1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kandror KV. Self-assembly of the insulin-responsive vesicles creates a signaling platform for the insulin action on glucose uptake. VITAMINS AND HORMONES 2024; 128:93-121. [PMID: 40097254 DOI: 10.1016/bs.vh.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In fat and skeletal muscle cells, insulin causes plasma membrane translocation of specialized insulin-responsive vesicles, or IRVs. These vesicles consist of multiple copies of Glut4, sortilin, IRAP, and LRP1 as well as several auxiliary components. Major IRV proteins have relatively long half-life inside the cell and survive multiple rounds of translocation to and from the cell surface. Here, we summarize evidence showing how the IRVs are self-assembled from pre-synthesized Glut4, sortilin, IRAP, and LRP1 after each translocation event. Furthermore, the cytoplasmic tail of sortilin binds Akt while cytoplasmic tails of IRAP and LRP1 interact with the Akt target, TBC1D4. Recruitment of signaling proteins to the IRVs may render insulin responsiveness to this compartment and thus distinguish it from other intracellular membrane vesicles.
Collapse
Affiliation(s)
- Konstantin V Kandror
- Department of Biochemistry and Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| |
Collapse
|
3
|
Zanni-Ruiz E, Mayorga L, Pavarotti M. Flow cytometry protocol for GLUT4-myc detection on cell surfaces. Biosci Rep 2024; 44:BSR20231987. [PMID: 38533799 PMCID: PMC11016532 DOI: 10.1042/bsr20231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024] Open
Abstract
Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism. The most commonly used methods for measuring GLUT4 translocation are the ELISA-type assay and the immunofluorescence assay. While some reports suggest that flow cytometry could be useful in quantifying GLUT4 translocation, this technique is not frequently used. Much of our current understanding of the regulation of GLUT4 has been based on experiments using the rat myoblast cell line (L6 cell) which expresses GLUT4 with a myc epitope on the exofacial loop. In the present study, we use the L6-GLUT4myc cell line to develop a flow cytometry-based approach to detect GLUT4 translocation. Flow cytometry offers the advantages of both immunofluorescence and ELISA-based assays. It allows easy identification of separate cell populations in the sample, similar to immunofluorescence, while providing results based on a population-level analysis of multiple individual cells, like an ELISA-based assay. Our results demonstrate a 0.6-fold increase with insulin stimulation compared with basal conditions. Finally, flow cytometry consistently yielded results across different experiments and exhibited sensitivity under the tested conditions.
Collapse
Affiliation(s)
- Emilia Zanni-Ruiz
- Laboratorio de Transporte Intracelular, Instituto de Histología y Embriología de Mendoza Dr. Mario H Burgos, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis Segundo Mayorga
- Laboratorio de Transporte Intracelular, Instituto de Histología y Embriología de Mendoza Dr. Mario H Burgos, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Martin Alejandro Pavarotti
- Laboratorio de Transporte Intracelular, Instituto de Histología y Embriología de Mendoza Dr. Mario H Burgos, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
5
|
Endosomal v-ATPase as a Sensor Determining Myocardial Substrate Preference. Metabolites 2022; 12:metabo12070579. [PMID: 35888703 PMCID: PMC9316095 DOI: 10.3390/metabo12070579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The heart is a metabolically flexible omnivore that can utilize a variety of substrates for energy provision. To fulfill cardiac energy requirements, the healthy adult heart mainly uses long-chain fatty acids and glucose in a balanced manner, but when exposed to physiological or pathological stimuli, it can switch its substrate preference to alternative substrates such as amino acids (AAs) and ketone bodies. Using the failing heart as an example, upon stress, the fatty acid/glucose substrate balance is upset, resulting in an over-reliance on either fatty acids or glucose. A chronic fuel shift towards a single type of substrate is linked with cardiac dysfunction. Re-balancing myocardial substrate preference is suggested as an effective strategy to rescue the failing heart. In the last decade, we revealed that vacuolar-type H+-ATPase (v-ATPase) functions as a key regulator of myocardial substrate preference and, therefore, as a novel potential treatment approach for the failing heart. Fatty acids, glucose, and AAs selectively influence the assembly state of v-ATPase resulting in modulation of its proton-pumping activity. In this review, we summarize these novel insights on v-ATPase as an integrator of nutritional information. We also describe its exploitation as a therapeutic target with focus on supplementation of AA as a nutraceutical approach to fight lipid-induced insulin resistance and contractile dysfunction of the heart.
Collapse
|
6
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
7
|
Abstract
On this 100th anniversary of the discovery of insulin, we recognize the critical role that adipocytes, which are exquisitely responsive to insulin, have played in determining the mechanisms for insulin action at the cellular level. Our understanding of adipose tissue biology has evolved greatly, and it is now clear that adipocytes are far more complicated than simple storage depots for fat. A growing body of evidence documents how adipocytes, in response to insulin, contribute to the control of whole-body nutrient homeostasis. These advances highlight adipocyte plasticity, heterogeneity, and endocrine function, unique features that connect adipocyte metabolism to the regulation of other tissues important for metabolic homeostasis (e.g., liver, muscle, pancreas).
Collapse
Affiliation(s)
- Anna Santoro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Chamberlain LH, Shipston MJ, Gould GW. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol 2021; 11:210017. [PMID: 33784857 PMCID: PMC8061761 DOI: 10.1098/rsob.210017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) such as phosphorylation and ubiquitination are well-studied events with a recognized importance in all aspects of cellular function. By contrast, protein S-acylation, although a widespread PTM with important functions in most physiological systems, has received far less attention. Perturbations in S-acylation are linked to various disorders, including intellectual disability, cancer and diabetes, suggesting that this less-studied modification is likely to be of considerable biological importance. As an exemplar, in this review, we focus on the newly emerging links between S-acylation and the hormone insulin. Specifically, we examine how S-acylation regulates key components of the insulin secretion and insulin response pathways. The proteins discussed highlight the diverse array of proteins that are modified by S-acylation, including channels, transporters, receptors and trafficking proteins and also illustrate the diverse effects that S-acylation has on these proteins, from membrane binding and micro-localization to regulation of protein sorting and protein interactions.
Collapse
Affiliation(s)
- Luke H. Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michael J. Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
Brumfield A, Chaudhary N, Molle D, Wen J, Graumann J, McGraw TE. Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10. Mol Biol Cell 2021; 32:57-73. [PMID: 33175605 PMCID: PMC8098823 DOI: 10.1091/mbc.e20-06-0356] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/05/2022] Open
Abstract
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.
Collapse
Affiliation(s)
| | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Dorothee Molle
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Johannes Graumann
- Weill Cornell Medical College in Qatar, Education City, 24144 Doha, State of Qatar
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
10
|
The Influence of Physical Activity on the Bioactive Lipids Metabolism in Obesity-Induced Muscle Insulin Resistance. Biomolecules 2020; 10:biom10121665. [PMID: 33322719 PMCID: PMC7764345 DOI: 10.3390/biom10121665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
High-fat diet consumption and lack of physical activity are important risk factors for metabolic disorders such as insulin resistance and cardiovascular diseases. Insulin resistance is a state of a weakened response of tissues such as skeletal muscle, adipose tissue, and liver to insulin, which causes an increase in blood glucose levels. This condition is the result of inhibition of the intracellular insulin signaling pathway. Skeletal muscle is an important insulin-sensitive tissue that accounts for about 80% of insulin-dependent glucose uptake. Although the exact mechanism by which insulin resistance is induced has not been thoroughly understood, it is known that insulin resistance is most commonly associated with obesity. Therefore, it is believed that lipids may play an important role in inducing insulin resistance. Among lipids, researchers’ attention is mainly focused on biologically active lipids: diacylglycerols (DAG) and ceramides. These lipids are able to regulate the activity of intracellular enzymes, including those involved in insulin signaling. Available data indicate that physical activity affects lipid metabolism and has a positive effect on insulin sensitivity in skeletal muscles. In this review, we have presented the current state of knowledge about the impact of physical activity on insulin resistance and metabolism of biologically active lipids.
Collapse
|
11
|
Schianchi F, Glatz JFC, Navarro Gascon A, Nabben M, Neumann D, Luiken JJFP. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int J Mol Sci 2020; 21:ijms21249438. [PMID: 33322406 PMCID: PMC7764417 DOI: 10.3390/ijms21249438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Artur Navarro Gascon
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Pathology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1998
| |
Collapse
|
12
|
Luiken JJFP, Nabben M, Neumann D, Glatz JFC. Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165775. [PMID: 32209364 DOI: 10.1016/j.bbadis.2020.165775] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
Abstract
CD36 and GLUT4 are the main cardiac trans-sarcolemmal transporters for long-chain fatty acids and glucose, respectively. Together they secure the majority of cardiac energy demands. Moreover, these transporters each represent key governing kinetic steps in cardiac fatty acid and glucose fluxes, thereby offering major sites of regulation. The underlying mechanism of this regulation involves a perpetual vesicle-mediated trafficking (recycling) of both transporters between intracellular stores (endosomes) and the cell surface. In the healthy heart, CD36 and GLUT4 translocation to the cell surface is under short-term control of the same physiological stimuli, most notably increased contraction and insulin secretion. However, under chronic lipid overload, a condition that accompanies a Western lifestyle, CD36 and GLUT4 recycling are affected distinctly, with CD36 being expelled to the sarcolemma while GLUT4 is imprisoned within the endosomes. Moreover, the increased CD36 translocation towards the cell surface is a key early step, setting the heart on a route towards insulin resistance and subsequent contractile dysfunction. Therefore, the proteins making up the trafficking machinery of CD36 need to be identified with special focus to the differences with the protein composition of the GLUT4 trafficking machinery. These proteins that are uniquely dedicated to either CD36 or GLUT4 traffic may offer targets to rectify aberrant substrate uptake seen in the lipid-overloaded heart. Specifically, CD36-dedicated trafficking regulators should be inhibited, whereas such GLUT4-dedicated proteins would need to be activated. Recent advances in the identification of CD36-dedicated trafficking proteins have disclosed the involvement of vacuolar-type H+-ATPase and of specific vesicle-associated membrane proteins (VAMPs). In this review, we summarize these recent findings and sketch a roadmap of CD36 and GLUT4 trafficking compatible with experimental findings.
Collapse
Affiliation(s)
- Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| | - Dietbert Neumann
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| |
Collapse
|
13
|
Gilleron J, Gerdes JM, Zeigerer A. Metabolic regulation through the endosomal system. Traffic 2019; 20:552-570. [PMID: 31177593 PMCID: PMC6771607 DOI: 10.1111/tra.12670] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
The endosomal system plays an essential role in cell homeostasis by controlling cellular signaling, nutrient sensing, cell polarity and cell migration. However, its place in the regulation of tissue, organ and whole body physiology is less well understood. Recent studies have revealed an important role for the endosomal system in regulating glucose and lipid homeostasis, with implications for metabolic disorders such as type 2 diabetes, hypercholesterolemia and non-alcoholic fatty liver disease. By taking insights from in vitro studies of endocytosis and exploring their effects on metabolism, we can begin to connect the fields of endosomal transport and metabolic homeostasis. In this review, we explore current understanding of how the endosomal system influences the systemic regulation of glucose and lipid metabolism in mice and humans. We highlight exciting new insights that help translate findings from single cells to a wider physiological level and open up new directions for endosomal research.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Mediterranean Center of Molecular Medicine (C3M)NiceFrance
| | - Jantje M. Gerdes
- Institute for Diabetes and RegenerationHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Anja Zeigerer
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
14
|
Abstract
A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
15
|
Lu Y, Ma X, Kong Q, Xu Y, Hu J, Wang F, Qin W, Wang L, Xiong W. Novel dual-color drug screening model for GLUT4 translocation in adipocytes. Mol Cell Probes 2019; 43:6-12. [PMID: 30639558 DOI: 10.1016/j.mcp.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022]
Abstract
Insulin-responsive glucose transporter type 4 (GLUT4) translocation plays a major role in controlling glucose uptake in adipose tissue and muscle, maintaining homeostasis and preventing hyperglycemia. Screening for chemicals enhancing GLUT4 translocation is an approach for identifying hits of drug development for type 2 diabetes. Here we developed a novel functional dual-color probe, pHluorin-GLUT4-mOrange2, and constructed 3T3-L1 adipocytes based screening system to simply and efficiently screen new compounds stimulating GLUT4 translocation. Based on this system, we successfully identified a few hits facilitating GLUT4 translocation. In conclusion, we developed an easy-to-apply dual color GLUT4 probe to monitor GLUT4 translocation in insulin-responsive cells, which could be alternatively employed to high-throughput screen compounds regulating GLUT4 translocation and glucose uptake, even to dissect GLTU4 approaching, docking and fusion with the plasma membrane (PM), and to reveal relevant molecular mechanisms involved in these steps as expected.
Collapse
Affiliation(s)
- Yanting Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuli Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuhui Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanying Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Libin Wang
- The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; The General Hospital of Ningxia Medical University, Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Yinchuan, 750004, China.
| |
Collapse
|
16
|
Elhassan SAM, Candasamy M, Chan EWL, Bhattamisra SK. Autophagy and GLUT4: The missing pieces. Diabetes Metab Syndr 2018; 12:1109-1116. [PMID: 29843994 DOI: 10.1016/j.dsx.2018.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Autophagy is a process devoted to degrade and recycle cellular components inside mammalian cells through lysosomal system. It plays a main function in the pathophysiology of several diseases. In type 2 diabetes, works demonstrated the dual functions of autophagy in diabetes biology. Studies had approved the role of autophagy in promoting different routes for movement of integral membrane proteins to the plasma membrane. But its role in regulation of GLUT4 trafficking has not been widely observed. In normal conditions, insulin promotes GLUT4 translocation from intracellular membrane compartments to the plasma membrane, while in type 2 diabetes defects occur in this translocation. METHOD Intriguing evidences discussed the contribution of different intracellular compartments in autophagy membrane formation. Furthermore, autophagy serves to mobilise membranes within cells, thereby promoting cytoplasmic components reorganisation. The intent of this review is to focus on the possibility of autophagy to act as a carrier for GLUT4 through regulating GLUT4 endocytosis, intracellular trafficking in different compartments, and translocation to cell membrane. RESULTS The common themes of autophagy and GLUT4 have been highlighted. The review discussed the overlapping of endocytosis mechanism and intracellular compartments, and has shown that autophagy and GLUT4 utilise similar proteins (SNAREs) which are used for exocytosis. On top of that, PI3K and AMPK also control both autophagy and GLUT4. CONCLUSION The control of GLUT4 trafficking through autophagy could be a promising field for treating type 2 diabetes.
Collapse
Affiliation(s)
- Safa Abdelgadir Mohamed Elhassan
- School of Postgraduate Studies, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Elaine Wan Ling Chan
- Institute of Research, Development and Innovation, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Park M. AMPA Receptor Trafficking for Postsynaptic Potentiation. Front Cell Neurosci 2018; 12:361. [PMID: 30364291 PMCID: PMC6193507 DOI: 10.3389/fncel.2018.00361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synaptic strength, which has long been considered a synaptic correlate for learning and memory, requires a fast recruitment of additional α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs) to the postsynaptic sites. As cell biological concepts have been applied to the field and genetic manipulation and microscopic imaging technologies have been advanced, visualization of the trafficking of AMPARs to synapses for LTP has been investigated intensively over the last decade. Recycling endosomes have been reported as intracellular storage organelles to supply AMPARs for LTP through the endocytic recycling pathway. In addition, exocytic domains in the spine plasma membrane, where AMPARs are inserted from the intracellular compartment, and nanodomains, where diffusing AMPARs are trapped and immobilized inside synapses for LTP, have been described. Furthermore, cell surface lateral diffusion of AMPARs from extrasynaptic to synaptic sites has been reported as a key step for AMPAR location to the synaptic sites for LTP. This review article will discuss recent findings and views on the reservoir(s) of AMPARs and their trafficking for LTP expression by focusing on the exocytosis and lateral diffusion of AMPARs, and provide some future directions that need to be addressed in the field of LTP.
Collapse
Affiliation(s)
- Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
18
|
Guan X, Chaffey PK, Wei X, Gulbranson DR, Ruan Y, Wang X, Li Y, Ouyang Y, Chen L, Zeng C, Koelsch TN, Tran AH, Liang W, Shen J, Tan Z. Chemically Precise Glycoengineering Improves Human Insulin. ACS Chem Biol 2018; 13:73-81. [PMID: 29090903 PMCID: PMC6287623 DOI: 10.1021/acschembio.7b00794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes is a leading cause of death worldwide and results in over 3 million annual deaths. While insulin manages the disease well, many patients fail to comply with injection schedules, and despite significant investment, a more convenient oral formulation of insulin is still unavailable. Studies suggest that glycosylation may stabilize peptides for oral delivery, but the demanding production of homogeneously glycosylated peptides has hampered transition into the clinic. We report here the first total synthesis of homogeneously glycosylated insulin. After characterizing a series of insulin glycoforms with systematically varied O-glycosylation sites and structures, we demonstrate that O-mannosylation of insulin B-chain Thr27 reduces the peptide's susceptibility to proteases and self-association, both critical properties for oral dosing, while maintaining full activity. This work illustrates the promise of glycosylation as a general mechanism for regulating peptide activity and expanding its therapeutic use.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Patrick K. Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xiuli Wei
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Daniel R Gulbranson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yan Ouyang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80303, United States
| | - Liqun Chen
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Chen Zeng
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Theo N. Koelsch
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Amy H. Tran
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
19
|
Translocation and Redistribution of GLUT4 Using a Dual-Labeled Reporter Assay. Methods Mol Biol 2017. [PMID: 29218525 DOI: 10.1007/978-1-4939-7507-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is crucial to determine the regulation of GLUT4 translocation and redistribution to the plasma membrane. The HA-GLUT4-GFP dual-reporter construct has become an important tool in the assessment of GLUT4 recycling in cultured adipocytes and myocytes. Through the use of light microscopy, this reporter construct allows for visualization of GLUT4 specifically at the cell surface or GLUT4 that has recycled from the cell surface while simultaneously marking the total GLUT4 pool. Here, we discuss and outline the general application of this reporter construct and its use in evaluating GLUT4 translocation within cultured adipocytes.
Collapse
|
20
|
Chaudhary N, Gonzalez E, Chang SH, Geng F, Rafii S, Altorki NK, McGraw TE. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes. Cell Rep 2017; 17:3305-3318. [PMID: 28009298 DOI: 10.1016/j.celrep.2016.11.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.
Collapse
Affiliation(s)
- Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eva Gonzalez
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sung-Hee Chang
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Fuqiang Geng
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahin Rafii
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
21
|
Vijayakumar A, Aryal P, Wen J, Syed I, Vazirani RP, Moraes-Vieira PM, Camporez JP, Gallop MR, Perry RJ, Peroni OD, Shulman GI, Saghatelian A, McGraw TE, Kahn BB. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Rep 2017; 21:1021-1035. [PMID: 29069585 PMCID: PMC5771491 DOI: 10.1016/j.celrep.2017.09.091] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/06/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Lower adipose-ChREBP and de novo lipogenesis (DNL) are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO) mice with negligible sucrose-induced DNL in adipose tissue (AT). Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs) in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ismail Syed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Reema P Vazirani
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Joao Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Molly R Gallop
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Odile D Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Alan Saghatelian
- Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, La Jolla, CA 92037, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA.
| |
Collapse
|
22
|
Jean F, Pilgrim D. Coordinating the uncoordinated: UNC119 trafficking in cilia. Eur J Cell Biol 2017; 96:643-652. [PMID: 28935136 DOI: 10.1016/j.ejcb.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022] Open
Abstract
Constructing the distinct subcellular environment of the cilium relies in a large part upon intraflagellar transport (IFT) proteins, which traffic cargo both to and within the cilium. However, evidence from the last 10 years suggests that IFT alone is not sufficient to generate the ciliary environment. One essential factor is UNC119, which interacts with known IFT molecular switches to transport ciliary cargos. Despite its apparent importance in ciliary trafficking though, human UNC119 mutations have only rarely been associated with diseases commonly linked with ciliopathies. This review will outline the trafficking pathways required for constructing the cilium by highlighting UNC119's role and the complexities involved in ciliary trafficking. Finally, despite important roles for UNC119 in cilia, UNC119 proteins also interact with non-ciliary proteins to affect other cellular processes.
Collapse
|
23
|
Abstract
Cross-presentation of internalized antigens by dendritic cells requires efficient delivery of Major Histocompatibility Complex (MHC) class I molecules to peptide-loading compartments. Strong evidence suggests that such loading can occur outside of the endoplasmic reticulum; however, the trafficking pathways and sources of class I molecules involved are poorly understood. Examination of non-professional, non-phagocytic cells has revealed a clathrin-independent, Arf6-dependent recycling pathway likely traveled by internalized optimally loaded (closed) class I molecules. Some closed and all open MHC class I molecules travel to late endosomes to be degraded but might also partly be re-loaded with peptides and recycled. Studies of viral interference revealed pathways in which class I molecules are directed to degradation in lysosomes upon ubiquitination at the surface, or upon AP-1 and HIV-nef-dependent misrouting from the Golgi network to lysosomes. While many observations made in non-professional cells remain to be re-examined in dendritic cells, available evidence suggests that both recycling and neo-synthesized class I molecules can be loaded with cross-presented peptides. Recycling molecules can be recruited to phagosomes triggered by innate signals such as TLR4 ligands, and may therefore specialize in loading with phagocytosed antigens. In contrast, AP-1-dependent accumulation at, or trafficking through, a Golgi compartment of newly synthesized molecules appears to be important for cross-presentation of soluble proteins and possibly of long peptides that are processed in the so-called vacuolar pathway. However, significant cell biological work will be required to confirm this or any other model and to integrate knowledge on MHC class I biochemistry and trafficking in models of CD8(+) T-cell priming by dendritic cells.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre National de la Recherche Scientifique, Unité 8253, Paris, France
| |
Collapse
|
24
|
Beg M, Abdullah N, Thowfeik FS, Altorki NK, McGraw TE. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. eLife 2017; 6. [PMID: 28589878 PMCID: PMC5462539 DOI: 10.7554/elife.26896] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake. DOI:http://dx.doi.org/10.7554/eLife.26896.001
Collapse
Affiliation(s)
- Muheeb Beg
- Department of Biochemistry, Weill Cornell Medicine, New York, United States
| | - Nazish Abdullah
- Department of Biochemistry, Weill Cornell Medicine, New York, United States
| | - Fathima Shazna Thowfeik
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States.,Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States.,Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, United States.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States.,Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| |
Collapse
|
25
|
Lazebnik M, Pack DW. Rapid and facile quantitation of polyplex endocytic trafficking. J Control Release 2016; 247:19-27. [PMID: 28043862 DOI: 10.1016/j.jconrel.2016.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/17/2016] [Accepted: 12/29/2016] [Indexed: 11/25/2022]
Abstract
Design of safe and effective synthetic nucleic acid delivery vectors such as polycation/DNA or polycation/siRNA complexes (polyplexes) will be facilitated by quantitative understanding of the mechanisms by which such materials escort cargo from the cell surface to the nucleus. In particular, the mechanisms of cellular internalization by various endocytosis pathways and subsequent endocytic vesicle trafficking have been shown to strongly affect nucleic acid delivery efficiency. Fluorescence microscopy and subcellular fractionation methods are commonly employed to follow intracellular trafficking of biomolecules and nanoparticulate delivery systems such as polyplexes. However, it is difficult to obtain quantitative data from microscopy and subcellular fractionation is experimentally difficult and low throughput. We have developed a method for quantifying the transport of polyplexes through important endocytic vesicles. The method is based on polymerization of 3,3'-diaminobenzidine by endocytosed horseradish peroxidase, causing an increase in the vesicle density, resistance to being solubilized by detergent and quenching of fluorophores within the vesicles, which makes them easy to separate and quantify. Using this method in HeLa cells, we have observed polyethylenimine/siRNA polyplexes initially appearing in early endosomes and rapidly moving to other compartments within 30min post-transfection. At the same time, we observed the kinetics of accumulation of the polyplexes in lysosomes at a similar rate. The results from the new method are consistent with similar measurements by confocal fluorescence microscopy and subcellular fractionation of endocytic vesicles on a Percoll gradient. The relative ease of this new method will aid investigation of gene delivery mechanisms by providing the means to rapidly quantify endocytic trafficking of polyplexes and other vectors.
Collapse
Affiliation(s)
- Mihael Lazebnik
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
| | - Daniel W Pack
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
26
|
Gao L, Chen J, Gao J, Wang H, Xiong W. Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes. J Cell Sci 2016; 130:396-405. [PMID: 27888215 DOI: 10.1242/jcs.192450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
GLUT4 (also known as SLC2A4) is essential for glucose uptake in skeletal muscles and adipocytes, which play central roles in whole-body glucose metabolism. Here, using direct stochastic optical reconstruction microscopy (dSTORM) to investigate the characteristics of plasma-membrane-fused GLUT4 at the single-molecule level, we have demonstrated that insulin and insulin resistance regulate the spatial organization of GLUT4 in adipocytes. Stimulation with insulin shifted the balance of GLUT4 on the plasma membrane toward a more dispersed configuration. In contrast, insulin resistance induced a more clustered distribution of GLUT4 and increased the mean number of molecules per cluster. Furthermore, our data demonstrate that the F5QQI motif and lipid rafts mediate the maintenance of GLUT4 clusters on the plasma membrane. Mutation of F5QQI (F5QQA-GLUT4) induced a more clustered distribution of GLUT4; moreover, destruction of lipid rafts in adipocytes expressing F5QQA-GLUT4 dramatically decreased the percentage of large clusters and the mean number of molecules per cluster. In conclusion, our data clarify the effects of insulin stimulation or insulin resistance on GLUT4 reorganization on the plasma membrane and reveal new pathogenic mechanisms of insulin resistance.
Collapse
Affiliation(s)
- Lan Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China.,Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Junling Chen
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Jing Gao
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| |
Collapse
|
27
|
Bruno J, Brumfield A, Chaudhary N, Iaea D, McGraw TE. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. J Cell Biol 2016; 214:61-76. [PMID: 27354378 PMCID: PMC4932369 DOI: 10.1083/jcb.201509052] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Sec16A is known to be required for COPII vesicle formation from the ER. Here, Bruno et al. show that, independent of its role at the ER, Sec16A is a RAB10 effector involved in the insulin-stimulated formation of specialized transport vesicles that ferry the GLUT4 glucose transporter to the plasma membrane of adipocytes. RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10–SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4.
Collapse
Affiliation(s)
- Joanne Bruno
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | | | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - David Iaea
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
28
|
Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G. Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab 2016; 23:1078-1092. [PMID: 27304508 PMCID: PMC4910629 DOI: 10.1016/j.cmet.2016.05.004] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/04/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023]
Abstract
Circulating levels of undercarboxylated and bioactive osteocalcin double during aerobic exercise at the time levels of insulin decrease. In contrast, circulating levels of osteocalcin plummet early during adulthood in mice, monkeys, and humans of both genders. Exploring these observations revealed that osteocalcin signaling in myofibers is necessary for adaptation to exercise by favoring uptake and catabolism of glucose and fatty acids, the main nutrients of myofibers. Osteocalcin signaling in myofibers also accounts for most of the exercise-induced release of interleukin-6, a myokine that promotes adaptation to exercise in part by driving the generation of bioactive osteocalcin. We further show that exogenous osteocalcin is sufficient to enhance the exercise capacity of young mice and to restore to 15-month-old mice the exercise capacity of 3-month-old mice. This study uncovers a bone-to-muscle feedforward endocrine axis that favors adaptation to exercise and can reverse the age-induced decline in exercise capacity.
Collapse
Affiliation(s)
- Paula Mera
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Kathrin Laue
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mathieu Ferron
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cyril Confavreux
- INSERM UMR1033-Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France
| | - Jianwen Wei
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Marta Galán-Díez
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Alain Lacampagne
- UMR 9214 CNRS, U1046 INSERM, Université de Montpellier, CHRU Montpellier, 34295 Montpellier Cedex 5, France
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yun Chen
- Department of Medicine (Cardiology), Department of Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justine Bacchetta
- INSERM UMR1033-Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France
| | - Pawel Szulc
- INSERM UMR1033-Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France
| | - Richard N Kitsis
- Department of Medicine (Cardiology), Department of Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Richard A Friedman
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Christopher Torsitano
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Irwin Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
29
|
Vazirani RP, Verma A, Sadacca LA, Buckman MS, Picatoste B, Beg M, Torsitano C, Bruno JH, Patel RT, Simonyte K, Camporez JP, Moreira G, Falcone DJ, Accili D, Elemento O, Shulman GI, Kahn BB, McGraw TE. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. Diabetes 2016; 65:1577-89. [PMID: 27207531 PMCID: PMC4878419 DOI: 10.2337/db15-1128] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
Insulin controls glucose uptake into adipose and muscle cells by regulating the amount of GLUT4 in the plasma membrane. The effect of insulin is to promote the translocation of intracellular GLUT4 to the plasma membrane. The small Rab GTPase, Rab10, is required for insulin-stimulated GLUT4 translocation in cultured 3T3-L1 adipocytes. Here we demonstrate that both insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane are reduced by about half in adipocytes from adipose-specific Rab10 knockout (KO) mice. These data demonstrate that the full effect of insulin on adipose glucose uptake is the integrated effect of Rab10-dependent and Rab10-independent pathways, establishing a divergence in insulin signal transduction to the regulation of GLUT4 trafficking. In adipose-specific Rab10 KO female mice, the partial inhibition of stimulated glucose uptake in adipocytes induces insulin resistance independent of diet challenge. During euglycemic-hyperinsulinemic clamp, there is no suppression of hepatic glucose production despite normal insulin suppression of plasma free fatty acids. The impact of incomplete disruption of stimulated adipocyte GLUT4 translocation on whole-body glucose homeostasis is driven by a near complete failure of insulin to suppress hepatic glucose production rather than a significant inhibition in muscle glucose uptake. These data underscore the physiological significance of the precise control of insulin-regulated trafficking in adipocytes.
Collapse
Affiliation(s)
- Reema P Vazirani
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | - Akanksha Verma
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| | - L Amanda Sadacca
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | - Melanie S Buckman
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY
| | - Belen Picatoste
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | - Muheeb Beg
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | | | - Joanne H Bruno
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | - Rajesh T Patel
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | - Kotryna Simonyte
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Joao P Camporez
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Gabriela Moreira
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT
| | | | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| | - Gerald I Shulman
- Department of Pathology, Weill Cornell Medical College, New York, NY Howard Hughes Medical Institute, Yale University, New Haven, CT
| | - Barbara B Kahn
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY
| |
Collapse
|
30
|
Rab14 limits the sorting of Glut4 from endosomes into insulin-sensitive regulated secretory compartments in adipocytes. Biochem J 2016; 473:1315-27. [PMID: 26936971 DOI: 10.1042/bcj20160020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
Insulin increases glucose uptake by increasing the rate of exocytosis of the facilitative glucose transporter isoform 4 (Glut4) relative to its endocytosis. Insulin also releases Glut4 from highly insulin-regulated secretory compartments (GSVs or Glut4 storage vesicles) into constitutively cycling endosomes. Previously it was shown that both overexpression and knockdown of the small GTP-binding protein Rab14 decreased Glut4 translocation to the plasma membrane (PM). To determine the mechanism of this perturbation, we measured the effects of Rab14 knockdown on the trafficking kinetics of Glut4 relative to two proteins that partially co-localize with Glut4, the transferrin (Tf) receptor and low-density-lipoprotein-receptor-related protein 1 (LRP1). Our data support the hypothesis that Rab14 limits sorting of proteins from sorting (or 'early') endosomes into the specialized GSV pathway, possibly through regulation of endosomal maturation. This hypothesis is consistent with known Rab14 effectors. Interestingly, the insulin-sensitive Rab GTPase-activating protein Akt substrate of 160 kDa (AS160) affects both sorting into and exocytosis from GSVs. It has previously been shown that exocytosis of GSVs is rate-limited by Rab10, and both Rab10 and Rab14 are in vitro substrates of AS160. Regulation of both entry into and exit from GSVs by AS160 through sequential Rab substrates would provide a mechanism for the finely tuned 'quantal' increases in cycling Glut4 observed in response to increasing concentrations of insulin.
Collapse
|
31
|
Talantikite M, Berenguer M, Gonzalez T, Alessi MC, Poggi M, Peiretti F, Govers R. The first intracellular loop of GLUT4 contains a retention motif. J Cell Sci 2016; 129:2273-84. [DOI: 10.1242/jcs.183525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
Glucose transporter GLUT4 plays a major role in glucose homeostasis and is efficiently retained intracellularly in adipocytes and myocytes. To simplify the analysis of its retention, various intracellular GLUT4 domains were fused individually to reporter molecules. Of the four short cytoplasmic loops of GLUT4, only the first nine-residue-long loop conferred intracellular retention of truncated forms of the transferrin receptor and CD4 in adipocytes. In contrast, the same loop of GLUT1 was without effect. The reporter molecules to which the first loop of GLUT4 was fused localized, unlike GLUT4, to the TGN, possibly explaining why these molecules did not respond to insulin. The retention induced by the GLUT4 loop was specific to adipocytes as it did not induce retention in preadipocytes. Of the SQWLGRKRA sequence that constitutes this loop, mutation of either the tryptophan or lysine residue abrogated reporter retention. Mutation of these residues individually into alanines in the full-length GLUT4 molecule resulted in a decreased retention for GLUT4-W105A. We conclude that the first intracellular loop of GLUT4 contains retention motif WLGRK, in which Trp105 plays a prominent role.
Collapse
Affiliation(s)
- Maya Talantikite
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Marion Berenguer
- Inserm U895, Mediterranean Research Center for Molecular Medicine (C3M), Nice, F-06204, France
| | - Teresa Gonzalez
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Marie Christine Alessi
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Marjorie Poggi
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Franck Peiretti
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Roland Govers
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
- Inserm U895, Mediterranean Research Center for Molecular Medicine (C3M), Nice, F-06204, France
| |
Collapse
|
32
|
Kawaguchi A, Hirohama M, Harada Y, Osari S, Nagata K. Influenza Virus Induces Cholesterol-Enriched Endocytic Recycling Compartments for Budozone Formation via Cell Cycle-Independent Centrosome Maturation. PLoS Pathog 2015; 11:e1005284. [PMID: 26575487 PMCID: PMC4648529 DOI: 10.1371/journal.ppat.1005284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
Influenza virus particles are assembled at the plasma membrane in concert with incorporation of the virus genome, but the details of its spatio-temporal regulation are not understood. Here we showed that influenza virus infection induces the assembly of pericentrosomal endocytic recycling compartment (ERC) through the activation of Rab11a GTPase and cell cycle-independent maturation of centrosome by YB-1, a multifunctional protein that is involved in mitotic division, RNA metabolism and tumorigenesis. YB-1 is recruited to the centrosome in infected cells and is required for anchoring microtubules to the centrosome. We also found that viral infection accumulates cholesterol in ERC and is dependent on YB-1. Depletion of YB-1 shows reduced cholesterol-enriched ERC and prevented budozone formation at the plasma membrane. These results suggest that cholesterol in recycling endosomes, which are emanated from ERC, may trigger the virus assembly concomitantly with the packaging of the virus genome. We propose that the virus genome is transported to the plasma membrane by cholesterol-enriched recycling endosomes through cell cycle-independent activation of the centrosome by YB-1. Influenza virus particles are assembled at the plasma membrane in concert with incorporation of the virus genome, but the details of its spatiotemporal regulation are unknown. We found that the virus genome is transported to the plasma membrane using cholesterol-enriched recycling endosomes through cell cycle-independent activation of the centrosome by recruiting YB-1, which is a mitotic centrosomal protein. We also revealed that the cholesterol-enriched endosomes are important for clustering of viral structural proteins at lipid rafts to assemble the virus particles. These results suggest that local accumulation of cholesterol, via fusion of endosomes to the plasma membrane, is one of the triggers for the virus assembly concomitantly with arrival of the virus genome beneath the plasma membrane.
Collapse
Affiliation(s)
- Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
- * E-mail:
| | - Mikako Hirohama
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Yoshimi Harada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Suguru Osari
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan
| |
Collapse
|
33
|
Patel C, Douard V, Yu S, Tharabenjasin P, Gao N, Ferraris RP. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am J Physiol Regul Integr Comp Physiol 2015; 309:R499-509. [PMID: 26084694 DOI: 10.1152/ajpregu.00128.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Veronique Douard
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Shiyan Yu
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Phuntila Tharabenjasin
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Nan Gao
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| |
Collapse
|
34
|
New insight into the intracellular roles of class II phosphoinositide 3-kinases. Biochem Soc Trans 2015; 42:1378-82. [PMID: 25233418 DOI: 10.1042/bst20140140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the last few years, an increased attention to class II isoforms of phosphoinositide 3-kinase (PI3K) has emerged, mainly fuelled by evidence suggesting a distinct non-redundant role for these enzymes compared with other PI3Ks. Despite this renewed interest, many questions remain on the specific functions regulated by these isoforms and their mechanism of activation and action. In the present review, we discuss results from recent studies that have provided some answers to these questions.
Collapse
|
35
|
Chua CEL, Tang BL. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci 2015; 72:2289-304. [PMID: 25690707 PMCID: PMC11113524 DOI: 10.1007/s00018-015-1862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The vesicular transport pathways, which shuttle materials to and from the cell surface and within the cell, and the metabolic (growth factor and nutrient) signalling pathways, which integrate a variety of extracellular and intracellular signals to mediate growth, proliferation or survival, are both important for cellular physiology. There is evidence to suggest that the transport and metabolic signalling pathways intersect-vesicular transport can affect the regulation of metabolic signals and vice versa. The Rab family GTPases regulate the specificity of vesicular transport steps in the cell. Together with their interacting proteins, Rabs would likely constitute the points of intersection between vesicular transport and metabolic signalling pathways. Examples of these points would include growth factor signalling, glucose and lipid metabolism, as well as autophagy. Many of these processes involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades, or are regulated by TORC signalling. A general functionality of the vesicular transport processes controlled by the Rabs is also important for spatial and temporal regulation of the transmission of metabolic signals between the cell surface and the nucleus. In other cases, specific Rabs and their interacting proteins are known to function in recruiting metabolism-related proteins to target membranes, or may compete with other factors in the TORC signalling pathway as a means of metabolic regulation. We review and discuss herein examples of how Rabs and their interacting proteins can mediate metabolic signalling and regulation in cells.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore, 117597, Singapore,
| | | |
Collapse
|
36
|
Development of a new model system to dissect isoform specific Akt signalling in adipocytes. Biochem J 2015; 468:425-34. [PMID: 25856301 PMCID: PMC4604748 DOI: 10.1042/bj20150191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/09/2015] [Indexed: 12/17/2022]
Abstract
Our study describes the development and validation of a new model system that allows for acute control of signalling by specific Akt isoforms. This model system revealed new insights into the role of Akt kinases in glucose transport and adipogenesis. Protein kinase B (Akt) kinases are critical signal transducers mediating insulin action. Genetic studies revealed that Akt1 and Akt2 signalling differentially contribute to sustain lipid and glucose homoeostasis; however Akt isoform-specific effectors remain elusive due to the lack of a suitable model system to mechanistically interrogate Akt isoform-specific signalling. To overcome those technical limitations we developed a novel model system that provides acute and specific control of signalling by Akt isoforms. We generated mutants of Akt1 and Akt2 resistant to the allosteric Akt inhibitor MK-2206. We then developed adipocyte cell lines, in which endogenous Akt1 or Akt2 has been replaced by their corresponding drug-resistant Akt mutant. Treatment of those cells with MK-2206 allowed for acute and specific control of either Akt1 or Akt2 function. Our data showed that Akt1W80A and Akt2W80A mutants are resistant to MK-2206, dynamically regulated by insulin and able to signal to Akt downstream effectors. Analyses of insulin action in this cellular system showed that Akt1 and Akt2 are both able to mediate insulin regulation of the transcription factor forkhead box O1 (FoxO1) and the glucose transporter 4 (GLUT4), revealing a redundant role for these Akt kinases in the control of glucose transport into fat cells. In contrast, Akt1 signalling is uniquely required for adipogenesis, by controlling the mitotic clonal expansion (MCE) of pre-adipocytes that precedes white adipose cell differentiation. Our data provide new insights into the role of Akt kinases in glucose transport and adipogenesis and support our model system as a valuable tool for the biochemical characterization of signalling by specific Akt isoforms.
Collapse
|
37
|
McClory H, Williams D, Sapp E, Gatune LW, Wang P, DiFiglia M, Li X. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington's disease mice. Acta Neuropathol Commun 2014; 2:179. [PMID: 25526803 PMCID: PMC4297405 DOI: 10.1186/s40478-014-0178-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) disturbs glucose metabolism in the brain by poorly understood mechanisms. HD neurons have defective glucose uptake, which is attenuated upon enhancing rab11 activity. Rab11 regulates numerous receptors and transporters trafficking onto cell surfaces; its diminished activity in HD cells affects the recycling of transferrin receptor and neuronal glutamate/cysteine transporter EAAC1. Glucose transporter 3 (Glut3) handles most glucose uptake in neurons. Here we investigated rab11 involvement in Glut3 trafficking. Glut3 was localized to rab11 positive puncta in primary neurons and immortalized striatal cells by immunofluorescence labeling and detected in rab11-enriched endosomes immuno-isolated from mouse brain by Western blot. Expression of dominant active and negative rab11 mutants in clonal striatal cells altered the levels of cell surface Glut3 suggesting a regulation by rab11. About 4% of total Glut3 occurred at the cell surface of primary WT neurons. HD140Q/140Q neurons had significantly less cell surface Glut3 than did WT neurons. Western blot analysis revealed comparable levels of Glut3 in the striatum and cortex of WT and HD140Q/140Q mice. However, brain slices immunolabeled with an antibody recognizing an extracellular epitope to Glut3 showed reduced surface expression of Glut3 in the striatum and cortex of HD140Q/140Q mice compared to that of WT mice. Surface labeling of GABAα1 receptor, which is not dependent on rab11, was not different between WT and HD140Q/140Q mouse brain slices. These data define Glut3 to be a rab11-dependent trafficking cargo and suggest that impaired Glut3 trafficking arising from rab11 dysfunction underlies the glucose hypometabolism observed in HD.
Collapse
|
38
|
Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. DIABETES & METABOLISM 2014; 40:400-10. [PMID: 24656589 DOI: 10.1016/j.diabet.2014.01.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/28/2023]
|
39
|
Ghaffarian R, Muro S. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery. Mol Pharm 2014; 11:4350-62. [PMID: 25301142 PMCID: PMC4255724 DOI: 10.1021/mp500409y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ligand-targeted,
receptor-mediated endocytosis is commonly exploited for intracellular
drug delivery. However, cells-surface receptors may follow distinct
endocytic fates when bound by monomeric vs multimeric ligands. Our
purpose was to study this paradigm using ICAM-1, an endothelial receptor
involved in inflammation, to better understand its regulation and
potential for drug delivery. Our procedure involved fluorescence microscopy
of human endothelial cells to determine the endocytic behavior of
unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM)
vs multimeric (anti-ICAM biotin–streptavidin conjugates or
anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that
both monomeric and multimeric ligands undergo a similar endocytic
pathway sensitive to amiloride (∼50% inhibition), but not inhibitors
of clathrin-pits or caveoli. After 30 min, ∼60–70% of
both ligands colocalized with Rab11a-compartments. By 3–5 h,
∼65–80% of multimeric anti-ICAM colocalized with perinuclear
lysosomes with ∼60–80% degradation, while 70% of monomeric
anti-ICAM remained associated with Rab11a at the cell periphery and
recycled to and from the cell-surface with minimal (<10%) lysosomal
colocalization and minimal (≤15%) degradation. In the absence
of ligands, ICAM-1 also underwent amiloride-sensitive endocytosis
with peripheral distribution, suggesting that monomeric (not multimeric)
anti-ICAM follows the route of this receptor. In conclusion, ICAM-1
can mediate different intracellular itineraries, revealing new insight
into this biological pathway and alternative avenues for drug delivery.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, University of Maryland , 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | | |
Collapse
|
40
|
Park SW, Schonhoff CM, Webster CRL, Anwer MS. Rab11, but not Rab4, facilitates cyclic AMP- and tauroursodeoxycholate-induced MRP2 translocation to the plasma membrane. Am J Physiol Gastrointest Liver Physiol 2014; 307:G863-70. [PMID: 25190474 PMCID: PMC4200318 DOI: 10.1152/ajpgi.00457.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rab proteins (Ras homologous for brain) play an important role in vesicle trafficking. Rab4 and Rab11 are involved in vesicular trafficking to the plasma membrane from early endosomes and recycling endosomes, respectively. Tauroursodeoxycholate (TUDC) and cAMP increase bile formation, in part, by increasing plasma membrane localization of multidrug resistance-associated protein 2 (MRP2). The goal of the present study was to determine the role of these Rab proteins in the trafficking of MRP2 by testing the hypothesis that Rab11 and/or Rab4 facilitate cAMP- and TUDC-induced MRP2 translocation to the plasma membrane. Studies were conducted in HuH-NTCP cells (HuH7 cells stably transfected with human NTCP), which constitutively express MRP2. HuH-NTCP cells were transfected with Rab11-WT and GDP-locked dominant inactive Rab11-GDP or with Rab4-GDP to study the role of Rab11 and Rab4. A biotinylation method and a GTP overlay assay were used to determine plasma membrane MRP2 and activation of Rab proteins (Rab11 and Rab4), respectively. Cyclic AMP and TUDC increased plasma membrane MRP2 and stimulated Rab11 activity. Plasma membrane translocation of MRP2 by cAMP and TUDC was increased and inhibited in cells transfected with Rab11-WT and Rab11-GDP, respectively. Cyclic AMP (previous study) and TUDC increased Rab4 activity. However, cAMP- and TUDC-induced increases in MRP2 were not inhibited by Rab4-GDP. Taken together, these results suggest that Rab11 is involved in cAMP- and TUDC-induced MRP2 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Se Won Park
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Christopher M Schonhoff
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Cynthia R L Webster
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| |
Collapse
|
41
|
Tessneer KL, Jackson RM, Griesel BA, Olson AL. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance. Endocrinology 2014; 155:3315-28. [PMID: 24932807 PMCID: PMC4138579 DOI: 10.1210/en.2013-2148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glucose transporter isoform 4 (GLUT4) is the insulin-responsive glucose transporter mediating glucose uptake in adipose and skeletal muscle. Reduced GLUT4 translocation from intracellular storage compartments to the plasma membrane is a cause of peripheral insulin resistance. Using a chronic hyperinsulinemia (CHI)-induced cell model of insulin resistance and Rab5 mutant overexpression, we determined these manipulations altered endosomal sorting of GLUT4, thus contributing to the development of insulin resistance. We found that CHI induced insulin resistance in 3T3-L1 adipocytes by retaining GLUT4 in a Rab5-activity-dependent compartment that is unable to equilibrate with the cell surface in response to insulin. Furthermore, CHI-mediated retention of GLUT4 in this non-insulin-responsive compartment impaired filling of the transferrin receptor (TfR)-positive and TfR-negative insulin-responsive storage compartments. Our data suggest that hyperinsulinemia may inhibit GLUT4 by chronically maintaining GLUT4 in the Rab5 activity-dependent endosomal pathway and impairing formation of the TfR-negative and TfR-positive insulin-responsive GLUT4 pools. This model suggests that an early event in the development of insulin-resistant glucose transport in adipose tissue is to alter the intracellular localization of GLUT4 to a compartment that does not efficiently equilibrate with the cell surface when insulin levels are elevated for prolonged periods of time.
Collapse
Affiliation(s)
- Kandice L Tessneer
- Department of Biochemistry and Molecular Biology (K.L.T., R.M.J., B.A.G., A.L.O.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126; and Cardiovascular Biology Program (K.L.T.), Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | | | | | | |
Collapse
|
42
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
43
|
A naturally occurring GIP receptor variant undergoes enhanced agonist-induced desensitization, which impairs GIP control of adipose insulin sensitivity. Mol Cell Biol 2014; 34:3618-29. [PMID: 25047836 DOI: 10.1128/mcb.00256-14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP), an incretin hormone secreted from gastrointestinal K cells in response to food intake, has an important role in the control of whole-body metabolism. GIP signals through activation of the GIP receptor (GIPR), a G-protein-coupled receptor (GPCR). Dysregulation of this pathway has been implicated in the development of metabolic disease. Here we demonstrate that GIPR is constitutively trafficked between the plasma membrane and intracellular compartments of both GIP-stimulated and unstimulated adipocytes. GIP induces a downregulation of plasma membrane GIPR by slowing GIPR recycling without affecting internalization kinetics. This transient reduction in the expression of GIPR in the plasma membrane correlates with desensitization to the effects of GIP. A naturally occurring variant of GIPR (E354Q) associated with an increased incidence of insulin resistance, type 2 diabetes, and cardiovascular disease in humans responds to GIP stimulation with an exaggerated downregulation from the plasma membrane and a delayed recovery of GIP sensitivity following cessation of GIP stimulation. This perturbation in the desensitization-resensitization cycle of the GIPR variant, revealed in studies of cultured adipocytes, may contribute to the link of the E354Q variant to metabolic disease.
Collapse
|
44
|
Brewer PD, Habtemichael EN, Romenskaia I, Mastick CC, Coster ACF. Insulin-regulated Glut4 translocation: membrane protein trafficking with six distinctive steps. J Biol Chem 2014; 289:17280-98. [PMID: 24778187 DOI: 10.1074/jbc.m114.555714] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The trafficking kinetics of Glut4, the transferrin (Tf) receptor, and LRP1 were quantified in adipocytes and undifferentiated fibroblasts. Six steps were identified that determine steady state cell surface Glut4: (i) endocytosis, (ii) degradation, (iii) sorting, (iv) sequestration, (v) release, and (vi) tethering/docking/fusion. Endocytosis of Glut4 is 3 times slower than the Tf receptor in fibroblasts (ken = 0.2 min(-1) versus 0.6 min(-1)). Differentiation decreases Glut4 ken 40% (ken = 0.12 min(-1)). Differentiation also decreases Glut4 degradation, increasing total and cell surface Glut4 3-fold. In fibroblasts, Glut4 is recycled from endosomes through a slow constitutive pathway (kex = 0.025-0.038 min(-1)), not through the fast Tf receptor pathway (kex = 0.2 min(-1)). The kex measured in adipocytes after insulin stimulation is similar (kex = 0.027 min(-1)). Differentiation decreases the rate constant for sorting into the Glut4 recycling pathway (ksort) 3-fold. In adipocytes, Glut4 is also sorted from endosomes into a second exocytic pathway through Glut4 storage vesicles (GSVs). Surprisingly, transfer from endosomes into GSVs is highly regulated; insulin increases the rate constant for sequestration (kseq) 8-fold. Release from sequestration in GSVs is rate-limiting for Glut4 exocytosis in basal adipocytes. AS160 regulates this step. Tethering/docking/fusion of GSVs to the plasma membrane is regulated through an AS160-independent process. Insulin increases the rate of release and fusion of GSVs (kfuseG) 40-fold. LRP1 cycles with the Tf receptor and Glut4 in fibroblasts but predominantly with Glut4 after differentiation. Surprisingly, AS160 knockdown accelerated LRP1 exocytosis in basal and insulin-stimulated adipocytes. These data indicate that AS160 may regulate trafficking into as well as release from GSVs.
Collapse
Affiliation(s)
- Paul Duffield Brewer
- From the Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Estifanos N Habtemichael
- the Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Irina Romenskaia
- From the Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557
| | - Cynthia Corley Mastick
- From the Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557,
| | - Adelle C F Coster
- the School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
45
|
Foley KP, Klip A. Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide. Biol Open 2014; 3:314-25. [PMID: 24705014 PMCID: PMC4021353 DOI: 10.1242/bio.20147898] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
GLUT4 constitutively recycles between the plasma membrane and intracellular depots. Insulin shifts this dynamic equilibrium towards the plasma membrane by recruiting GLUT4 to the plasma membrane from insulin-responsive vesicles. Muscle is the primary site for dietary glucose deposition; however, how GLUT4 sorts into insulin-responsive vesicles, and if and how insulin resistance affects this process, is unknown. In L6 myoblasts stably expressing myc-tagged GLUT4, we analyzed the intracellular itinerary of GLUT4 as it internalizes from the cell surface and examined if such sorting is perturbed by C2-ceramide, a lipid metabolite causing insulin resistance. Surface-labeled GLUT4myc that internalized for 30 min accumulated in a Syntaxin-6 (Stx6)- and Stx16-positive perinuclear sub-compartment devoid of furin or internalized transferrin, and displayed insulin-responsive re-exocytosis. C2-ceramide dispersed the Stx6-positive sub-compartment and prevented insulin-responsive re-exocytosis of internalized GLUT4myc, even under conditions not affecting insulin-stimulated signaling towards Akt. Microtubule disruption with nocodazole prevented pre-internalized GLUT4myc from reaching the Stx6-positive perinuclear sub-compartment and from undergoing insulin-responsive exocytosis. Removing nocodazole allowed both parameters to recover, suggesting that the Stx6-positive perinuclear sub-compartment was required for GLUT4 insulin-responsiveness. Accordingly, Stx6 knockdown inhibited by ∼50% the ability of internalized GLUT4myc to undergo insulin-responsive re-exocytosis without altering its overall perinuclear accumulation. We propose that Stx6 defines the insulin-responsive compartment in muscle cells. Our data are consistent with a model where ceramide could cause insulin resistance by altering intracellular GLUT4 sorting.
Collapse
Affiliation(s)
- Kevin P Foley
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
46
|
Hodgson L, Tavaré J, Verkade P. Development of a quantitative Correlative Light Electron Microscopy technique to study GLUT4 trafficking. PROTOPLASMA 2014; 251:403-16. [PMID: 24390248 PMCID: PMC3927059 DOI: 10.1007/s00709-013-0597-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 05/21/2023]
Abstract
Correlative Light Electron Microscopy (CLEM) combines advantages of light microscopy and electron microscopy in one experiment to deliver information above and beyond the capability of either modality alone. There are many different CLEM techniques, each having its own special advantages but also its technical challenges. It is however the biological question that (should) drive(s) the development and application of a specific CLEM technique in order to provide the answer. Here we describe the development of a CLEM technique that is based on the Tokuyasu cryo immuno-gold labelling technique that has allowed us to quantitatively study GLUT4 trafficking.
Collapse
Affiliation(s)
- Lorna Hodgson
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Jeremy Tavaré
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Paul Verkade
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD UK
- School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol, BS8 1TD UK
- Wolfson Bioimaging Facility, School of Medical Sciences, University Walk, Bristol, BS8 1TD UK
| |
Collapse
|
47
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
48
|
Sadacca LA, Bruno J, Wen J, Xiong W, McGraw TE. Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol Biol Cell 2013; 24:2544-57. [PMID: 23804653 PMCID: PMC3744946 DOI: 10.1091/mbc.e13-02-0103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RAB10 and RAB14 function at sequential steps of insulin-stimulated GLUT4 translocation to the plasma membrane. RAB14 functions upstream of RAB10 in GLUT4 sorting to the specialized transport vesicles, and RAB10 and its GAP protein comprise the main signaling module that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.
Collapse
Affiliation(s)
- L Amanda Sadacca
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
49
|
Reed SE, Hodgson LR, Song S, May MT, Kelly EE, McCaffrey MW, Mastick CC, Verkade P, Tavaré JM. A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes. J Cell Sci 2013; 126:1931-41. [PMID: 23444368 DOI: 10.1242/jcs.104307] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin enhances the uptake of glucose into adipocytes and muscle cells by promoting the redistribution of the glucose transporter isoform 4 (GLUT4) from intracellular compartments to the cell surface. Rab GTPases regulate the trafficking itinerary of GLUT4 and several have been found on immunopurified GLUT4 vesicles. Specifically, Rab14 has previously been implicated in GLUT4 trafficking in muscle although its role, if any, in adipocytes is poorly understood. Analysis of 3T3-L1 adipocytes using confocal microscopy demonstrated that endogenous GLUT4 and endogenous Rab14 exhibited a partial colocalisation. However, when wild-type Rab14 or a constitutively-active Rab14Q70L mutant were overexpressed in these cells, the colocalisation with both GLUT4 and IRAP became extensive. Interestingly, this colocalisation was restricted to enlarged 'ring-like' vesicular structures (mean diameter 1.3 µm), which were observed in the presence of overexpressed wild-type Rab14 and Rab14Q70L, but not an inactive Rab14S25N mutant. These enlarged vesicles contained markers of early endosomes and were rapidly filled by GLUT4 and transferrin undergoing endocytosis from the plasma membrane. The Rab14Q70L mutant reduced basal and insulin-stimulated cell surface GLUT4 levels, probably by retaining GLUT4 in an insulin-insensitive early endosomal compartment. Furthermore, shRNA-mediated depletion of Rab14 inhibited the transit of GLUT4 through early endosomal compartments towards vesicles and tubules in the perinuclear region. Given the previously reported role of Rab14 in trafficking between endosomes and the Golgi complex, we propose that the primary role of Rab14 in GLUT4 trafficking is to control the transit of internalised GLUT4 from early endosomes into the Golgi complex, rather than direct GLUT4 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Sam E Reed
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen Y, Wang Y, Zhang J, Deng Y, Jiang L, Song E, Wu XS, Hammer JA, Xu T, Lippincott-Schwartz J. Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes. ACTA ACUST UNITED AC 2012; 198:545-60. [PMID: 22908308 PMCID: PMC3514028 DOI: 10.1083/jcb.201111091] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rab proteins are important regulators of insulin-stimulated GLUT4 translocation to the plasma membrane (PM), but the precise steps in GLUT4 trafficking modulated by particular Rab proteins remain unclear. Here, we systematically investigate the involvement of Rab proteins in GLUT4 trafficking, focusing on Rab proteins directly mediating GLUT4 storage vesicle (GSV) delivery to the PM. Using dual-color total internal reflection fluorescence (TIRF) microscopy and an insulin-responsive aminopeptidase (IRAP)-pHluorin fusion assay, we demonstrated that Rab10 directly facilitated GSV translocation to and docking at the PM. Rab14 mediated GLUT4 delivery to the PM via endosomal compartments containing transferrin receptor (TfR), whereas Rab4A, Rab4B, and Rab8A recycled GLUT4 through the endosomal system. Myosin-Va associated with GSVs by interacting with Rab10, positioning peripherally recruited GSVs for ultimate fusion. Thus, multiple Rab proteins regulate the trafficking of GLUT4, with Rab10 coordinating with myosin-Va to mediate the final steps of insulin-stimulated GSV translocation to the PM.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|