1
|
Falcone JI, Cleveland KH, Kang M, Odle BJ, Forbush KA, Scott JD. The evolution of AKAPs and emergence of PKA isotype selective anchoring determinants. J Biol Chem 2025; 301:108480. [PMID: 40199400 PMCID: PMC12083921 DOI: 10.1016/j.jbc.2025.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Cyclic AMP is a versatile signaling molecule utilized throughout the eukaryotic domain. A frequent use is to activate protein kinase A (PKA), a serine/threonine kinase that drives many physiological responses. Spatiotemporal organization of PKA occurs though association with A-kinase anchoring proteins (AKAPs). Sequence alignments and phylogenetic analyses trace the evolution of PKA regulatory (R) and catalytic (C) subunits and AKAPs from the emergence of metazoans. AKAPs that preferentially associate with the type I (RI) or type II (RII) regulatory subunits diverged at the advent of the vertebrate clade. Type I PKA anchoring proteins including smAKAP contain an FA motif at positions 1 and 2 of their amphipathic binding helices. Fluorescence recovery after photobleaching measurements indicate smAKAP preferentially associates with RI (T 1/2. 4.37 ± 1.2 s; n = 3) as compared to RII (T 1/2. 2.19 ± 0.5 s; n = 3). Parallel studies measured AKAP79 recovery half times of 8.74 ± 0.3 s (n = 3) for RI and 14.42 ± 2.1 s (n = 3) and for RII, respectively. Introduction of FA and AF motifs at either ends of the AKAP79 helix biases the full-length anchoring protein toward type I PKA signaling to reduce corticosterone release from adrenal cells by 61.5 ± 0.8% (n = 3). Conversely, substitution of the YA motif at the beginning of the smAKAP helix for a pair of leucine's abrogates RI anchoring. Thus, AKAPs have evolved from the base of the metazoan clade into specialized type I and type II PKA anchoring proteins.
Collapse
Affiliation(s)
- Jerome I Falcone
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kristan H Cleveland
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mingu Kang
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Brianna J Odle
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Katherine A Forbush
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
2
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
3
|
Salcedo MV, Gravel N, Keshavarzi A, Huang LC, Kochut KJ, Kannan N. Predicting protein and pathway associations for understudied dark kinases using pattern-constrained knowledge graph embedding. PeerJ 2023; 11:e15815. [PMID: 37868056 PMCID: PMC10590106 DOI: 10.7717/peerj.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/10/2023] [Indexed: 10/24/2023] Open
Abstract
The 534 protein kinases encoded in the human genome constitute a large druggable class of proteins that include both well-studied and understudied "dark" members. Accurate prediction of dark kinase functions is a major bioinformatics challenge. Here, we employ a graph mining approach that uses the evolutionary and functional context encoded in knowledge graphs (KGs) to predict protein and pathway associations for understudied kinases. We propose a new scalable graph embedding approach, RegPattern2Vec, which employs regular pattern constrained random walks to sample diverse aspects of node context within a KG flexibly. RegPattern2Vec learns functional representations of kinases, interacting partners, post-translational modifications, pathways, cellular localization, and chemical interactions from a kinase-centric KG that integrates and conceptualizes data from curated heterogeneous data resources. By contextualizing information relevant to prediction, RegPattern2Vec improves accuracy and efficiency in comparison to other random walk-based graph embedding approaches. We show that the predictions produced by our model overlap with pathway enrichment data produced using experimentally validated Protein-Protein Interaction (PPI) data from both publicly available databases and experimental datasets not used in training. Our model also has the advantage of using the collected random walks as biological context to interpret the predicted protein-pathway associations. We provide high-confidence pathway predictions for 34 dark kinases and present three case studies in which analysis of meta-paths associated with the prediction enables biological interpretation. Overall, RegPattern2Vec efficiently samples multiple node types for link prediction on biological knowledge graphs and the predicted associations between understudied kinases, pseudokinases, and known pathways serve as a conceptual starting point for hypothesis generation and testing.
Collapse
Affiliation(s)
- Mariah V. Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Abbas Keshavarzi
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Krzysztof J. Kochut
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
4
|
Gopalan J, Wordeman L, Scott JD. Kinase-anchoring proteins in ciliary signal transduction. Biochem J 2021; 478:1617-1629. [PMID: 33909027 PMCID: PMC11848745 DOI: 10.1042/bcj20200869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Historically, the diffusion of chemical signals through the cell was thought to occur within a cytoplasmic soup bounded by the plasma membrane. This theory was predicated on the notion that all regulatory enzymes are soluble and moved with a Brownian motion. Although enzyme compartmentalization was initially rebuffed by biochemists as a 'last refuge of a scoundrel', signal relay through macromolecular complexes is now accepted as a fundamental tenet of the burgeoning field of spatial biology. A-Kinase anchoring proteins (AKAPs) are prototypic enzyme-organizing elements that position clusters of regulatory proteins at defined subcellular locations. In parallel, the primary cilium has gained recognition as a subcellular mechanosensory organelle that amplifies second messenger signals pertaining to metazoan development. This article highlights advances in our understanding of AKAP signaling within the primary cilium and how defective ciliary function contributes to an increasing number of diseases known as ciliopathies.
Collapse
Affiliation(s)
- Janani Gopalan
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
5
|
Turner MJ, Abbott-Banner K, Thomas DY, Hanrahan JW. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol Ther 2021; 224:107826. [PMID: 33662448 DOI: 10.1016/j.pharmthera.2021.107826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF) lung disease results from mutations in the CFTR anion channel that reduce anion and fluid secretion by airway epithelia. Impaired secretion compromises airway innate defence mechanisms and leads to bacterial colonization, excessive inflammation and tissue damage; thus, restoration of CFTR function is the goal of many CF therapies. CFTR channels are activated by cyclic nucleotide-dependent protein kinases. The second messengers 3'5'-cAMP and 3'5'-cGMP are hydrolysed by a large family of cyclic nucleotide phosphodiesterases that provide subcellular spatial and temporal control of cyclic nucleotide-dependent signalling. Selective inhibition of these enzymes elevates cyclic nucleotide levels, leading to activation of CFTR and other downstream effectors. Here we examine members of the PDE family that are likely to regulate CFTR-dependent ion and fluid secretion in the airways and discuss other actions of PDE inhibitors that can influence cyclic nucleotide-regulated mucociliary transport, inflammation and bronchodilation. Finally, we review PDE inhibitors and the potential benefits they could provide as CF therapeutics.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada.
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Joskova M, Mokry J, Franova S. Respiratory Cilia as a Therapeutic Target of Phosphodiesterase Inhibitors. Front Pharmacol 2020; 11:609. [PMID: 32435198 PMCID: PMC7218135 DOI: 10.3389/fphar.2020.00609] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Mucociliary clearance is an essential airway defense mechanism dependent predominantly on the proper ciliary function and mucus rheology. The crucial role of cilia is evident in `a variety of respiratory diseases, as the ciliary dysfunction is associated with a progressive decline in lung function over time. The activity of cilia is under supervision of multiple physiological regulators, including second messengers. Their role is to enable a movement in coordinated metachronal waves at certain beat frequency. Ciliary function can be modulated by various stimuli, including agents from the group of beta2 agonists, cholinergic drugs, and adenosine triphosphate (ATP). They trigger cilia to move faster in response to elevated cytoplasmic Ca2+ originated from intracellular sources or replenished from extracellular space. Well-known cilia-stimulatory effect of Ca2+ ions can be abolished or even reversed by modulating the phosphodiesterase (PDE)-mediated breakdown of cyclic adenosine monophosphate (cAMP) since the overall change in ciliary beating has been dependent on the balance between Ca2+ ions and cAMP. Moreover, in chronic respiratory diseases, high ATP levels may contribute to cAMP hydrolysis and thus to a decrease in the ciliary beat frequency (CBF). The role of PDE inhibitors in airway cilia-driven transport may help in prevention of progressive loss of pulmonary function often observed despite current therapy. Furthermore, administration of selective PDE inhibitors by inhalation lowers the risk of their systemic effects. Based on this review we may conclude that selective (PDE1, PDE4) or dual PDE inhibitors (PDE3/4) increase the intracellular level of cyclic nucleotides in airway epithelial cells and thus may be an important target in the development of new inhaled mucokinetic agents. Further research is required to provide evidence of their effectiveness and feasibility regarding their cilia-modulating properties.
Collapse
Affiliation(s)
- Marta Joskova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
7
|
Price ME, Sisson JH. Redox regulation of motile cilia in airway disease. Redox Biol 2019; 27:101146. [PMID: 30833143 PMCID: PMC6859573 DOI: 10.1016/j.redox.2019.101146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Motile cilia on airway cells are necessary for clearance of mucus-trapped particles out of the lung. Ciliated airway epithelial cells are uniquely exposed to oxidants through trapping of particles, debris and pathogens in mucus and the direct exposure to inhaled oxidant gases. Dynein ATPases, the motors driving ciliary motility, are sensitive to the local redox environment within each cilium. Several redox-sensitive cilia-localized proteins modulate dynein activity and include Protein Kinase A, Protein Kinase C, and Protein Phosphatase 1. Moreover, cilia are rich in known redox regulatory proteins and thioredoxin domain-containing proteins that are critical in maintaining a balanced redox environment. Importantly, a nonsense mutation in TXNDC3, which contains a thioredoxin motif, has recently been identified as disease-causing in Primary Ciliary Dyskinesia, a hereditary motile cilia disease resulting in impaired mucociliary clearance. Here we review current understanding of the role(s) oxidant species play in modifying airway ciliary function. We focus on oxidants generated in the airways, cilia redox targets that modulate ciliary beating and imbalances in redox state that impact health and disease. Finally, we review disease models such as smoking, asthma, alcohol drinking, and infections as well as the direct application of oxidants that implicate redox balance as a modulator of cilia motility.
Collapse
Affiliation(s)
- Michael E Price
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA; University of Nebraska Medical Center, Department of Cellular & Integrative Physiology, Omaha, NE, USA.
| | - Joseph H Sisson
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA.
| |
Collapse
|
8
|
Iwamori T, Iwamori N, Matsumoto M, Ono E, Matzuk MM. Identification of KIAA1210 as a novel X-chromosome-linked protein that localizes to the acrosome and associates with the ectoplasmic specialization in testes. Biol Reprod 2018; 96:469-477. [PMID: 28203736 DOI: 10.1095/biolreprod.116.145458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/21/2016] [Accepted: 12/15/2016] [Indexed: 11/01/2022] Open
Abstract
Cell junctions are necessary for spermatogenesis, and there are numerous types of junctions in testis, such as blood–testis barrier, intercellular bridge, and ectoplasmic specialization (ES). The details of their functions and construction are still unknown. To identify a novel protein essential to the function of a cell junction, we enriched testis membrane protein and analyzed it using a proteomics approach. Here, we report a novel ES protein, which is encoded on the X chromosome and an ortholog of hypothetical human protein KIAA1210. KIAA1210 is expressed in testis predominantly, localized to the sex body in spermatocyte, acrosome, and near ES. Moreover, KIAA1210 possesses a topoisomerase 2 (TOP2)-associated protein PAT1 domain, a herpes simplex virus 1 (HSV-1) large tegument protein UL36 hypothetical domain, and a provisional DNA translocase FtsK domain. Using IP-proteomics with specific antibody to KIAA1210, we identified proteins including TOP2 isoforms as components of a complex with KIAA1210, in cell junctions in testis. The interaction between KIAA1210 and TOP2 was confirmed by two different proteomic analyses. Furthermore, immunofluorescence showed that KIAA1210 and TOP2B co-localize around the sex body in spermatocyte, apical ES, and residual bodies in elongated spermatids. Our findings suggest that KIAA1210 may be essential cell junction protein that interacts with TOP2B to regulate the dynamic change of chromatin structures during spermiogenesis.
Collapse
Affiliation(s)
- Tokuko Iwamori
- Department of Biomedicine, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Iwamori
- Department of Biomedicine, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Etsuro Ono
- Department of Biomedicine, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Martin M Matzuk
- Departments of Pathology and Immunology, Molecular and Cellular Biology, Molecular and Human Genetics, and Pharmacology, Center for Drug Discovery, and Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Price ME, Case AJ, Pavlik JA, DeVasure JM, Wyatt TA, Zimmerman MC, Sisson JH. S-nitrosation of protein phosphatase 1 mediates alcohol-induced ciliary dysfunction. Sci Rep 2018; 8:9701. [PMID: 29946131 PMCID: PMC6018795 DOI: 10.1038/s41598-018-27924-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
Alcohol use disorder (AUD) is a strong risk factor for development and mortality of pneumonia. Mucociliary clearance, a key innate defense against pneumonia, is perturbed by alcohol use. Specifically, ciliated airway cells lose the ability to increase ciliary beat frequency (CBF) to β-agonist stimulation after prolonged alcohol exposure. We previously found that alcohol activates protein phosphatase 1 (PP1) through a redox mechanism to cause ciliary dysfunction. Therefore, we hypothesized that PP1 activity is enhanced by alcohol exposure through an S-nitrosothiol-dependent mechanism resulting in desensitization of CBF stimulation. Bronchoalveolar S-nitrosothiol (SNO) content and tracheal PP1 activity was increased in wild-type (WT) mice drinking alcohol for 6-weeks compared to control mice. In contrast, alcohol drinking did not increase SNO content or PP1 activity in nitric oxide synthase 3-deficient mice. S-nitrosoglutathione induced PP1-dependent CBF desensitization in mouse tracheal rings, cultured cells and isolated cilia. In vitro expression of mutant PP1 (cysteine 155 to alanine) in primary human airway epithelial cells prevented CBF desensitization after prolonged alcohol exposure compared to cells expressing WT PP1. Thus, redox modulation in the airways by alcohol is an important ciliary regulatory mechanism. Pharmacologic strategies to reduce S-nitrosation may enhance mucociliary clearance and reduce pneumonia prevalence, mortality and morbidity with AUD.
Collapse
Affiliation(s)
- Michael E Price
- From the Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacqueline A Pavlik
- From the Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jane M DeVasure
- From the Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- From the Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska-Western Iowa VA Healthcare System, Research Service, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph H Sisson
- From the Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Blackburn K, Bustamante X, Yin W, Goshe MB, Ostrowski LE. Quantitative Proteomic Analysis of Human Airway Cilia Identifies Previously Uncharacterized Proteins of High Abundance. J Proteome Res 2017; 16:1579-1592. [PMID: 28282151 PMCID: PMC5733142 DOI: 10.1021/acs.jproteome.6b00972] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cilia are essential to many diverse cellular processes. Although many major axonemal components have been identified and studied, how they interact to form a functional axoneme is not completely understood. To further our understanding of the protein composition of human airway cilia, we performed a semiquantitative analysis of ciliary axonemes using label-free LC/MSE, which identified over 400 proteins with high confidence. Tubulins were the most abundant proteins identified, with evidence of 20 different isoforms obtained. Twelve different isoforms of axonemal dynein heavy chain were also identified. Absolute quantification of the nontubulin components demonstrated a greater than 75-fold range of protein abundance (RSPH9;1850 fmol vs CCDC103;24 fmol), adding another level of complexity to axonemal structure. Of the identified proteins, ∼70% are known axonemal proteins. In addition, many previously uncharacterized proteins were identified. Unexpectedly, several of these, including ERICH3, C1orf87, and CCDC181, were present at high relative abundance in the cilia. RT-PCR analysis and immunoblotting confirmed cilia-specific expression for eight uncharacterized proteins, and fluorescence microscopy demonstrated unique axonemal localizations. These studies have provided the first quantitative analysis of the ciliary proteome and have identified and characterized several previously unknown proteins as major constituents of human airway cilia.
Collapse
Affiliation(s)
- Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Ximena Bustamante
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Weining Yin
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Rao VG, Sarafdar RB, Chowdhury TS, Sivadas P, Yang P, Dongre PM, D'Souza JS. Myc-binding protein orthologue interacts with AKAP240 in the central pair apparatus of the Chlamydomonas flagella. BMC Cell Biol 2016; 17:24. [PMID: 27287193 PMCID: PMC4901443 DOI: 10.1186/s12860-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Flagella and cilia are fine thread-like organelles protruding from cells that harbour them. The typical ‘9 + 2’ cilia confer motility on these cells. Although the mechanistic details of motility remain elusive, the dynein-driven motility is regulated by various kinases and phosphatases. A-kinase anchoring proteins (AKAPs) are scaffolds that bind to a variety of such proteins. Usually, they are known to possess a dedicated domain that in vitro interacts with the regulatory subunits (RI and RII) present in the cAMP-dependent protein kinase (PKA) holoenzyme. These subunits conventionally harbour contiguous stretches of a.a. residues that reveal the presence of the Dimerization Docking (D/D) domain, Catalytic interface domain and cAMP-Binding domain. The Chlamydomonas reinhardtii flagella harbour two AKAPs; viz., the radial spoke AKAP97 or RSP3 and the central pair AKAP240. Both these were identified on the basis of their RII-binding property. Interestingly, AKAP97 binds in vivo to two RII-like proteins (RSP7 and RSP11) that contain only the D/D domain. Results We found a Chlamydomonas Flagellar Associated Protein (FAP174) orthologous to MYCBP-1, a protein that binds to organellar AKAPs and Myc onco-protein. An in silico analysis shows that the N-terminus of FAP174 is similar to those RII domain-containing proteins that have binding affinities to AKAPs. Binding of FAP174 was tested with the AKAP97/RSP3 using in vitro pull down assays; however, this binding was rather poor with AKAP97/RSP3. Antibodies were generated against FAP174 and the cellular localization was studied using Western blotting and immunoflourescence in wild type and various flagella mutants. We show that FAP174 localises to the central pair of the axoneme. Using overlay assays we show that FAP174 binds AKAP240 previously identified in the C2 portion of the central pair apparatus. Conclusion It appears that the flagella of Chlamydomonas reinhardtii contain proteins that bind to AKAPs and except for the D/D domain, lack the conventional a.a. stretches of PKA regulatory subunits (RSP7 and RSP11). We add FAP174 to this growing list. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0103-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Ruhi B Sarafdar
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Twinkle S Chowdhury
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Priyanka Sivadas
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Pinfen Yang
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Jacinta S D'Souza
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
12
|
Turner MJ, Matthes E, Billet A, Ferguson AJ, Thomas DY, Randell SH, Ostrowski LE, Abbott-Banner K, Hanrahan JW. The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am J Physiol Lung Cell Mol Physiol 2015; 310:L59-70. [PMID: 26545902 DOI: 10.1152/ajplung.00324.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF), a genetic disease caused by mutations in the CFTR gene, is a life-limiting disease characterized by chronic bacterial airway infection and severe inflammation. Some CFTR mutants have reduced responsiveness to cAMP/PKA signaling; hence, pharmacological agents that elevate intracellular cAMP are potentially useful for the treatment of CF. By inhibiting cAMP breakdown, phosphodiesterase (PDE) inhibitors stimulate CFTR in vitro and in vivo. Here, we demonstrate that PDE inhibition by RPL554, a drug that has been shown to cause bronchodilation in asthma and chronic obstructive pulmonary disease (COPD) patients, stimulates CFTR-dependent ion secretion across bronchial epithelial cells isolated from patients carrying the R117H/F508del CF genotype. RPL554-induced CFTR activity was further increased by the potentiator VX-770, suggesting an additional benefit by the drug combination. RPL554 also increased cilia beat frequency in primary human bronchial epithelial cells. The results indicate RPL554 may increase mucociliary clearance through stimulation of CFTR and increasing ciliary beat frequency and thus could provide a novel therapeutic option for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada;
| | - Elizabeth Matthes
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Arnaud Billet
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Amy J Ferguson
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - David Y Thomas
- McGill CF Translational Research Centre, Montreal, Canada; Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Canada
| | - Scott H Randell
- Department of Cell Biology and Physiology and the Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - John W Hanrahan
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
13
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
14
|
Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat Commun 2014; 5:5727. [PMID: 25473808 PMCID: PMC4267722 DOI: 10.1038/ncomms6727] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Cilia play essential roles in normal human development and health; cilia dysfunction results in diseases such as primary ciliary dyskinesia (PCD). Despite their importance, the native structure of human cilia is unknown, and structural defects in the cilia of patients are often undetectable or remain elusive because of heterogeneity. Here we develop an approach that enables visualization of human (patient) cilia at high-resolution using cryo-electron tomography of samples obtained noninvasively by nasal scrape biopsy. We present the native 3D structures of normal and PCD-causing RSPH1-mutant human respiratory cilia in unprecedented detail; this allows comparisons of cilia structure across evolutionarily distant species and reveals the previously unknown primary defect and the heterogeneous secondary defects in RSPH1-mutant cilia. Our data provide evidence for structural and functional heterogeneity in radial spokes, suggest a mechanism for the milder RSPH1 PCD phenotype and demonstrate that cryo-electron tomography can be applied to human disease by directly imaging patient samples.
Collapse
|
15
|
Burgers PP, van der Heyden MAG, Kok B, Heck AJR, Scholten A. A Systematic Evaluation of Protein Kinase A–A-Kinase Anchoring Protein Interaction Motifs. Biochemistry 2014; 54:11-21. [DOI: 10.1021/bi500721a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pepijn P. Burgers
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Marcel A. G. van der Heyden
- Department
of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Bart Kok
- Department
of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, Wolf WE, Carson JL, Hazucha MJ, Yin W, Davis SD, Dell SD, Ferkol TW, Sagel SD, Olivier KN, Jahnke C, Olbrich H, Werner C, Raidt J, Wallmeier J, Pennekamp P, Dougherty GW, Hjeij R, Gee HY, Otto EA, Halbritter J, Chaki M, Diaz KA, Braun DA, Porath JD, Schueler M, Baktai G, Griese M, Turner EH, Lewis AP, Bamshad MJ, Nickerson DA, Hildebrandt F, Shendure J, Omran H, Zariwala MA. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet 2013; 93:711-20. [PMID: 24055112 DOI: 10.1016/j.ajhg.2013.07.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 01/23/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.
Collapse
Affiliation(s)
- Michael R Knowles
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
O'Toole ET, Giddings TH, Porter ME, Ostrowski LE. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 2012; 69:577-90. [PMID: 22573610 DOI: 10.1002/cm.21035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
18
|
Zhao KQ, Cowan AT, Lee RJ, Goldstein N, Droguett K, Chen B, Zheng C, Villalon M, Palmer JN, Kreindler JL, Cohen NA. Molecular modulation of airway epithelial ciliary response to sneezing. FASEB J 2012; 26:3178-87. [PMID: 22516297 DOI: 10.1096/fj.11-202184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our purpose was to evaluate the effect of the mechanical force of a sneeze on sinonasal cilia function and determine the molecular mechanism responsible for eliciting the ciliary response to a sneeze. A novel model was developed to deliver a stimulation simulating a sneeze (55 mmHg for 50 ms) at 26°C to the apical surface of mouse and human nasal epithelial cells. Ciliary beating was visualized, and changes in ciliary beat frequency (CBF) were determined. To interrogate the molecular cascades driving sneeze-induced changes of CBF, pharmacologic manipulation of intra- and extracellular calcium, purinergic, PKA, and nitric oxide (NO) signaling were performed. CBF rapidly increases by ≥150% in response to a sneeze, which is dependent on the release of adenosine triphosphate (ATP), calcium influx, and PKA activation. Furthermore, apical release of ATP is independent of calcium influx, but calcium influx and subsequent increase in CBF are dependent on the ATP release. Lastly, we observed a blunted ciliary response in surgical specimens derived from patients with chronic rhinosinusitis compared to control patients. Apical ATP release with subsequent calcium mobilization and PKA activation are involved in sinonasal ciliary response to sneezing, which is blunted in patients with upper-airway disease.
Collapse
Affiliation(s)
- Ke-Qing Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fiedler SE, Sisson JH, Wyatt TA, Pavlik JA, Gambling TM, Carson JL, Carr DW. Loss of ASP but not ROPN1 reduces mammalian ciliary motility. Cytoskeleton (Hoboken) 2011; 69:22-32. [PMID: 22021175 DOI: 10.1002/cm.20539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 02/05/2023]
Abstract
Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins [AKAP-associated sperm protein (ASP), ropporin (ROPN1), sperm protein 17 (SP17) and calcium binding tyrosine-(Y)-phosphorylation regulated protein (CABYR)] share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease.
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Medical Center, 3710 SW US Veterans' Hospital Rd., Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Montjean D, De La Grange P, Gentien D, Rapinat A, Belloc S, Cohen-Bacrie P, Menezo Y, Benkhalifa M. Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet 2011; 29:3-10. [PMID: 21989496 DOI: 10.1007/s10815-011-9644-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Investigate in what extent sperm transcriptome of infertile men is different from that of fertile individuals. METHODS Semen samples were collected for determination of sperm parameters as well as for RNA isolation. Gene expression profile was investigated in spermatozoa of 8 infertile and 3 fertile men by microarray analysis using the Affymetrix Chip HG-U133 Plus 2.0. RESULT(S) We observed up to 33-fold reduction expression of genes involved in spermatogenesis and sperm motility. Furthermore, there is an important decrease in expression of genes involved in DNA repair as well as oxidative stress regulation. In this study, we also show a striking drop in expression of histone modification genes. CONCLUSION(S) We found that transcription profile in germ cells of men with idiopathic infertility is different from that of fertile individuals. Interestingly, about 15% of the regulated genes (Eddy Rev Reprod 4:23-30, 1999) play a role in spermatogenesis.
Collapse
Affiliation(s)
- Debbie Montjean
- Advanced Technology Laboratory, ZA de l'Agiot 4 rue Louis Lormand, 78320, La Verrière, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hou T, Li Y, Wang W. Prediction of peptides binding to the PKA RIIalpha subunit using a hierarchical strategy. ACTA ACUST UNITED AC 2011; 27:1814-21. [PMID: 21586518 DOI: 10.1093/bioinformatics/btr294] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS We propose a hierarchical and efficient approach, which combines molecular dynamics (MD) simulations, free energy calculations, virtual mutagenesis (VM) and bioinformatics analyses, to predict peptides binding to the PKA RIIα regulatory subunit in the human proteome systematically. Our approach successfully retrieved 15 out of 18 documented RIIα-binding peptides. Literature curation supported that many newly predicted peptides might be true AKAPs. Here, we present the first systematic search for AKAP peptides in the human proteome, which is useful to further experimental identification of AKAPs and functional analysis of their biological roles.
Collapse
Affiliation(s)
- Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | | | | |
Collapse
|
22
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Fardilha M, Esteves SLC, Korrodi-Gregório L, Pelech S, da Cruz E Silva OAB, da Cruz E Silva E. Protein phosphatase 1 complexes modulate sperm motility and present novel targets for male infertility. Mol Hum Reprod 2011; 17:466-77. [PMID: 21257602 DOI: 10.1093/molehr/gar004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infertility is a growing concern in modern society, with 30% of cases being due to male factors, namely reduced sperm concentration, decreased motility and abnormal morphology. Sperm cells are highly compartmentalized, almost devoid of transcription and translation consequently processes such as protein phosphorylation provide a key general mechanism for regulating vital cellular functions, more so than for undifferentiated cells. Reversible protein phosphorylation is the principal mechanism regulating most physiological processes in eukaryotic cells. To date, hundreds of protein kinases have been identified, but significantly fewer phosphatases (PPs) are responsible for counteracting their action. This discrepancy can be explained in part by the mechanism used to control phosphatase activity, which is based on regulatory interacting proteins. This is particularly true for PP1, a major serine/threonine-PP, for which >200 interactors (PP1 interacting proteins-PIPs) have been indentified that control its activity, subcellular location and substrate specificity. For PP1, several isoforms have been described, among them PP1γ2, a testis/sperm-enriched PP1 isoform. Recent findings support our hypothesis that PP1γ2 is involved in the regulation of sperm motility. This review summarizes the known sperm-specific PP1-PIPs, involved in the acquisition of mammalian sperm motility. The complexes that PP1 routinely forms with different proteins are addressed and the role of PP1/A-kinase anchoring protein complexes in sperm motility is considered. Furthermore, the potential relevance of targeting PP1-PIPs complexes to infertility diagnostics and therapeutics as well as to male contraception is also discussed.
Collapse
Affiliation(s)
- Margarida Fardilha
- Signal Transduction Laboratory, Centre for Cell Biology, Health Sciences Department and Biology Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
24
|
McLaughlin WA, Hou T, Taylor SS, Wang W. The identification of novel cyclic AMP-dependent protein kinase anchoring proteins using bioinformatic filters and peptide arrays. Protein Eng Des Sel 2010; 24:333-9. [PMID: 21115539 DOI: 10.1093/protein/gzq106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) localize cyclic AMP-dependent protein kinase (PKA) to specific regions in the cell and place PKA in proximity to its phosphorylation targets. A computational model was created to identify AKAPs that bind to the docking/dimerization domain of the RII alpha isoform of the regulatory subunit of PKA. The model was used to search the entire human proteome, and the top candidates were tested for an interaction using peptide array experiments. Verified interactions include sphingosine kinase interacting protein and retinoic acid-induced protein 16. These interactions highlight new signaling pathways mediated by PKA.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Basic Science, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
25
|
Lee L. Mechanisms of mammalian ciliary motility: Insights from primary ciliary dyskinesia genetics. Gene 2010; 473:57-66. [PMID: 21111794 DOI: 10.1016/j.gene.2010.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 01/01/2023]
Abstract
Motile cilia and flagella are organelles that, historically, have been poorly understood and inadequately investigated. However, cilia play critical roles in fluid clearance in the respiratory system and the brain, and flagella are required for sperm motility. Genetic studies involving human patients and mouse models of primary ciliary dyskinesia over the last decade have uncovered a number of important ciliary proteins and have begun to elucidate the mechanisms underlying ciliary motility. When combined with genetic, biochemical, and cell biological studies in Chlamydomonas reinhardtii, these mammalian genetic analyses begin to reveal the mechanisms by which ciliary motility is regulated.
Collapse
Affiliation(s)
- Lance Lee
- Sanford Children's Health Research Center, Sanford Research USD, 2301 East 60th Street, Sioux Falls, SD 57104, USA.
| |
Collapse
|
26
|
Wohlsen A, Hirrle A, Tenor H, Marx D, Beume R. Effect of cyclic AMP-elevating agents on airway ciliary beat frequency in central and lateral airways in rat precision-cut lung slices. Eur J Pharmacol 2010; 635:177-83. [PMID: 20303939 DOI: 10.1016/j.ejphar.2010.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/12/2010] [Accepted: 03/03/2010] [Indexed: 01/27/2023]
Abstract
In patients with chronic obstructive pulmonary disease (COPD), mucociliary clearance of the respiratory tract is impaired due to enhanced mucus secretion and deterioration of normal ciliary activity. We investigated the effects of cyclic AMP-elevating agents with a different mode of action on ciliary beat frequency (CBF) in rat large central and small lateral airways by comparing the phosphodiesterase-4 (PDE4) inhibitors rolipram and roflumilast to the beta(2)-adrenoceptor agonist terbutaline and the adenylyl cyclase activator forskolin. Rat precision-cut lung slices were prepared and effects of cyclic AMP-elevating agents on CBF were assessed for up to 4h. In central airways a time- and concentration-dependent increase in CBF was seen for roflumilast (59+/-4%, 1microM, 60min), rolipram (55+/-4%, 1microM, 60min), terbutaline (64+/-8%, 10microM, 60min) and forskolin (55+/-8%, 100microM, 60min). Only roflumilast and rolipram increased CBF in lateral airways, with a similar time course and maximum efficacy (roflumilast 48+/-5%, rolipram 54+/-2%). Incubation of lateral airways with terbutaline (10microM, +11%) or forskolin (100microM, +1%) had negligible effects. As a major novel finding this study reveals that PDE4 inhibitors increased CBF in central as well as in lateral airways, while terbutaline and forskolin affected CBF in proximal airways only.
Collapse
Affiliation(s)
- Andrea Wohlsen
- Formerly Department of Preclinical Pharmacology, Nycomed GmbH, Konstanz, Germany
| | | | | | | | | |
Collapse
|
27
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
28
|
Chiriva-Internati M, Gagliano N, Donetti E, Costa F, Grizzi F, Franceschini B, Albani E, Levi-Setti PE, Gioia M, Jenkins M, Cobos E, Kast WM. Sperm protein 17 is expressed in the sperm fibrous sheath. J Transl Med 2009; 7:61. [PMID: 19604394 PMCID: PMC2727497 DOI: 10.1186/1479-5876-7-61] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 07/15/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sperm protein 17 (Sp17) is a highly conserved mammalian protein characterized in rabbit, mouse, monkey, baboon, macaque, human testis and spermatozoa. mRNA encoding Sp17 has been detected in a range of murine and human somatic tissues. It was also recognized in two myeloma cell lines and in neoplastic cells from patients with multiple myeloma and ovarian carcinoma. These data all indicate that Sp17 is widely distributed in humans, expressed not only in germinal cells and in a variety of somatic tissues, but also in neoplastic cells of unrelated origin. METHODS Sp17 expression was analyzed by immunocytochemistry and transmission electron microscopy on spermatozoa. RESULTS Here, we demonstrate the ultrastructural localization of human Sp17 throughout the spermatozoa flagellar fibrous sheath, and its presence in spermatozoa during in vitro states from their ejaculation to the oocyte fertilization. CONCLUSION These findings suggest a possible role of Sp17 in regulating sperm maturation, capacitation, acrosomal reaction and interactions with the oocyte zona pellucida during the fertilization process. Further, the high degree of sequence conservation throughout its N-terminal half, and the presence of an A-kinase anchoring protein (AKAP)-binding motif within this region, suggest that Sp17 might play a regulatory role in a protein kinase A-independent AKAP complex in both germinal and somatic cells.
Collapse
Affiliation(s)
- Maurizio Chiriva-Internati
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center Lubbock, TX, USA
- Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center Lubbock, TX, USA
- Kiromic, Inc Lubbock, TX, USA
- Department of Human Morphology, University of Milan, Milan, Italy
| | - Nicoletta Gagliano
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center Lubbock, TX, USA
- Department of Human Morphology, University of Milan, Milan, Italy
| | - Elena Donetti
- Department of Human Morphology, University of Milan, Milan, Italy
| | - Francesco Costa
- Department of Human Morphology, University of Milan, Milan, Italy
| | - Fabio Grizzi
- Laboratories of Quantitative Medicine, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Barbara Franceschini
- Laboratories of Quantitative Medicine, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Elena Albani
- Department of Reproductive Pathology, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - Paolo E Levi-Setti
- Department of Reproductive Pathology, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - Magda Gioia
- Department of Human Morphology, University of Milan, Milan, Italy
| | - Marjorie Jenkins
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Department of Obstetrics & Gynecology, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Laura W Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Everardo Cobos
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center Lubbock, TX, USA
- Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center Lubbock, TX, USA
- Kiromic, Inc Lubbock, TX, USA
| | - W Martin Kast
- Kiromic, Inc Lubbock, TX, USA
- Department of Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Obstetrics & Gynecology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Cancer Research Center of Hawaii, University of Hawaii at Manao, Honolulu, Hawaii, USA
| |
Collapse
|
29
|
Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ, LaRusso NF. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008; 295:G725-34. [PMID: 18687752 PMCID: PMC2575915 DOI: 10.1152/ajpgi.90265.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, contain primary cilia, which are mechano- and osmosensory organelles detecting changes in bile flow and osmolality and transducing them into intracellular signals. Here, we asked whether cholangiocyte cilia are chemosensory organelles by testing the expression of P2Y purinergic receptors and components of the cAMP signaling cascade in cilia and their involvement in nucleotide-induced cAMP signaling in the cells. We found that P2Y(12) purinergic receptor, adenylyl cyclases (i.e., AC4, AC6, and AC8), and protein kinase A (i.e., PKA RI-beta and PKA RII-alpha regulatory subunits), exchange protein directly activated by cAMP (EPAC) isoform 2, and A-kinase anchoring proteins (i.e., AKAP150) are expressed in cholangiocyte cilia. ADP, an endogenous agonist of P2Y(12) receptors, perfused through the lumen of isolated rat intrahepatic bile ducts or applied to the ciliated apical surface of normal rat cholangiocytes (NRCs) in culture induced a 1.9- and 1.5-fold decrease of forskolin-induced cAMP levels, respectively. In NRCs, the forskolin-induced cAMP increase was also lowered by 1.3-fold in response to ATP-gammaS, a nonhydrolyzed analog of ATP but was not affected by UTP. The ADP-induced changes in cAMP levels in cholangiocytes were abolished by chloral hydrate (a reagent that removes cilia) and by P2Y(12) siRNAs, suggesting that cilia and ciliary P2Y(12) are involved in nucleotide-induced cAMP signaling. In conclusion, cholangiocyte cilia are chemosensory organelles that detect biliary nucleotides through ciliary P2Y(12) receptors and transduce corresponding signals into a cAMP response.
Collapse
Affiliation(s)
- Anatoliy I. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Sergio A. Gradilone
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Jesus M. Banales
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Bing Q. Huang
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Tatyana V. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Seung-Ok Lee
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Patrick L. Splinter
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Angela J. Stroope
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Nicholas F. LaRusso
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
30
|
Scholten A, Aye TT, Heck AJR. A multi-angular mass spectrometric view at cyclic nucleotide dependent protein kinases: in vivo characterization and structure/function relationships. MASS SPECTROMETRY REVIEWS 2008; 27:331-353. [PMID: 18381623 DOI: 10.1002/mas.20166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry has evolved in recent years to a well-accepted and increasingly important complementary technique in molecular and structural biology. Here we review the many contributions mass spectrometry based studies have made in recent years in our understanding of the important cyclic nucleotide activated protein kinase A (PKA) and protein kinase G (PKG). We both describe the characterization of kinase isozymes, substrate phosphorylation, binding partners and post-translational modifications by proteomics based methodologies as well as their structural and functional properties as revealed by native mass spectrometry, H/D exchange MS and ion mobility. Combining all these mass spectrometry based data with other biophysical and biochemical data has been of great help to unravel the intricate regulation of kinase function in the cell in all its magnificent complexity.
Collapse
Affiliation(s)
- Arjen Scholten
- Biomolecular Mass Spectrometry & Proteomics Group, Utrecht Institute of Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584CA, Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. ACTA ACUST UNITED AC 2007; 130:99-109. [PMID: 17591988 PMCID: PMC2154360 DOI: 10.1085/jgp.200709784] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliated airway epithelial cells are subject to sustained changes in intracellular CO(2)/HCO(3)(-) during exacerbations of airway diseases, but the role of CO(2)/HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localization to the axoneme (Western blotting and immunofluorescence). Real time estimations of [cAMP] changes in ciliated cells, using FRET between fluorescently tagged PKA subunits (expressed under the foxj1 promoter solely in ciliated cells), revealed CO(2)/HCO(3)(-)-mediated cAMP production. This cAMP production was specifically blocked by sAC inhibitors but not by transmembrane adenylyl cyclase (tmAC) inhibitors. In addition, this cAMP production stimulated ciliary beat frequency (CBF) independently of intracellular pH because PKA and sAC inhibitors were uniquely able to block CO(2)/HCO(3)(-)-mediated changes in CBF (while tmAC inhibitors had no effect). Thus, sAC is localized to motile airway cilia and it contributes to the regulation of human airway CBF. In addition, CO(2)/HCO(3)(-) increases indeed reversibly stimulate intracellular cAMP production by sAC in intact cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recent advances in our understanding of the structure-function relationship of motile cilia with the 9 + 2 microtubular arrangement have helped explain some of the mechanisms of ciliary beat regulation by intracellular second messengers. These second messengers include cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) as well as calcium and pH. cAMP activates protein kinase A (PKA), which is localized to the axoneme. The cAMP-dependent phosphorylation of PKA's main target, originally described as p29 in Paramecium, seems to increase ciliary beat frequency (CBF) directly. The mechanism by which cGMP increases CBF is less well defined but involves protein kinase G and possibly PKA. Protein kinase C inhibits ciliary beating. The regulation mechanisms of CBF by calcium remain somewhat controversial, favoring an immediate, direct action of calcium on ciliary beating and a second cyclic nucleotide-dependent phase. Finally, intracellular pH likely affects CBF through direct influences on dynein arms.
Collapse
Affiliation(s)
- Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| |
Collapse
|
33
|
Stout SL, Wyatt TA, Adams JJ, Sisson JH. Nitric oxide-dependent cilia regulatory enzyme localization in bovine bronchial epithelial cells. J Histochem Cytochem 2007; 55:433-42. [PMID: 17242464 DOI: 10.1369/jhc.6a7089.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway epithelial-derived nitric oxide (NO), through the activation of nucleotide cyclases and downstream kinases, stimulates ciliary beating, yet the precise locations of these enzymes are unknown. We hypothesized that these NO-activated enzymes are located within, or adjacent to, the ciliary axoneme. Immunohistochemistry of intact ciliated cells revealed that endothelial-type nitric oxide synthase (eNOS), the RII isoform of the cAMP-dependent protein kinase (PKA-RII), the type I isoform of the cGMP-dependent protein kinase (PKG-I), and guanylate cyclase beta (GC-beta) all colocalized with pericentrin to the basal body. In contrast, the PKA-RI isoform and the PKG-II isoform localized to ciliary axonemes. Western blot analysis of isolated demembranated ciliary preparations detected eNOS, GC-beta, and both isoforms of PKA and PKG. An A-kinase-anchoring protein was also detected. Our findings suggest that these enzymes are sequestered close to their points of action into a discrete ciliary metabolon, enabling targeted phosphorylation and efficient upregulation of ciliary beating.
Collapse
Affiliation(s)
- Sarah L Stout
- Pulmonary, Critical Care, Sleep & Allergy Medicine, Dept. of Internal Medicine, University of Nebraska Medical Center 985300, Omaha, NE 68198-5300, USA
| | | | | | | |
Collapse
|
34
|
Schmid A, Bai G, Schmid N, Zaccolo M, Ostrowski LE, Conner GE, Fregien N, Salathe M. Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells. J Cell Sci 2006; 119:4176-86. [PMID: 16984973 DOI: 10.1242/jcs.03181] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Airway ciliary beat frequency regulation is complex but in part influenced by cyclic adenosine monophosphate (cAMP)-mediated changes in cAMP-dependent kinase activity, yet the cAMP concentration required for increases in ciliary beat frequency and the temporal relationship between ciliary beat frequency and cAMP changes are unknown. A lentiviral gene transfer system was developed to express a fluorescence resonance energy transfer (FRET)-based cAMP sensor in ciliated cells. Expression of fluorescently tagged cAMP-dependent kinase subunits from the ciliated-cell-specific foxj1 promoter enhanced expression in fully differentiated ciliated human airway epithelial cells, and permitted simultaneous measurements of ciliary beat frequency and cAMP (represented by the FRET ratio). Apical application of forskolin (1 microM, 10 microM, 20 microM) and, in permeabilized cells, basolateral cAMP (20 microM, 50 microM, 100 microM) caused dose-dependent, albeit similar and simultaneous-increases in cAMP and ciliary beat frequency. However, decreases in cAMP preceded decreases in ciliary beat frequency, suggesting that either cellular cAMP decreases before ciliary cAMP or the dephosphorylation of target proteins by phosphatases occur at a rate slower than the rate of cAMP hydrolysis.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary and Critical Care Medicine, University of Miami School of Medicine, 1600 NW 10th Avenue, RMSB 7063, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gaillard AR, Fox LA, Rhea JM, Craige B, Sale WS. Disruption of the A-kinase anchoring domain in flagellar radial spoke protein 3 results in unregulated axonemal cAMP-dependent protein kinase activity and abnormal flagellar motility. Mol Biol Cell 2006; 17:2626-35. [PMID: 16571668 PMCID: PMC1474798 DOI: 10.1091/mbc.e06-02-0095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility.
Collapse
Affiliation(s)
- Anne R. Gaillard
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341
| | - Laura A. Fox
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Jeanne M. Rhea
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Branch Craige
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Winfield S. Sale
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
36
|
Barnes AP, Livera G, Huang P, Sun C, O'Neal WK, Conti M, Stutts MJ, Milgram SL. Phosphodiesterase 4D Forms a cAMP Diffusion Barrier at the Apical Membrane of the Airway Epithelium. J Biol Chem 2005; 280:7997-8003. [PMID: 15611099 DOI: 10.1074/jbc.m407521200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously that Calu-3 airway epithelial cells sense adenosine on their luminal surface through adenosine A2B receptors coupled to adenylyl cyclase. Occupancy of these receptors leads to activation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel through protein kinase A (PKA) anchored at the apical membrane. Because luminal A2B receptor activation does not raise total cellular cAMP levels, we hypothesized that activation of phosphodiesterases (PDEs) confines cAMP generated by apical A2B receptors to a microdomain that includes the CFTR channel. Using reverse transcription-PCR, Western blotting, and activity measurements, PDE4D was identified as the major PDE species in airway epithelia. Consistent with these results, inhibitors of PDE4, but not PDE3, selectively abolished the lateral confinement of cAMP signaling in apical membrane patches during cell-attached recordings. Furthermore, stimulation of the CFTR in excised apical patches by rolipram and RS25344 indicated that PDE4 is localized in close proximity to the CFTR channel. Indeed, immunohistochemistry of human airway sections revealed that PDE4D is localized in the apical domain of the cell. PDE4 was activated after luminal adenosine exposure in a PKA-dependent manner. Because PDE4 activity is positively regulated by PKA, our results support a model whereby the PDE diffusion barrier is proportional to the degree of receptor stimulation. These findings underscore the concept that subcellular localization of individual PDE isozymes is an important mechanism for confining cAMP signaling to functional domains within cells.
Collapse
Affiliation(s)
- Anthony P Barnes
- Department of Cell and Developmental Biology and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wyatt TA, Forgèt MA, Adams JM, Sisson JH. Both cAMP and cGMP are required for maximal ciliary beat stimulation in a cell-free model of bovine ciliary axonemes. Am J Physiol Lung Cell Mol Physiol 2004; 288:L546-51. [PMID: 15542545 DOI: 10.1152/ajplung.00107.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we have shown that the ATPase-dependent motion of cilia in bovine bronchial epithelial cells (BBEC) can be regulated through the cyclic nucleotides, cAMP via the cAMP-dependent protein kinase (PKA) and cGMP via the cGMP-dependent protein kinase (PKG). Both cyclic nucleotides cause an increase in cilia beat frequency (CBF). We hypothesized that cAMP and cGMP may act directly at the level of the ciliary axoneme in BBEC. To examine this, we employed a novel cell-free system utilizing detergent-extracted axonemes. Axoneme movement was whole-field analyzed digitally with the Sisson-Ammons video analysis system. A suspension of extracted axonemes remains motionless until the addition of 1 mM ATP that establishes a baseline CBF similar to that seen when analyzing intact ciliated BBEC. Adding 10 microM cAMP or 10 microM cGMP increases CBF beyond the established ATP baseline. However, the cyclic nucleotides did not stimulate CBF in the absence of ATP. Therefore, the combination of cAMP and cGMP augments ATP-driven CBF increases at the level of isolated axoneme.
Collapse
Affiliation(s)
- Todd A Wyatt
- Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska, USA.
| | | | | | | |
Collapse
|
38
|
Lea IA, Widgren EE, O'Rand MG. Association of sperm protein 17 with A-kinase anchoring protein 3 in flagella. Reprod Biol Endocrinol 2004; 2:57. [PMID: 15257753 PMCID: PMC484205 DOI: 10.1186/1477-7827-2-57] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 07/16/2004] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Sperm protein 17 (Sp17) is a three-domain protein that contains: 1) a highly conserved N-terminal domain that is 45% identical to the human type II alpha regulatory subunit (RII alpha) of protein kinase A (PKA); 2) a central sulphated carbohydrate-binding domain; and 3) a C-terminal Ca++/calmodulin (CaM) binding domain. Although Sp17 was originally discovered and characterized in spermatozoa, its mRNA has now been found in a variety of normal mouse and human tissues. However, Sp17 protein is found predominantly in spermatozoa, cilia and human neoplastic cell lines. This study demonstrates that Sp17 from spermatozoa binds A-kinase anchoring protein 3 (AKAP3), confirming the functionality of the N-terminal domain. METHODS In this study in vitro precipitation and immunolocalization demonstrate that Sp17 binds to AKAP3 (AKAP110) in spermatozoa. RESULTS Sp17 is present in the head and tail of spermatozoa, in the tail it is in the fibrous sheath, which contains AKAP3 and AKAP4. Recombinant AKAP3 and AKAP4 RII binding domains were synthesized as glutathione S-transferase (GST) fusion proteins immobilized on glutathione-agarose resin and added to CHAPS extracts of human spermatozoa. Western blots of bound and eluted proteins probed with anti-Sp17 revealed that AKAP3 bound and precipitated a significant level of Sp17 while AKAP4 did not. AKAP4 binds AKAP3 and expression of AKAP3 is reduced in AKAP4 knockout sperm, therefore we tested AKAP4 knockout spermatozoa for Sp17 and found that there was a reduction in the amount of Sp17 expressed when compared to wild type spermatozoa. Co-localization of AKAP3 and Sp17 by immunofluorescence was demonstrated along the length of the principal piece of the flagella. CONCLUSIONS As predicted by its N-terminal domain that is 45% identical to the human RIIalpha of PKA, Sp17 from spermatozoa binds the RII binding domain of AKAP3 along the length of the flagella.
Collapse
Affiliation(s)
- Isabel A Lea
- University of North Carolina at Chapel Hill, Department of Cell and Developmental Biology, Chapel Hill, NC 27599, USA
| | - Esther E Widgren
- University of North Carolina at Chapel Hill, Department of Cell and Developmental Biology, Chapel Hill, NC 27599, USA
| | - Michael G O'Rand
- University of North Carolina at Chapel Hill, Department of Cell and Developmental Biology, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
Grizzi F, Chiriva-Internati M, Franceschini B, Bumm K, Colombo P, Ciccarelli M, Donetti E, Gagliano N, Hermonat PL, Bright RK, Gioia M, Dioguardi N, Kast WM. Sperm protein 17 is expressed in human somatic ciliated epithelia. J Histochem Cytochem 2004; 52:549-554. [PMID: 15034007 DOI: 10.1177/002215540405200414] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It was once believed that sperm protein 17 (Sp17) was expressed exclusively in the testis and that its sole function was to bind to the oocyte during fertilization. However, immunohistochemistry of the human respiratory airways and reproductive systems show that it is abundant in ciliated cells but not in human cells with stereocilia and microvilli. The high degree of sequence conservation throughout its N-terminal half, and the presence of an A-kinase anchoring protein (AKAP)-binding motif within this region, suggest that Sp17 plays a regulatory role in a PKA-independent AKAP complex in both male germinal and ciliated somatic cells.
Collapse
Affiliation(s)
- Fabio Grizzi
- Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 2004; 84:137-67. [PMID: 14715913 DOI: 10.1152/physrev.00021.2003] [Citation(s) in RCA: 583] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 20% of the human genome encodes proteins involved in transmembrane and intracellular signaling pathways. The cAMP-protein kinase A (PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells and is involved in regulation of cellular functions in almost all tissues in mammals. Various extracellular signals converge on this signal pathway through ligand binding to G protein-coupled receptors, and the cAMP-PKA pathway is therefore tightly regulated at several levels to maintain specificity in the multitude of signal inputs. Ligand-induced changes in cAMP concentration vary in duration, amplitude, and extension into the cell, and cAMP microdomains are shaped by adenylyl cyclases that form cAMP as well as phosphodiesterases that degrade cAMP. Different PKA isozymes with distinct biochemical properties and cell-specific expression contribute to cell and organ specificity. A kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP-PKA pathway. AKAPs also serve as scaffolding proteins that assemble PKA together with signal terminators such as phosphatases and cAMP-specific phosphodiesterases as well as components of other signaling pathways into multiprotein signaling complexes that serve as crossroads for different paths of cell signaling. Targeting of PKA and integration of a wide repertoire of proteins involved in signal transduction into complex signal networks further increase the specificity required for the precise regulation of numerous cellular and physiological processes.
Collapse
Affiliation(s)
- Kjetil Taskén
- The Biotechnology Centre of Oslo, University of Oslo, Norway.
| | | |
Collapse
|
41
|
Wyatt TA, Forgèt MA, Sisson JH. Ethanol stimulates ciliary beating by dual cyclic nucleotide kinase activation in bovine bronchial epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1157-66. [PMID: 12937157 PMCID: PMC1868238 DOI: 10.1016/s0002-9440(10)63475-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previously, we have shown that ethanol (EtOH) stimulates a rapid increase in the ciliary beat frequency (CBF) of bovine bronchial epithelial cells (BBECs) via the activation of PKA. We have also shown that inhibitors of nitric oxide synthase block EtOH-stimulated increases in CBF. We hypothesize that EtOH acutely stimulates CBF via the activation of both PKA and PKG pathways. Using chemiluminescence detection of nitric oxide (NO), we directly measured increases in NO production in BBECs treated with 100 mmol/L of EtOH beginning at 25 minutes. Pretreatment of BBECs with guanylyl cyclase inhibitors, ODQ or LY83583, resulted in the inhibition of EtOH-stimulated CBF. Low concentrations (1 nmol/L) of cyclic nucleotide analogues do not stimulate CBF increases. However, a combination of both 1 nmol/L of 8Br-cAMP and 8Br-cGMP stimulates a significant increase over baseline CBF. This effect could be blocked by pretreating BBECs with inhibitors of either PKA or PKG. Very high concentrations of either 8Br-cAMP or 8Br-cGMP (> or =100 micromol/L) were required to cross-activate both PKA and PKG. This suggests that cross-activation of PKA by cGMP is not occurring at the concentrations (1 nmol/L) capable of stimulating CBF. 8-pCPT-cGMPS, an antagonist analogue to cGMP, blocked EtOH-stimulated PKA activity increases. These data support that EtOH-stimulated increases in CBF require the dual activation of both PKA (via cAMP) and PKG (via NO).
Collapse
Affiliation(s)
- Todd A Wyatt
- Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska 68198, USA.
| | | | | |
Collapse
|
42
|
Forgèt MA, Sisson JH, Spurzem JR, Wyatt TA. Ethanol increases phosphodiesterase 4 activity in bovine bronchial epithelial cells. Alcohol 2003; 31:31-8. [PMID: 14615009 DOI: 10.1016/j.alcohol.2003.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ethanol exposure in airway epithelium increases cyclic AMP (cAMP)-dependent protein kinase (PKA) activity. Activation of PKA and cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) has been shown to increase ciliary beat frequency (CBF) in bovine bronchial epithelial cells (BBECs). We have shown that biologically relevant concentrations of ethanol stimulate increases in CBF in a nitric oxide-dependent manner, mediated through elevated cAMP levels and subsequent PKA activation. This ethanol-driven rapid and transient increase in CBF occurs 15 to 30 min after exposure to 100 mM ethanol. However, after prolonged exposure to 100 mM ethanol (>/=6 h), CBF and the catalytic activity of PKA return to baseline levels. We hypothesize that cyclic nucleotide-dependent phosphodiesterase (PDE) activity attenuates the duration of ethanol-stimulated ciliary motility. The effect of ethanol on the PDE activity in BBECs was determined through direct assay of catalytic activity. When BBECs were incubated with 100 mM ethanol, significant increases in cAMP levels occurred within 1 h, with corresponding increases in PKA activity. Treatment of BBECs with 100 mM ethanol increased cAMP-PDE activity significantly by 4 h. 3-Isobutyl-1-methylxanthine, Ro 20-1724, and rolipram inhibited ethanol-stimulated cAMP-PDE activity. These agents inhibited ethanol-stimulated cAMP-PDE activity and increased the magnitude of ethanol-stimulated PKA activity observed under the same conditions. These findings support the idea that acute exposure (<6 h) to ethanol increases cAMP levels, and the associated increase in PKA activation is regulated by cAMP-dependent PDE, specifically PDE4. Other compensatory mechanisms however, may be responsible for the down-regulation of PKA, which occurs after chronic epithelial exposure (>/=6 h) to ethanol.
Collapse
Affiliation(s)
- Mary A Forgèt
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, 985300 Nebraska Medical Center, Omaha, NE 68198-5300, USA
| | | | | | | |
Collapse
|