1
|
Lee G. Tau and signal transduction. Cytoskeleton (Hoboken) 2024; 81:103-106. [PMID: 38053488 DOI: 10.1002/cm.21814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Gloria Lee
- Department of Internal Medicine, Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. iScience 2021; 24:102321. [PMID: 33889818 PMCID: PMC8050387 DOI: 10.1016/j.isci.2021.102321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is a highly heterogeneous embryonal solid tumor of the sympathetic nervous system. As some tumors can be treated to undergo differentiation, investigating this process can guide differentiation-based therapies of neuroblastoma. Here, we studied the role of E3 ubiquitin ligases Cbl and Cbl-b in regulation of long-term signaling responses associated with extracellular signal-regulated kinase phosphorylation and neurite outgrowth, a morphological marker of neuroblastoma cell differentiation. Using quantitative mass spectrometry (MS)-based proteomics, we analyzed how the neuroblastoma cell line proteome, phosphoproteome, and ubiquitylome were affected by Cbl and Cbl-b depletion. To quantitatively assess neurite outgrowth, we developed a high-throughput microscopy assay that was applied in combination with inhibitor studies to pinpoint signaling underlying neurite outgrowth and to functionally validate proteins identified in the MS data sets. Using this combined approach, we identified a role for SHP-2 and CDK16 in Cbl/Cbl-b-dependent regulation of extracellular signal-regulated kinase phosphorylation and neurite outgrowth, highlighting their involvement in neuroblastoma cell differentiation. Multi-layered proteomics captures cellular changes induced by Cbl/Cbl-b depletion SHP-2 and CDK16 protein and phosphorylation levels increase upon Cbl/Cbl-b depletion SHP-2 and CDK16 regulate phospho-ERK and neurite outgrowth in neuroblastoma cells Inhibition of SHP-2 or CDK16 reverts Cbl/Cbl-b knockdown effects on differentiation
Collapse
|
3
|
Kim Y, Liu G, Leugers CJ, Mueller JD, Francis MB, Hefti MM, Schneider JA, Lee G. Tau interacts with SHP2 in neuronal systems and in Alzheimer's disease brains. J Cell Sci 2019; 132:jcs.229054. [PMID: 31201283 DOI: 10.1242/jcs.229054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
Microtubule-associated protein tau, an integral component of neurofibrillary tangles, interacts with a variety of signaling molecules. Previously, our laboratory reported that nerve growth factor (NGF)-induced MAPK activation in a PC12-derived cell line was potentiated by tau, with phosphorylation at T231 being required. Therefore, we sought to identify a signaling molecule involved in the NGF-induced Ras-MAPK pathway that interacted with phospho-T231-tau. Here, we report that the protein tyrosine phosphatase SHP2 (also known as PTPN11) interacted with tau, with phospho-T231 significantly enhancing the interaction. By using proximity ligation assays, we found that endogenous tau-SHP2 complexes were present in neuronal cells, where the number of tau-SHP2 complexes significantly increased when the cells were treated with NGF, with phosphorylation at T231 being required for the increase. The interaction did not require microtubule association, and an association between tau and activated SHP2 was also found. Tau-SHP2 complexes were also found in both primary mouse hippocampal cultures and adult mouse brain. Finally, SHP2 levels were upregulated in samples from patients with mild and severe Alzheimer's disease (AD), and the level of tau-SHP2 complexes were increased in AD patient samples. These findings strongly suggest a role for the tau-SHP2 interaction in NGF-stimulated neuronal development and in AD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Chad J Leugers
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Joseph D Mueller
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan B Francis
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Julie A Schneider
- Department of Pathology, Rush Medical College, Chicago, IL 60612, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA .,Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Li S, Wang L, Zhao Q, Liu Y, He L, Xu Q, Sun X, Teng L, Cheng H, Ke Y. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1. J Biol Chem 2014; 289:34152-60. [PMID: 25331952 PMCID: PMC4256348 DOI: 10.1074/jbc.m113.546077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an essential process for embryogenesis. It also plays a critical role in the initiation of tumor metastasis. Src homology 2 (SH2)-domain containing protein-tyrosine phosphatase-2 (SHP2) is a ubiquitously expressed protein-tyrosine phosphatase and is mutated in many tumors. However, its functional role in tumor metastasis remains largely unknown. We found that TGFβ1-induced EMT in lung epithelial A549 cells was partially blocked when SHP2 was decreased by transfected siRNA. The constitutively active form (E76V) promoted EMT while the phosphatase-dead mutation (C459S) and the SHP2 inhibitor PHPS1 blocked EMT, which further demonstrated that the phosphatase activity of SHP2 was required for promoting TGFβ1-induced EMT. Using the protein-tyrosine phosphatase domain of SHP2 as bait, we identified a novel SHP2-interacting protein Hook1. Hook1 was down-regulated during EMT in A549 cells. Overexpression of Hook1 inhibited EMT while knockdown of Hook1 promoted EMT. Moreover, both the protein-tyrosine phosphatase domain and N-terminal SH2 domain of SHP2 directly interacted with Hook1. Down-regulation of Hook1 increased SHP2 activity. These results suggested that Hook1 was an endogenous negative regulator of SHP2 phosphatase activity. Our data showed that the protein-tyrosine phosphatase SHP2 was involved in the process of EMT and Hook1 repressed EMT by regulating the activation of SHP2. SHP2-Hook1 complex may play important roles in tumor metastases by regulating EMT in cancer cells.
Collapse
Affiliation(s)
- Shuomin Li
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrun Wang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, and
| | - Qingwei Zhao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, and
| | - Yu Liu
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lingjuan He
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, and
| | - Qinqin Xu
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xu Sun
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Teng
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongqiang Cheng
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
5
|
SHP-2 deletion in postmigratory neural crest cells results in impaired cardiac sympathetic innervation. Proc Natl Acad Sci U S A 2014; 111:E1374-82. [PMID: 24706815 DOI: 10.1073/pnas.1319208111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autonomic innervation is an essential component of cardiovascular regulation that is first established from the neural crest (NC) lineage in utero and continues developing postnatally. Although in vitro studies have indicated that SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a signaling factor critical for regulating sympathetic neuron differentiation, this has yet to be shown in the complex in vivo environment of cardiac autonomic innervation. Targeting SHP-2 within postmigratory NC lineages resulted in a fully penetrant mouse model of diminished sympathetic cardiac innervation and concomitant bradycardia. Immunohistochemistry of the sympathetic nerve marker tyrosine hydroxylase revealed a progressive loss of adrenergic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Molecularly, Shp2 cKOs exhibit lineage-specific suppression of activated phospo-ERK1/2 signaling but not of other downstream targets of SHP-2 such as pAKT. Genetic restoration of the phosphorylated-extracellular signal-regulated kinase (pERK) deficiency via lineage-specific expression of constitutively active MEK1 was sufficient to rescue the sympathetic innervation deficit and its physiological consequences. These data indicate that SHP-2 signaling specifically through pERK in postmigratory NC lineages is essential for development and maintenance of sympathetic cardiac innervation postnatally.
Collapse
|
6
|
Nishina A, Kimura H, Tsukagoshi H, Kozawa K, Koketsu M, Ninomiya M, Sato D, Obara Y, Furukawa S. Neurite outgrowth of PC12 cells by 4'-O-β-D-glucopyranosyl-3',4-dimethoxychalcone from Brassica rapa L. 'hidabeni' was enhanced by pretreatment with p38MAPK inhibitor. Neurochem Res 2013; 38:2397-407. [PMID: 24057400 DOI: 10.1007/s11064-013-1152-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/27/2023]
Abstract
The cellular effects of eleven compounds including chalcone glycosides isolated from Brassica rapa L. 'hidabeni' and their synthetic derivatives were studied in rat pheochromocytoma PC12 cells. Of the compounds tested, 4'-O-β-D-glucopyranosyl-3',4-dimethoxychalcone (A2) significantly increased the levels of the phosphorylated forms of extracellular signal-regulated kinases 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38MAPK), and stress-activated protein kinases/Jun amino-terminal kinases (JNK/SAPK), but it did not affect Akt. Nerve growth factor (NGF), a well-known neurotrophic factor, increased the levels of phosphorylated ERK1/2, JNK/SAPK, and Akt but not p38MAPK, which may mediate marked neurite outgrowth. Signals evoked by A2 shared common characteristics with those induced by NGF; therefore, we evaluated the neuritogenic activity of A2 and found it induced only weak neurite outgrowth. However, this effect was enhanced by pre-treatment with a p38MAPK inhibitor, suggesting that the phosphorylation of p38MAPK down-regulated neurite outgrowth. From the results of this study, it was found that A2 in combination with a p38MAPK inhibitor can induce NGF-like effects. Hence, a combination of chalcone glycosides containing A2 and a p38MAPK inhibitor increases the likelihood that chalcone glycosides could be put to practical use in the form of drugs or alternative medicines to maintain neural health.
Collapse
Affiliation(s)
- Atsuyoshi Nishina
- College of Science and Technology, Nihon University, 1-5-1, Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Neurite Outgrowth in PC12 Cells Stimulated by Components from Dendranthema × grandiflorum cv. "Mottenohoka" Is Enhanced by Suppressing Phosphorylation of p38MAPK. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:403503. [PMID: 23554829 PMCID: PMC3608199 DOI: 10.1155/2013/403503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022]
Abstract
Components from Dendranthema × grandiflorum cv. "Mottenohoka" that promote neurite outgrowth of PC12 cells were identified and the mechanism of neurite outgrowth stimulated by isolated components was studied. Components that promoted the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) of PC12 cells were isolated. From various structural analyses, the active components were identified as acacetin and luteolin. The effects of acacetin or luteolin on PC12 cells were evaluated by electro-blotting and immunostaining. Slight neurite outgrowth in PC12 cells was observed within 2 days of culture after stimulation by luteolin or acacetin. However, NGF-stimulation induced remarkable neurite outgrowth in comparison. Neurite outgrowth by luteolin or acacetin was significantly enhanced by pretreatment with SB203580 (a p38MAPK inhibitor). The results of this study into the phosphorylation of ERK 1/2 and p38MAPK by flavonoids suggest that the inhibition of p38MAPK phosphorylation may effectively enhance neurite outgrowth.
Collapse
|
8
|
Development of a Plate-Based Assay Platform to Monitor Cellular SHP2 Phosphatase Activity During Erythroid Differentiation. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Nishina A, Kimura H, Kozawa K, Sommen G, Nakamura T, Heimgartner H, Koketsu M, Furukawa S. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase. Toxicol Appl Pharmacol 2011; 257:388-95. [PMID: 22001386 DOI: 10.1016/j.taap.2011.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 11/30/2022]
Abstract
Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166μM, the O(2)(-) scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC(50)) at 92.4μM and acted as an effective and potentially useful O(2)(-) scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100μM or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100μM. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100μM induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase.
Collapse
Affiliation(s)
- Atsuyoshi Nishina
- Yonezawa Women's Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cassano S, Agnese S, D'Amato V, Papale M, Garbi C, Castagnola P, Ruocco MR, Castellano I, De Vendittis E, Santillo M, Amente S, Porcellini A, Avvedimento EV. Reactive oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in nerve growth factor-induced differentiation of PC12 cells. J Biol Chem 2010; 285:24141-53. [PMID: 20495008 DOI: 10.1074/jbc.m109.098525] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nerve growth factor (NGF) induces terminal differentiation in PC12, a pheochromocytoma-derived cell line. NGF binds a specific receptor on the membrane and triggers the ERK1/2 cascade, which stimulates the transcription of neural genes. We report that NGF significantly affects mitochondrial metabolism by reducing mitochondrial-produced reactive oxygen species and stabilizing the electrochemical gradient. This is accomplished by stimulation of mitochondrial manganese superoxide dismutase (MnSOD) both transcriptionally and post-transcriptionally via Ki-Ras and ERK1/2. Activation of MnSOD is essential for completion of neuronal differentiation because 1) expression of MnSOD induces the transcription of a neuronal specific promoter and neurite outgrowth, 2) silencing of endogenous MnSOD by small interfering RNA significantly reduces transcription induced by NGF, and 3) a Ki-Ras mutant in the polylysine stretch at the COOH terminus, unable to stimulate MnSOD, fails to induce complete differentiation. Overexpression of MnSOD restores differentiation in cells expressing this mutant. ERK1/2 is also downstream of MnSOD, as a SOD mimetic drug stimulates ERK1/2 with the same kinetics of NGF and silencing of MnSOD reduces NGF-induced late ERK1/2. Long term activation of ERK1/2 by NGF requires SOD activation, low levels of hydrogen peroxide, and the integrity of the microtubular cytoskeleton. Confocal immunofluorescence shows that NGF stimulates the formation of a complex containing membrane-bound Ki-Ras, microtubules, and mitochondria. We propose that active NGF receptor induces association of mitochondria with plasma membrane. Local activation of ERK1/2 by Ki-Ras stimulates mitochondrial SOD, which reduces reactive oxygen species and produces H(2)O(2). Low and spatially restricted levels of H(2)O(2) induce and maintain long term ERK1/2 activity and ultimately differentiation of PC12 cells.
Collapse
Affiliation(s)
- Silvana Cassano
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Kuo CC, Chu CY, Lin JJ, Lo LC. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay. Biochem Biophys Res Commun 2009; 391:230-4. [PMID: 19909727 DOI: 10.1016/j.bbrc.2009.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.
Collapse
Affiliation(s)
- Chun-Chen Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
13
|
Abstract
Neurotrophins were christened in consideration of their actions on the nervous system and, for a long time, they were the exclusive interest of neuroscientists. However, more recently, this family of proteins has been shown to possess essential cardiovascular functions. During cardiovascular development, neurotrophins and their receptors are essential factors in the formation of the heart and critical regulator of vascular development. Postnatally, neurotrophins control the survival of endothelial cells, vascular smooth muscle cells, and cardiomyocytes and regulate angiogenesis and vasculogenesis, by autocrine and paracrine mechanisms. Recent studies suggest the capacity of neurotrophins, via their tropomyosin-kinase receptors, to promote therapeutic neovascularization in animal models of hindlimb ischemia. Conversely, the neurotrophin low-affinity p75(NTR) receptor induces apoptosis of endothelial cells and vascular smooth muscle cells and impairs angiogenesis. Finally, nerve growth factor looks particularly promising in treating microvascular complications of diabetes or reducing cardiomyocyte apoptosis in the infarcted heart. These seminal discoveries have fuelled basic and translational research and thus opened a new field of investigation in cardiovascular medicine and therapeutics. Here, we review recent progress on the molecular signaling and roles played by neurotrophins in cardiovascular development, function, and pathology, and we discuss therapeutic potential of strategies based on neurotrophin manipulation.
Collapse
Affiliation(s)
- Andrea Caporali
- Division of Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | | |
Collapse
|
14
|
Rosário M, Franke R, Bednarski C, Birchmeier W. The neurite outgrowth multiadaptor RhoGAP, NOMA-GAP, regulates neurite extension through SHP2 and Cdc42. ACTA ACUST UNITED AC 2007; 178:503-16. [PMID: 17664338 PMCID: PMC2064841 DOI: 10.1083/jcb.200609146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal differentiation involves the formation and extension of neuronal processes. We have identified a novel regulator of neurite formation and extension, the neurite outgrowth multiadaptor, NOMA-GAP, which belongs to a new family of multiadaptor proteins with RhoGAP activity. We show that NOMA-GAP is essential for NGF-stimulated neuronal differentiation and for the regulation of the ERK5 MAP kinase and the Cdc42 signaling pathways downstream of NGF. NOMA-GAP binds directly to the NGF receptor, TrkA, and becomes tyrosine phosphorylated upon receptor activation, thus enabling recruitment and activation of the tyrosine phosphatase SHP2. Recruitment of SHP2 is required for the stimulation of neuronal process extension and for sustained activation of ERK5 downstream of NOMA-GAP. In addition, we show that NOMA-GAP promotes neurite outgrowth by tempering activation of the Cdc42/PAK signaling pathway in response to NGF. NOMA-GAP, through its dual function as a multiadaptor and RhoGAP protein, thus plays an essential role downstream of NGF in promoting neurite outgrowth and extension.
Collapse
Affiliation(s)
- Marta Rosário
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
15
|
Mitsuhashi H, Futai E, Sasagawa N, Hayashi Y, Nishino I, Ishiura S. Csk-homologous kinase interacts with SHPS-1 and enhances neurite outgrowth of PC12 cells. J Neurochem 2007; 105:101-12. [PMID: 17999719 DOI: 10.1111/j.1471-4159.2007.05121.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SHPS-1 is an immunoglobulin superfamily protein with four immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic region. Various neurotrophic factors induce the tyrosine phosphorylation of SHPS-1 and the association of SHPS-1 with the protein tyrosine phosphatase SHP-2. Using a yeast two-hybrid screen, we identified a protein tyrosine kinase, Csk-homologous kinase (CHK), as an SHPS-1-interacting protein. Immunoprecipitation and pull-down assays using glutathione S-transferase (GST) fusion proteins containing the Src homology 2 (SH2) domain of CHK revealed that CHK associates with tyrosine-phosphorylated SHPS-1 via its SH2 domain. HIS3 assay in a yeast two-hybrid system using the tyrosine-to-phenylalanine mutants of SHPS-1 indicated that the first and second ITIMs of SHPS-1 are required to bind CHK. Over-expression of wild-type CHK, but not a kinase-inactive CHK mutant, enhanced the phosphorylation of SHPS-1 and its subsequent association with SHP-2. CHK phosphorylated each of four tyrosines in the cytoplasmic region of SHPS-1 in vitro. Co-expression of SHPS-1 and CHK enhanced neurite outgrowth in PC12 cells. Thus, CHK phosphorylates and associates with SHPS-1 and is involved in neural differentiation via SHP-2 activation.
Collapse
Affiliation(s)
- Hiroaki Mitsuhashi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Easton JB, Royer AR, Middlemas DS. The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. J Neurochem 2006; 97:834-45. [PMID: 16573649 DOI: 10.1111/j.1471-4159.2006.03789.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and other neurotrophins induce a unique prolonged activation of mitogen-activated protein kinase (MAPK) compared with growth factors. Characterization and kinetic and spatial modeling of the signaling pathways underlying this prolonged MAPK activation by BDNF will be important in understanding the physiological role of BDNF in many complex systems in the nervous system. In addition to Shc, fibroblast growth factor receptor substrate 2 (FRS2) is required for the BDNF-induced activation of MAPK. BDNF induces phosphorylation of FRS2. However, BDNF does not induce phosphorylation of FRS2 in cells expressing a deletion mutant of TrkB (TrkBDeltaPTB) missing the juxtamembrane NPXY motif. This motif is the binding site for SHC. NPXY is the consensus sequence for phosphotyrosine binding (PTB) domains, and notably, FRS2 and SHC contain PTB domains. This NPXY motif, which contains tyrosine 484 of TrkB, is therefore the binding site for both FRS2 and SHC. Moreover, the proline containing region (VIENP) of the NPXY motif is also required for FRS2 and SHC phosphorylation, which indicates this region is an important component of FRS2 and SHC recognition by TrkB. Previously, we had found that the phosphorylation of FRS2 induces association of FRS2 and growth factor receptor binding protein 2 (Grb2). Now, we have intriguing data that indicates BDNF induces association of the SH2 domain containing protein tyrosine phosphatase, Shp2, with FRS2. Moreover, the PTB association motif of TrkB containing tyrosine 484 is required for the BDNF-induced association of Shp2 with FRS2 and the phosphorylation of Shp2. These results imply that FRS2 and Shp2 are in a BDNF signaling pathway. Shp2 is required for complete MAPK activation by BDNF, as expression of a dominant negative Shp2 in cells attenuates BDNF-induced activation of MAPK. Moreover, expression of a dominant negative Shp2 attenuates Ras activation showing that the protein tyrosine phosphatase is required for complete activation of MAPKs by BDNF. In conclusion, Shp2 regulates BDNF signaling through the MAPK pathway by regulating either Ras directly or alternatively, by signaling components upstream of Ras. Characterization of MAPK signaling controlled by BDNF is likely to be required to understand the complex physiological role of BDNF in neuronal systems ranging from the regulation of neuronal growth and survival to the regulation of synapses.
Collapse
Affiliation(s)
- John B Easton
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, North Lauderdale, Memphis, Tennessee, USA
| | | | | |
Collapse
|
17
|
Greene LA, Angelastro JM. You can't go home again: transcriptionally driven alteration of cell signaling by NGF. Neurochem Res 2006; 30:1347-52. [PMID: 16341597 DOI: 10.1007/s11064-005-8807-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
Here we review findings indicating that neurotrophins such as NGF promote changes in gene transcription that in turn influence the ways that cells subsequently respond to trophic factors. As a result, initial responses of "naïve" cells to NGF and other trophic agents differ from those of cells with prior NGF exposure. We discuss specific examples based on reports in the literature as well as on data derived from a serial analysis of gene expression (SAGE) study of NGF-promoted transcriptional changes in PC12 pheochromocytoma cells.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology, Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
18
|
Oh JE, Karlmark KR, Shin JH, Pollak A, Freilinger A, Hengstschläger M, Lubec G. Differentiation of neuroblastoma cell line N1E-115 involves several signaling cascades. Neurochem Res 2005; 30:333-48. [PMID: 16018577 DOI: 10.1007/s11064-005-2607-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
No systematic searches for differential expression of signaling proteins (SP) in undifferentiated vs. differentiated cell lineages were published and herein we used protein profiling for this purpose. The NIE-115 cell line was cultivated and an aliquot was differentiated with dimethylsulfoxide (DMSO), that is known to lead to a neuronal phenotype. Cell lysates were prepared, run on two-dimensional gel electrophoresis followed by MALDI-TOF-TOF identification of proteins and maps of identified SPs were generated. Seven SPs were comparable, 27 SPs: GTP-binding/Ras-related proteins, kinases, growth factors, calcium binding proteins, phosphatase-related proteins were observed in differentiated NIE-115 cells and eight SPs of the groups mentioned above were observed in undifferentiated cells only. Switching-on/off of several individual SPs from different signaling cascades during the differentiation process is a key to understand mechanisms involved. The findings reported herein are challenging in vitro and in vivo studies to confirm a functional role for deranged SPs.
Collapse
Affiliation(s)
- Ji-eun Oh
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A 1090, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Lee WH, Raas-Rotschild A, Miteva MA, Bolasco G, Rein A, Gillis D, Vidaud D, Vidaud M, Villoutreix BO, Parfait B. Noonan syndrome type I with PTPN11 3 bp deletion: Structure-function implications. Proteins 2004; 58:7-13. [PMID: 15521065 DOI: 10.1002/prot.20296] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Noonan syndrome was recently reported to be caused by mutations in the PTPN11 gene in 40% of the cases. This gene encodes the nonreceptor-type protein tyrosine phosphatase SHP-2 and has been shown to be self down-regulated with the concurrency of two SH2 domains. Insertion of a specific loop (D'EF) from N-terminal SH2 domain into the SHP-2 active-site is responsible for the reversible inhibition of the phosphatase activity. Here we report the first in frame trinucleotide deletion resulting in the removal of Aspartate 61 (D61del), a key residue of the N-terminal SH2 D'EF loop. Energetic-based structural analysis and electrostatic calculations carried out on the wild-type and mutant proteins predict lower stability of the D'EF loop for the D61del variant as compared to the wild type indicating better access to the active site and most likely an enzyme activated for longer extent. Similar computations were performed on the previously functionally characterized gain-of-function D61Y mutant and similar behaviors were observed. The simulation data for the D61del and D61Y mutants suggest that both variants could yield more catalytic cycles than the wild-type molecule in the same timespan because of the opening of the active site. It also supports the notion that D61 plays a major role for proper down-regulation of the protein tyrosine phosphatase activity of SHP-2.
Collapse
Affiliation(s)
- Wen Hwa Lee
- INSERM U428, Faculté des Sciences Pharmaceutiques et Biologiques, PARIS, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marsh HN, Dubreuil CI, Quevedo C, Lee A, Majdan M, Walsh GS, Hausdorff S, Said FA, Zoueva O, Kozlowski M, Siminovitch K, Neel BG, Miller FD, Kaplan DR. SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase. ACTA ACUST UNITED AC 2004; 163:999-1010. [PMID: 14662744 PMCID: PMC2173621 DOI: 10.1083/jcb.200309036] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphorylation. Conversely, inhibition of endogenous SHP-1 with a dominant-inhibitory mutant stimulated basal tyrosine phosphorylation of TrkA, thereby promoting NGF-independent survival and causing sustained and elevated TrkA activation in the presence of NGF. Mice lacking SHP-1 had increased numbers of sympathetic neurons during the period of naturally occurring neuronal cell death, and when cultured, these neurons survived better than wild-type neurons in the absence of NGF. These data indicate that SHP-1 can function as a TrkA phosphatase, controlling both the basal and NGF-regulated level of TrkA activity in neurons, and suggest that SHP-1 regulates neuron number during the developmental cell death period by directly regulating TrkA activity.
Collapse
Affiliation(s)
- H Nicholas Marsh
- Brain Tumor Research Centre, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gryz EA, Meakin SO. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-dependent, but not nerve growth factor-independent, differentiation and cell cycle arrest in the human neuroblastoma cell line, SY5Y. Oncogene 2003; 22:8774-85. [PMID: 14647472 DOI: 10.1038/sj.onc.1206890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons and also differentiation of neuroblastomas and apoptosis of medulloblastomas. We have previously shown that aspartic acid and glutamic acid substitution (AspGlu and GluAsp) of the activation loop tyrosines in TrkA (Tyr(683) and Tyr(684)) supports NGF-independent neuritogenesis and cell survival in PC12 cell-derived nnr5 cells. In this study, the AspGlu and GluAsp mutant Trks have been analysed for their ability to support NGF-independent and NGF-dependent neuritogenesis, proliferation and cell signalling in the human neuroblastoma cell line, SY5Y. We find that the AspGlu and GluAsp mutant Trks support NGF-dependent, but not NGF-independent, autophosphorylation, neuritogenic responses and/or inhibit cell cycle progression. The NGF-dependent neuritogenic responses are lower for the mutant Trks (approximately 30-60% for AspGlu and 50-60% for GluAsp), relative to wild-type TrkA. While both the AspGlu and GluAsp mutant Trks support NGF-dependent transient phosphorylation of Shc, PLCgamma-1, AKT, FRS2, SH2B as well as prolonged MAP kinase activation, the GluAsp mutant induces stronger NGF-dependent tyrosine phosphorylation of FRS2 and SH2B, as well as a stronger reduction in bromodeoxyuridine (BrdU) incorporation. Collectively, these data suggest that neither absolute levels of receptor autophosphorylation, high levels of TrkA expression nor the activation of a specific signalling pathway is dominant and absolutely essential for neuritogenesis and cell cycle arrest of SY5Y cells.
Collapse
Affiliation(s)
- Ela A Gryz
- Laboratory of Neural Signalling, Cell Biology Group, The Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | |
Collapse
|
22
|
Abstract
Trk receptors are a family of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4 (NT3 and NT4). Neurotrophin signaling through these receptors regulates cell survival, proliferation, the fate of neural precursors, axon and dendrite growth and patterning, and the expression and activity of functionally important proteins, such as ion channels and neurotransmitter receptors. In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. The cytoplasmic domains of Trk receptors contain several sites of tyrosine phosphorylation that recruit intermediates in intracellular signaling cascades. As a result, Trk receptor signaling activates several small G proteins, including Ras, Rap-1, and the Cdc-42-Rac-Rho family, as well as pathways regulated by MAP kinase, PI 3-kinase and phospholipase-C-gamma (PLC-gamma). Trk receptor activation has different consequences in different cells, and the specificity of downstream Trk receptor-mediated signaling is controlled through expression of intermediates in these signaling pathways and membrane trafficking that regulates localization of different signaling constituents. Perhaps the most fascinating aspect of Trk receptor-mediated signaling is its interplay with signaling promoted by the pan-neurotrophin receptor p75NTR. p75NTR activates a distinct set of signaling pathways within cells that are in some instances synergistic and in other instances antagonistic to those activated by Trk receptors. Several of these are proapoptotic but are suppressed by Trk receptor-initiated signaling. p75NTR also influences the conformations of Trk receptors; this modifies ligand-binding specificity and affinity with important developmental consequences.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California Veterans Administration Medical Center, San Francisco, California 94143, USA.
| | | |
Collapse
|
23
|
D'Alessio A, Califano D, Incoronato M, Santelli G, Florio T, Schettini G, Carlomagno MS, Cerchia L, de Franciscis V. The tyrosine phosphatase Shp-2 mediates intracellular signaling initiated by Ret mutants. Endocrinology 2003; 144:4298-305. [PMID: 12959980 DOI: 10.1210/en.2003-0620] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Src homology 2-containing tyrosine phosphatase, Shp-2, is a crucial enzyme that mediates intracellular signaling and is implicated in cell proliferation and differentiation. Here we investigated the involvement of the Shp-2 tyrosine phosphatase in determining the downstream signaling pathways initiated by the Ret oncogene, carrying either the cysteine 634 to tyrosine or the methionine 918 to threonine substitutions. These mutations convert the receptor tyrosine kinase, Ret, into a dominant transforming protein and induce constitutive activation of its intrinsic tyrosine kinase activity leading to congenital and sporadic cancers in neuroendocrine organs. Using the PC12, rat pheochromocytoma cell line, as model system, we show that Shp-2 mediates immediate-early gene expression if induced by either of the mutant alleles. Furthermore, we show that Shp-2 activity is required for RetM918T-induced Akt activation. The results indicate that Shp-2 is a downstream mediator of the mutated receptors RetC634Y and RetM918T, thus suggesting that it may act as a limiting factor in Ret-associated endocrine tumors, in the neoplastic syndromes multiple endocrine neoplasia types 2A and 2B.
Collapse
Affiliation(s)
- A D'Alessio
- Oncologia Sperimentale E, Istituto Nazionale Tumori, Fondazione G. Pascale, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lucentini L, Fulle S, Ricciolini C, Lancioni H, Panara F. Low molecular weight phosphotyrosine protein phosphatase from PC12 cells. Purification, some properties and expression during neurogenesis in vitro and in vivo. Int J Biochem Cell Biol 2003; 35:1378-87. [PMID: 12798350 DOI: 10.1016/s1357-2725(03)00099-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purification and partial characterization of low molecular weight phosphotyrosine phosphatase (LMW-PTP) was reported for the first time in PC12 cells. In addition, the expression levels during neuronal phenotype induction by nerve growth factor (NGF) and during neurogenesis in chick embryos were investigated. LMW-PTP was purified to homogeneity and showed a single band of about 18 kDa with sodium dodecyl sulfate polyacrylamide gel electrophoresis. A native molecular mass of 20.1 kDa was determined by gel filtration on Sephadex G-75 column. The LMW-PTP from PC12 cells displays structural and biochemical characteristics similar to the enzyme isolated for normal tissues. It was specifically immunoprecipitated by an affinity purified antibody directed against the bovine liver enzyme. The enzyme is present in the cytosolic and cytoskeletal cell compartment where is tyrosine phosphorylated. Time course expression of LMW-PTP in PC12 cells was investigated after NGF treatment and showed an increase of about 30% in the basal level of LMW-PTP from 0 to 72 h. These changes were related to the appearance in PC12 cells of neuronal processes and to a decrease in cell proliferation. An increase of the LMW-PTP expression was also observed in vivo during chick embryo neurogenesis from 8-day-old embryos to adult chicks. The protein level, assayed by immunoblotting, increases from 14-day-old embryos to the hatched chicks reaching the adult levels within the first week after birth. These data indicate that the neurogenesis process is accompanied by a physiological increment of LMW-PTP expression in vitro and in vivo.
Collapse
Affiliation(s)
- Livia Lucentini
- Dipartimento di Biologia Cellulare e Molecolare, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | | | | | | | | |
Collapse
|
25
|
Chen B, Hammonds-Odie L, Perron J, Masters BA, Bixby JL. SHP-2 mediates target-regulated axonal termination and NGF-dependent neurite growth in sympathetic neurons. Dev Biol 2002; 252:170-87. [PMID: 12482708 PMCID: PMC4303248 DOI: 10.1006/dbio.2002.0847] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The tyrosine phosphatase SHP-2 has been implicated in a variety of signaling pathways, including those mediated by neurotrophins in neurons. To examine the role of SHP-2 in the development of sympathetic neurons, we inhibited the function of SHP-2 in transgenic mice by overexpressing a catalytically inactive SHP-2 mutant under the control of the human dopamine beta-hydroxylase promoter. Expression of mutant SHP-2 did not influence the survival, axon initiation, or pathfinding abilities of the sympathetic neurons. However, mutant SHP-2 expression resulted in an overproduction of sympathetic fibers in sympathetic target organs. This was due to interference with SHP-2 function, as overexpression of wild type SHP-2 had no such effect. In vitro, NGF-dependent neurite growth was inhibited in neurons expressing mutant SHP-2 but not in those expressing wild type SHP-2. Mutant (but not wt) SHP-2 expression also inhibited NGF-stimulated ERK activation. The NGF-dependent survival pathway was less affected than the neurite growth pathway. Our results suggest that NGF-regulated axon growth signals, and to a lesser degree survival signals, are mediated through a SHP-2-dependent pathway in sympathetic neurons. The increased sympathetic innervation in target tissues of neurons expressing mutant SHP-2 may result from interference with normal "stop" signals dependent on signaling by gradients of NGF.
Collapse
Affiliation(s)
- Bo Chen
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida 33136
| | - Latanya Hammonds-Odie
- Department of Physiology and Biophysics, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida 33136
| | - Jeanette Perron
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida 33136
| | - Brian A. Masters
- Department of Physiology and Biophysics, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida 33136
- Department of Neuroscience Program, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida 33136
| | - John L. Bixby
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida 33136
- Department of Neuroscience Program, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida 33136
- To whom correspondence should be addressed. Fax: (305) 243-2970.
| |
Collapse
|
26
|
Takai S, Yamada M, Araki T, Koshimizu H, Nawa H, Hatanaka H. Shp-2 positively regulates brain-derived neurotrophic factor-promoted survival of cultured ventral mesencephalic dopaminergic neurons through a brain immunoglobulin-like molecule with tyrosine-based activation motifs/Shp substrate-1. J Neurochem 2002; 82:353-64. [PMID: 12124436 DOI: 10.1046/j.1471-4159.2002.00960.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To examine the roles of Shp-2, a cytoplasmic tyrosine phosphatase, in neuronal survival, we generated and used recombinant adenoviruses expressing wild type and phosphatase-inactive (C/S), phosphatase domain-deficient (delta P) and constitutively active (D61A and E76A) mutants of Shp-2. We found that wild-type Shp-2 enhanced brain-derived neurotrophic factor (BDNF)-promoted survival of cultured ventral mesencephalic dopaminergic neurons. In contrast, the C/S and delta P mutants of Shp-2 did not affect survival. In addition, the constitutively active D61A and E76A mutants mimicked BDNF and promoted survival. Furthermore, to examine the effects of BIT/SHPS-1, a substrate of Shp-2, on the BDNF-promoted survival, we generated adenovirus vectors expressing wild-type BIT/SHPS-1 and its 4F mutant in which all tyrosine residues in the cytoplasmic domain of BIT/SHPS-1 were replaced with phenylalanine. We found that BDNF-promoted survival of cultured mesencephalic dopaminergic neurons was enhanced by expression of the 4F mutant but not of wild-type BIT/SHPS-1. In addition, we found that co-expression of wild-type BIT/SHPS-1 with Shp-2 significantly enhanced the survival-promoting effect of BDNF on cultured mesencephalic dopaminergic neurons. These results indicated that Shp-2 positively regulates the survival-promoting effect of BDNF on cultured ventral mesencephalic dopaminergic neurons. Dephosphorylation of BIT/SHPS-1 by Shp-2 may participate in BDNF-stimulated survival signaling.
Collapse
Affiliation(s)
- Satomi Takai
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Rozenfeld-Granot G, Toren A, Amariglio N, Nagler A, Rosenthal E, Biniaminov M, Brok-Simoni F, Rechavi G. MAP kinase activation by mu opioid receptor in cord blood CD34(+)CD38(-) cells. Exp Hematol 2002; 30:473-80. [PMID: 12031654 DOI: 10.1016/s0301-472x(02)00786-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Opioid receptor expression and function traditionally have been studied in neuronal cells and recently in mature lymphoid cells; however, little is known about their possible functions in hematopoietic stem cells (CD34(+) cells). We studied the expression of the mu receptor on CD34(+) cells and assessed the signal transduction cascade it induces. MATERIALS AND METHODS Mu-receptor expression on cord blood (CB) and peripheral blood (PB) CD34(+) cells was studied by microarrays, immunostaining, and fluorescence-activated cell sorting analysis. Signal transduction by the mu receptor was studied through Western blots and kinase assay of enkephalin-activated CB CD34(+) cells. Apoptotic, differentiation, and proliferation responses following mu-receptor activatioSn were studied by annexin V assay and inverted microscopy. RESULTS A prominent difference in gene expression, in favor of CB compared to PB CD34(+) cells, was observed in the mu-receptor gene. This receptor was mainly expressed on the CB CD34(+)CD38(-) subpopulation. A MAP kinase signal transduction cascade was shown to be induced through activation of this receptor by enkephalin or morphine. CONCLUSIONS We showed for the first time that the mu receptor is expressed on immature CB stem cells and that its activation by enkephalin or morphine induces a MAP kinase signal transduction cascade. Because the MAP kinase cascade is known to elicit proliferation and differentiation responses, these findings suggest a possible role of endogenous enkephalins in hematopoietic stem cell proliferation and differentiation and may lead to therapeutic applications of opiates in CB stem cell expansion and neuronal differentiation.
Collapse
Affiliation(s)
- Galit Rozenfeld-Granot
- Pediatric Hemato-Oncology Department and the Institute of Hematology, The Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The four mammalian neurotrophins - NGF, BDNF, NT-3 and NT-4 - each bind and activate one or more of the Trk family of receptor tyrosine kinases. Through these receptors, neurotrophins activate many intracellular signaling pathways, including those controlled by Ras, the Cdc42/Rac/RhoG protein family, MAPK, PI3K and PLC-gamma, thereby affecting both development and function of the nervous system. During the past two years, several novel signaling pathways controlled by Trk receptors have been characterized, and it has become clear that membrane transport and sorting controls Trk-receptor-mediated signaling because key intermediates are localized to different membrane compartments. Three-dimensional structures of the Trk receptors, in one instance in association with a neurotrophin, have revealed the structural bases underlying specificity in neurotrophin signaling.
Collapse
Affiliation(s)
- A Patapoutian
- Department of Cell Biology, The Scripps Research Institute and Genomics Institute, Novartis Research Foundation, La Jolla, CA 92037, USA.
| | | |
Collapse
|
29
|
Xu H, Goldfarb M. Multiple effector domains within SNT1 coordinate ERK activation and neuronal differentiation of PC12 cells. J Biol Chem 2001; 276:13049-56. [PMID: 11278583 DOI: 10.1074/jbc.m009925200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation of neuronal precursor cells in response to neurotrophic differentiation factors is accompanied by the activation of membrane-anchored SNT signaling adaptor proteins. Two classes of differentiation factors, the neurotrophins and fibroblast growth factors, induce rapid tyrosine phosphorylation of SNT1(FRS2alpha), which in turn enables SNT1 to recruit Shp2 tyrosine phosphatase and Grb2 adaptor protein in complex with the Ras GDP/GTP exchange factor Sos. To determine effector functions of SNT that promote neuronal differentiation of PC12 pheochromocytoma cells, we engineered a chimeric protein, SNT1(IRS)CX, bearing the effector region of SNT1 and the insulin receptor recognition domains of IRS2. Insulin promoted tyrosine phosphorylation of SNT1(IRS)CX in transfected PC12 cells accompanied by sustained activation of ERK1/2 mitogen-activated protein kinases and neuronal differentiation. The SNT1(IRS)CX-mediated response was dependent on endogenous Ras, MEK, and Shp2 activities. Mutagenesis of SNT1(IRS)CX identified three classes of effector motifs within SNT critical for both sustained ERK activation and neuronal differentiation: 1) four phosphotyrosine motifs that mediate recruitment of Grb2, 2) two phosphotyrosine motifs that mediate recruitment of Shp2, and 3) a C-terminal motif that functions by helping to recruit Sos. We discuss possible mechanisms by which three functionally distinct SNT effector motifs collaborate to promote a downstream biochemical and biological response.
Collapse
Affiliation(s)
- H Xu
- Department of Biochemistry and Molecular Biology and Graduate Training Program in Molecular, Cellular, Biochemical, and Developmental Sciences, Mount Sinai School of Medicine, Box 1020, New York, New York 10029, USA
| | | |
Collapse
|
30
|
Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, Takahashi M. Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction. Oncogene 2001; 20:1929-38. [PMID: 11360177 DOI: 10.1038/sj.onc.1204290] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Revised: 01/16/2001] [Accepted: 01/18/2001] [Indexed: 11/09/2022]
Abstract
SNT/FRS2 is a lipid anchored docking protein that contains an amino-terminal myristylation signal, followed by a phosphotyrosine-binding (PTB) domain and a carboxy-terminal region with multiple tyrosine residues. Here we show that the SNT/FRS2 PTB domain binds to RET receptor tyrosine kinase activated by glial cell line-derived neurotrophic factor (GDNF) or multiple endocrine neoplasia (MEN) 2 mutations. Analyses by site directed-mutagenesis revealed that it binds to tyrosine 1062 in RET that is also known to be a binding site for the SHC adaptor protein. Whereas SHC bound to RET was associated with GRB2 and GAB1 proteins, SNT/FRS2 was associated with GRB2 only, suggesting that SNT/FRS2 is involved mainly in the activation of the RAS/mitogen activated protein kinase (MAPK) pathway but not the phosphatidylinositol 3-kinase (PI3-K)/AKT pathway. In addition, phosphorylated SNT/FRS2 appeared to directly complex with SHP-2 tyrosine phosphatase. These results suggest that tyrosine 1062 in RET provides a site for the interaction of multiple signaling molecules and that the balance of SHC and SNT/FRS2 binding may affect the nature of the intracellular signaling for cell proliferation, differentiation and survival induced by activated RET.
Collapse
Affiliation(s)
- K Kurokawa
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Ho W, Uniyal S, Meakin SO, Morris VL, Chan BM. A differential role of extracellular signal-regulated kinase in stimulated PC12 pheochromocytoma cell movement. Exp Cell Res 2001; 263:254-64. [PMID: 11161724 DOI: 10.1006/excr.2000.5112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rat pheochromocytoma PC12 cells have been widely used as a cell system for study of growth factor-stimulated cell functions. We report here that nerve growth factor (NGF) stimulated both chemotaxis (directional migration) and chemokinesis (random migration) of PC12 cells. Treatment with a MEK1/2-specific inhibitor (PD98059) or expression of a dominant negative variant of Ras differentially inhibited NGF-stimulated chemotaxis but not chemokinesis of PC12 cells. Priming of PC12 cells with NGF resulted in reduced extracellular signal-regulated kinase (ERK) activation and loss of chemotactic, but not chemokinetic, response. In addition, NGF stimulation of ERK is known to involve an early transient phase of activation followed by a late sustained phase of activation; in contrast, epidermal growth factor (EGF) elicits only early transient ERK activation. We observed that like NGF, EGF also stimulated both chemotaxis and chemokinesis, and treatment with PD98059 abolished the EGF-stimulated chemotaxis. Therefore, the early transient phase of ERK activation functioned in signaling chemotaxis; the late sustained phase of ERK activation did not seem to have an essential role. In addition, our results suggested that chemotactic signaling required a threshold level of ERK activation; at below threshold level of ERK activation, chemotaxis would not occur.
Collapse
Affiliation(s)
- W Ho
- Transplantation and Immunobiology Group, University of Western Ontario, London, Ontario, N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
32
|
Abstract
Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California, San Francisco, California 94143; e-mail:
| | - Louis F Reichardt
- Department of Physiology, University of California, San Francisco, California 94143, and Howard Hughes Medical Institute, San Francisco, California 94143; e-mail:
| |
Collapse
|
33
|
Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000; 14:2919-37. [PMID: 11114882 DOI: 10.1101/gad.841400] [Citation(s) in RCA: 798] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M Bibel
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
34
|
Aoki Y, Huang Z, Thomas SS, Bhide PG, Huang I, Moskowitz MA, Reeves SA. Increased susceptibility to ischemia-induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB J 2000; 14:1965-73. [PMID: 11023980 DOI: 10.1096/fj.00-0105com] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell culture studies have established SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) as an important factor in growth factor and cytokine-activated signaling pathways. However, the significance of SHP2 in the mammalian central nervous system (CNS) is not known since early embryonic lethality occurs in shp2 null mice. To bypass this embryonic lethality, transgenic animals containing a catalytically inactive mutant of SHP2 (SHP2-CS) under the control of a nestin intron II/thymidine kinase minimal promoter were generated. In the developing CNS of these animals, although high-level transgene expression was detected in the neuroepithelium, there was no obvious abnormality in progenitor cell proliferation or migration. In the adult brain, high-level transgene expression was detected in the subventricular zone, rostral migratory stream, dentate gyrus of hippocampus, and cerebellum. Because SHP2 function is likely important in cell survival pathways, we used a focal cerebral ischemia model to examined whether SHP2 is important during CNS injury. Ischemia-induced damage and neuronal death was found to be significantly greater in nestin-SHP2-CS mice than in wild-type littermates. These findings indicate that SHP2 is a required factor in signaling pathway(s) important for neuronal survival.
Collapse
Affiliation(s)
- Y Aoki
- CNS Signaling Laboratory, Molecular Neuro-Oncology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Neurotrophins use two types of receptors, the Trk tyrosine kinase receptors and the p75 neurotrophin receptor (p75NTR), to regulate the growth, development, survival and repair of the nervous system. These receptors can either collaborate with or inhibit each other's actions to mediate neurotrophin effects. The development and survival of neurons is thus based upon the functional interplay of the signals generated by Trk and p75NTR. In the past two years, the signaling pathways used by these receptors, including Akt and MAPK-induced signaling via Trk, and JNK, p53, and NF-kappaB signaling via p75NTR, have been identified. In addition, a number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.
Collapse
Affiliation(s)
- D R Kaplan
- Brain Tumor Research Center, Montreal Neurological Institute, Montreal, H3A 2B4, Canada.
| | | |
Collapse
|
36
|
Bartoe JL, Nathanson NM. Differential regulation of leukemia inhibitory factor-stimulated neuronal gene expression by protein phosphatases SHP-1 and SHP-2 through mitogen-activated protein kinase-dependent and -independent pathways. J Neurochem 2000; 74:2021-32. [PMID: 10800945 DOI: 10.1046/j.1471-4159.2000.0742021.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurally active cytokine leukemia inhibitory factor (LIF) signals through a bipartite receptor complex composed of LIF receptor alpha (LIFR) and gp130. gp130 and LIFR contain consensus binding motifs for the protein tyrosine phosphatase SHP-2 surrounding tyrosines 118 and 115 (Y118 and Y115) of their cytoplasmic domains, respectively. These sites are necessary for maximal activation of mitogen-activated protein kinase (MAPK). Coexpression of catalytically inactive, but not wild-type, SHP-2 reduced LIFR- and gp130-mediated activation of MAPK up to 75%. Conversely, coexpression of the wild-type, but not catalytically inactive, SHP-1, a related phosphatase, reduced activity up to 80%, demonstrating that SHP-2 and SHP-1 have opposing effects on the MAPK pathway. Mutation of Y115 of the cytoplasmic domain of LIFR eliminates receptor-mediated tyrosine phosphorylation of SHP-2. In contrast, SHP-1 association with gp130 and LIFR is constitutive and independent of Y118 and Y115, respectively. SHP-1 has a positive regulatory role on LIF-stimulated vasoactive intestinal peptide (VIP) reporter gene expression in neuronal cells, whereas the effect of SHP-2 is negative. Furthermore, LIF-stimulated MAPK activation negatively regulates this VIP reporter gene induction. SHP-2 also negatively regulates LIF-dependent expression of choline acetyltransferase, but this regulation could be dissociated from its effects on MAPK activation. These data indicate that SHP-1 and SHP-2 are important regulators of LIF-dependent neuronal gene expression via both MAPK-dependent and -independent pathways.
Collapse
Affiliation(s)
- J L Bartoe
- Department of Pharmacology, University of Washington, Seattle 98195-7750, USA
| | | |
Collapse
|
37
|
Tisi MA, Xie Y, Yeo TT, Longo FM. Downregulation of LAR tyrosine phosphatase prevents apoptosis and augments NGF-induced neurite outgrowth. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-4695(200003)42:4<477::aid-neu8>3.0.co;2-b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Araki T, Yamada M, Ohnishi H, Sano S, Uetsuki T, Hatanaka H. Shp-2 specifically regulates several tyrosine-phosphorylated proteins in brain-derived neurotrophic factor signaling in cultured cerebral cortical neurons. J Neurochem 2000; 74:659-68. [PMID: 10646517 DOI: 10.1046/j.1471-4159.2000.740659.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophins, promotes differentiation and survival and regulates plasticity of various types of neurons. BDNF binds to TrkB, a receptor tyrosine kinase, which results in the activation of a variety of signaling molecules to exert the various functions of BDNF. Shp-2, a Src homology 2 domain-containing cytoplasmic tyrosine phosphatase, is involved in neurotrophin signaling in PC12 cells and cultured cerebral cortical neurons. To examine the roles of Shp-2 in BDNF signaling in cultured rat cerebral cortical neurons, the wild-type and phosphatase-inactive mutant (C/S mutant) forms of Shp-2 were ectopically expressed in cultured neurons using recombinant adenovirus vectors. We found that several proteins tyrosine-phosphorylated in response to BDNF showed enhanced levels of tyrosine phosphorylation in cultured neurons infected with C/S mutant adenovirus in comparison with those infected with the wild-type Shp-2 adenovirus. In addition, in immunoprecipitates with anti-Shp-2 antibody, we also observed at least four proteins that displayed enhanced phosphorylation in response to BDNF in cultured neurons infected with the C/S mutant adenovirus. We found that the Shp-2-binding protein, brain immunoglobulin-like molecule with tyrosine-based activation motifs (BIT), was strongly tyrosine-phosphorylated in response to BDNF in cultured neurons expressing the C/S mutant of Shp-2. In contrast, the level of BDNF-induced phosphorylation of mitogen-activated protein kinase and coprecipitated proteins with anti-Trk and Grb2 antibodies did not show any difference between neurons infected with these two types of Shp-2. Furthermore, the survival effect of BDNF was enhanced by the wild type of Shp-2, although it was not influenced by the C/S mutant of Shp-2. These results indicated that in cultured cerebral cortical neurons Shp-2 is specifically involved in the regulation of several tyrosine-phosphorylated proteins, including BIT, in the BDNF signaling pathway. In addition, the phosphatase Shp-2 may not influence the level of BDNF-induced activation of mitogen-activated protein kinase in cultured cortical neurons. Further, Shp-2 may have potential to positively regulate BDNF-promoting neuronal survival.
Collapse
Affiliation(s)
- T Araki
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Gryz EA, Meakin SO. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and neuronal differentiation. Oncogene 2000; 19:417-30. [PMID: 10656690 DOI: 10.1038/sj.onc.1203330] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons. TrkA expression in neuronal tumors also supports NGF-dependent differentiation of neuroblastomas and apoptosis of medulloblastomas. Phosphorylation of the activation loop tyrosines in RTK's are essential to activation as well as allosteric changes that facilitate substrate interaction and phosphorylation. Acidic amino acid substitution of the activation loop tyrosines in TrkA, Tyr683Tyr684, was performed to mimic the negative charges normally induced by ligand activation and receptor phosphorylation. A total of eight independent mutants containing single or double substitutions were generated for comparison. Herein, we demonstrate that acidic substitution of the activation loop tyrosines is sufficient to induce allosteric changes required for constitutive TrkA kinase activity as well as phosphorylation of TrkA signaling proteins such as Shc, PLCgamma-1, FRS-2 and erk1/2. The strongest constitutively active TrkA mutants, GluAsp and AspGlu, support NGF-independent neuritogenesis and cell survival to levels approximately 65 and 80-100%, respectively, of NGF-activated wild type TrkA. Thus, constitutively active TrkA may provide a useful strategy in future therapeutic approaches to limit the development and progression of neuronal tumors.
Collapse
Affiliation(s)
- E A Gryz
- Neurodegeneration Group, The John P. Robarts Research Institute, London, Ontario, Canada
| | | |
Collapse
|
40
|
Arregui CO, Balsamo J, Lilien J. Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochem Res 2000; 25:95-105. [PMID: 10685609 DOI: 10.1023/a:1007595617447] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During neuronal development, cells respond to a variety of environmental cues through cell surface receptors that are coupled to a signaling transduction machinery based on protein tyrosine phosphorylation and dephosphorylation. Receptor and non-receptor tyrosine kinases have received a great deal of attention; however, in the last few years, receptor (plasma membrane associated) and non-receptor protein-tyrosine phosphatases (PTPs) have also been shown to play important roles in development of the nervous system. In many cases PTPs have provocative distribution patterns or have been shown to be associated with specific cell adhesion and growth factor receptors. Additionally, altering PTP expression levels or activity impairs neuronal behavior. In this review we outline what is currently known about the role of PTPs in development, differentiation and neuronal physiology.
Collapse
Affiliation(s)
- C O Arregui
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
41
|
Abstract
This review focuses on recent advances in our understanding of receptor-mediated signaling by the neurotrophins NGF, BDNF, NT3, and NT4/5. Two distinct receptor types have been distinguished, Trks and p75. The Trks are receptor tyrosine kinases that utilize a complex set of substrates and adapter proteins to activate defined secondary signaling cascades required for neurotrophin-promoted neuronal differentiation, plasticity, and survival. A specialized aspect of Trk/neurotrophin action in neurons is the requirement for retrograde signaling from the distal periphery to the cell body. p75 is a universal receptor for neurotrophins that is a member of the TNF receptor/Fas/CD40 superfamily. p75 appears to modify Trk signaling when the two receptor types are coexpressed. When expressed in the absence of Trks, p75 mediates responses to neurotrophins including promotion of apoptotic death. The mechanisms of p75 receptor signaling remain to be fully understood.
Collapse
Affiliation(s)
- W J Friedman
- Department of Pathology, Center for Neurobiology and Behavior and Taub Center for Alzheimer's Disease Research, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York, 10032, USA.
| | | |
Collapse
|
42
|
Okamura A, Goto S, Nishi T, Hamasaki T, Ushio Y. Overexpression of striatal enriched phosphatase (STEP) promotes the neurite outgrowth induced by a cAMP analogue in PC12 cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:1-9. [PMID: 10101226 DOI: 10.1016/s0169-328x(99)00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A cytoplasmic protein tyrosine phosphatase (PTPase) designated as striatal enriched phosphatase with a molecular weight of 46 kDa (STEP46) is highly expressed in striatal neurons with dopamine D1-receptors. To examine the hypothesis that STEP46 is involved in the neuronal functions modulated by the cyclic adenosine 3', 5'-monophosphate (cAMP)-signaling system, we introduced the complementary DNA of STEP46 into the pheochromocytoma cell line PC12, which exhibits neuronal differentiation characterized by neurite outgrowth in response to cAMP and nerve growth factor stimulation, and we established subclonal cell lines that constitutively overexpress STEP46 protein with PTPase activity. The subclones expressing STEP46 showed increased neurite outgrowth during differentiation induced by a cAMP analogue (dibutyryl cAMP). The positive regulatory role of STEP46 in the cAMP-induced neuronal differentiation of PC12 cells indicates that STEP46 may play a role in neuronal processes modulated by the cAMP-signaling cascade as a PTPase.
Collapse
Affiliation(s)
- A Okamura
- Laboratory of Neurobiology, Department of Neurosurgery, Kumamoto University School of Medicine, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | |
Collapse
|
43
|
Meakin SO, MacDonald JI, Gryz EA, Kubu CJ, Verdi JM. The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J Biol Chem 1999; 274:9861-70. [PMID: 10092678 DOI: 10.1074/jbc.274.14.9861] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a human cDNA for the signaling adapter molecule FRS-2/suc1-associated neurotrophic factor target and shown that it is tyrosine-phosphorylated in response to nerve growth factor (NGF) stimulation. Importantly, we demonstrate that the phosphotyrosine binding domain of FRS-2 directly binds the Trk receptors at the same phosphotyrosine residue that binds the signaling adapter Shc, suggesting a model in which competitive binding between FRS-2 and Shc regulates differentiation versus proliferation. Consistent with this model, FRS-2 binds Grb-2, Crk, the SH2 domain containing tyrosine phosphatase SH-PTP-2, the cyclin-dependent kinase substrate p13(suc1), and the Src homology 3 (SH3) domain of Src, providing a functional link between TrkA, cell cycle, and multiple NGF signaling effectors. Importantly, overexpression of FRS-2 in cells expressing an NGF nonresponsive TrkA receptor mutant reconstitutes the ability of NGF to stop cell cycle progression and to stimulate neuronal differentiation.
Collapse
Affiliation(s)
- S O Meakin
- Neurodegeneration Research Group, The John P. Robarts Research Institute, London, Ontario N6A 5K8, Canada.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The transcription factor CREB is involved in mediating many of the long-term effects of activity-dependent plasticity at glutamatergic synapses. Here, we show that activation of NMDA receptors and voltage-sensitive calcium channels leads to CREB-mediated transcription in cortical neurons via a mechanism regulated by CREB-binding protein (CBP). Recruitment of CBP to the promoter is not sufficient for transactivation, but calcium influx can induce CBP-mediated transcription via two distinct transactivation domains. CBP-mediated transcription is stimulus strength-dependent and can be induced by activation of CaM kinase II, CaM kinase IV, and protein kinase A, but not by activation of the Ras-MAP kinase pathway. These observations indicate that CBP can function as a calcium-sensitive transcriptional coactivator that may act as a regulatory switch for glutamate-induced CREB-mediated transcription.
Collapse
Affiliation(s)
- S C Hu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
45
|
Saxton TM, Pawson T. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc Natl Acad Sci U S A 1999; 96:3790-5. [PMID: 10097116 PMCID: PMC22373 DOI: 10.1073/pnas.96.7.3790] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SH2 domain-containing tyrosine phosphatase Shp2 plays a pivotal role during the gastrulation of vertebrate embryos. However, because of the complex phenotype observed in mouse mutant embryos, the precise role of Shp2 during development is unclear. To define the specific functions of this phosphatase, Shp2 homozygous mutant embryonic stem cells bearing the Rosa-26 LacZ transgene were isolated and used to perform a chimeric analysis. Here, we show that Shp2 mutant cells amass in the tail bud of embryonic day 10.5 chimeric mouse embryos and that this accumulation begins at the onset of gastrulation. At this early stage, Shp2 mutant cells collect in the primitive streak of the epiblast and thus show deficiencies in their contribution to the mesoderm lineage. In high-contribution chimeras, we show that overaccumulation of Shp2 mutant cells at the posterior end of the embryo results in two abnormal phenotypes: spina bifida and secondary neural tubes. Consistent with a failure to undergo morphogenic movements at gastrulation, Shp2 is required for embryo fibroblast cells to mount a positive chemotactic response to acidic fibroblast growth factor in vitro. Our results demonstrate that Shp2 is required at the initial steps of gastrulation, as nascent mesodermal cells form and migrate away from the primitive streak. The aberrant behavior of Shp2 mutant cells at gastrulation may result from their inability to properly respond to signals initiated by fibroblast growth factors.
Collapse
Affiliation(s)
- T M Saxton
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G-1X5 Canada
| | | |
Collapse
|
46
|
Florio T, Yao H, Carey KD, Dillon TJ, Stork PJ. Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol Endocrinol 1999; 13:24-37. [PMID: 9892010 DOI: 10.1210/mend.13.1.0224] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hormones and growth factors regulate cell growth via the mitogen-activated protein (MAP) kinase cascade. Here we examine the actions of the hormone somatostatin on the MAP kinase cascade through one of its two major receptor subtypes, the somatostatin receptor 1 (SSTR1) stably expressed in CHO-K1 cells. Somatostatin antagonizes the proliferative effects of fibroblast growth factor in CHO-SSTR1 cells via the SSTR1 receptor. However, in these cells, somatostatin robustly activates MAP kinase (also called extracellular signal regulated kinase; ERK) and augments fibroblast growth factor-stimulated ERK activity. We show that the activation of ERK via SSTR1 is pertussis toxin sensitive and requires the small G protein Ras, phosphatidylinositol 3-kinase, the serine/threonine kinase Raf-1, and the protein tyrosine phosphatase SHP-2. The activation of ERK by SSTR1 increased the expression of the cyclin-dependent protein kinase inhibitor p21(cip1/WAF1). Previous studies have suggested that somatostatin-stimulated protein tyrosine phosphatase activity mediates the growth effects of somatostatin. Our data suggest that SHP-2 stimulation by SSTR1 may mediate some of these effects through the activation of the MAP kinase cascade and the expression of p21(cip1/WAF1).
Collapse
Affiliation(s)
- T Florio
- Institute of Pharmacology, School of Medicine, University of Genoa, Italy
| | | | | | | | | |
Collapse
|
47
|
Marrero MB, Venema VJ, Ju H, Eaton DC, Venema RC. Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1216-23. [PMID: 9814969 DOI: 10.1152/ajpcell.1998.275.5.c1216] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) exerts its effects on vascular smooth muscle cells through G protein-coupled AT1 receptors. ANG II stimulation activates the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by inducing tyrosine phosphorylation, activation, and association of JAK2 with the receptor. Association appears to be required for JAK2 phosphorylation. In the present study, electroporation experiments with neutralizing anti-Src homology phosphatase-1 (SHP-1) and anti-SHP-2 antibodies and time course determinations of SHP-1 and SHP-2 activation and complexation with JAK2 suggest that the tyrosine phosphatases, SHP-1 and SHP-2, have opposite roles in ANG II-induced JAK2 phosphorylation. SHP-1 appears responsible for JAK2 dephosphorylation and termination of the ANG II-induced JAK/STAT cascade. SHP-2 appears to have an essential role in JAK2 phosphorylation and initiation of the ANG II-induced JAK/STAT cascade leading to cell proliferation. The motif in the AT1 receptor that is required for association with JAK2 is also required for association with SHP-2. Furthermore, SHP-2 is required for JAK2-receptor association. SHP-2 may thus play a role as an adaptor protein for JAK2 association with the receptor, thereby facilitating JAK2 phosphorylation and activation.
Collapse
MESH Headings
- Amino Acid Substitution
- Angiotensin II/pharmacology
- Animals
- Antibodies/pharmacology
- Cells, Cultured
- Electroporation
- Heart/physiology
- Heart Ventricles
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 2
- Male
- Myocardium/cytology
- Myocardium/enzymology
- Phosphorylation
- Phosphotyrosine/metabolism
- Point Mutation
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Recombinant Proteins/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/drug effects
- Signal Transduction/physiology
- src Homology Domains
Collapse
Affiliation(s)
- M B Marrero
- Vascular Biology Center, Medical College of Georgia, Augusta 30912, Georgia, USA
| | | | | | | | | |
Collapse
|
48
|
Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Böhmer FD. Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. J Biol Chem 1998; 273:24839-46. [PMID: 9733788 DOI: 10.1074/jbc.273.38.24839] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein-tyrosine phosphatase SHP-1 binds to and dephosphorylates the epidermal growth factor receptor (EGFR), and both SH2 domains of SHP-1 are important for this interaction (Tenev, T., Keilhack, H., Tomic, S., Stoyanov, B., Stein-Gerlach, M., Lammers, R., Krivtsov, A. V., Ullrich, A., and Böhmer, F. D. (1997) J. Biol. Chem. 272, 5966-5973). We mapped the EGFR phosphotyrosine 1173 as the major binding site for SHP-1 by a combination of phosphopeptide activation, phosphopeptide competition, and receptor YF mutant analysis. Mutational conversion of the EGFR sequence 1171-1176 AEYLRV into the high affinity SHP-1 binding sequence LEYLYL of the erythropoietin receptor (EpoR) led to a highly elevated SHP-1 binding to the mutant EGFR (EGFR1171-1176EpoR) and in turn to an enhanced dephosphorylation of the receptor. SHP-1 expression interfered with EGF-dependent mitogen-activated protein kinase stimulation, and this effect was more pronounced in case of EGFR1171-1176EpoR. Reduced SHP-1 binding to the EGFR Y1173F mutant resulted in a reduced receptor dephosphorylation by coexpressed SHP-1 and less interference with EGF-dependent mitogen-activated protein kinase stimulation. The effects of receptor mutations on SHP-1 binding were, however, stronger than those on receptor dephosphorylation by SHP-1. Therefore, receptor dephosphorylation may be the result of the combined activity of receptor-bound SHP-1 and SHP-1 bound to an auxiliary docking protein.
Collapse
Affiliation(s)
- H Keilhack
- Research Unit "Molecular Cell Biology," Medical Faculty, Friedrich Schiller University, D-07747 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Hadari YR, Kouhara H, Lax I, Schlessinger J. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol 1998; 18:3966-73. [PMID: 9632781 PMCID: PMC108981 DOI: 10.1128/mcb.18.7.3966] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FRS2 is a lipid-anchored docking protein that plays an important role in linking fibroblast growth factor (FGF) and nerve growth factor receptors with the Ras/mitogen-activated protein (MAP) kinase signaling pathway. In this report, we demonstrate that FRS2 forms a complex with the N-terminal SH2 domain of the protein tyrosine phosphatase Shp2 in response to FGF stimulation. FGF stimulation induces tyrosine phosphorylation of Shp2, leading to the formation of a complex containing Grb2 and Sos1 molecules. In addition, a mutant FRS2 deficient in both Grb2 and Shp2 binding induces a weak and transient MAP kinase response and fails to induce PC12 cell differentiation in response to FGF stimulation. Furthermore, FGF is unable to induce differentiation of PC12 cells expressing an FRS2 point mutant deficient in Shp2 binding. Finally, we demonstrate that the catalytic activity of Shp2 is essential for sustained activation of MAP kinase and for potentiation of FGF-induced PC12 cell differentiation. These experiments demonstrate that FRS2 recruits Grb2 molecules both directly and indirectly via complex formation with Shp2 and that Shp2 plays an important role in FGF-induced PC12 cell differentiation.
Collapse
Affiliation(s)
- Y R Hadari
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | |
Collapse
|