1
|
Haas AJ, Karakus M, Zihni C, Balda MS, Matter K. ZO-1 Regulates Hippo-Independent YAP Activity and Cell Proliferation via a GEF-H1- and TBK1-Regulated Signalling Network. Cells 2024; 13:640. [PMID: 38607079 PMCID: PMC11011562 DOI: 10.3390/cells13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.
Collapse
Affiliation(s)
| | | | | | - Maria S. Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| |
Collapse
|
2
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
4
|
Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Cell 2020; 179:937-952.e18. [PMID: 31675500 DOI: 10.1016/j.cell.2019.10.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/19/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.
Collapse
Affiliation(s)
- Cornelia Schwayer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Balda
- Institute of Ophthalmology, University College London, London, UK
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
5
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
6
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
7
|
Yang G, Bibi S, Du M, Suzuki T, Zhu MJ. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Crit Rev Food Sci Nutr 2017; 57:3830-3839. [PMID: 27008212 DOI: 10.1080/10408398.2016.1152230] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impairment of the epithelial barrier function is closely linked to the pathogenesis of various gastrointestinal diseases, food allergies, type I diabetes, and other systematic diseases. Plant-derived polyphenols are natural secondary metabolites and exert various physiological benefits, including anti-inflammatory, anti-oxidative, anti-carcinogenic, and anti-aging effects. Recent studies also show the role of plant polyphenols in regulation of the intestinal barrier and prevention of intestinal inflammatory diseases. Here we summarize the regulatory pathways and mediators linking polyphenols to their beneficial effects on tight junction and gut epithelial barrier functions, and provide useful information about using polyphenols as nutraceuticals for intestinal diseases.
Collapse
Affiliation(s)
- Guan Yang
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Shima Bibi
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Min Du
- b Department of Animal Science , Washington State University , Pullman , Washington , USA
| | - Takuya Suzuki
- c Department of Biofunctional Science and Technology , Hiroshima University , Higashi-Hiroshima , Japan
| | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , Washington , USA
| |
Collapse
|
8
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Fanning AS, Van Itallie CM, Anderson JM. Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 2011; 23:577-90. [PMID: 22190737 PMCID: PMC3279387 DOI: 10.1091/mbc.e11-09-0791] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ETOC: Our study reveals that ZO proteins in fully polarized cells regulate the assembly and contractility of the perijunctional actomyosin ring associated with the adherens junction. The structure and function of both adherens (AJ) and tight (TJ) junctions are dependent on the cortical actin cytoskeleton. The zonula occludens (ZO)-1 and -2 proteins have context-dependent interactions with both junction types and bind directly to F-actin and other cytoskeletal proteins, suggesting ZO-1 and -2 might regulate cytoskeletal activity at cell junctions. To address this hypothesis, we generated stable Madin-Darby canine kidney cell lines depleted of both ZO-1 and -2. Both paracellular permeability and the localization of TJ proteins are disrupted in ZO-1/-2–depleted cells. In addition, immunocytochemistry and electron microscopy revealed a significant expansion of the perijunctional actomyosin ring associated with the AJ. These structural changes are accompanied by a recruitment of 1-phosphomyosin light chain and Rho kinase 1, contraction of the actomyosin ring, and expansion of the apical domain. Despite these changes in the apical cytoskeleton, there are no detectable changes in cell polarity, localization of AJ proteins, or the organization of the basal and lateral actin cytoskeleton. We conclude that ZO proteins are required not only for TJ assembly but also for regulating the organization and functional activity of the apical cytoskeleton, particularly the perijunctional actomyosin ring, and we speculate that these activities are relevant both to cellular organization and epithelial morphogenesis.
Collapse
Affiliation(s)
- Alan S Fanning
- Department of Cell and Molecular Physiology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| | | | | |
Collapse
|
10
|
Rodgers LS, Fanning AS. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken) 2011; 68:653-60. [PMID: 22083950 DOI: 10.1002/cm.20547] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/06/2023]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. The epithelial barrier regulates the movement of ions, macromolecules, immune cells, and pathogens, and is thus essential for normal organ function. Disruption in the epithelial barrier has been shown to coincide with alterations of the actin cytoskeleton in several disease states. These disruptions primarily manifest as increased movement through the paracellular space, which is normally regulated by tight junctions (TJ). Despite extensive research demonstrating a direct link between the actin cytoskeleton and epithelial permeability, our understanding of the physiological mechanisms that link permeability and tight junction structure are still limited. In this review, we explore the role of the actin cytoskeleton at TJ and present several areas for future study.
Collapse
Affiliation(s)
- Laurel S Rodgers
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
11
|
González-Mariscal L, Quirós M, Díaz-Coránguez M. ZO proteins and redox-dependent processes. Antioxid Redox Signal 2011; 15:1235-53. [PMID: 21294657 DOI: 10.1089/ars.2011.3913] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE ZO-1, ZO-2, and ZO-3 are scaffold proteins of the tight junction (TJ) that belong to the MAGUK protein family characterized for exhibiting PDZ, SH3, and GuK domains. ZO proteins are present only in multicellular organisms, being the placozoa the first to have them. ZO proteins associate among themselves and with other integral and adaptor proteins of the TJ, of the ZA and of gap junctions, as with numerous signaling proteins and the actin cytoskeleton. ZO proteins are also present at the nucleus of proliferating cells. RECENT ADVANCES Oxidative stress disassembles the TJs of endothelial and epithelial cells. CRITICAL ISSUES Oxidative stress alters ZO proteins expression and localization, in conditions like hypoxia, bacterial and viral infections, vitamin deficiencies, age-related diseases, diabetes and inflammation, alcohol and tobacco consumption. FUTURE DIRECTIONS Molecules present in the signaling pathways triggered by oxidative stress can be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico DF, México.
| | | | | |
Collapse
|
12
|
Citi S, Spadaro D, Schneider Y, Stutz J, Pulimeno P. Regulation of small GTPases at epithelial cell-cell junctions. Mol Membr Biol 2011; 28:427-44. [DOI: 10.3109/09687688.2011.603101] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Pulimeno P, Paschoud S, Citi S. A role for ZO-1 and PLEKHA7 in recruiting paracingulin to tight and adherens junctions of epithelial cells. J Biol Chem 2011; 286:16743-50. [PMID: 21454477 DOI: 10.1074/jbc.m111.230862] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Paracingulin is a 160-kDa protein localized in the cytoplasmic region of epithelial tight and adherens junctions, where it regulates RhoA and Rac1 activities by interacting with guanine nucleotide exchange factors. Here, we investigate the molecular mechanisms that control the recruitment of paracingulin to cell-cell junctions. We show that paracingulin forms a complex with the tight junction protein ZO-1, and the globular head domain of paracingulin interacts directly with ZO-1 through an N-terminal region containing a conserved ZIM (ZO-1-Interaction-Motif) sequence. Recruitment of paracingulin to cadherin-based cell-cell junctions in Rat1 fibroblasts requires the ZIM-containing region, whereas in epithelial cells removal of this region decreases the junctional localization of paracingulin at tight junctions but not at adherens junctions. Depletion of ZO-1, but not ZO-2, reduces paracingulin accumulation at tight junctions. A yeast two-hybrid screen identifies both ZO-1 and the adherens junction protein PLEKHA7 as paracingulin-binding proteins. Paracingulin forms a complex with PLEKHA7 and its interacting partner p120ctn, and the globular head domain of paracingulin interacts directly with a central region of PLEKHA7. Depletion of PLEKHA7 from Madin-Darby canine kidney cells results in the loss of junctional localization of paracingulin and a decrease in its expression. In summary, we characterize ZO-1 and PLEKHA7 as paracingulin-interacting proteins that are involved in its recruitment to epithelial tight and adherens junctions, respectively.
Collapse
Affiliation(s)
- Pamela Pulimeno
- Department of Molecular Biology, University of Geneva, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | | | | |
Collapse
|
14
|
Capaldo CT, Koch S, Kwon M, Laur O, Parkos CA, Nusrat A. Tight function zonula occludens-3 regulates cyclin D1-dependent cell proliferation. Mol Biol Cell 2011; 22:1677-85. [PMID: 21411630 PMCID: PMC3093320 DOI: 10.1091/mbc.e10-08-0677] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coordinated regulation of cell proliferation is vital for epithelial tissue homeostasis, and uncontrolled proliferation is a hallmark of carcinogenesis. A growing body of evidence indicates that epithelial tight junctions (TJs) play a role in these processes, although the mechanisms involved are poorly understood. In this study, we identify and characterize a novel plasma membrane pool of cyclin D1 with cell-cycle regulatory functions. We have determined that the zonula occludens (ZO) family of TJ plaque proteins sequesters cyclin D1 at TJs during mitosis, through an evolutionarily conserved class II PSD-95, Dlg, and ZO-1 (PDZ)-binding motif within cyclin D1. Disruption of the cyclin D1/ZO complex through mutagenesis or siRNA-mediated suppression of ZO-3 resulted in increased cyclin D1 proteolysis and G(0)/G(1) cell-cycle retention. This study highlights an important new role for ZO family TJ proteins in regulating epithelial cell proliferation through stabilization of cyclin D1 during mitosis.
Collapse
Affiliation(s)
- Christopher T Capaldo
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
15
|
New aspects of the molecular constituents of tissue barriers. J Neural Transm (Vienna) 2010; 118:7-21. [PMID: 20865434 DOI: 10.1007/s00702-010-0484-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/30/2010] [Indexed: 01/24/2023]
Abstract
Epithelial and endothelial tissue barriers are based on tight intercellular contacts (Tight Junctions, TJs) between neighbouring cells. TJs are multimeric complexes, located at the most apical border of the lateral membrane. So far, a plethora of proteins locating at tight intercellular contacts have been discovered, the role of which has just partly been unraveled. Yet, there is convincing evidence that many TJ proteins exert a dual role: They act as structural components at the junctional site and they are involved in signalling pathways leading to alterations of gene expression and cell behaviour (migration, proliferation). This review will shortly summarize the classical functions of TJs and TJ-related proteins and will introduce a new category, termed the "non-classical" functions of junctional proteins. A particular focus will be directed towards the nuclear targeting of junctional proteins and the downstream effects elicited by their intranuclear activities.
Collapse
|
16
|
de Mendoza A, Suga H, Ruiz-Trillo I. Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol 2010; 10:93. [PMID: 20359327 PMCID: PMC2859873 DOI: 10.1186/1471-2148-10-93] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 04/01/2010] [Indexed: 01/03/2023] Open
Abstract
Background Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK) are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa. Results Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria) is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification. Conclusions The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK diversification. This study highlights the importance of generating enough genome data from the broadest possible taxonomic sampling, in order to fully understand the evolutionary history of major protein gene families.
Collapse
Affiliation(s)
- Alex de Mendoza
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
17
|
The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010; 2010:402593. [PMID: 20224657 PMCID: PMC2836178 DOI: 10.1155/2010/402593] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023] Open
Abstract
ZO (zonula occludens) proteins are scaffolding proteins providing the structural basis for the assembly of multiprotein complexes at the cytoplasmic surface of intercellular junctions. In addition, they provide a link between the integral membrane proteins and the filamentous cytoskeleton. ZO proteins belong to the large family of membrane-associated guanylate kinase (MAGUK)-like proteins comprising a number of subfamilies based on domain content and sequence similarity. Besides their structural function at cell-cell contacts, ZO proteins appear to participate in the regulation of cell growth and proliferation. Detailed molecular studies have shown that ZO proteins exhibit conserved functional nuclear localization and nuclear export motifs within their amino acid sequence. Further, ZO proteins interact with dual residency proteins localizing to the plasma membrane and the nucleus. Although the nuclear targeting of ZO proteins has well been described, many questions concerning the biological significance of this process have remained open. This review focuses on the dual role of ZO proteins, being indispensable structural components at the junctional site and functioning in signal transduction pathways related to gene expression and cell behavior.
Collapse
|
18
|
Fanning AS, Anderson JM. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 2009; 1165:113-20. [PMID: 19538295 DOI: 10.1111/j.1749-6632.2009.04440.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The integrity of the tight junction barrier in epithelial and endothelial cells is critical to human health, but we still lack a detailed mechanistic knowledge of how the barrier is formed during development or responds to pathological and pharmacological insults. This limits our understanding of barrier dysfunction in disease and slows the development of therapeutic strategies. Recent studies confirm the long-maintained but previously unsupported view that the zonula occludens (ZO) proteins ZO-1 and ZO-2 are critical determinants of barrier formation. However, ZO proteins can also be components of adherens junctions, and recent studies suggest that ZO proteins may also promote the assembly and function of these junctions during epithelial morphogenesis. We review these studies and outline several recent observations that suggest that one role of ZO proteins is to regulate cytoskeletal dynamics at cell junctions. Finally, we propose a model by which the functional activities of ZO proteins in the adherens junction and tight junction are differentiated by a novel regulatory motif known as the U6 or acidic motif.
Collapse
Affiliation(s)
- Alan S Fanning
- The Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA.
| | | |
Collapse
|
19
|
Citi S, Paschoud S, Pulimeno P, Timolati F, De Robertis F, Jond L, Guillemot L. The tight junction protein cingulin regulates gene expression and RhoA signaling. Ann N Y Acad Sci 2009; 1165:88-98. [PMID: 19538293 DOI: 10.1111/j.1749-6632.2009.04053.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tight junctions (TJ) regulate the passage of solutes across epithelial sheets, contribute to the establishment and maintenance of epithelial apico-basal polarity and are involved in the regulation of gene expression and cell proliferation. Cingulin, a Mr 140 kDa protein localized in the cytoplasmic region of TJ, is not directly required for TJ formation and epithelial polarity but regulates RhoA signaling, through its interaction with the RhoA activator GEF-H1, and gene expression. Here we describe in more detail the effect of cingulin mutation in embryoid bodies (EB) on gene expression, by identifying the genes that show the highest degree of up- or downregulation, and the putative canonical pathways that might be affected by cingulin. Furthermore, we show that full-length canine GEF-H1, produced in baculovirus-infected insect cells, interacts with regions both in the cingulin globular head, and in the coiled-coil rod domain. These results extend our previous studies and provide new perspectives for the mechanistic analysis of cingulin function.
Collapse
Affiliation(s)
- Sandra Citi
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: interaction at tight junctions. MOLECULAR BIOSYSTEMS 2008; 4:1181-5. [PMID: 19396381 DOI: 10.1039/b800402a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intestinal barrier plays a critical role in humans in the transport of nutrients and macromolecules. At the same time, it has to provide an effective barrier to harmful macromolecules and microorganisms. The tight junction (TJ) is an essential component of this barrier. The junctional complexes of the plasma membrane are not simply epithelial barriers in paracellular transport or barriers preventing diffusion in the plasma membrane, but also contain proteins involved in signal transduction and the maintenance of the physiological epithelial cell state. Occludin, claudin, junctional adhesion molecules, and the coxsackie virus and adenovirus receptor are the major components of TJs. This article highlights the structure and function of TJs as well as the molecular interactions occurring during permeation through TJs.
Collapse
Affiliation(s)
- Zakir Hossain
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
21
|
Mima S, Takehara M, Takada H, Nishimura T, Hoshino T, Mizushima T. NSAIDs suppress the expression of claudin-2 to promote invasion activity of cancer cells. Carcinogenesis 2008; 29:1994-2000. [PMID: 18586689 DOI: 10.1093/carcin/bgn134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) show chemopreventive effects; however, the precise molecular mechanism of these effects is still unclear. On the other hand, the expression of proteins that form tight junctions (TJs) (such as claudins) in clinically isolated tumors is frequently altered relative to normal tissue. We previously reported that NSAIDs upregulate the expression of claudin-4 and that this upregulation contributes to NSAID-dependent inhibition of both migration activity and anchorage-independent growth of cancer cells. In the current study, we have systematically examined the effects of various NSAIDs on the expression of various TJ proteins and have found that NSAIDs specifically and drastically inhibit the expression of claudin-2. Overexpression or suppression of claudin-2 expression caused stimulation or inhibition, respectively, of the invasion and migration activity of cancer cells. Furthermore, NSAIDs inhibited the invasion and migration activity of cancer cells and this inhibition was suppressed by overexpression of claudin-2. In contrast, neither cell growth nor apoptosis induced by lack of anchorage of cancer cells was affected by overexpression or suppression of expression of claudin-2. These results suggest that inhibition of claudin-2 expression by NSAIDs contributes to NSAID-dependent inhibition of invasion of cancer cells in vitro and that it may be involved in the chemopreventive effects of NSAIDs by inhibiting metastasis in vivo.
Collapse
Affiliation(s)
- Shinji Mima
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Paris L, Tonutti L, Vannini C, Bazzoni G. Structural organization of the tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:646-59. [DOI: 10.1016/j.bbamem.2007.08.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 02/01/2023]
|
23
|
Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S. The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:601-13. [PMID: 18339298 DOI: 10.1016/j.bbamem.2007.09.032] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 01/19/2023]
Abstract
The region of cytoplasm underlying the tight junction (TJ) contains several multimolecular protein complexes, which are involved in scaffolding of membrane proteins, regulation of cytoskeletal organization, establishment of polarity, and signalling to and from the nucleus. In this review, we summarize some of the most recent advances in understanding the identity of these proteins, their domain organization, their protein interactions, and their functions in vertebrate organisms. Analysis of knockdown and knockout model systems shows that several TJ proteins are essential for the formation of epithelial tissues and early embryonic development, whereas others appear to have redundant functions.
Collapse
|
24
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
25
|
Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:660-9. [PMID: 17854762 PMCID: PMC2682436 DOI: 10.1016/j.bbamem.2007.07.012] [Citation(s) in RCA: 1099] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/12/2007] [Accepted: 07/19/2007] [Indexed: 02/07/2023]
Abstract
Adherens junctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, beta-catenin and alpha-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1, -2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton.
Collapse
Affiliation(s)
- Andrea Hartsock
- Department of Molecular and Cellular Physiology, Stanford University
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Biological Sciences, Stanford University
- Corresponding Author: Department of Biological Sciences, The James H. Clark Center, The Bio-X Program, 318 Campus Drive (E200-B), Stanford University, Stanford, CA 94305-5430. Tel: 650-725-7596 Fax: 650-725-8021,
| |
Collapse
|
26
|
Laing JG, Koval M, Steinberg TH. Association with ZO-1 correlates with plasma membrane partitioning in truncated connexin45 mutants. J Membr Biol 2007; 207:45-53. [PMID: 16463142 DOI: 10.1007/s00232-005-0803-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
Zonula occludens-1 (ZO-1), the most abundant known connexin-interacting protein in osteoblastic cells, associates with the carboxyl termini of both Cx43 and Cx45. To learn more about the role of the cormexin-ZO-1 interaction, we analyzed connexin trafficking and function in ROS 17/2.8 cells that were stably transfected either with full length Cx45 or with Cx45 lacking 34 or 37 amino acids on the carboxyl terminus (Cx45t34 or Cx45t37). All three proteins were transported to appositional membranes in the transfected cells: Cx45 and Cx45t34 displayed a punctate appositional membrane-staining pattern, while Cx45t37 staining at appositional membranes was more linear. Expression of Cx45 decreased gap junction communication as assayed by dye transfer, while expression of Cx45t34 or Cx45t37 increased the amount of dye transfer seen in these cells. We found that Cx43, Cx45 and Cx45t34 co-precipitated with ZO-1 in these cells, while Cx45t37 did not. We also found that Cx45t37 was much more soluble in 1% Triton X-100 than the other connexins examined. In addition, Cx45t37 migrated to a fraction of lighter buoyant density on sucrose flotation gradients than Cx43, Cx45, ZO-1 and Cx45t34. As ZO-1 is an actin-binding protein, this suggested that the differences in Cx45t37 solubility might be due to a difference between the interaction of gap junctions and the actin cytoskeleton in the ROS/Cx45t37 and in the other transfected ROS cells. To examine this possibility, the transfected ROS cells were stained with fluorescently labeled phalloidin and demonstrated that there was a notable loss of actin stress fibers in the ROS/Cx45t37 cells. These findings suggest that association with ZO-1 alters the plasma membrane localization of Cx45 by removing it from a lipid raft compartment and rendering it Triton-insoluble, presumably by promoting an interaction with the actin cytoskeleton; they also suggest that Cx45 has a complex binding interaction with ZO-1 that involves either an extended carboxyl terminal domain or two distinct binding sites.
Collapse
Affiliation(s)
- J G Laing
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
27
|
Cardone RA, Bellizzi A, Busco G, Weinman EJ, Dell'Aquila ME, Casavola V, Azzariti A, Mangia A, Paradiso A, Reshkin SJ. The NHERF1 PDZ2 domain regulates PKA-RhoA-p38-mediated NHE1 activation and invasion in breast tumor cells. Mol Biol Cell 2007; 18:1768-80. [PMID: 17332506 PMCID: PMC1855021 DOI: 10.1091/mbc.e06-07-0617] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1alpha expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na(+)/H(+) exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling.
Collapse
Affiliation(s)
- Rosa A Cardone
- Department of General and Environmental Physiology, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Adachi M, Inoko A, Hata M, Furuse K, Umeda K, Itoh M, Tsukita S. Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein. Mol Cell Biol 2006; 26:9003-15. [PMID: 17000770 PMCID: PMC1636814 DOI: 10.1128/mcb.01811-05] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ZO-1, ZO-2, and ZO-3 are closely related MAGUK family proteins that localize at the cytoplasmic surface of tight junctions (TJs). ZO-1 and ZO-2 are expressed in both epithelia and endothelia, whereas ZO-3 is exclusively expressed in epithelia. In spite of intensive studies of these TJ MAGUKs, our knowledge of their functions in vivo, especially those of ZO-3, is still fragmentary. Here, we have generated mice, as well as F9 teratocarcinoma cell lines, that do not express ZO-3 by homologous recombination. Unexpectedly, ZO-3(-/-) mice were viable and fertile, and rigorous phenotypic analyses identified no significant abnormalities. Moreover, ZO-3-deficient F9 teratocarcinoma cells differentiated normally into visceral endoderm epithelium-like cells in the presence of retinoic acid. These cells had a normal epithelial appearance, and the molecular architecture of their TJs did not appear to be affected, except that TJ localization of ZO-2 was upregulated. Suppression of ZO-2 expression by RNA interference in ZO-3(-/-) cells, however, did not affect the architecture of TJs. Furthermore, the speed with which TJs formed after a Ca(2+) switch was indistinguishable between wild-type and ZO-3(-/-) cells. These findings indicate that ZO-3 is dispensable in vivo in terms of individual viability, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment.
Collapse
Affiliation(s)
- Makoto Adachi
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Guillemot L, Citi S. Cingulin regulates claudin-2 expression and cell proliferation through the small GTPase RhoA. Mol Biol Cell 2006; 17:3569-77. [PMID: 16723500 PMCID: PMC1525245 DOI: 10.1091/mbc.e06-02-0122] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In mouse embryoid bodies, mutation of the tight junction protein cingulin results in changes in gene expression. Here, we studied the function of cingulin using a gene silencing approach in Madin-Darby canine kidney (MDCK) cells. Cingulin-depleted cells show higher protein and mRNA levels of claudin-2 and ZO-3, increased RhoA activity, activation of G1/S phase transition, and increased cell density. The effects of cingulin depletion on claudin-2 expression, cell proliferation, and density are reversed by coexpression of either a dominant-negative form of RhoA (RhoAN19) or the Rho-inhibiting enzyme C3 transferase. However, the increase in ZO-3 protein and mRNA levels is not reversed by inhibition of either RhoA, p38, extracellular signal-regulated kinase (ERK), or c-Jun NH2-terminal kinase (JNK), suggesting that cingulin modulates ZO-3 expression by a different mechanism. JNK is implicated in the regulation of claudin-2 levels independently of cingulin depletion and RhoA activity, indicating distinct roles of RhoA- and JNK-dependent pathways in the control of claudin-2 expression. Finally, cingulin depletion does not significantly alter the barrier function of monolayers and the overall molecular organization of tight junctions. These results provide novel insights about the mechanisms of cingulin function and the signaling pathways controlling claudin-2 expression in MDCK cells.
Collapse
Affiliation(s)
- Laurent Guillemot
- *Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland; and
| | - Sandra Citi
- *Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland; and
| |
Collapse
|
30
|
Cardone RA, Bagorda A, Bellizzi A, Busco G, Guerra L, Paradiso A, Casavola V, Zaccolo M, Reshkin SJ. Overexpression of RhoA-GTP induces activation of the Epidermal Growth Factor Receptor, dephosphorylation of focal adhesion kinase and increased motility in breast cancer cells. Mol Biol Cell 2005; 16:3117-27. [PMID: 15843433 PMCID: PMC1165397 DOI: 10.1091/mbc.e04-10-0945] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are overexpressed in human tumors and are involved in a variety of cellular processes such as organization of the actin cytoskeleton, cell-cell contact and malignant transformation. EGFR activation plays a key role in the acquisition of motile properties in carcinoma cells, and it has been proposed that downregulation of FAK activity is one of its most relevant consequences. In the present study, using mammary MCF-7 cells, we demonstrated that overexpression of the active form of the small GTPase RhoA induced the activation of EGFR by a phenomenon that depends on the activity of a metalloproteinase (MMP), which presumably cleaves a membrane-bound EGFR ligand. The EGFR tyrosine phosphorylation correlates with ERK1,2 activation and the stimulation of urokinase production. An aggressive mammary cell line (MDA-MB-231) that overexpresses both RhoA and EGFR in their active forms also displayed an MMP-dependent activation mechanism of EGFR. RhoA-GTP-transfected cells showed a cortical array of F-actin, rounded morphology, reduced spreading potential and a dephosphorylation of FAK that was released by integrin-dependent fibronectin adhesion and a specific EGFR tyrosine kinase inhibitor. Our results suggest that the MMP-dependent EGFR activation observed in V14 RhoA cells represents the starting point of a signaling route that promotes cell motility by activation of ERK1,2 and further enhancement of proteases production.
Collapse
Affiliation(s)
- Rosa A Cardone
- Department of General and Environmental Physiology, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Laing JG, Chou BC, Steinberg TH. ZO-1 alters the plasma membrane localization and function of Cx43 in osteoblastic cells. J Cell Sci 2005; 118:2167-76. [PMID: 15855237 DOI: 10.1242/jcs.02329] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZO-1 is the major connexin-interacting protein in ROS 17/2.8 (ROS) osteoblastic cells. We examined the role of ZO-1 in Cx43-mediated gap junction formation and function in ROS cells that expressed the connexin-interacting fragment of ZO-1 (ROS/ZO-1dn) cells. Expression of this ZO-1(7-444) fusion protein in ROS cells disrupted the Cx43/ZO-1 interaction and decreased dye transfer by 85%, although Cx43 was retained on the plasma membrane as assessed by surface biotinylation. Fractionation of lysates derived from ROS/ZO-1dn cells on a 5-30% sucrose flotation gradient showed that 40% of the Cx43 floated into these sucrose gradients, whereas none of the Cx43 in ROS cell lysates entered the gradients, suggesting that more Cx43 is associated with lipid rafts in the transfected ROS cells than in lysates derived from untransfected ROS cells. In contrast to the ROS/ZO-1dn cells, ROS cells that over-expressed ZO-1 protein (ROS/ZO-1myc cells) exhibited increased gap junctional permeability and appositional membrane staining for Cx43. These data demonstrate that ZO-1 regulates Cx43-mediated gap junctional communication in osteoblastic cells and alters the membrane localization of Cx43. They suggest that ZO-1-mediated delivery of Cx43 from a lipid raft domain to gap junctional plaques may be an important regulatory step in gap junction formation.
Collapse
Affiliation(s)
- James G Laing
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
32
|
Mima S, Tsutsumi S, Ushijima H, Takeda M, Fukuda I, Yokomizo K, Suzuki K, Sano K, Nakanishi T, Tomisato W, Tsuchiya T, Mizushima T. Induction of claudin-4 by nonsteroidal anti-inflammatory drugs and its contribution to their chemopreventive effect. Cancer Res 2005; 65:1868-76. [PMID: 15753385 DOI: 10.1158/0008-5472.can-04-2770] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAID) have shown chemopreventive effects in both preclinical and clinical studies; however, the precise molecular mechanism governing this response remains unclear. We used DNA microarray techniques to search for genes whose expression is induced by the NSAID indomethacin in human gastric carcinoma (AGS) cells. Among identified genes, we focused on those related to tight junction function (claudin-4, claudin-1, and occludin), particularly claudin-4. Induction of claudin-4 by indomethacin was confirmed at both mRNA and protein levels. NSAIDs, other than indomethacin (diclofenac and celecoxib), also induced claudin-4. All of the tested NSAIDs increased the intracellular Ca2+ concentration. Other drugs that increased the intracellular Ca2+ concentration (thapsigargin and ionomycin) also induced claudin-4. Furthermore, an intracellular Ca2+ chelator [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] inhibited the indomethacin-dependent induction of claudin-4. These results strongly suggest that induction of claudin-4 by indomethacin is mediated through an increase in the intracellular Ca2+ concentration. Overexpression of claudin-4 in AGS cells did not affect cell growth or the induction of apoptosis by indomethacin. On the other hand, addition of indomethacin or overexpression of claudin-4 inhibited cell migration. Colony formation in soft agar was also inhibited. Suppression of claudin-4 expression by small interfering RNA restored the migration activity of AGS cells in the presence of indomethacin. Based on these results, we consider that the induction of claudin-4 and other tight junction-related genes by NSAIDs may be involved in the chemopreventive effect of NSAIDs through the suppression of anchorage-independent growth and cell migration.
Collapse
Affiliation(s)
- Shinji Mima
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee HS, Namkoong K, Kim DH, Kim KJ, Cheong YH, Kim SS, Lee WB, Kim KY. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res 2005; 68:231-8. [PMID: 15501242 DOI: 10.1016/j.mvr.2004.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 12/17/2022]
Abstract
Occludin and zonular occludens (ZO)-1 in tight junctions (TJs) and actin play an important role in maintaining blood-brain barrier (BBB) endothelial ion and solute barriers. Malfunction of BBB by reactive oxygen species (ROS) has been attributed to the disruption of TJs. This study examined H2O2 effects on changes of paracellular permeability, actin, and TJ proteins (occludin and ZO-1) using primary culture of bovine brain microvessel endothelial cells. The BBB permeability, measured as transendothelial electrical resistance (TER), decreased in a dose- and time-dependent manner when treated with H2O2. Cytotoxicity test revealed that H2O2 did not cause cell death at 0.01, 0.1, and 1.0 mM H2O2. H2O2 caused increased protein expression of occludin (1.17- to 1.29-fold) and actin (1.2- to 1.3-fold). ZO-1 maintained steady state levels of expression. H2O2 caused rearrangement of occludin and ZO-1 at tight junctions and formation of actin stress fiber. Although ZO-1 did not show significant change in protein expression, permeability changes shown in the current study correlate with alterations in expression and localization of occludin, actin, and ZO-1. These data suggest that H2O2 induces increased paracellular permeability of BBB that is accompanied with redistribution of occludin and ZO-1 and increased protein expression of occludin and actin.
Collapse
Affiliation(s)
- Hee-Sang Lee
- Department of Anatomy, College of Medicine, Chung-Ang University, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wittchen ES, Worthylake RA, Kelly P, Casey PJ, Quilliam LA, Burridge K. Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function. J Biol Chem 2005; 280:11675-82. [PMID: 15661741 DOI: 10.1074/jbc.m412595200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The passage of leukocytes out of the blood circulation and into tissues is necessary for the normal inflammatory response, but it also occurs inappropriately in many pathological situations. This process is limited by the barrier presented by the junctions between adjacent endothelial cells that line blood vessels. Here we show that activation of the Rap1 GTPase in endothelial cells accelerated de novo assembly of endothelial cell-cell junctions and increased the barrier function of endothelial monolayers. In contrast, depressing Rap1 activity by expressing Rap1GAP led to disassembly of these junctions and increased their permeability. We also demonstrate that endogenous Rap1 was rapidly activated at early stages of junctional assembly, confirming the involvement of Rap1 during junctional assembly. Intriguingly, elevating Rap1 activity selectively within endothelial cells decreased leukocyte transendothelial migration, whereas inhibiting Rap1 activity by expression of Rap1GAP increased leukocyte transendothelial migration, providing physiological relevance to our hypothesis that Rap1 augments barrier function of inter-endothelial cell junctions. Furthermore, these results suggest that Rap1 may be a novel therapeutic target for clinical conditions in which an inappropriate inflammatory response leads to disease.
Collapse
Affiliation(s)
- Erika S Wittchen
- Department of Cell and Developmental Biology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Anderson JM, Van Itallie CM, Fanning AS. Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 2004; 16:140-5. [PMID: 15196556 DOI: 10.1016/j.ceb.2004.01.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across the animal kingdom the apical junction complex of epithelial cells creates both a permeability barrier and cell polarity. Although based on overlapping and evolutionarily conserved proteins, the cell-cell contacts of nematodes, flies and mammals appear to differ in morphology and functional organization. Emerging evidence shows that the selective pore-like properties of vertebrate and invertebrate barriers are created by the claudin family. Similarly, assembly of the barriers requires a conserved set of polarity-generating protein complexes, particularly the PAR protein complexes.
Collapse
Affiliation(s)
- James Melvin Anderson
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
36
|
Cereijido M, Contreras RG, Shoshani L. Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans. Physiol Rev 2004; 84:1229-62. [PMID: 15383651 DOI: 10.1152/physrev.00001.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transporting epithelia posed formidable conundrums right from the moment that Du Bois Raymond discovered their asymmetric behavior, a century and a half ago. It took a century and a half to start unraveling the mechanisms of occluding junctions and polarity, but we now face another puzzle: lest its cells died in minutes, the first high metazoa (i.e., higher than a sponge) needed a transporting epithelium, but a transporting epithelium is an incredibly improbable combination of occluding junctions and cell polarity. How could these coincide in the same individual organism and within minutes? We review occluding junctions (tight and septate) as well as the polarized distribution of Na+-K+-ATPase both at the molecular and the cell level. Junctions and polarity depend on hosts of molecular species and cellular processes, which are briefly reviewed whenever they are suspected to have played a role in the dawn of epithelia and metazoan. We come to the conclusion that most of the molecules needed were already present in early protozoan and discuss a few plausible alternatives to solve the riddle described above.
Collapse
Affiliation(s)
- M Cereijido
- Center For Research and Advanced Studies, Dept. of Physiology, Biophysics, and Neurosciences, Avenida Instituto Politécnico Nacional 2508, Código Postal 07360, México D.F., Mexico.
| | | | | |
Collapse
|
37
|
Paradiso A, Cardone RA, Bellizzi A, Bagorda A, Guerra L, Tommasino M, Casavola V, Reshkin SJ. The Na+-H+ exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells. Breast Cancer Res 2004; 6:R616-28. [PMID: 15535843 PMCID: PMC1064074 DOI: 10.1186/bcr922] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/09/2004] [Accepted: 07/21/2004] [Indexed: 11/10/2022] Open
Abstract
Introduction An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na+–H+ exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues. Methods The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured. Results We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization. Conclusion Our findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point.
Collapse
Affiliation(s)
- Angelo Paradiso
- Laboratory of Clinical & Experimental Oncology, Oncology Institute of Bari, Bari, Italy
| | - Rosa Angela Cardone
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | - Antonia Bellizzi
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | - Anna Bagorda
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | - Lorenzo Guerra
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Unit of Infection and Cancer, Lyon, France
| | - Valeria Casavola
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| |
Collapse
|
38
|
Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84:869-901. [PMID: 15269339 DOI: 10.1152/physrev.00035.2003] [Citation(s) in RCA: 969] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intercellular junctions mediate adhesion and communication between adjoining endothelial and epithelial cells. In the endothelium, junctional complexes comprise tight junctions, adherens junctions, and gap junctions. The expression and organization of these complexes depend on the type of vessels and the permeability requirements of perfused organs. Gap junctions are communication structures, which allow the passage of small molecular weight solutes between neighboring cells. Tight junctions serve the major functional purpose of providing a "barrier" and a "fence" within the membrane, by regulating paracellular permeability and maintaining cell polarity. Adherens junctions play an important role in contact inhibition of endothelial cell growth, paracellular permeability to circulating leukocytes and solutes. In addition, they are required for a correct organization of new vessels in angiogenesis. Extensive research in the past decade has identified several molecular components of the tight and adherens junctions, including integral membrane and intracellular proteins. These proteins interact both among themselves and with other molecules. Here, we review the individual molecules of junctions and their complex network of interactions. We also emphasize how the molecular architectures and interactions may represent a mechanistic basis for the function and regulation of junctions, focusing on junction assembly and permeability regulation. Finally, we analyze in vivo studies and highlight information that specifically relates to the role of junctions in vascular endothelial cells.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Istituto di Ricerche Farmacologiche "Mario Negri," Via Eritrea 62, I-20157 Milan, Italy.
| | | |
Collapse
|
39
|
Abstract
Multicellular organisms are separated from the external environment by a layer of epithelial cells whose integrity is maintained by intercellular junctional complexes composed of tight junctions, adherens junctions, and desmosomes, whereas gap junctions provide for intercellular communication. The aim of this review is to present an updated overview of recent developments in the area of tight junction biology. In a relatively short time, our knowledge of the tight junction has evolved from a relatively simple view of it being a permeability barrier in the paracellular space and a fence in the plane of the plasma membrane to one of it acting as a multicomponent, multifunctional complex that is involved in regulating numerous and diverse cell functions. A group of integral membrane proteins-occludin, claudins, and junction adhesion molecules-interact with an increasingly complex array of tight junction plaque proteins not only to regulate paracellular solute and water flux but also to integrate such diverse processes as gene transcription, tumor suppression, cell proliferation, and cell polarity.
Collapse
Affiliation(s)
- Eveline E Schneeberger
- Molecular Pathology Unit, Massachusetts General Hospital East, Charlestown, MA 02129, USA.
| | | |
Collapse
|
40
|
Inoko A, Itoh M, Tamura A, Matsuda M, Furuse M, Tsukita S. Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells 2004; 8:837-45. [PMID: 14622136 DOI: 10.1046/j.1365-2443.2003.00681.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Three related MAGUK proteins, ZO-1, ZO-2 and ZO-3, are concentrated at the cytoplasmic surface of tight junctions. However, in contrast to ZO-1/ZO-2, our knowledge of the expression and distribution of ZO-3 is still fragmentary, partly due to a lack of antibodies that specifically distinguish ZO-3 from ZO-1 and ZO-2. RESULTS We generated one pAb and one mAb that specifically recognized ZO-3 on Western blotting. The immunofluorescence signals obtained with these antibodies completely disappeared from ZO-1/ZO-2-positive tight junctions in the liver of ZO-3-deficient mice, indicating that the antibodies can be used to localize ZO-3 in various tissues by immunofluorescence microscopy. Immunofluorescence microscopy with these antibodies revealed that ZO-3 was concentrated at tight junctions in various types of epithelium, but not in endothelium or at cadherin-based cell-cell adhesion sites (spot adherens junctions of fibroblasts and intercalated discs of cardiac muscle cells), where ZO-1 and ZO-2 are concentrated. CONCLUSIONS We conclude that ZO-3 is expressed in a more epithelium-specific manner than ZO-1 and ZO-2. These observations provide for a better understanding of the functions of tight junction-associated MAGUKs.
Collapse
Affiliation(s)
- Akihito Inoko
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Lee NPY, Cheng CY. Nitric Oxide/Nitric Oxide Synthase, Spermatogenesis, and Tight Junction Dynamics1. Biol Reprod 2004; 70:267-76. [PMID: 14522829 DOI: 10.1095/biolreprod.103.021329] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermatogenesis, preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium, must traverse the blood-testis barrier (BTB) to gain entry to the adluminal compartment for further development at late stage VIII and early stage IX of the epithelial cycle. As such, the timely opening and closing of the BTB is crucial to spermatogenesis. A compromise in this process can lead to infertility. Moreover, the BTB is unique in its relative localization in the seminiferous epithelium compared to the tight junctions (TJs) found in other epithelia. Sertoli cell TJs are situated near the basal lamina in the testis, closest to the basement membrane (a modified form of extracellular matrix [ECM]), unlike TJs found in other epithelia, which are found nearest the apical portion of an epithelium, farthest away from ECM. Needless to say, BTB function in the testis is maintained by intricate regulatory mechanisms. In addition to hormones and cytokines, nitric oxide (NO) was recently shown to be a putative TJ regulator in the testis. Perhaps equally important, TJ dynamics in the testis were shown to be regulated, at least in part, by occludin, a TJ-integral membrane protein, via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway. This minireview summarizes recent advances in the field regarding the role of NO in testicular function, with special emphasis regarding its role in TJ dynamics and the likely implications of these studies for male contraceptive development.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Population Council, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|