complex. Moreover, we found that actin depolymerization induces a dramatic decrease in the recovery of endosomal WASH after photobleaching. This result suggests a built-in turnover, where the actin network, i.e. the product of the WASH complex, contributes to the dynamic exchange of the WASH complex by promoting its detachment from endosomes. Our experiments also provide evidence for a role of actin polymerization in the lateral compartmentalization of endosomes: several WASH domains exist at the surface of enlarged endosomes, however, the WASH domains coalesce upon actin depolymerization or Arp2/3 depletion. Branched actin networks are thus involved in the regulation of the size of WASH domains. The potential role of this regulation in membrane scission are discussed.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Emmanuèle Helfer
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Véronique Henriot
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
23
|
Akhter A, Caution K, Abu Khweek A, Tazi M, Abdulrahman BA, Abdelaziz DHA, Voss OH, Doseff AI, Hassan H, Azad AK, Schlesinger LS, Wewers MD, Gavrilin MA, Amer AO. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 2012; 37:35-47. [PMID: 22658523 DOI: 10.1016/j.immuni.2012.05.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 03/14/2012] [Accepted: 05/02/2012] [Indexed: 01/24/2023]
Abstract
Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.
Collapse
Affiliation(s)
- Anwari Akhter
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu M, De Camilli P. Supported native plasma membranes as platforms for the reconstitution and visualization of endocytic membrane budding. Methods Cell Biol 2012; 108:3-18. [PMID: 22325595 PMCID: PMC12020404 DOI: 10.1016/b978-0-12-386487-1.00001-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell-free assays represent an important complement to studies in living cells for the elucidation of mechanisms underlying the dynamics of biological membranes, such as budding, fission, and fusion reactions. Here we describe a method for the reconstitution of endocytosis, the process through which cells internalize portions of the plasma membrane along with extracellular material, under conditions that allow the visualization of individual budding events with high spatial and temporal resolution. The method, which is based on the generation of planar plasma membrane sheets attached to a glass substrate and their subsequent incubation with a cytosolic extract, results in a very robust formation of endocytic buds, which upon appropriate conditions undergo fission. The synchronization of the endocytic events and the accessibility of the material to a variety of manipulations make this experimental system a powerful tool for the molecular dissection of endocytosis.
Collapse
Affiliation(s)
- Min Wu
- Howard Hughes Medical Institute, Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
25
|
Abstract
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Collapse
|
26
|
Marion S, Hoffmann E, Holzer D, Le Clainche C, Martin M, Sachse M, Ganeva I, Mangeat P, Griffiths G. Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion. Traffic 2011; 12:421-37. [PMID: 21210911 DOI: 10.1111/j.1600-0854.2011.01158.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process. Moreover, we provided evidence that actin assembly on purified phagosomes stimulates their fusion with late endocytic compartments in vitro. In this study, we further investigated the role of ezrin in phagosome maturation. We engineered a structurally open form of ezrin and demonstrated that ezrin binds directly to the actin assembly promoting factor N-WASP (Neural Wiskott-Aldrich Syndrome Protein) by its FERM domain. Using a cell-free system, we found that ezrin stimulates F-actin assembly on purified phagosomes by recruiting the N-WASP-Arp2/3 machinery. Accordingly, we showed that the down-regulation of ezrin activity in macrophages by a dominant-negative approach caused reduced F-actin accumulation on maturing phagosomes. Furthermore, using fluorescence and electron microscopy, we found that ezrin is required for the efficient fusion between phagosomes and lysosomes. Live-cell imaging analysis supported the notion that ezrin is necessary for the fusogenic process itself, promoting the transfer of the lysosome content into the phagosomal lumen.
Collapse
Affiliation(s)
- Sabrina Marion
- Department of Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Changes in neostriatal and hippocampal synaptic densities in perinatal asphyctic male and female young rats: Role of hypothermia. Brain Res Bull 2011; 84:31-8. [DOI: 10.1016/j.brainresbull.2010.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/21/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022]
|
28
|
Staus DP, Blaker AL, Medlin MD, Taylor JM, Mack CP. Formin homology domain-containing protein 1 regulates smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2010; 31:360-7. [PMID: 21106951 DOI: 10.1161/atvbaha.110.212993] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our goal was to test whether formin homology protein 1 (FHOD1) plays a significant role in the regulation of smooth muscle cell (SMC) differentiation and, if so, whether Rho kinase (ROCK)-dependent phosphorylation in the diaphanous autoinhibitory domain is an important signaling mechanism that controls FHOD1 activity in SMC. METHODS AND RESULTS FHOD1 is highly expressed in aortic SMCs and in tissues with a significant SMC component. Exogenous expression of constitutively active FHOD1, but not wild-type, strongly activated SMC-specific gene expression in 10T1/2 cells. Treatment of SMC with the RhoA activator sphingosine-1-phosphate increased FHOD1 phosphorylation at Thr1141, and this effect was completely prevented by inhibition of ROCK with Y-27632. Phosphomimetic mutations to ROCK target residues enhanced FHOD1 activity, suggesting that phosphorylation interferes with FHOD1 autoinhibition. Importantly, knockdown of FHOD1 in SMC strongly inhibited sphingosine-1-phosphate-dependent increases in SMC differentiation marker gene expression and actin polymerization, suggesting that FHOD1 plays a major role in RhoA-dependent signaling in SMC. CONCLUSIONS Our results indicate that FHOD1 is a critical regulator of SMC phenotype and is regulated by ROCK-dependent phosphorylation. Thus, additional studies on the role of FHOD1 during development and the progression of cardiovascular disease will be important.
Collapse
Affiliation(s)
- Dean P Staus
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | |
Collapse
|
29
|
Initial receptor-ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis. Eur J Cell Biol 2010; 89:693-704. [PMID: 20579766 DOI: 10.1016/j.ejcb.2010.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/27/2010] [Accepted: 04/29/2010] [Indexed: 12/31/2022] Open
Abstract
The receptors engaged during recognition and phagocytic uptake of microorganisms and particles influence signaling events and diverse subcellular responses that occur during phagosome formation and maturation. However, pathogens generally have multiple ligands on their surface, making it difficult to dissect the roles of individual receptors during phagocytosis. Moreover, it remains elusive to which extent receptor-ligand interactions and early binding events define the subsequent intracellular fate of phagosomes. Here, we used latex beads coupled to single ligands, focusing on immunoglobulin G, mannan, bacterial lipopolysaccharides and avidin, and monitored: (1) phagocytic uptake rates, (2) fusion of phagosomes with lysosomal compartments, (3) the gene expression profile during phagocytosis, (4) the protein composition of mature phagosomes and (5) time-dependent dynamics of protein association with phagosomes in J774.A1 mouse macrophages. The differently coated latex beads were internalized at different rates and exhibited different kinetics of phagolysosomal fusion events dependent on their specific ligand. Furthermore, less than 60% of identified phagosomal proteins and only 10-15% of changes in gene expression were common to all investigated ligands. These findings demonstrate that each single ligand induced a distinct pattern of genes and a different protein composition of phagosomes. Taken together, our data argue that phagocytic receptor-specific programs of signaling events direct phagosomes to different physiological states and support the existence of a specific receptor-ligand 'signature' during the whole process of phagocytosis.
Collapse
|
30
|
Woronowicz K, Dilks JR, Rozenvayn N, Dowal L, Blair PS, Peters CG, Woronowicz L, Flaumenhaft R. The platelet actin cytoskeleton associates with SNAREs and participates in alpha-granule secretion. Biochemistry 2010; 49:4533-42. [PMID: 20429610 DOI: 10.1021/bi100541t] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Following platelet activation, platelets undergo a dramatic shape change mediated by the actin cytoskeleton and accompanied by secretion of granule contents. While the actin cytoskeleton is thought to influence platelet granule secretion, the mechanism for this putative regulation is not known. We found that disruption of the actin cytoskeleton by latrunculin A inhibited alpha-granule secretion induced by several different platelet agonists without significantly affecting activation-induced platelet aggregation. In a cell-free secretory system, platelet cytosol was required for alpha-granule secretion. Inhibition of actin polymerization prevented alpha-granule secretion in this system, and purified platelet actin could substitute for platelet cytosol to support alpha-granule secretion. To determine whether SNAREs physically associate with the actin cytoskeleton, we isolated the Triton X-100 insoluble actin cytoskeleton from platelets. VAMP-8 and syntaxin-2 associated only with actin cytoskeletons of activated platelets. Syntaxin-4 and SNAP-23 associated with cytoskeletons isolated from either resting or activated platelets. When syntaxin-4 and SNAP-23 were tested for actin binding in a purified protein system, only syntaxin-4 associated directly with polymerized platelet actin. These data show that the platelet cytoskeleton interacts with select SNAREs and that actin polymerization facilitates alpha-granule release.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 2010; 29:969-80. [PMID: 20075865 DOI: 10.1038/emboj.2009.405] [Citation(s) in RCA: 610] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 12/16/2009] [Indexed: 11/09/2022] Open
Abstract
Autophagy is primarily considered a non-selective degradation process induced by starvation. Nutrient-independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin-binding deacetylase, histone deacetylase-6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin-dependent, actin-remodelling machinery, which in turn assembles an F-actin network that stimulates autophagosome-lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build-up, and neurodegeneration. Remarkably, HDAC6 and F-actin assembly are completely dispensable for starvation-induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Joo-Yong Lee
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Participation of actin on Giardia lamblia growth and encystation. PLoS One 2009; 4:e7156. [PMID: 19774081 PMCID: PMC2743995 DOI: 10.1371/journal.pone.0007156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/26/2009] [Indexed: 12/31/2022] Open
Abstract
Background Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. Methodology and Principal Findings By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of flourescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%). Conclusions and Significance All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression.
Collapse
|
33
|
Liebl D, Griffiths G. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. J Cell Sci 2009; 122:2935-45. [PMID: 19638408 DOI: 10.1242/jcs.048355] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic remodelling of the cortical actin cytoskeleton is required for phagocytic uptake of pathogens and other particles by macrophages. Actin can also be nucleated de novo on membranes of nascent phagosomes, a process that can stimulate or inhibit phagosome fusion with lysosomes. Recently, phagosomes were shown to polymerize actin in transient pulses, called actin ;flashing', whose function remains unexplained. Here, we investigated phagosomal actin dynamics in live macrophages expressing actin tagged with green fluorescent protein (GFP). We show that only immature phagosomes can transiently induce assembly of actin coat, which forms a barrier preventing phagosome-lysosome docking and fusion. The capacity of phagosomes to assemble actin is enhanced in cells exposed to increased phagocytic load, which also exhibit a delay in phagosome maturation. Parallel analysis indicated that polymerization of actin on macropinosomes also induces compression and propulsion. We show that dynamic interactions between membrane elastic tension and compression forces of polymerizing actin can also lead to macropinosome constriction and scission - a process that is obstructed on rigid phagosomes. We hypothesize that the rate of individual phagosome maturation, as well as the biogenesis and remodelling of macropinosomes, can be regulated by the extent and manner of actin assembly on their membrane.
Collapse
Affiliation(s)
- David Liebl
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
34
|
Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect Immun 2009; 77:4609-20. [PMID: 19635823 DOI: 10.1128/iai.00301-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Q fever is a disease caused by Coxiella burnetii. In the host cell, this pathogen generates a large parasitophorous vacuole (PV) with lysosomal characteristics. Here we show that F-actin not only is recruited to but also is involved in the formation of the typical PV. Treatment of infected cells with F-actin-depolymerizing agents alters PV development. The small PVs formed in latrunculin B-treated cells were loaded with transferrin and Lysotracker and labeled with an antibody against cathepsin D, suggesting that latrunculin B did not affect vacuole cargo and its lysosomal characteristics. Nevertheless, the vacuoles were unable to fuse with latex bead phagosomes. It is known that actin dynamics are regulated by the Rho family GTPases. To assess the role of these GTPases in PV formation, infected cells were transfected with pEGFP expressing wild-type and mutant Rac1, Cdc42, and RhoA proteins. Rac1 did not show significant PV association. In contrast, PVs were decorated by both the wild types and constitutively active mutants of Cdc42 and RhoA. This association was inhibited by treatment of infected cells with chloramphenicol, suggesting a role for bacterial protein synthesis in the recruitment of these proteins. Interestingly, a decrease in vacuole size was observed in cells expressing dominant-negative RhoA; however, these small vacuoles accumulated transferrin, Lysotracker, and DQ-BSA. In summary, these results suggest that actin, likely modulated by the GTPases RhoA and Cdc42 and by bacterial proteins, is involved in the formation of the typical PV.
Collapse
|
35
|
Abstract
Receptor-mediated phagocytosis is a complex process that mediates the internalization, by a cell, of other cells and large particles; this is an important physiological event not only in mammals, but in a wide diversity of organisms. Of simple unicellular organisms that use phagocytosis to extract nutrients, to complex metazoans in which phagocytosis is essential for the innate defence system, as a first line of defence against invading pathogens, as well as for the clearance of damaged, dying or dead cells. Evolution has armed multicellular organisms with a range of receptors expressed on many cells that serve as the molecular basis to bring about phagocytosis, regardless of the organism or the specific physiological event concerned. Key to all phagocytic processes is the finely controlled rearrangement of the actin cytoskeleton, in which Ca(2+) signals play a major role. Ca(2+) is involved in cytoskeletal changes by affecting the actions of a number of contractile proteins, as well as being a cofactor for the activation of a number of intracellular signalling molecules, which are known to play important roles during the initiation, progression and resolution of the phagocytic process. In mammals, the requirement of Ca(2+) for the initial steps in phagocytosis, and the subsequent phagosome maturation, can be quite different depending on the type of cell and on the type of receptor that is driving phagocytosis. In this review we discuss the different receptors that mediate professional and non-professional phagocytosis, and discuss the role of Ca(2+) in the different steps of this complex process.
Collapse
|
36
|
Fernández-Arenas E, Bleck CKE, Nombela C, Gil C, Griffiths G, Diez-Orejas R. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cell Microbiol 2009; 11:560-89. [PMID: 19134116 DOI: 10.1111/j.1462-5822.2008.01274.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intracellular trafficking/survival strategies of the opportunistic human pathogen Candida albicans are poorly understood. Here we investigated the infection of RAW264.7 macrophages with a virulent wild-type (WT) filamentous C. albicans strain and a hyphal signalling-defective mutant (efg1Delta/cph1Delta). A comparative analysis of the acquisition by phagosomes of actin, and of early/late endocytic organelles markers of the different fungal strains was performed and related to Candida's survival inside macrophages. Our results show that both fungal strains have evolved a similar mechanism to subvert the 'lysosomal' system, as seen by the inhibition of the phagosome fusion with compartments enriched in the lysobisphosphatidic acid and the vATPase, and thereby the acquisition of a low pH from the outset of infection. Besides, the virulent WT strain displayed additional specific survival strategies to prevent its targeting to compartmentsdisplaying late endosomal/lysosomal features, such as induction of active recycling out of phagosomes of the lysosomal membrane protein LAMP-1, the lysosomal protease cathepsin D and preinternalized colloidal gold. Finally, both virulent and efg1Delta/cph1Delta mutant fungal strains actively suppressed the production of macrophage nitric oxide (NO), although their cell wall extracts were potent inducers of NO.
Collapse
Affiliation(s)
- Elena Fernández-Arenas
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Trost M, English L, Lemieux S, Courcelles M, Desjardins M, Thibault P. The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 2009; 30:143-54. [PMID: 19144319 DOI: 10.1016/j.immuni.2008.11.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/31/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
The ability of macrophages to clear pathogens and elicit a sustained immune response is regulated by various cytokines, including interferon-gamma (IFN-gamma). To investigate the molecular mechanisms by which IFN-gamma modulates phagosome functions, we profiled the changes in composition, abundance, and phosphorylation of phagosome proteins in resting and activated macrophages by using quantitative proteomics and bioinformatics approaches. We identified 2415 phagosome proteins together with 2975 unique phosphorylation sites with a high level of sensitivity. Using network analyses, we determined that IFN-gamma delays phagosomal acquisition of lysosomal hydrolases and peptidases for the gain of antigen presentation. Furthermore, this gain in antigen presentation is dependent on phagosomal networks of the actin cytoskeleton and vesicle-trafficking proteins, as well as Src kinases and calpain proteases. Major histocompatibility complex class I antigen-presentation assays validated the molecular participation of these networks in the enhanced capacity of IFN-gamma-activated macrophages to crosspresent exogenous antigens to CD8(+) T cells.
Collapse
Affiliation(s)
- Matthias Trost
- Department of Pathology and Cell Biology, Université de Montréal, Succ Centre-ville, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Kuehnel MP, Rybin V, Anand PK, Anes E, Griffiths G. Lipids regulate P2X7-receptor-dependent actin assembly by phagosomes via ADP translocation and ATP synthesis in the phagosome lumen. J Cell Sci 2009; 122:499-504. [PMID: 19174471 DOI: 10.1242/jcs.034199] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latex bead phagosomes isolated from J774 macrophages polymerize actin. We show here that five lipids--phosphatidylinositol-4-phosphate, phosphatidylinositol-(4,5)-bisphosphate, sphingosine-1-phosphate (S1P), ceramide-1-phosphate and phosphatidic acid--stimulate both actin assembly and transport of ADP across the phagosomal membrane into the lumen. Once there, this ADP is converted to ATP by adenylate kinase activity. High luminal ATP concentrations correlated well with phagosome actin assembly under different conditions. The ATP-binding P2X7 receptor (P2X7R) was detected in phagosomes. Although S1P stimulated actin assembly by phagosomes from P2X7R-containing bone marrow macrophages, S1P-stimulated actin assembly was inhibited in phagosomes from cells lacking P2X7R. We propose that luminal ATP accumulates in response to selected lipids and activates the P2X7R that signals across the phagosomal membrane to trigger actin assembly on the cytoplasmic membrane surface. In the accompanying paper by Kuehnel et al. (doi:10.1242/jcs.034207), more evidence is provided in support of this model from the analysis of actin assembly at the plasma membrane of intact macrophages.
Collapse
|
39
|
Goebeler V, Poeter M, Zeuschner D, Gerke V, Rescher U. Annexin A8 regulates late endosome organization and function. Mol Biol Cell 2008; 19:5267-78. [PMID: 18923148 PMCID: PMC2592647 DOI: 10.1091/mbc.e08-04-0383] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 12/28/2022] Open
Abstract
Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. Late endosomes, organelles of the degradative lysosomal route, seem to require associated actin filaments for proper localization and function. We show here that the F-actin and phospholipid binding protein annexin A8 is associated specifically with late endosomes. Altering intracellular annexin A8 levels drastically affected the morphology and intracellular distribution of late endosomes. Trafficking through the degradative pathway was delayed in the absence of annexin A8, resulting in attenuated ligand-induced degradation of the epidermal growth factor receptor and prolonged epidermal growth factor-induced activation of mitogen-activated protein kinase. Depletion of annexin A8 reduced the association of late endosomal membranes with actin filaments. These results indicate that the defective cargo transport through the late endocytic pathway and the imbalanced signaling of activated receptors observed in the absence of annexin A8 results from the disturbed association of late endosomal membranes with the actin network, resulting in impaired actin-based late endosome motility.
Collapse
Affiliation(s)
- Verena Goebeler
- *Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, 48149 Muenster, Germany; and
| | - Michaela Poeter
- *Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, 48149 Muenster, Germany; and
| | - Dagmar Zeuschner
- Department of Cell Biology, Institute of Biomembranes, University Medical Centre Utrecht, 3854 CX Utrecht, The Netherlands
| | - Volker Gerke
- *Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, 48149 Muenster, Germany; and
| | - Ursula Rescher
- *Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, 48149 Muenster, Germany; and
| |
Collapse
|
40
|
Heinsbroek SEM, Kamen LA, Taylor PR, Brown GD, Swanson J, Gordon S. Actin and phosphoinositide recruitment to fully formed Candida albicans phagosomes in mouse macrophages. J Innate Immun 2008; 1:244-53. [PMID: 20375582 DOI: 10.1159/000173694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/22/2008] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is a dimorphic yeast that enters macrophages (Mphi) via the beta-glucan receptor dectin-1. Phagocytosis of C. albicans is characterized by actin polymerization, Syk kinase activation and rapid acquisition of phagolysosomal markers. In mice, C. albicans are able to resist the harsh environment of the phagosome and form pseudohyphae inside the phagolysosomal compartment, eventually extending from the Mphi. In this study, we investigated these unique C. albicans phagosomes and found that actin localized dynamically around the phagosomes, before disintegrating. Membrane phosphoinositides, PI(4,5)P(2), PI(3,4,5)P(3), PI(3,4)P(2), and PI(3)P also localized to the phagosomes. Localization was not related to actin polymerization, and inhibitor studies showed that polymerization of actin on the C. albicans phagosome was independent of PI3K. The ability of mature C. albicans phagosomes to stimulate actin polymerization could facilitate the escape of the growing yeast from the Mphi.
Collapse
|
41
|
Mitchell T, Lo A, Logan M, Lacy P, Eitzen G. Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling. Am J Physiol Cell Physiol 2008; 295:C1354-65. [PMID: 18799653 PMCID: PMC2878813 DOI: 10.1152/ajpcell.00239.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.
Collapse
Affiliation(s)
- Troy Mitchell
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7
| | - Andrea Lo
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton Alberta, T6G 2S2
| | - Mike Logan
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton Alberta, T6G 2S2
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7
| |
Collapse
|
42
|
Jordao L, Lengeling A, Bordat Y, Boudou F, Gicquel B, Neyrolles O, Becker PD, Guzman CA, Griffiths G, Anes E. Effects of omega-3 and -6 fatty acids on Mycobacterium tuberculosis in macrophages and in mice. Microbes Infect 2008; 10:1379-86. [DOI: 10.1016/j.micinf.2008.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 11/26/2022]
|
43
|
Kuiper JWP, Pluk H, Oerlemans F, van Leeuwen FN, de Lange F, Fransen J, Wieringa B. Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis. PLoS Biol 2008; 6:e51. [PMID: 18336068 PMCID: PMC2265766 DOI: 10.1371/journal.pbio.0060051] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/18/2008] [Indexed: 11/23/2022] Open
Abstract
Phagocytosis requires locally coordinated cytoskeletal rearrangements driven by actin polymerization and myosin motor activity. How this actomyosin dynamics is dependent upon systems that provide access to ATP at phagosome microdomains has not been determined. We analyzed the role of brain-type creatine kinase (CK-B), an enzyme involved in high-energy phosphoryl transfer. We demonstrate that endogenous CK-B in macrophages is mobilized from the cytosolic pool and coaccumulates with F-actin at nascent phagosomes. Live cell imaging with XFP-tagged CK-B and β-actin revealed the transient and specific nature of this partitioning process. Overexpression of a catalytic dead CK-B or CK-specific cyclocreatine inhibition caused a significant reduction of actin accumulation in the phagocytic cup area, and reduced complement receptor–mediated, but not Fc-γR–mediated, ingestion capacity of macrophages. Finally, we found that inhibition of CK-B affected phagocytosis already at the stage of particle adhesion, most likely via effects on actin polymerization behavior. We propose that CK-B activity in macrophages contributes to complement-induced F-actin assembly events in early phagocytosis by providing local ATP supply. To do work, cells need energy in the form of ATP. High and sudden energy demand is seen during cell-shape change, a process in which ATP fuels the cytoskeletal machinery that drives cell-morphology alteration. How a cell organizes high-energy surges without disrupting global ATP homeostasis remains an important research question. One view proposes that ATP is heterogeneously distributed, but the cytoskeletal proteins actin and myosin receive regional and preferential access to ATP. Yet this model raises another question: how is ATP funneled to these proteins from distant sources? To address some of these questions, we studied the highly localized molecular events controlling actin dynamics around phagocytic activity of macrophages. We demonstrate that actin and creatine kinase-B (CK-B), a long-known enzyme involved in ATP supply, are simultaneously recruited into the sites of action during the early phases of particle ingestion. Local availability of CK-activity and local generation of ATP promotes on-site actin remodeling and particle capture efficiency, and thus supports successful initiation of the first phases of phagocytosis. Interestingly, this coupling between local CK-activity and actin regulation is only relevant for complement-mediated phagocytosis (used by immune cells to target specific particles for ingestion). We predict that our findings may also shed light on how shape dynamics is energized in other cell types. A tight connection exists between local recruitment of creatine kinase-B (CK-B) and actin remodeling activity in phagocytic cups of macrophages. Complement-mediated phagocytosis is stimulated in the presence of enzymatic-active CK-B, indicating that local ATP supply stimulates actin-driven particle uptake events.
Collapse
Affiliation(s)
- Jan W. P Kuiper
- Department of Cell Biology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Helma Pluk
- Department of Cell Biology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frank Oerlemans
- Department of Cell Biology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frank de Lange
- Department of Cell Biology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Isgandarova S, Jones L, Forsberg D, Loncar A, Dawson J, Tedrick K, Eitzen G. Stimulation of actin polymerization by vacuoles via Cdc42p-dependent signaling. J Biol Chem 2007; 282:30466-75. [PMID: 17726018 DOI: 10.1074/jbc.m704117200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that actin ligands inhibit the fusion of yeast vacuoles in vitro, which suggests that actin remodeling is a subreaction of membrane fusion. Here, we demonstrate the presence of vacuole-associated actin polymerization activity, and its dependence on Cdc42p and Vrp1p. Using a sensitive in vitro pyrene-actin polymerization assay, we found that vacuole membranes stimulated polymerization, and this activity increased when vacuoles were preincubated under conditions that support membrane fusion. Vacuoles purified from a VRP1-gene deletion strain showed reduced polymerization activity, which could be recovered when reconstituted with excess Vrp1p. Cdc42p regulates this activity because overexpression of dominant-negative Cdc42p significantly reduced vacuole-associated polymerization activity, while dominant-active Cdc42p increased activity. We also used size-exclusion chromatography to directly examine changes in yeast actin induced by vacuole fusion. This assay confirmed that actin undergoes polymerization in a process requiring ATP. To further confirm the need for actin polymerization during vacuole fusion, an actin polymerization-deficient mutant strain was examined. This strain showed in vivo defects in vacuole fusion, and actin purified from this strain inhibited in vitro vacuole fusion. Affinity isolation of vacuole-associated actin and in vitro binding assays revealed a polymerization-dependent interaction between actin and the SNARE Ykt6p. Our results suggest that actin polymerization is a subreaction of vacuole membrane fusion governed by Cdc42p signal transduction.
Collapse
Affiliation(s)
- Sabina Isgandarova
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen Y, Xing D, Wang W, Ding Y, Du L. Development of an ion-pair HPLC method for investigation of energy charge changes in cerebral ischemia of mice and hypoxia of Neuro-2a cell line. Biomed Chromatogr 2007; 21:628-34. [PMID: 17385810 DOI: 10.1002/bmc.798] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The determination of adenine nucleotides and energy charge (EC) has great importance in the characterization of cerebral ischemic injury and post-ischemic recovery. An IP-HPLC method was developed for the quantification of AMP, ADP, ATP and EC in cerebral ischemia and hypoxia of the Neuro-2a cell line. The chromatographic conditions were: a Zorbax SB-C18 reversed-phase column; mobile phase 100 mM KH(2)PO(4), 1 mM tetrabutylammonium hydroxide, and 2.5% acetonitrile, brought to pH 7.0 with potassium hydroxide (4 M), filtered through a 0.45 microm Millipore filter and degassed prior to use. The flow-rate was 1.0 mL/min. The injection volume was 20 microL. Detection was performed at a wavelength of 254 nm under a constant temperature (27 +/- 1 degrees C). The method was validated by means of linearity, using calibration curves constructed with five concentration levels of each compound. The limit of detection was also determined. The system precision was calculated as the coefficient of variation for five injections for each compound tested. Cerebral tissue was homogenized (4 degrees C) in 1 mL of an ice-cold 6% trichloroacetic acid that contained ATPase inhibitor and obtained good recovery (>90%). The results show that the described method for the determination of adenine nucleotides by HPLC has good linearity, limit of detection, precision and specificity, and is simple and rapid to perform.
Collapse
Affiliation(s)
- Yunyun Chen
- Protein Science Laboratory of Ministry of Education, Laboratory of Pharmaceutical Sciences, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Liu XS, Luo HJ, Yang H, Wang L, Kong H, Jin YE, Wang F, Gu MM, Chen Z, Lu ZY, Wang ZG. Palladin regulates cell and extracellular matrix interaction through maintaining normal actin cytoskeleton architecture and stabilizing beta1-integrin. J Cell Biochem 2007; 100:1288-300. [PMID: 17115415 DOI: 10.1002/jcb.21126] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell and extracellular matrix (ECM) interaction plays an important role in development and normal cellular function. Cell adhesion and cell spreading on ECM are two basic cellular behaviors related to cell-ECM interaction. Here we show that palladin, a novel actin cytoskeleton-associated protein, is actively involved in the regulation of cell-ECM interaction. It was found that palladin-deficient mouse embryonic fibroblasts (MEFs) display decreased cell adhesion and compromised cell spreading on various ECMs. Disorganized actin cytoskeleton architecture characterized by faint stress fibers, less lamellipodia and focal adhesions can account for the weakened cell-ECM interaction in palladin(-/-) MEFs. Furthermore, decreased polymerized filament actin and increased globular actin can be observed in palladin(-/-) MEFs, strongly suggesting that palladin is essential for the formation or stabilization of polymerized filament actin. Elevated phospho-cofilin level and proper responses in cofilin phosphorylation to either Rho signal agonist or antagonist in palladin(-/-) MEFs indicate that disrupted stress fibers in palladin(-/-) MEFs is not associated with cofilin phosphorylation. More interestingly, the protein level of ECM receptor beta1-integrin is dramatically decreased in MEFs lacking palladin. Down-regulation of beta1-integrin protein can be restored by proteasome inhibitor MG-132 treatment. All these data implicate that palladin is essential for cell-ECM interaction through maintaining normal actin cytoskeleton architecture and stabilizing beta1-integrin protein.
Collapse
Affiliation(s)
- Xue-Song Liu
- Laboratory of Genetic Engineering, Department of Medical Genetics, Institute of Health Sciences, Shanghai Jiao Tong University Medical School & Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kalamidas SA, Kuehnel MP, Peyron P, Rybin V, Rauch S, Kotoulas OB, Houslay M, Hemmings BA, Gutierrez MG, Anes E, Griffiths G. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. J Cell Sci 2007; 119:3686-94. [PMID: 16931599 DOI: 10.1242/jcs.03091] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We showed recently that actin assembly by phagosomal membranes facilitates fusion with late endocytic organelles in macrophages. Moreover, lipids that induced phagosomal actin also stimulated this fusion process. In macrophages infected with pathogenic mycobacteria actin-stimulatory lipids led to an increase in pathogen destruction, whereas inhibitors facilitated their growth. A model was proposed whereby phagosomal membrane actin assembly provides tracks for lysosomes to move towards phagosomes, thereby facilitating fusion. Here, we investigated how cAMP affected phagosomal actin assembly in vitro, and phagosomal actin, acidification and late fusion events in J774 macrophages. Latex bead phagosomes are shown to possess adenylyl cyclase activity, which synthesizes cAMP, and phosphodiesterase activity, which degrades cAMP. The system is regulated by protein kinase A (PKA). Increasing cAMP levels inhibited, whereas decreasing cAMP levels stimulated, actin assembly in vitro and within cells. Increasing cAMP levels also inhibited phagosome-lysosome fusion and acidification in cells, whereas reducing cAMP had the opposite effect. High cAMP levels induced an increase in intraphagosomal growth in macrophages of both the non-pathogenic Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis, whereas low cAMP levels or inhibition of PKA correlated with increased bacterial destruction. We argue that the phagosome cAMP-PKA system behaves as a molecular switch that regulates phagosome actin and maturation in macrophages.
Collapse
|
48
|
St-Jean M, Izard T, Sygusch J. A hydrophobic pocket in the active site of glycolytic aldolase mediates interactions with Wiskott-Aldrich syndrome protein. J Biol Chem 2007; 282:14309-15. [PMID: 17329259 DOI: 10.1074/jbc.m611505200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation-promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, four-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds around the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C terminus with its active site and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure, a novel naphthol phosphate-based inhibitor of aldolase was identified, and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics.
Collapse
Affiliation(s)
- Miguel St-Jean
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
49
|
Abstract
Phagosomes are fascinating subcellular structures. After all, there are only a few compartments that are born before our very eyes and whose development we can follow in a light microscope until their contents disintegrate and are completely absorbed. Yet, some phagosomes are taken advantage of by pathogenic microorganisms, which change their fate. Research into phagosome biogenesis has flourished in recent years - the purpose of this review is to give a glimpse of where this research stands, with emphasis on the cell biology of macrophage phagosomes, on new model organisms for the study of phagosome biogenesis and on intracellular pathogens and their interference with normal phagosome function.
Collapse
Affiliation(s)
- Albert Haas
- Cell Biology Institute, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
50
|
Trivedi V, Zhang SC, Castoreno AB, Stockinger W, Shieh EC, Vyas JM, Frickel EM, Nohturfft A. Immunoglobulin G signaling activates lysosome/phagosome docking. Proc Natl Acad Sci U S A 2006; 103:18226-31. [PMID: 17110435 PMCID: PMC1838734 DOI: 10.1073/pnas.0609182103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Indexed: 11/18/2022] Open
Abstract
An important role of IgG antibodies in the defense against microbial infections is to promote the ingestion and killing of microbes by phagocytes. Here, we developed in vivo and in vitro approaches to ask whether opsonization of particles with IgG enhances intracellular targeting of lysosomes to phagosomes. To eliminate the effect of IgG on the ingestion process, cells were exposed to latex beads at 15-20 degrees C, which allows engulfment of both IgG-coated and uncoated beads but prevents the fusion of lysosomes with phagosomes. Upon shifting the temperature to 37 degrees C, phagosomes containing IgG beads matured significantly faster into phagolysosomes as judged by colocalization with lysosomal markers. The IgG effect was independent of other particle-associated antigens or serum factors. Lysosome/phagosome attachment was also quantified biochemically with a cytosol-dependent scintillation proximity assay. Interactions were enhanced significantly in reactions containing cytosol from mouse macrophages that had been exposed to IgG-coated beads, indicating that IgG signaling modulates the cytosolic-targeting machinery. Similar results were obtained with cytosol from primary human monocytes, human U-937 histiocytic lymphoma cells and from Chinese hamster ovary (CHO) cells transfected with a human IgG (Fcgamma) receptor. IgG-induced activation is shown to affect the actin-dependent tethering/docking stage of the targeting process and to proceed through a pathway involving protein kinase C. These results provide a rare example of an extracellular signal controlling membrane targeting on the level of tethering and docking. We propose that this pathway contributes to the role of antibodies in the protection against microbial infections.
Collapse
Affiliation(s)
- Vishal Trivedi
- *Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Shao C. Zhang
- *Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Adam B. Castoreno
- *Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Walter Stockinger
- *Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Eugenie C. Shieh
- *Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Jatin M. Vyas
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114; and
| | - Eva-Maria Frickel
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142
| | - Axel Nohturfft
- *Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| |
Collapse
|