1
|
Maekawa K, Nishio SY, Miyazaki H, Ohta Y, Oishi N, Kasai M, Yamamoto A, Okami M, Wasano K, Sakai A, Usami SI. The Prevalence and Clinical Characteristics of MYO3A-Associated Hearing Loss in 15,684 Hearing Loss Patients. Genes (Basel) 2025; 16:92. [PMID: 39858639 PMCID: PMC11764741 DOI: 10.3390/genes16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives:MYO3A belongs to the unconventional myosin superfamily, and the myosin IIIa protein localizes on the tip of the stereocilia of vestibular and cochlear hair cells. Deficiencies in MYO3A have been reported to cause the deformation of hair cells into abnormally long stereocilia with an increase in spacing. MYO3A is a rare causative gene of autosomal recessive sensorineural hearing loss (DFNB30), with only 13 cases reported to date. In this study, we aimed to elucidate the phenotypes caused by MYO3A variations. Methods: Massively parallel DNA sequencing was performed on 15,684 Japanese hearing loss patients (mean age 27.5 ± 23.1 years old, 6574 male, 8612 female and 498 patients for whom information was unavailable), identifying nine candidate patients with MYO3A variants. Results: We identified eight causative MYO3A variants by massively parallel DNA sequencing, including six novel variants, and reported nine individuals possessing MYO3A gene variants, which is the largest group of non-related patients yet to be detected. Our findings confirmed that MYO3A variants cause progressive hearing loss, with its onset varying from birth to the second decade, eventually leading to severe-to-profound hearing loss. Conclusions: We clarified that patients with MYO3A gene variants present with late-onset, progressive hearing loss. Our findings have enabled us to predict the outcomes of hearing loss in patients with candidate MYO3A gene variants and to provide intervention in a timely manner.
Collapse
Affiliation(s)
- Karuna Maekawa
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.M.); (S.-y.N.)
| | - Shin-ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.M.); (S.-y.N.)
| | - Hiromitsu Miyazaki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai 980-8575, Japan;
| | - Yoko Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Tokyo Medical University, Tokyo 160-0023, Japan;
| | - Naoki Oishi
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Misato Kasai
- Department of Otorhinolaryngology, Juntendo University, Tokyo 113-8421, Japan;
| | - Ai Yamamoto
- Department of Otorhinolaryngology, Tokai University School of Medicine, Isehara 259-1193, Japan; (A.Y.); (M.O.); (K.W.)
| | - Mayuri Okami
- Department of Otorhinolaryngology, Tokai University School of Medicine, Isehara 259-1193, Japan; (A.Y.); (M.O.); (K.W.)
| | - Koichiro Wasano
- Department of Otorhinolaryngology, Tokai University School of Medicine, Isehara 259-1193, Japan; (A.Y.); (M.O.); (K.W.)
| | - Akihiro Sakai
- Department of Ear Nose and Throat-Head and Neck Surgery, Wakayama Medical University, Wakayama 641-0012, Japan;
| | - Shin-ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.M.); (S.-y.N.)
| |
Collapse
|
2
|
Miyoshi T, Vishwasrao H, Belyantseva I, Sajeevadathan M, Ishibashi Y, Adadey S, Harada N, Shroff H, Friedman T. Live-cell single-molecule fluorescence microscopy for protruding organelles reveals regulatory mechanisms of MYO7A-driven cargo transport in stereocilia of inner ear hair cells. RESEARCH SQUARE 2024:rs.3.rs-4369958. [PMID: 38826223 PMCID: PMC11142366 DOI: 10.21203/rs.3.rs-4369958/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thomas Friedman
- National Institute on Deafness and Other Communication Disorders, NIH
| |
Collapse
|
3
|
Miyoshi T, Vishwasrao HD, Belyantseva IA, Sajeevadathan M, Ishibashi Y, Adadey SM, Harada N, Shroff H, Friedman TB. Live-cell single-molecule fluorescence microscopy for protruding organelles reveals regulatory mechanisms of MYO7A-driven cargo transport in stereocilia of inner ear hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.590649. [PMID: 38766013 PMCID: PMC11100596 DOI: 10.1101/2024.05.04.590649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Harshad D. Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Samuel M. Adadey
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Narinobu Harada
- Hearing Research Laboratory, Harada ENT Clinic, Higashi-Osaka, Osaka, 577-0816, Japan
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
6
|
Gunther LK, Cirilo JA, Desetty R, Yengo CM. Deafness mutation in the MYO3A motor domain impairs actin protrusion elongation mechanism. Mol Biol Cell 2021; 33:ar5. [PMID: 34788109 PMCID: PMC8886822 DOI: 10.1091/mbc.e21-05-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Class III myosins are actin-based motors proposed to transport cargo to the distal tips of stereocilia in the inner ear hair cells and/or to participate in stereocilia length regulation, which is especially important during development. Mutations in the MYO3A gene are associated with delayed onset deafness. A previous study demonstrated that L697W, a dominant deafness mutation, disrupts MYO3A ATPase and motor properties but does not impair its ability to localize to the tips of actin protrusions. In the current study, we characterized the transient kinetic mechanism of the L697W motor ATPase cycle. Our kinetic analysis demonstrates that the mutation slows the ADP release and ATP hydrolysis steps, which results in a slight reduction in the duty ratio and slows detachment kinetics. Fluorescence recovery after photobleaching (FRAP) of filopodia tip localized L697W and WT MYO3A in COS-7 cells revealed that the mutant does not alter turnover or average intensity at the actin protrusion tips. We demonstrate that the mutation slows filopodia extension velocity in COS-7 cells which correlates with its twofold slower in vitro actin gliding velocity. Overall, this work allowed us to propose a model for how the motor properties of MYO3A are crucial for facilitating actin protrusion length regulation.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033
| |
Collapse
|
7
|
Abstract
Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France.
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Cirilo JA, Gunther LK, Yengo CM. Functional Role of Class III Myosins in Hair Cells. Front Cell Dev Biol 2021; 9:643856. [PMID: 33718386 PMCID: PMC7947357 DOI: 10.3389/fcell.2021.643856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
9
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
10
|
Abstract
Unconventional myosins are a large superfamily of actin-based molecular motors that use ATP as fuel to generate mechanical motions/forces. The distinct tails in different unconventional myosin subfamilies can recognize various cargoes including proteins and lipids. Thus, they can play diverse roles in many biological processes such as cellular trafficking, mechanical supports, force sensing, etc. This chapter focuses on some recent advances on the structural studies of how unconventional myosins specifically bind to cargoes with their cargo-binding domains.
Collapse
|
11
|
Li J, Liu H, Raval MH, Wan J, Yengo CM, Liu W, Zhang M. Structure of the MORN4/Myo3a Tail Complex Reveals MORN Repeats as Protein Binding Modules. Structure 2019; 27:1366-1374.e3. [PMID: 31279628 DOI: 10.1016/j.str.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Tandem repeats are basic building blocks for constructing proteins with diverse structures and functions. Compared with extensively studied α-helix-based tandem repeats such as ankyrin, tetratricopeptide, armadillo, and HEAT repeat proteins, relatively little is known about tandem repeat proteins formed by β hairpins. In this study, we discovered that the MORN repeats from MORN4 function as a protein binding module specifically recognizing a tail cargo binding region from Myo3a. The structure of the MORN4/Myo3a complex shows that MORN4 forms an extended single-layered β-sheet structure and uses a U-shaped groove to bind to the Myo3a tail with high affinity and specificity. Sequence and structural analyses further elucidated the unique sequence features for folding and target binding of MORN repeats. Our work establishes that the β-hairpin-based MORN repeats are protein-protein interaction modules.
Collapse
Affiliation(s)
- Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haiyang Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jun Wan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss. Sci Rep 2018; 8:8706. [PMID: 29880844 PMCID: PMC5992146 DOI: 10.1038/s41598-018-26818-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Whole-exome sequencing of samples from affected members of two unrelated families with late-onset non-syndromic hearing loss revealed a novel mutation (c.2090 T > G; NM_017433) in MYO3A. The mutation was confirmed in 36 affected individuals, showing autosomal dominant inheritance. The mutation alters a single residue (L697W or p.Leu697Trp) in the motor domain of the stereocilia protein MYO3A, leading to a reduction in ATPase activity, motility, and an increase in actin affinity. MYO3A-L697W showed reduced filopodial actin protrusion initiation in COS7 cells, and a predominant tipward accumulation at filopodia and stereocilia when coexpressed with wild-type MYO3A and espin-1, an actin-regulatory MYO3A cargo. The combined higher actin affinity and duty ratio of the mutant myosin cause increased retention time at stereocilia tips, resulting in the displacement of the wild-type MYO3A protein, which may impact cargo transport, stereocilia length, and mechanotransduction. The dominant negative effect of the altered myosin function explains the dominant inheritance of deafness.
Collapse
|
13
|
Abstract
The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport a wide variety of cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor.
Collapse
Affiliation(s)
- Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
14
|
Graf IR, Frey E. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions. PHYSICAL REVIEW LETTERS 2017; 118:128101. [PMID: 28388182 DOI: 10.1103/physrevlett.118.128101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.
Collapse
Affiliation(s)
- Isabella R Graf
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany
| |
Collapse
|
15
|
Filopodia formation and endosome clustering induced by mutant plus-end-directed myosin VI. Proc Natl Acad Sci U S A 2017; 114:1595-1600. [PMID: 28143933 DOI: 10.1073/pnas.1616941114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin VI (MYO6) is the only myosin known to move toward the minus end of actin filaments. It has roles in numerous cellular processes, including maintenance of stereocilia structure, endocytosis, and autophagosome maturation. However, the functional necessity of minus-end-directed movement along actin is unclear as the underlying architecture of the local actin network is often unknown. To address this question, we engineered a mutant of MYO6, MYO6+, which undergoes plus-end-directed movement while retaining physiological cargo interactions in the tail. Expression of this mutant motor in HeLa cells led to a dramatic reorganization of cortical actin filaments and the formation of actin-rich filopodia. MYO6 is present on peripheral adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) signaling endosomes and MYO6+ expression causes a dramatic relocalization and clustering of this endocytic compartment in the cell cortex. MYO6+ and its adaptor GAIP interacting protein, C terminus (GIPC) accumulate at the tips of these filopodia, while APPL1 endosomes accumulate at the base. A combination of MYO6+ mutagenesis and siRNA-mediated depletion of MYO6 binding partners demonstrates that motor activity and binding to endosomal membranes mediated by GIPC and PI(4,5)P2 are crucial for filopodia formation. A similar reorganization of actin is induced by a constitutive dimer of MYO6+, indicating that multimerization of MYO6 on endosomes through binding to GIPC is required for this cellular activity and regulation of actin network structure. This unique engineered MYO6+ offers insights into both filopodia formation and MYO6 motor function at endosomes and at the plasma membrane.
Collapse
|
16
|
Raval MH, Quintero OA, Weck ML, Unrath WC, Gallagher JW, Cui R, Kachar B, Tyska MJ, Yengo CM. Impact of the Motor and Tail Domains of Class III Myosins on Regulating the Formation and Elongation of Actin Protrusions. J Biol Chem 2016; 291:22781-22792. [PMID: 27582493 PMCID: PMC5077211 DOI: 10.1074/jbc.m116.733741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/29/2016] [Indexed: 11/06/2022] Open
Abstract
Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.
Collapse
Affiliation(s)
- Manmeet H Raval
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033
| | - Omar A Quintero
- the Department of Biology, University of Richmond, Richmond, Virginia 23173
| | - Meredith L Weck
- the Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - William C Unrath
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033
| | - James W Gallagher
- the Department of Biology, Lincoln University, Philadelphia, Pennsylvania 19104, and
| | - Runjia Cui
- the Laboratory of Cell Structure and Dynamics, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| | - Bechara Kachar
- the Laboratory of Cell Structure and Dynamics, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew J Tyska
- the Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Christopher M Yengo
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
17
|
Tang Q, Billington N, Krementsova EB, Bookwalter CS, Lord M, Trybus KM. A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner. J Cell Biol 2016; 214:167-79. [PMID: 27432898 PMCID: PMC4949448 DOI: 10.1083/jcb.201511102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51-Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51-Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elena B Krementsova
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Matthew Lord
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
18
|
Qu R, Sang Q, Xu Y, Feng R, Jin L, He L, Wang L. Identification of a novel homozygous mutation in MYO3A in a Chinese family with DFNB30 non-syndromic hearing impairment. Int J Pediatr Otorhinolaryngol 2016; 84:43-7. [PMID: 27063751 DOI: 10.1016/j.ijporl.2016.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Hearing loss is a common sensory impairment. Several genetic loci or genes responsible for non-syndrome hearing loss have been identified, including the well-known deafness genes GJB2, MT-RNR1 and SLC26A4. MYO3A belongs to the myosin superfamily. Previously only three mutations in this gene have been found in an Isreali family with DFNB30, in which patients demonstrated progressive hearing loss. METHODS In this study, we characterized a consanguineous Kazakh family with congenital hearing loss. By targeted sequence capture and next-generation sequencing, we identified a homozygous mutation and did bioinformatics analysis to this mutation. RESULTS A homozygous mutation, MYO3A:c.1841C>T (p.S614F), was identified to be responsible for the disease. Ser614 is located in the motor domain of MYO3A that is highly conserved among different species. Molecular modeling predicts that the conserved Ser614 may play an important role in maintaining the stability of β-sheet and the interaction between neighboring β-strand. CONCLUSIONS This is the second report on MYO3A mutations in deafness and the first report in China. The finding help facilitate establishing a better relationship between MYO3A mutation and hearing phenotypes.
Collapse
Affiliation(s)
- Ronggui Qu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qing Sang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yao Xu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ruizhi Feng
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Genomic screening of ABCA4 and array CGH analysis underline the genetic variability of Greek patients with inherited retinal diseases. Meta Gene 2016; 8:37-43. [PMID: 27014590 PMCID: PMC4792891 DOI: 10.1016/j.mgene.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 02/10/2016] [Indexed: 11/22/2022] Open
Abstract
Background Retinal dystrophies are a clinically and genetically heterogeneous group of disorders which affect more than two million people worldwide. The present study focused on the role of the ABCA4 gene in the pathogenesis of hereditary retinal dystrophies (autosomal recessive Stargardt disease, autosomal recessive cone-rod dystrophy, and autosomal recessive retinitis pigmentosa) in patients of Greek origin. Materials and methods Our cohort included 26 unrelated patients and their first degree healthy relatives. The ABCA4 mutation screening involved Sanger sequencing of all exons and flanking regions. Evaluation of novel variants included sequencing of control samples, family segregation analysis and characterization by in silico prediction tools. Twenty five patients were also screened for copy number variations by array-comparative genomic hybridization. Results Excluding known disease-causing mutations and polymorphisms, two novel variants were identified in coding and non-coding regions of ABCA4. Array-CGH analysis revealed two partial deletions of USH2A and MYO3A in two patients with nonsyndromic autosomal recessive retinitis pigmentosa. Conclusions The ABCA4 mutation spectrum in Greek patients differs from other populations. Bioinformatic tools, segregation analysis along with clinical data from the patients seemed to be crucial for the evaluation of genetic variants and particularly for the discrimination between causative and non-causative variants. Sixteen known pathological genetic variants were identified in ABCA4 gene in Greek patients with retinal dystrophies. Two novel variants were found in patients with Stargardt’s disease and cone-rod dystrophy respectively. Two reported mutations in Stargardt's patients were identified in retinitis pigmentosa and cone-rod dystrophy patients. The mutations p.Gly1961Glu and p.Ala1038Val, which are common in other populations, where also found in our cohort consisted of 26 Greek patients. Array-comparative genome hybridization revealed large deletions in two out of the 25 cases studied.
Collapse
|
20
|
Liu H, Li J, Raval MH, Yao N, Deng X, Lu Q, Nie S, Feng W, Wan J, Yengo CM, Liu W, Zhang M. Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin. eLife 2016; 5. [PMID: 26785147 PMCID: PMC4758956 DOI: 10.7554/elife.12856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1.
Collapse
Affiliation(s)
- Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Manmeet H Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, United States
| | - Ningning Yao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaoying Deng
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qing Lu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Si Nie
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, United States
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
21
|
Lelli A, Michel V, Boutet de Monvel J, Cortese M, Bosch-Grau M, Aghaie A, Perfettini I, Dupont T, Avan P, El-Amraoui A, Petit C. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth. J Cell Biol 2016; 212:231-44. [PMID: 26754646 PMCID: PMC4738386 DOI: 10.1083/jcb.201509017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/07/2015] [Indexed: 11/22/2022] Open
Abstract
Analysis of mice deficient for myosin IIIa and myosin IIIb shows that class III myosins limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping. The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a−/−Myo3b−/− mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b−/− mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a−/−Myo3b−/− cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a−/−Myo3b−/− stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping.
Collapse
Affiliation(s)
- Andrea Lelli
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Vincent Michel
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Matteo Cortese
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Montserrat Bosch-Grau
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Asadollah Aghaie
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Isabelle Perfettini
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Typhaine Dupont
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Université d'Auvergne; Biophysique Médicale, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Aziz El-Amraoui
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75724 Paris, Cedex 15, France Unité Mixte de Recherche UMRS1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris VI), Complexité du Vivant, 75005 Paris, France Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France Collège de France, 75005 Paris, France
| |
Collapse
|
22
|
Mecklenburg KL, Freed SA, Raval M, Quintero OA, Yengo CM, O'Tousa JE. Invertebrate and vertebrate class III myosins interact with MORN repeat-containing adaptor proteins. PLoS One 2015; 10:e0122502. [PMID: 25822849 PMCID: PMC4379085 DOI: 10.1371/journal.pone.0122502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP). Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A). In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior.
Collapse
Affiliation(s)
- Kirk L. Mecklenburg
- Department of Biology, Indiana University South Bend, South Bend, Indiana, United States of America
| | - Stephanie A. Freed
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Manmeet Raval
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
| | - Omar A. Quintero
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: (CY); (JO)
| | - Joseph. E. O'Tousa
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (CY); (JO)
| |
Collapse
|
23
|
An BC, Sakai T, Komaba S, Kishi H, Kobayashi S, Kim JY, Ikebe R, Ikebe M. Phosphorylation of the kinase domain regulates autophosphorylation of myosin IIIA and its translocation in microvilli. Biochemistry 2014; 53:7835-45. [PMID: 25402663 PMCID: PMC4270376 DOI: 10.1021/bi501247z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Motor activity of myosin III is regulated
by autophosphorylation.
To investigate the role of the kinase activity on the transporter
function of myosin IIIA (Myo3A), we identified the phosphorylation
sites of kinase domain (KD), which is responsible for the regulation
of kinase activity and thus motor function. Using mass spectrometry,
we identified six phosphorylation sites in the KD, which are highly
conserved among class III myosins and Ste20-related misshapen (Msn)
kinases. Two predominant sites, Thr184 and Thr188, in KD are important for phosphorylation of the KD as well as the
motor domain, which regulates the affinity for actin. In the Caco2
cells, the full-length human Myo3A (hMyo3AFull) markedly enlarged
the microvilli, although it did not show discrete localization within
the microvilli. On the other hand, hMyo3AFull(T184A) and hMyo3AFull(T188A)
both showed clear localization at the microvilli tips. Our results
suggest that Myo3A induces large actin bundle formation to form microvilli,
and phosphorylation of KD at Thr184 and Thr188 is critical for the kinase activity of Myo3A, and regulation of
Myo3A translocation to the tip of microvilli. Retinal extracts potently
dephosphorylate both KD and motor domain without IQ motifs (MDIQo),
which was inhibited by okadaic acid (OA) with nanomolar range and
by tautomycetin (TMC) with micromolar range. The results suggest that
Myo3A phosphatase is protein phosphatase type 2A (PP2A). Supporting
this result, recombinant PP2Ac potently dephosphorylates both KD and
MDIQo. We propose that the phosphorylation–dephosphorylation
mechanism plays an essential role in mediating the transport and actin
bundle formation and stability functions of hMyo3A.
Collapse
Affiliation(s)
- Byung Chull An
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Manor U, Grati M, Yengo CM, Kachar B, Gov NS. Competition and compensation: dissecting the biophysical and functional differences between the class 3 myosin paralogs, myosins 3a and 3b. BIOARCHITECTURE 2012; 2:171-4. [PMID: 22954581 PMCID: PMC3696061 DOI: 10.4161/bioa.21733] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stereocilia are actin protrusions with remarkably well-defined lengths and organization. A flurry of recent papers has reported multiple myosin motor proteins involved in regulating stereocilia structures by transporting actin-regulatory cargo to the tips of stereocilia.1-13 In our recent paper, we show that two paralogous class 3 myosins — Myo3a and Myo3b — both transport the actin-regulatory protein Espin 1 (Esp1) to stereocilia and filopodia tips in a remarkably similar, albeit non-identical fashion.1 Here we present experimental and computational data that suggests that subtle differences between these two proteins’ biophysical and biochemical properties can help us understand how these myosin species target and regulate the lengths of actin protrusions.
Collapse
Affiliation(s)
- Uri Manor
- Laboratory of Cell Structure and Dynamics; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda, MD USA
| | - M'hamed Grati
- Laboratory of Cell Structure and Dynamics; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda, MD USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology; Penn State College of Medicine; Hershey, PA USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda, MD USA
| | - Nir S Gov
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot, Israel
| |
Collapse
|
25
|
Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions. Curr Biol 2012; 22:320-5. [PMID: 22264607 DOI: 10.1016/j.cub.2011.12.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/01/2011] [Accepted: 12/22/2011] [Indexed: 11/22/2022]
Abstract
Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and tail domain actin-binding activity and show that the actin-binding tail can be replaced by actin-binding cargo. This study also provides a framework to better understand the late-onset hearing loss phenotype in patients with MYO3A mutations.
Collapse
|
26
|
Dalal JS, Stevens SM, Alvarez S, Munoz N, Kempler KE, Dosé AC, Burnside B, Battelle BA. Mouse class III myosins: kinase activity and phosphorylation sites. J Neurochem 2011; 119:772-84. [PMID: 21895655 DOI: 10.1111/j.1471-4159.2011.07468.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As class III unconventional myosins are motor proteins with an N-terminal kinase domain, it seems likely they play a role in both signaling and actin based transport. A growing body of evidence indicates that the motor functions of human class IIIA myosin, which has been implicated in progressive hearing loss, are modulated by intermolecular autophosphorylation. However, the phosphorylation sites have not been identified. We studied the kinase activity and phosphorylation sites of mouse class III myosins, mMyo3A and 3B, which are highly similar to their human orthologs. We demonstrate that the kinase domains of mMyo3A and 3B are active kinases, and that they have similar, if not identical, substrate specificities. We show that the kinase domains of these proteins autophosphorylate, and that they can phosphorylate sites within their myosin and tail domains. Using liquid chromatography-mass spectrometry, we identified phosphorylated sites in the kinase, myosin motor and tail domains of both mMyo3A and 3B. Most of the phosphorylated sites we identified and their consensus phosphorylation motifs are highly conserved among vertebrate class III myosins, including human class III myosins. Our findings are a major step toward understanding how the functions of class III myosins are regulated by phosphorylation.
Collapse
Affiliation(s)
- Jasbir S Dalal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Romero S, Grompone G, Carayol N, Mounier J, Guadagnini S, Prevost MC, Sansonetti PJ, Van Nhieu GT. ATP-mediated Erk1/2 activation stimulates bacterial capture by filopodia, which precedes Shigella invasion of epithelial cells. Cell Host Microbe 2011; 9:508-19. [PMID: 21669399 DOI: 10.1016/j.chom.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/19/2011] [Accepted: 05/23/2011] [Indexed: 11/29/2022]
Abstract
Shigella, the causative agent of bacillary dysentery in humans, invades epithelial cells, using a type III secretory system (T3SS) to inject bacterial effectors into host cells and remodel the actin cytoskeleton. ATP released through connexin hemichanels on the epithelial membrane stimulates Shigella invasion and dissemination in epithelial cells. Here, we show that prior to contact with the cell body, Shigella is captured by nanometer-thin micropodial extensions (NMEs) at a distance from the cell surface, in a process involving the T3SS tip complex proteins and stimulated by ATP- and connexin-mediated signaling. Upon bacterial contact, NMEs retract, bringing bacteria in contact with the cell body, where invasion occurs. ATP stimulates Erk1/2 activation, which controls actin retrograde flow in NMEs and their retraction. These findings reveal previously unappreciated facets of interaction of an invasive bacterium with host cells and a prominent role for Erk1/2 in the control of filopodial dynamics.
Collapse
Affiliation(s)
- Stéphane Romero
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de France, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Walsh VL, Raviv D, Dror AA, Shahin H, Walsh T, Kanaan MN, Avraham KB, King MC. A mouse model for human hearing loss DFNB30 due to loss of function of myosin IIIA. Mamm Genome 2010; 22:170-7. [PMID: 21165622 DOI: 10.1007/s00335-010-9310-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
The motor protein myosin IIIA is critical for maintenance of normal hearing. Homozygosity and compound heterozygosity for loss-of-function mutations in MYO3A, which encodes myosin IIIA, are responsible for inherited human progressive hearing loss DFNB30. To further evaluate this hearing loss, we constructed a mouse model, Myo3a(KI/KI), that harbors the mutation equivalent to the nonsense allele responsible for the most severe human phenotype. Myo3a(KI/KI) mice were compared to their wild-type littermates. Myosin IIIA, with a unique N-terminal kinase domain and a C-terminal actin-binding domain, localizes to the tips of stereocilia in wild-type mice but is absent in the mutant. The phenotype of the Myo3a(KI/KI) mouse parallels the phenotype of human DFNB30. Hearing loss, as measured by auditory brainstem response, is reduced and progresses significantly with age. Vestibular function is normal. Outer hair cells of Myo3a(KI/KI) mice degenerate with age in a pattern consistent with their progressive hearing loss.
Collapse
Affiliation(s)
- Vanessa L Walsh
- Department of Medicine, University of Washington, Seattle, WA 98195-7720, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Butler TM, Mooers SU, Narayan SR, Siegman MJ. The N-terminal region of twitchin binds thick and thin contractile filaments: redundant mechanisms of catch force maintenance. J Biol Chem 2010; 285:40654-65. [PMID: 20971853 DOI: 10.1074/jbc.m110.166041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catch force maintenance in invertebrate smooth muscles is probably mediated by a force-bearing tether other than myosin cross-bridges between thick and thin filaments. The phosphorylation state of the mini-titin twitchin controls catch. The C-terminal phosphorylation site (D2) of twitchin with its flanking Ig domains forms a phosphorylation-sensitive complex with actin and myosin, suggesting that twitchin is the tether (Funabara, D., Osawa, R., Ueda, M., Kanoh, S., Hartshorne, D. J., and Watabe, S. (2009) J. Biol. Chem. 284, 18015-18020). Here we show that a region near the N terminus of twitchin also interacts with thick and thin filaments from Mytilus anterior byssus retractor muscles. Both a recombinant protein, including the D1 and DX phosphorylation sites with flanking 7th and 8th Ig domains, and a protein containing just the linker region bind to thin filaments with about a 1:1 mol ratio to actin and K(d) values of 1 and 15 μM, respectively. Both proteins show a decrease in binding when phosphorylated. The unphosphorylated proteins increase force in partially activated permeabilized muscles, suggesting that they are sufficient to tether thick and thin filaments. There are two sites of thin filament interaction in this region because both a 52-residue peptide surrounding the DX site and a 47-residue peptide surrounding the D1 site show phosphorylation-dependent binding to thin filaments. The peptides relax catch force, confirming the region's central role in the mechanism of catch. The multiple sites of thin filament interaction in the N terminus of twitchin in addition to those in the C terminus provide an especially secure and redundant mechanical link between thick and thin filaments in catch.
Collapse
Affiliation(s)
- Thomas M Butler
- Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
30
|
Quintero OA, Moore JE, Unrath WC, Manor U, Salles FT, Grati M, Kachar B, Yengo CM. Intermolecular autophosphorylation regulates myosin IIIa activity and localization in parallel actin bundles. J Biol Chem 2010; 285:35770-82. [PMID: 20826793 DOI: 10.1074/jbc.m110.144360] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 μm, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A.
Collapse
Affiliation(s)
- Omar A Quintero
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Komaba S, Watanabe S, Umeki N, Sato O, Ikebe M. Effect of phosphorylation in the motor domain of human myosin IIIA on its ATP hydrolysis cycle. Biochemistry 2010; 49:3695-702. [PMID: 20192276 DOI: 10.1021/bi902211w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous findings suggested that the motor activity of human myosin IIIA (HM3A) is influenced by phosphorylation [Kambara, T., et al. (2006) J. Biol. Chem. 281, 37291-37301]; however, how phosphorylation controls the motor activity of HM3A is obscure. In this study, we clarify the kinetic basis of the effect of phosphorylation on the ATP hydrolysis cycle of the motor domain of HM3A (huM3AMD). The affinity of human myosin IIIA for filamentous actin in the presence of ATP is more than 100-fold decreased by phosphorylation, while the maximum rate of ATP turnover is virtually unchanged. The rate of release of ADP from acto-phosphorylated huM3AMD is 6-fold greater than the overall cycle rate, and thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form is markedly increased by phosphorylation by 30-fold. The dissociation constant for dissociation of the ATP-bound form of huM3AMD from actin is greatly increased by phosphorylation, and this result agrees well with the significant increase in the K(actin) value of the steady-state ATPase reaction. The rate constant of the P(i) off step is greater than 60 s(-1), suggesting that this step does not limit the overall ATP hydrolysis cycle rate. Our kinetic model indicates that phosphorylation induces the dissociation of huM3AMD from actin during the ATP hydrolysis cycle, and this is due to the phosphorylation-dependent marked decrease in the affinity of huM3AMD.ATP for actin and the increase in the ATP hydrolysis rate of huM3AMD in the actin-dissociated state. These results suggest that the phosphorylation of myosin IIIA significantly lowers the duty ratio, which may influence the cargo transporting ability of the native form of myosin IIIA that contains the ATP-independent actin binding site in the tail.
Collapse
Affiliation(s)
- Shigeru Komaba
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0127, USA
| | | | | | | | | |
Collapse
|
32
|
Benesh AE, Nambiar R, McConnell RE, Mao S, Tabb DL, Tyska MJ. Differential localization and dynamics of class I myosins in the enterocyte microvillus. Mol Biol Cell 2010; 21:970-8. [PMID: 20089841 PMCID: PMC2836977 DOI: 10.1091/mbc.e09-07-0638] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
These data establish myosin-1d as a component of the brush border cytoskeleton that demonstrates microvillar tip localization. Epithelial cells lining the intestinal tract build an apical array of microvilli known as the brush border. Each microvillus is a cylindrical membrane protrusion that is linked to a supporting actin bundle by myosin-1a (Myo1a). Mice lacking Myo1a demonstrate no overt physiological symptoms, suggesting that other myosins may compensate for the loss of Myo1a in these animals. To investigate changes in the microvillar myosin population that may limit the Myo1a KO phenotype, we performed proteomic analysis on WT and Myo1a KO brush borders. These studies revealed that WT brush borders also contain the short-tailed class I myosin, myosin-1d (Myo1d). Myo1d localizes to the terminal web and striking puncta at the tips of microvilli. In the absence of Myo1a, Myo1d peptide counts increase twofold; this motor also redistributes along the length of microvilli, into compartments normally occupied by Myo1a. FRAP studies demonstrate that Myo1a is less dynamic than Myo1d, providing a mechanistic explanation for the observed differential localization. These data suggest that Myo1d may be the primary compensating class I myosin in the Myo1a KO model; they also suggest that dynamics govern the localization and function of different yet closely related myosins that target common actin structures.
Collapse
Affiliation(s)
- Andrew E Benesh
- Cell and Developmental Biology Department, Vanderbilt University School of Medicine, Nashville, TN 37205, USA
| | | | | | | | | | | |
Collapse
|
33
|
Katti C, Dalal JS, Dosé AC, Burnside B, Battelle BA. Cloning and distribution of myosin 3B in the mouse retina: differential distribution in cone outer segments. Exp Eye Res 2009; 89:224-37. [PMID: 19332056 DOI: 10.1016/j.exer.2009.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022]
Abstract
Class III myosins are important for the function and survival of photoreceptors and ciliary hair cells. Although vertebrates possess two class III myosin genes, myo3A and myo3B, recent studies have focused on Myo3A because mutations in the human gene are implicated in progressive hearing loss. Myo3B may compensate for defects in Myo3A, yet little is known about its distribution and function. This study focuses on Myo3B expression in the mouse retina. We cloned two variants of myo3B from mouse retina and determined that they are expressed early in retinal development. In this study we show for the first time in a mammal that both Myo3B and Myo3A proteins are present in inner segments of all photoreceptors. Myo3B is also present in outer segments of S opsin-immunoreactive cones but not M opsin dominant cones. Myo3B is also detected in rare cells of the inner nuclear layer and some ganglion cells. Myo3B may have diverse roles in retinal neurons. In photoreceptor inner segments Myo3B is positioned appropriately to prevent photoreceptor loss of function caused by Myo3A defects.
Collapse
Affiliation(s)
- Christiana Katti
- Department of Neuroscience and Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | | | | | | | | |
Collapse
|
34
|
Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nat Cell Biol 2009; 11:443-50. [PMID: 19287378 PMCID: PMC2750890 DOI: 10.1038/ncb1851] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/19/2009] [Indexed: 11/22/2022]
|
35
|
Goswami C, Hucho T. Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 2008; 275:4684-99. [PMID: 18754773 DOI: 10.1111/j.1742-4658.2008.06617.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much work has focused on the electrophysiological properties of transient receptor potential channels. Recently, a novel aspect of importance emerged: the interplay of transient receptor potential channels with the cytoskeleton. Recent data suggest a direct interaction and functional repercussion for both binding partners. The bi-directionality of physical and functional interaction renders therefore, the cytoskeleton a potent integration point of complex biological signalling events, from both the cytoplasm and the extracellular space. In this minireview, we focus mostly on the interaction of the cytoskeleton with transient receptor potential vanilloid channels. Thereby, we point out the functional importance of cytoskeleton components both as modulator and as modulated downstream effector. The resulting implications for patho-biological situations are discussed.
Collapse
Affiliation(s)
- Chandan Goswami
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
36
|
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1), a non-selective cation channel, is present endogenously in dorsal root ganglia (DRG) neurons. It is involved in the recognition of various pain producing physical and chemical stimuli. In this work, we demonstrate that expression of TRPV1 induces neurite-like structures and filopodia and that the expressed protein is localized at the filopodial tips. Exogenous expression of TRPV1 induces filopodia both in DRG neuron-derived F11 cells and in non-neuronal cells, such as HeLa and human embryonic kidney (HEK) cells. We find that some of the TRPV1 expression-induced filopodia contain microtubules and microtubule-associated components, and establish cell-to-cell extensions. Using live cell microscopy, we demonstrate that the filopodia are responsive to TRPV1-specific ligands. But both, initiation and subsequent cell-to-cell extension formation, is independent of TRPV1 channel activity. The N-terminal intracellular domain of TRPV1 is sufficient for filopodial structure initiation while the C-terminal cytoplasmic domain is involved in the stabilization of microtubules within these structures. In addition, exogenous expression of TRPV1 results in altered cellular distribution and in enhanced endogenous expression of non-conventional myosin motors, namely myosin IIA and myosin IIIA. These data indicate a novel role of TRPV1 in the regulation of cellular morphology and cellular contact formation.
Collapse
Affiliation(s)
- C Goswami
- Signal Transduction in Pain and Mental Retardation, Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
37
|
Dosé AC, Ananthanarayanan S, Moore JE, Burnside B, Yengo CM. Kinetic mechanism of human myosin IIIA. J Biol Chem 2006; 282:216-31. [PMID: 17074769 DOI: 10.1074/jbc.m605964200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin IIIA is specifically expressed in photoreceptors and cochlea and is important for the phototransduction and hearing processes. In addition, myosin IIIA contains a unique N-terminal kinase domain and C-terminal tail actin-binding motif. We examined the kinetic properties of baculovirus expressed human myosin IIIA containing the kinase, motor, and two IQ domains. The maximum actin-activated ATPase rate is relatively slow (k(cat) = 0.77 +/- 0.08 s(-1)), and high actin concentrations are required to fully activate the ATPase rate (K(ATPase) = 34 +/- 11 microm). However, actin co-sedimentation assays suggest that myosin III has a relatively high steady-state affinity for actin in the presence of ATP (K(actin) approximately 7 microm). The rate of ATP binding to the motor domain is quite slow both in the presence and absence of actin (K(1)k(+2) = 0.020 and 0.001 microm(-1).s(-1), respectively). The rate of actin-activated phosphate release is more than 100-fold faster (85 s(-1)) than the k(cat), whereas ADP release in the presence of actin follows a two-step mechanism (7.0 and 0.6 s(-1)). Thus, our data suggest a transition between two actomyosin-ADP states is the rate-limiting step in the actomyosin III ATPase cycle. Our data also suggest the myosin III motor spends a large fraction of its cycle in an actomyosin ADP state that has an intermediate affinity for actin (K(d) approximately 5 microm). The long lived actomyosin-ADP state may be important for the ability of myosin III to function as a cellular transporter and actin cross-linker in the actin bundles of sensory cells.
Collapse
Affiliation(s)
- Andréa C Dosé
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
38
|
Schneider ME, Dosé AC, Salles FT, Chang W, Erickson FL, Burnside B, Kachar B. A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 2006; 26:10243-52. [PMID: 17021180 PMCID: PMC6674622 DOI: 10.1523/jneurosci.2812-06.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Class III myosins are motor proteins that contain an N-terminal kinase domain and a C-terminal actin-binding domain. We show that myosin IIIa, which has been implicated in nonsyndromic progressive hearing loss, is localized at stereocilia tips. Myosin IIIa progressively accumulates during stereocilia maturation in a thimble-like pattern around the stereocilia tip, distinct from the cap-like localization of myosin XVa and the shaft localization of myosin Ic. Overexpression of deletion mutants for functional domains of green fluorescent protein (GFP)-myosin IIIa shows that the motor domain, but not the actin-binding tail domain, is required for stereocilia tip localization. Deletion of the kinase domain produces stereocilia elongation and bulging of the stereocilia tips. The thimble-like localization and the influence myosin IIIa has on stereocilia shape reveal a previously unrecognized molecular compartment at the distal end of stereocilia, the site of actin polymerization as well as operation of the mechanoelectrical transduction apparatus.
Collapse
Affiliation(s)
- Mark E. Schneider
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Andréa C. Dosé
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| | - Felipe T. Salles
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Weise Chang
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Floyd L. Erickson
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland 21801
| | - Beth Burnside
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| | - Bechara Kachar
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
39
|
Kambara T, Komaba S, Ikebe M. Human myosin III is a motor having an extremely high affinity for actin. J Biol Chem 2006; 281:37291-301. [PMID: 17012748 DOI: 10.1074/jbc.m603823200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin IIIA is expressed in photoreceptor cells and thought to play a critical role in phototransduction processes, yet its function on a molecular basis is largely unknown. Here we clarified the kinetic mechanism of the ATPase cycle of human myosin IIIA. The steady-state ATPase activity was markedly activated approximately 10-fold with very low actin concentration. The rate of ADP off from actomyosin IIIA was 10 times greater than the overall cycling rate, thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form was very slow, but the rate was markedly accelerated by actin binding. The dissociation constant of the ATP-bound form of myosin IIIA from actin is submicromolar, which agrees well with the low K(actin). These results indicate that ATP hydrolysis predominantly takes place in the actin-bound form for actomyosin IIIA ATPase reaction. The obtained K(actin) was much lower than the previously reported one, and we found that the autophosphorylation of myosin IIIA dramatically increased the K(actin), whereas the V(max) was unchanged. Our kinetic model indicates that both the actin-attached hydrolysis and the P(i) release steps determine the overall cycle rate of the dephosphorylated form. Although the stable steady-state intermediates of actomyosin IIIA ATPase reaction are not typical strong actin-binding intermediates, the affinity of the stable intermediates for actin is much higher than conventional weak actin binding forms. The present results suggest that myosin IIIA can spend a majority of its ATP hydrolysis cycling time on actin.
Collapse
Affiliation(s)
- Taketoshi Kambara
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
40
|
Xu X, He C, Zhang Z, Chen Y. MKLP1 requires specific domains for its dendritic targeting. J Cell Sci 2006; 119:452-8. [PMID: 16418225 DOI: 10.1242/jcs.02750] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitotic kinesin-like protein 1 (MKLP1) is specifically localized to the dendrite of the developed neuron, but its targeting mechanism is still unclear. In this study, the role of distinct domains of MKLP1 in dendritic targeting was investigated by producing a series of enhanced green fluorescent protein (eGFP)-tagged MKLP1 and its variant mutations, and studying the distribution of these molecules in cultured primary hippocampal neurons using fluorescence microscopy. We have found that: (a) full-length MKLP1(1-856)-eGFP was distributed to the dendrite of hippocampal neurons, not the axon; (b) deletion of the ;motor' domain prevented the dendritic distribution; (c) deletion of the ;tail' domain caused axonal appearance; (d) mutants devoid of the ;stalk' domain were still specifically distributed to the dendrite. The results indicate that the motor and tail regions of MKLP1 are important and significant for its localization to the dendrites. We also discuss the difference between the targeting of membrane-anchoring proteins and the kinesin-like protein.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Neurobiology, Institute of Neuroscience, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
41
|
Sousa AD, Cheney RE. Myosin-X: a molecular motor at the cell's fingertips. Trends Cell Biol 2005; 15:533-9. [PMID: 16140532 DOI: 10.1016/j.tcb.2005.08.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Research in several areas, including unconventional myosins and deafness genes, has converged recently on a group of myosins whose tails contain myosin tail homology 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains. Although these 'MyTH-FERM' myosins are not present in yeast and plants, they are present in slime molds, worms, flies and mammals, where they mediate interactions between the cytoskeleton and the plasma membrane. The most broadly distributed MyTH-FERM myosin in vertebrate cells appears to be myosin-X (Myo10). This myosin can act as a link to integrins and microtubules, stimulate the formation of filopodia and undergo a novel form of motility within filopodia.
Collapse
Affiliation(s)
- Aurea D Sousa
- Medical Biomolecular Research Building, Department of Cell and Molecular Physiology, CB #7545, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
42
|
Abstract
The myosin family of actin filament-based molecular motors consists of at least 20 structurally and functionally distinct classes. The human genome contains nearly 40 myosin genes, encoding 12 of these classes. Myosins have been implicated in a variety of intracellular functions, including cell migration and adhesion; intracellular transport and localization of organelles and macromolecules; signal transduction; and tumor suppression. In this review, recent insights into the remarkable diversity in the mechanochemical and functional properties associated with this family of molecular motors are discussed.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Molecular Biology, Yale University, New Haven, CN, USA.
| | | |
Collapse
|
43
|
Robles E, Woo S, Gomez TM. Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension. J Neurosci 2005; 25:7669-81. [PMID: 16107653 PMCID: PMC6725397 DOI: 10.1523/jneurosci.2680-05.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/15/2023] Open
Abstract
Extracellular cues guide axon outgrowth by activating intracellular signaling cascades that control the growth cone cytoskeleton. However, the spatial and temporal coordination of signaling intermediates remains essentially unknown. Live imaging of tyrosine phosphorylation in growth cones revealed dynamic phospho-tyrosine (PY) signals in filopodia that directly correlate with filopodial behavior. Local PY signals are generated at distal tips of filopodia during extension and are lost during retraction. Active Src family kinases localize to the tips of filopodia, and Src activity regulates both filopodial dynamics and local PY signaling. Positive guidance cues stimulate filopodial motility by locally increasing tyrosine phosphorylation in a cell division cycle 42 (Cdc42)-dependent manner. Locally reduced Src activity on one side of the growth cone generates an asymmetry in filopodial motility and PY signaling that promotes repulsive turning, suggesting that local changes in filopodial PY levels may underlie growth cone pathfinding decisions. p21-activated kinase (PAK), a Cdc42 effector whose activity is regulated by Src phosphorylation, also localizes to the tips of extending filopodia and controls filopodial motility. Coordinated activation of cytoskeletal effector proteins by GTPase binding and Src-mediated tyrosine phosphorylation may function to produce specific growth cone behaviors in response to guidance cues.
Collapse
Affiliation(s)
- Estuardo Robles
- Department of Anatomy, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
44
|
Lin-Jones J, Parker E, Wu M, Dosé A, Burnside B. Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors. J Cell Sci 2004; 117:5825-34. [PMID: 15522885 DOI: 10.1242/jcs.01512] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myo3A, a class III myosin, localizes to the distal (plus) ends of inner segment actin filament bundles that form the core of microvillus-like calycal processes encircling the base of the photoreceptor outer segment. To investigate Myo3A localization and function, we expressed green fluorescent protein-tagged bass Myo3A and related constructs in transgenic Xenopus rods using a modified opsin promoter. Tagged intact Myo3A localized to rod calycal processes, as previously reported for native bass Myo3A. Transgenic rods developed abnormally large calycal processes and subsequently degenerated. Modified Myo3A expression constructs demonstrated that calycal process localization required an active motor domain and the tail domain. Expressed tail domain alone localized to actin bundles along the entire inner segment length, rather than to the distal end. This tail domain localization required the conserved C-terminal domain (3THDII) previously shown to possess an actin-binding motif. Our findings suggest that Myo3A plays a role in the morphogenesis and maintenance of calycal processes of vertebrate photoreceptors.
Collapse
Affiliation(s)
- Jennifer Lin-Jones
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | | | | | | | |
Collapse
|