1
|
Shin J, Ahn SH, Oh DJ. Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System. Cell Biochem Biophys 2024; 82:1555-1566. [PMID: 38762714 DOI: 10.1007/s12013-024-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea.
| |
Collapse
|
2
|
Liu G, Gu K, Wang F, Jia G, Zhao H, Chen X, Wu C, Zhang R, Tian G, Cai J, Tang J, Wang J. Tryptophan Ameliorates Barrier Integrity and Alleviates the Inflammatory Response to Enterotoxigenic Escherichia coli K88 Through the CaSR/Rac1/PLC-γ1 Signaling Pathway in Porcine Intestinal Epithelial Cells. Front Immunol 2021; 12:748497. [PMID: 34745120 PMCID: PMC8566706 DOI: 10.3389/fimmu.2021.748497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Impaired intestinal barrier integrity plays a crucial role in the development of many diseases such as obesity, inflammatory bowel disease, and type 2 diabetes. Thus, protecting the intestinal barrier from pathological disruption is of great significance. Tryptophan can increase gut barrier integrity, enhance intestinal absorption, and decrease intestinal inflammation. However, the mechanism of tryptophan in decreasing intestinal barrier damage and inflammatory response remains largely unknown. The objective of this study was to test the hypothesis that tryptophan can enhance intestinal epithelial barrier integrity and decrease inflammatory response mediated by the calcium-sensing receptor (CaSR)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. Methods IPEC-J2 cells were treated with or without enterotoxigenic Escherichia coli (ETEC) K88 in the absence or presence of tryptophan, CaSR inhibitor (NPS-2143), wild-type CaSR overexpression (pcDNA3.1-CaSR-WT), Rac1-siRNA, and PLC-γ1-siRNA. Results The results showed that ETEC K88 decreased the protein concentration of occludin, zonula occludens-1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family member 1 of porcine GTP-binding protein (GTP-rac1), phosphorylated phospholipase Cγ1 (p-PLC-γ1), and inositol triphosphate (IP3); suppressed the transepithelial electrical resistance (TEER); and enhanced the permeability of FITC-dextran compared with the control group. Compared with the control group, 0.7 mM tryptophan increased the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; elevated the TEER; and decreased the permeability of FITC-dextran and contents of interleukin-8 (IL-8) and TNF-α. However, 0.7 mM tryptophan+ETEC K88 reversed the effects induced by 0.7 mM tryptophan alone. Rac1-siRNA+tryptophan+ETEC K88 or PLC-γ1-siRNA+tryptophan+ETEC K88 reduced the TEER, increased the permeability of FITC-dextran, and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. NPS2143+tryptophan+ETEC K88 decreased the TEER and the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; increased the permeability of FITC-dextran; and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. pcDNA3.1-CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-CaSR-WT+PLC-γ1-siRNA+ETEC K88 decreased the TEER and enhanced the permeability in porcine intestine epithelial cells compared with pcDNA3.1-CaSR-WT+ETEC K88. Conclusion Tryptophan can improve intestinal epithelial barrier integrity and decrease inflammatory response through the CaSR/Rac1/PLC-γ1 signaling pathway.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Fang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Ramshekar A, Wang H, Kunz E, Pappas C, Hageman GS, Chaqour B, Sacks DB, Hartnett ME. Active Rap1-mediated inhibition of choroidal neovascularization requires interactions with IQGAP1 in choroidal endothelial cells. FASEB J 2021; 35:e21642. [PMID: 34166557 PMCID: PMC8238370 DOI: 10.1096/fj.202100112r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness. The pathophysiology involves activation of choroidal endothelial cells (CECs) to transmigrate the retinal pigment epithelial (RPE) monolayer and form choroidal neovascularization (CNV) in the neural retina. The multidomain GTPase binding protein, IQGAP1, binds active Rac1 and sustains activation of CECs, thereby enabling migration associated with vision-threatening CNV. IQGAP1 also binds the GTPase, Rap1, which when activated reduces Rac1 activation in CECs and CNV. In this study, we tested the hypothesis that active Rap1 binding to IQGAP1 is necessary and sufficient to reduce Rac1 activation in CECs, and CNV. We found that pharmacologic activation of Rap1 or adenoviral transduction of constitutively active Rap1a reduced VEGF-mediated Rac1 activation, migration, and tube formation in CECs. Following pharmacologic activation of Rap1, VEGF-mediated Rac1 activation was reduced in CECs transfected with an IQGAP1 construct that increased active Rap1-IQGAP1 binding but not in CECs transfected with an IQGAP1 construct lacking the Rap1 binding domain. Specific knockout of IQGAP1 in endothelial cells reduced laser-induced CNV and Rac1 activation in CNV lesions, but pharmacologic activation of Rap1 did not further reduce CNV compared to littermate controls. Taken together, our findings provide evidence that active Rap1 binding to the IQ domain of IQGAP1 is sufficient to interfere with active Rac1-mediated CEC activation and CNV formation.
Collapse
Affiliation(s)
- Aniket Ramshekar
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Haibo Wang
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Eric Kunz
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Christian Pappas
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Gregory S. Hageman
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Brahim Chaqour
- Department of Ophthalmology, Downstate Medical Center,
Brooklyn, NY, USA
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of
Health, Bethesda, MD, USA
| | - M. Elizabeth Hartnett
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Correspondence to: M. Elizabeth Hartnett,
MD, Address: 65 Mario Capecchi Drive, Salt Lake City, UT 84132. Tel:
801-213-4110; Fax: 801-581-3357,
| |
Collapse
|
4
|
Soeta K, Yamaguchi R, Iuchi K, Hisatomi H, Yokoyama C. Generation of Rat Monoclonal Antibody for Human IQGAP1 by Immunization of Three-Dimensional-Cultured Cancer Cells. Monoclon Antib Immunodiagn Immunother 2021; 40:118-123. [PMID: 34076498 DOI: 10.1089/mab.2020.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The scaffold protein IQ motif containing GTPase activating protein 1 (IQGAP1) is an adherens junction component in the epithelial tissue that binds many signaling and structural molecules to regulate biological processes. It is known that IQGAP1 is overexpressed in some tumors. In this study, we produced rat monoclonal antibodies (mAbs) through immunization of the lysate from three-dimensional (3D)-cultured DLD-1 cells to elucidate a characteristic feature of a tumor. In cancer research, 3D-cultured cancer cells are used as an intermediate model between in vitro cancer cell line cultures and in vivo tumors. Our results showed that mAb 7E11 recognized increasing antigen in the lysate of 3D-cultured cells comparing with two-dimensional-cultured cells, and its antigen is the human IQGAP1. Furthermore, we indicated that mAb 7E11 was used in immunoblotting, immunoprecipitation, and immunofluorescence staining. Therefore, it may be useful in the analysis of human cancer.
Collapse
Affiliation(s)
- Kenta Soeta
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Rina Yamaguchi
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Katsuya Iuchi
- Department of Materials and Life Science, Seikei University, Tokyo, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Seikei University, Tokyo, Japan
| | - Chikako Yokoyama
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| |
Collapse
|
5
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
6
|
Nishida T, Kubota S. Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:119-126. [PMID: 33088364 PMCID: PMC7560579 DOI: 10.1016/j.jdsr.2020.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular communication network factor 2 (CCN2) is a cysteine-rich secreted matricellular protein that regulates various cellular functions including cell differentiation. CCN2 is highly expressed under several types of mechanical stress, such as stretch, compression, and shear stress, in mesenchymal cells including chondrocytes, osteoblasts, and fibroblasts. In particular, CCN2 not only promotes cell proliferation and differentiation of various cells but also regulates the stability of mRNA of TRPV4, a mechanosensitive ion channel in chondrocytes. Of note, CCN2 behaves like a biomarker to sense suitable mechanical stress, because CCN2 expression is down-regulated when chondrocytes are subjected to excessive mechanical stress. These findings suggest that CCN2 is a mechano-sensing regulator. CCN2 expression is regulated by the activation of various mechano-sensing signaling pathways, e.g., mechanosensitive ion channels, integrin-focal adhesion-actin dynamics, Rho GTPase family members, Hippo-YAP signaling, and G protein-coupled receptors. This review summarizes the characterization of mechanoreceptors involved in CCN2 gene regulation and discusses the role of CCN2 as a mechano-sensing regulator of mesenchymal cell differentiation, with particular focus on chondrocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| |
Collapse
|
7
|
Shen EP, Chen MR, Chen WL, Chu HS, Chen KL, Hu FR. Knockdown of IQGAP-1 Enhances Tight Junctions and Prevents P. aeruginosa Invasion of Human Corneal Epithelial Cells. Ocul Immunol Inflamm 2020; 28:876-883. [PMID: 31621455 DOI: 10.1080/09273948.2019.1642494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine the role of IQ-domain GTPase-activating protein1 (IQGAP-1) in tight junctions of human corneal epithelial cells (HCECs) and its effect against P. aeruginosa (PAK) invasion. MATERIAL AND METHODS Primary human corneal epithelial cells (HCECs), immortalized HCECs, and IQGAP-1 RNA knockdown HCECs (siHCECs) were used. Confocal microscopy, transepithelial electrical resistance (TER), trypan blue exclusion assay and gentamicin invasion assay were done. RESULTS In primary and immortalized HCECs, IQGAP-1 co-localized with zonular occludin-1 (ZO-1) and actin. Enhanced actin and ZO-1 aggregation were seen in siHCECs. IQGAP-1 knockdown significantly increased TER of immortalized HCECs (P < .0001). Cell viability after PAK infection increased for siHCECs for up to 4 h after infection. PAK intracellular invasion was significantly lowered by 50% in siHCECs at 1 h post-infection. CONCLUSION IQGAP-1 knockdown increased the strength and integrity of tight junctions and may provide an early protective effect against P. aeruginosa invasion.
Collapse
Affiliation(s)
- Elizabeth P Shen
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei, Taiwan.,School of Medicine, Tzu Chi University , Hua-Liang, Taiwan.,Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Kai-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
8
|
Zhang T, Wang Z, Liu Y, Huo Y, Liu H, Xu C, Mao R, Zhu Y, Liu L, Wei D, Liu G, Pan B, Tang Y, Zhou Z, Yang C, Guo Y. Plastin 1 drives metastasis of colorectal cancer through the IQGAP1/Rac1/ERK pathway. Cancer Sci 2020; 111:2861-2871. [PMID: 32350953 PMCID: PMC7419044 DOI: 10.1111/cas.14438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is the dominant cause of death in colorectal cancer (CRC) patients, and it often involves dysregulation of various cytoskeletal proteins. Plastin 1 (PLS1) is an actin-bundling protein that has been implicated in the structure of intestinal epithelial microvilli; however, its role in CRC metastasis has not yet been determined. In this study, we demonstrated that PLS1 is highly expressed in 33.3% (45/135) of CRC patients and is correlated with lymph node metastasis and poor survival. In in vitro and in vivo experiments, PLS1 induced the migration and invasion of CRC cells and the metastases to the liver and lung in mice. Moreover, the expressions of key factors for CRC metastases, matrix metalloproteinase (MMP) 9 and 2, were enhanced by PLS1, which was dependent on phosphorylating ERK1/2 activated by IQGAP1/Rac1 signaling. The connection between these signals and PLS1 was further confirmed in CRC tissues of patients and the metastatic nodules from a mouse model. These findings suggest that PLS1 promotes CRC metastasis through the IQGAP1/Rac1/ERK pathway. Targeting PLS1 may provide a potential approach to inhibit the metastasis of CRC cells.
Collapse
Affiliation(s)
- Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjun Liu
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yongxu Huo
- Life Science College of Sichuan University, Chengdu, China
| | - Hongtao Liu
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Chenxin Xu
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Rui Mao
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yifang Zhu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Danfeng Wei
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Guanzhi Liu
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Biran Pan
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Tang
- Department of Pathology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Zheng Zhou
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Chunlei Yang
- Life Science College of Sichuan University, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
9
|
Sharma A, Elble RC. From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis. Biomedicines 2020; 8:biomedicines8060169. [PMID: 32575848 PMCID: PMC7345168 DOI: 10.3390/biomedicines8060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
The common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes. Intracellular calcium acts chiefly through intermediates such as calmodulin that regulates growth factor receptors such as epidermal growth factor receptor (EGFR), actin polymerization, and adherens junction assembly and maintenance. Here we review this machinery and its role in differentiation, then consider how cancer cells subvert it to license proliferation, resist anoikis, and enable metastasis, either by modulating the level of intracellular calcium or its downstream targets or effectors such as EGFR, E-cadherin, IQGAP1, TMEM16A, CLCA2, and TRPA1. Implications are considered for the roles of E-cadherin and growth factor receptors in circulating tumor cells and metastasis. The discovery of novel, cell type-specific modulators and effectors of calcium signaling offers new possibilities for cancer chemotherapy.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Randolph C. Elble
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence: ; Tel.: +217-545-7381
| |
Collapse
|
10
|
Sheen YS, Lin MH, Tzeng WC, Chu CY. Purpuric drug eruptions induced by EGFR tyrosine kinase inhibitors are associated with IQGAP1-mediated increase in vascular permeability. J Pathol 2020; 250:452-463. [PMID: 32030757 DOI: 10.1002/path.5393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 01/19/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used as a treatment for non-small-cell lung cancer. There have been some reports of EGFR-TKIs being associated with vascular adverse events. We found that EGFR-TKIs decreased the proliferation of HMEC-1s (immortalized human dermal microvascular endothelial cells) and HMVECs (human dermal microvascular endothelial cells), and also inhibited the phosphorylation of EGFR and ERK. We examined the mRNA expression profile of erlotinib-treated HMEC-1s and identified IQ motif containing GTPase activating protein 1 (IQGAP1) as the most consistently up-regulated transcript and protein. IQGAP1 was also overexpressed and co-localized with endothelial cells in the lesional skin. Notably, increased IQGAP1 expression was associated with decreased transendothelial electrical resistance and increased vascular permeability in vitro. Erlotinib treatment enriched the staining of IQGAP1 and reduced the intensities of α-catenin at the sites of cell-cell contact. In conclusion, erlotinib induces adherens junction dysfunction by modulating the expression of IQGAP1 in dermal endothelial cells. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hisn-Chu, Taiwan
| | - Wen-Chia Tzeng
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Morgan CJ, Hedman AC, Li Z, Sacks DB. Endogenous IQGAP1 and IQGAP3 do not functionally interact with Ras. Sci Rep 2019; 9:11057. [PMID: 31363101 PMCID: PMC6667474 DOI: 10.1038/s41598-019-46677-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
The Ras family of small GTPases modulates numerous essential processes. Activating Ras mutations result in hyper-activation of selected signaling cascades, which leads to human diseases. The high frequency of Ras mutations in human malignant neoplasms has led to Ras being a desirable chemotherapeutic target. The IQGAP family of scaffold proteins binds to and regulates multiple signaling molecules, including the Rho family GTPases Rac1 and Cdc42. There are conflicting data in the published literature regarding interactions between IQGAP and Ras proteins. Initial reports showed no binding, but subsequent studies claim associations of IQGAP1 and IQGAP3 with K-Ras and H-Ras, respectively. Therefore, we set out to resolve this controversy. Here we demonstrate that neither endogenous IQGAP1 nor endogenous IQGAP3 binds to the major Ras isoforms, namely H-, K-, and N-Ras. Importantly, Ras activation by epidermal growth factor is not altered when IQGAP1 or IQGAP3 proteins are depleted from cells. These data strongly suggest that IQGAP proteins are not functional interactors of H-, K-, or N-Ras and challenge the rationale for targeting the interaction of Ras with IQGAP for the development of therapeutic agents.
Collapse
Affiliation(s)
- Chase J Morgan
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Andrew C Hedman
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Zhigang Li
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - David B Sacks
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
12
|
Goldspink DA, Rookyard C, Tyrrell BJ, Gadsby J, Perkins J, Lund EK, Galjart N, Thomas P, Wileman T, Mogensen MM. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol 2017; 7:rsob.160274. [PMID: 28179500 PMCID: PMC5356440 DOI: 10.1098/rsob.160274] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs.
Collapse
Affiliation(s)
| | - Chris Rookyard
- School of Computing Science, University of East Anglia, Norwich, UK
| | | | - Jonathan Gadsby
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - James Perkins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth K Lund
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tom Wileman
- Medical School, University of East Anglia, Norwich, UK
| | - Mette M Mogensen
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
IQGAP1 silencing suppresses the malignant characteristics of laryngeal squamous cell carcinoma cells. Int J Biol Markers 2017; 33:73-78. [PMID: 28708206 DOI: 10.5301/ijbm.5000287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Laryngeal squamous cell carcinoma (LSCC) has a poor prognosis due to recurrence and metastasis. IQ-domain GTPase-activating protein 1 (IQGAP1), a scaffold protein, plays an important role in tumorigenesis and malignant development. In this study, we aimed to explore the role of IQGAP1 in LSCC. Methods: Expression of IQGAP1 in human LSCC specimens was assessed by immunohistochemistry. We also evaluated the roles of IQGAP1 in cell proliferation, migration and invasion and epithelial-to-mesenchymal transition (EMT) in Hep-2 cells. Results: The expression of IQGAP1 protein was significantly up-regulated in LSCC tissues compared with normal laryngeal tissues (p = 0.002). Furthermore, the knockdown of IQGAP1 in Hep-2 cells inhibited cell growth, migration and invasion. Moreover, we found that IQGAP1 silencing reversed EMT. Conclusions: These results show for the first time that IQGAP1 is up-regulated in LSCC tissues and plays an important role in LSCC cell proliferation and invasiveness, which indicates that IQGAP1 could work as an oncogene and may serve as a promising molecular target for treatment of LSCC.
Collapse
|
14
|
Carmon KS, Gong X, Yi J, Wu L, Thomas A, Moore CM, Masuho I, Timson DJ, Martemyanov KA, Liu QJ. LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway. J Biol Chem 2017; 292:14989-15001. [PMID: 28739799 PMCID: PMC5592675 DOI: 10.1074/jbc.m117.786798] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich repeat-containing G protein–coupled receptor 5 (LGR5) is a bona fide marker of adult stem cells in several epithelial tissues, most notably in the intestinal crypts, and is highly up-regulated in many colorectal, hepatocellular, and ovarian cancers. LGR5 activation by R-spondin (RSPO) ligands potentiates Wnt/β-catenin signaling in vitro; however, deletion of LGR5 in stem cells has little or no effect on Wnt/β-catenin signaling or cell proliferation in vivo. Remarkably, modulation of LGR5 expression has a major impact on the actin cytoskeletal structure and cell adhesion in the absence of RSPO stimulation, but the molecular mechanism is unclear. Here, we show that LGR5 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1), an effector of Rac1/CDC42 GTPases, in the regulation of actin cytoskeleton dynamics and cell–cell adhesion. Specifically, LGR5 decreased levels of IQGAP1 phosphorylation at Ser-1441/1443, leading to increased binding of Rac1 to IQGAP1 and thus higher levels of cortical F-actin and enhanced cell–cell adhesion. LGR5 ablation in colon cancer cells and crypt stem cells resulted in loss of cortical F-actin, reduced cell–cell adhesion, and disrupted localization of adhesion-associated proteins. No evidence of LGR5 coupling to any of the four major subtypes of heterotrimeric G proteins was found. These findings suggest that LGR5 primarily functions via the IQGAP1–Rac1 pathway to strengthen cell–cell adhesion in normal adult crypt stem cells and colon cancer cells.
Collapse
Affiliation(s)
- Kendra S Carmon
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Xing Gong
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Jing Yi
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030.,Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Ling Wu
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Anthony Thomas
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Catherine M Moore
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Ireland, United Kingdom
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Ireland, United Kingdom.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Qingyun J Liu
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030,
| |
Collapse
|
15
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
16
|
Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S, VanBuren V, Dostal DE, Zhang SL, Peng X. Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 2016; 421:271-283. [PMID: 27986432 DOI: 10.1016/j.ydbio.2016.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Cdc42 is a member of the Rho GTPase family and functions as a molecular switch in regulating cell migration, proliferation, differentiation and survival. However, the role of Cdc42 in heart development remains largely unknown. To determine the function of Cdc42 in heart formation, we have generated a Cdc42 cardiomyocyte knockout (CCKO) mouse line by crossing Cdc42 flox mice with myosin light chain (MLC) 2a-Cre mice. The inactivation of Cdc42 in embryonic cardiomyocytes induced lethality after embryonic day 12.5. Histological analysis of CCKO embryos showed cardiac developmental defects that included thin ventricular walls and ventricular septum defects. Microarray and real-time PCR data also revealed that the expression level of p21 was significantly increased and cyclin B1 was dramatically decreased, suggesting that Cdc42 is required for cardiomyocyte proliferation. Phosphorylated Histone H3 staining confirmed that the inactivation of Cdc42 inhibited cardiomyocytes proliferation. In addition, transmission electron microscope studies showed disorganized sarcomere structure and disruption of cell-cell contact among cardiomyocytes in CCKO hearts. Accordingly, we found that the distribution of N-cadherin/β-Catenin in CCKO cardiomyocytes was impaired. Taken together, our data indicate that Cdc42 is essential for cardiomyocyte proliferation, sarcomere organization and cell-cell adhesion during heart development.
Collapse
Affiliation(s)
- Jieli Li
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yang Liu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yixin Jin
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Rui Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA; Department of Cardiology, Yangpu District Central Hospital, Tongji University, China
| | - Jian Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Sarah Lu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Vincent VanBuren
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - David E Dostal
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| |
Collapse
|
17
|
Schulz J, Franke K, Frick M, Schumacher S. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity. J Neurochem 2016; 139:26-39. [DOI: 10.1111/jnc.13735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Jana Schulz
- Institute of Molecular and Cellular Anatomy; Ulm University; Ulm Germany
| | - Kristin Franke
- Institute of Molecular and Cellular Anatomy; Ulm University; Ulm Germany
| | - Manfred Frick
- Institute of General Physiology; Ulm University; Ulm Germany
| | - Stefan Schumacher
- Institute of Molecular and Cellular Anatomy; Ulm University; Ulm Germany
| |
Collapse
|
18
|
Yamaoka M, Ishizaki T, Kimura T. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells. Biol Pharm Bull 2016; 38:663-8. [PMID: 25947911 DOI: 10.1248/bpb.b14-00886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
Collapse
Affiliation(s)
- Mami Yamaoka
- Department of Pharmacology, Oita University Faculty of Medicine
| | | | | |
Collapse
|
19
|
Zuo Y, Wu Y, Wehrli B, Chakrabarti S, Chakraborty C. Modulation of ERK5 is a novel mechanism by which Cdc42 regulates migration of breast cancer cells. J Cell Biochem 2016; 116:124-32. [PMID: 25160664 DOI: 10.1002/jcb.24950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/09/2022]
Abstract
Members of Rho family GTPases including Cdc42 are known to play pivotal roles in cell migration. Cell migration is also known to be regulated by many protein kinases. Kinetworks KPSS 11.0 phospho-site screening of Cdc42-silenced Hs578T breast cancer cells revealed most dramatic change in ERK5 MAP kinase. In the present study, we set out to determine the relationship between Cdc42 and ERK5 and its significance in breast cancer cell migration and invasion. Specific siRNAs were used for knocking down Cdc42 or ERK5 in breast cancer cells. Increased ERK5 phosphorylation in breast cancer cells was achieved by infection of constitutively active MEK5 adenovirus. The cells were then subjected to cell migration or invasion assay without the presence of serum or any growth factor. We found that Cdc42 negatively regulated phosphorylation of ERK5, which in turn exhibited an inverse relationship with migration and invasiveness of breast cancer cells. To find out some in vivo relevance of the results of our in vitro experiments we also examined the expression of ERK5 in the breast cancer tissues and their adjacent normal control tissues by real-time RT-PCR and immunocytochemistry. ERK5 expression was found to be reduced in breast cancer tissues as compared with their adjacent uninvolved mammary tissues. Therefore, Cdc42 may promote breast cancer cell migration and invasion by inhibiting ERK5 phosphorylation and ERK5 expression may be inversely correlated with the progression of some breast tumors.
Collapse
Affiliation(s)
- Yufeng Zuo
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Chan E, Saito A, Honda T, Di Guglielmo GM. The acetylenic tricyclic bis(cyano enone), TBE-31, targets microtubule dynamics and cell polarity in migrating cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:638-49. [PMID: 26775215 DOI: 10.1016/j.bbamcr.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 02/03/2023]
Abstract
Cell migration is dependent on the microtubule network for structural support as well as for the proper delivery and positioning of polarity proteins at the leading edge of migrating cells. Identification of drugs that target cytoskeletal-dependent cell migration and protein transport in polarized migrating cells is important in understanding the cell biology of normal and tumor cells and can lead to new therapeutic targets in disease processes. Here, we show that the tricyclic compound TBE-31 directly binds to tubulin and interferes with microtubule dynamics, as assessed by end binding 1 (EB1) live cell imaging. Interestingly, this interference is independent of in vitro tubulin polymerization. Using immunofluorescence microscopy, we also observed that TBE-31 interferes with the polarity of migratory cells. The polarity proteins Rac1, IQGAP and Tiam1 were localized at the leading edge of DMSO-treated migrating cell, but were observed to be in multiple protrusions around the cell periphery of TBE-31-treated cells. Finally, we observed that TBE-31 inhibits the migration of Rat2 fibroblasts with an IC50 of 0.75 μM. Taken together, our results suggest that the inhibition of cell migration by TBE-31 may result from the improper maintenance of cell polarity of migrating cells.
Collapse
Affiliation(s)
- Eddie Chan
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Akira Saito
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Tadashi Honda
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Gianni M Di Guglielmo
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
21
|
Lu R, Herrera BB, Eshleman HD, Fu Y, Bloom A, Li Z, Sacks DB, Goldberg MB. Shigella Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation. PLoS Pathog 2015; 11:e1005200. [PMID: 26473364 PMCID: PMC4608727 DOI: 10.1371/journal.ppat.1005200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022] Open
Abstract
The intracellular bacterial pathogen Shigella infects and spreads through the human intestinal epithelium. Effector proteins delivered by Shigella into cells promote infection by modulating diverse host functions. We demonstrate that the effector protein OspB interacts directly with the scaffolding protein IQGAP1, and that the absence of either OspB or IQGAP1 during infection leads to larger areas of S. flexneri spread through cell monolayers. We show that the effect on the area of bacterial spread is due to OspB triggering increased cell proliferation at the periphery of infected foci, thereby replacing some of the cells that die within infected foci and restricting the area of bacterial spread. We demonstrate that OspB enhancement of cell proliferation results from activation of mTORC1, a master regulator of cell growth, and is blocked by the mTORC1-specific inhibitor rapamycin. OspB activation of mTORC1, and its effects on cell proliferation and bacterial spread, depends on IQGAP1. Our results identify OspB as a regulator of mTORC1 and mTORC1-dependent cell proliferation early during S. flexneri infection and establish a role for IQGAP1 in mTORC1 signaling. They also raise the possibility that IQGAP1 serves as a scaffold for the assembly of an OspB-mTORC1 signaling complex. During infection, Shigella spp. deliver into the cytoplasm of cells effector proteins that manipulate host cell processes in ways that promote infection and bacterial spread. We have discovered that the Shigella effector protein OspB interacts with the cellular scaffolding protein IQGAP1. OspB induces increased cell proliferation by activating mTORC1 kinase, a master regulator of cellular growth, in a manner that depends on IQGAP1. As IQGAP1 has been shown to interact with mTOR and with the mTORC1 activators ERK1/2, we propose that IQGAP1 serves as a scaffold for OspB activation of mTORC1. The presence of OspB and IQGAP1 lead to restricting the area of spread of S. flexneri in cell monolayers; our data support a model in which the effect of OspB and IQGAP1 on the area of S. flexneri spread is due to effects on cell proliferation locally within infected foci. As infection of cells and tissue by Shigella spp. leads to cell death, increased local cellular proliferation may serve to provide additional protective intracellular niches for the organism within infected tissue.
Collapse
Affiliation(s)
- Richard Lu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bobby Brooke Herrera
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Heather D. Eshleman
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Fu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Alexander Bloom
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcia B. Goldberg
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Jack of all trades: functional modularity in the adherens junction. Curr Opin Cell Biol 2015; 36:32-40. [DOI: 10.1016/j.ceb.2015.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/20/2015] [Accepted: 06/30/2015] [Indexed: 11/22/2022]
|
23
|
Zoheir KMA, Abd-Rabou AA, Harisa GI, Ashour AE, Ahmad SF, Attia SM, Bakheet SA, Abdel-Hamied HE, Abd-Allah AR, Kumar A. Gene expression of IQGAPs and Ras families in an experimental mouse model for hepatocellular carcinoma: a mechanistic study of cancer progression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8821-8831. [PMID: 26464624 PMCID: PMC4583856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
IQGAPs genes play critical role in either induction or suppression of cancer and its progression, however the relationship between Ras genes and these genes are still unclear. In this study, we tried to understand the mechanistic action of IQGAPs genes and its correlation with Ras genes in mouse hepatic cancer model. The genetic expressions of IQGAP1, IQGAP2, IQGAP3, Hras, Kras, Nras, Mras, Caspase3, and BAX were followed in both hepatocellular carcinoma and normal liver cells of Balbc mice. Genotoxic agent diethylnitrosamine (DEN)-induced hepatic cancer model was induced in male mice and recorded the occurrence of hepatocellular carcinoma by morphological and histological changes in the liver. It was observed that mRNA expressions of IQGAP1, Hras, Kras, Nras, Mras, Caspase3, and BAX genes were highly elevated in hepatocellular carcinoma cells when compared with normal liver cells, additionally their expressions increased by concentrating the dose of DEN. While, the expressions of IQGAP2 and IQGAP3 were significantly decreased in hepatocellular carcinoma cells when compared with normal liver cells, as well as their expressions decreased more with increasing the dose of DEN. It was concluded from this study that IQGAP1 has a strong signaling relationship with Ras genes in induction of cancer and it is considered as a key gene for induction or suppression of the hepatocellular carcinoma.
Collapse
Affiliation(s)
- Khairy MA Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud UniversityP.O. Box 2457, Riyadh, Saudi Arabia
- Department of Cell Biology, National Research Centre (12622)Cairo, Egypt
| | - Ahmed A Abd-Rabou
- Department of Hormones, Medical Research Division, National Research Centre (12622)Cairo, Egypt
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud UniversityP.O. Box 2457, Riyadh 11451, Saudi Arabia
- Departments of Biochemistry and Pharmacology and Toxicology, College of Pharmacy (Boys section), Al-Azhar UniversityCairo, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud UniversityP.O. Box 2457, Riyadh, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud UniversityP.O. Box 2457, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud UniversityP.O. Box 2457, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud UniversityP.O. Box 2457, Riyadh, Saudi Arabia
| | - Hala E Abdel-Hamied
- Department of Pathology, Faculty of Medicine (Girls), Al-Azhar UniversityCairo, Egypt
| | - Adel R Abd-Allah
- Departments of Biochemistry and Pharmacology and Toxicology, College of Pharmacy (Boys section), Al-Azhar UniversityCairo, Egypt
| | - Ashok Kumar
- Vitiligo Research Chair, College of Medicine, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
24
|
Selamat W, Tay PLF, Baskaran Y, Manser E. The Cdc42 Effector Kinase PAK4 Localizes to Cell-Cell Junctions and Contributes to Establishing Cell Polarity. PLoS One 2015; 10:e0129634. [PMID: 26068882 PMCID: PMC4466050 DOI: 10.1371/journal.pone.0129634] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinase PAK4 is a Cdc42 effector whose role is not well understood; overexpression of PAK4 has been associated with some cancers, and there are reports that correlate kinase level with increased cell migration in vitro. Here we report that PAK4 is primarily associated with cell-cell junctions in all the cell lines we tested, and fails to accumulate at focal adhesions or at the leading edge of migrating cells. In U2OS osteosarcoma and MCF-7 breast cancer cell lines, PAK4 depletion did not affect collective cell migration, but affected cell polarization. By contrast, Cdc42 depletion (as reported by many studies) caused a strong defect in junctional assembly in multiple cells lines. We also report that the depletion of PAK4 protein or treatment of cells with the PAK4 inhibitor PF-3758309 can lead to defects in centrosome reorientation (polarization) after cell monolayer wounding. These experiments are consistent with PAK4 forming part of a conserved cell-cell junctional polarity Cdc42 complex. We also confirm β-catenin as a target for PAK4 in these cells. Treatment of cells with PF-3758309 caused inhibition of β-catenin Ser-675 phosphorylation, which is located predominantly at cell-cell junctions.
Collapse
Affiliation(s)
- Widyawilis Selamat
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei-Ling Felicia Tay
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yohendran Baskaran
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ed Manser
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
25
|
Watanabe T, Wang S, Kaibuchi K. IQGAPs as Key Regulators of Actin-cytoskeleton Dynamics. Cell Struct Funct 2015; 40:69-77. [PMID: 26051604 DOI: 10.1247/csf.15003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The actin-cytoskeleton plays a critical role in various biological processes, including cell migration, development, tissue remodeling, and memory formation. Both extracellular and intracellular signals regulate reorganization of the actin-cytoskeleton to modulate tissue architecture and cellular morphology in a spatiotemporal manner. Since the discovery that activation of Rho family GTPases induces actin-cytoskeleton reorganization, the mode of action of Rho family GTPases has been extensively studied and individual effectors have been characterized. The actin-binding protein IQGAP1 was identified as an effector of Rac and Cdc42 and is the founding member of the IQGAP family with two additional isoforms. The IQGAP family shows conserved domain organization, and each member displays a specific expression pattern in mammalian tissues. IQGAPs regulate the actin-cytoskeleton alone and with their binding partners, thereby controlling diverse cellular processes, such as cell migration and adhesion. Here, we introduce IQGAPs as an actin-cytoskeleton regulator.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine
| | | | | |
Collapse
|
26
|
Lian ATY, Hains PG, Sarcevic B, Robinson PJ, Chircop M. IQGAP1 is associated with nuclear envelope reformation and completion of abscission. Cell Cycle 2015; 14:2058-74. [PMID: 25928398 DOI: 10.1080/15384101.2015.1044168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The final stage of mitosis is cytokinesis, which results in 2 independent daughter cells. Cytokinesis has 2 phases: membrane ingression followed by membrane abscission. IQGAP1 is a scaffold protein that interacts with proteins implicated in mitosis, including F-actin, myosin and CaM. IQGAP1 in yeast recruits actin and myosin II filaments to the contractile ring for membrane ingression. In contrast, we show that mammalian IQGAP1 is not required for ingression, but coordinates nuclear pore complex (NPC) reassembly and completion of abscission. Depletion of IQGAP1 disrupts Nup98 and mAb414 nuclear envelope localization and delays abscission timing. IQGAP1 phosphorylation increases 15-fold upon mitotic entry at S86, S330 and T1434, with the latter site being targeted by CDK2/Cyclin A and CDK1/Cyclin A/B in vitro. Expressing the phospho-deficient mutant IQGAP1-S330A impairs NPC reassembly in cells undergoing abscission. Thus, mammalian IQGAP1 functions later in mitosis than its yeast counterpart to regulate nuclear pore assembly in a S330 phosphorylation-dependent manner during the abscission phase of cytokinesis.
Collapse
Affiliation(s)
- Audrey T Y Lian
- a Children's Medical Research Institute; The University of Sydney ; Westmead , New South Wales , Australia
| | | | | | | | | |
Collapse
|
27
|
Yamaoka M, Ishizaki T, Kimura T. Interplay between Rab27a effectors in pancreatic β-cells. World J Diabetes 2015; 6:508-516. [PMID: 25897360 PMCID: PMC4398906 DOI: 10.4239/wjd.v6.i3.508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
The small GTPase Rab27a is a member of the Rab family that is involved in membrane trafficking in various kinds of cells. Rab27a has GTP- and GDP-bound forms, and their interconversion regulates intracellular signaling pathways. Typically, only a GTP-bound GTPase binds its specific effectors with the resulting downstream signals controlling specific cellular functions. We previously identified novel Rab27a-interacting proteins. Surprisingly, some of these proteins interacted with GDP-bound Rab27a. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in the secretory process. In pancreatic β-cells, GTP-bound Rab27a regulates insulin secretion at the pre-exocytotic stages via its GTP-specific effectors such as Exophilin8/Slac2-c/MyRIP and Slp4/Granuphilin. Glucose stimulation causes insulin exocytosis. Glucose stimulation also converts Rab27a from its GTP- to its GDP-bound form. GDP-bound Rab27a interacts with GDP-specific effectors and controls endocytosis of the secretory membrane. Thus, Rab27a cycling between GTP- and GDP-bound forms synchronizes with the recycling of secretory membrane to re-use the membrane and keep the β-cell volume constant.
Collapse
|
28
|
RhoGTPases as key players in mammalian cell adaptation to microgravity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:747693. [PMID: 25649831 PMCID: PMC4310447 DOI: 10.1155/2015/747693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
Abstract
A growing number of studies are revealing that cells reorganize their cytoskeleton when exposed to conditions of microgravity. Most, if not all, of the structural changes observed on flown cells can be explained by modulation of RhoGTPases, which are mechanosensitive switches responsible for cytoskeletal dynamics control. This review identifies general principles defining cell sensitivity to gravitational stresses. We discuss what is known about changes in cell shape, nucleus, and focal adhesions and try to establish the relationship with specific RhoGTPase activities. We conclude by considering the potential relevance of live imaging of RhoGTPase activity or cytoskeletal structures in order to enhance our understanding of cell adaptation to microgravity-related conditions.
Collapse
|
29
|
Tanos BE, Perez Bay AE, Salvarezza S, Vivanco I, Mellinghoff I, Osman M, Sacks DB, Rodriguez-Boulan E. IQGAP1 controls tight junction formation through differential regulation of claudin recruitment. J Cell Sci 2015; 128:853-62. [PMID: 25588839 DOI: 10.1242/jcs.118703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IQGAP1 is a scaffolding protein previously implicated in adherens junction formation. However, its role in the establishment or maintenance of tight junctions (TJs) has not been explored. We hypothesized that IQGAP1 could regulate TJ formation by modulating the expression and/or localization of junctional proteins, and we systematically tested this hypothesis in the model Madin-Darby canine kidney (MDCK) cell line. We find that IQGAP1 silencing enhances a transient increase in transepithelial electrical resistance (TER) observed during the early stages of TJ formation (Cereijido et al., 1978). Quantitative microscopy and biochemical experiments suggest that this effect of IQGAP1 on TJ assembly is accounted for by reduced expression and TJ recruitment of claudin 2, and increased TJ recruitment of claudin 4. Furthermore, we show that IQGAP1 also regulates TJ formation through its interactor CDC42, because IQGAP1 knockdown increases the activity of the CDC42 effector JNK and dominant-negative CDC42 prevents the increase in TER caused by IQGAP1 silencing. Hence, we provide evidence that IQGAP1 modulates TJ formation by a twofold mechanism: (1) controlling the expression and recruitment of claudin 2 and recruitment of claudin 4 to the TJ, and (2) transient inhibition of the CDC42-JNK pathway.
Collapse
Affiliation(s)
- Barbara E Tanos
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Andres E Perez Bay
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Susana Salvarezza
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Igor Vivanco
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ingo Mellinghoff
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mahasin Osman
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Alpert School of Medicine, Brown University, Providence, RI 02912, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065, USA Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
30
|
Kumar AS, Bryan JN, Kumar SR. Bacterial quorum sensing molecule N-3-oxo-dodecanoyl-L-homoserine lactone causes direct cytotoxicity and reduced cell motility in human pancreatic carcinoma cells. PLoS One 2014; 9:e106480. [PMID: 25188245 PMCID: PMC4154711 DOI: 10.1371/journal.pone.0106480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
In spite of chemotherapeutic and surgical advances, pancreatic cancer continues to have a dismal prognosis. Metastasis due to tumor cell migration remains the most critical challenge in treating pancreatic cancer, and conventional chemotherapy is rarely curative. In the quest for more novel molecules to fight this disease, we tested the hypothesis that the Pseudomonas aeruginosa quorum sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone (O-DDHSL) would be cytotoxic to and reduce mobility of pancreatic carcinoma cells (Panc-1 and Aspc-1). Results showed a decrease in cell viability from apoptosis, diminished colony formation, and inhibition of migration of the evaluated pancreatic carcinoma cell lines. Also, cell viability decreased in the presence of O-DDHSL when cells were grown in matrigel basement membrane matrix. While messenger RNA for IQGAP-1 decreased in Panc-1 and HPDE cells upon exposure to O-DDHSL, no change was observed in Aspc-1 cells. Cofilin mRNA expression was found to be increased in both HPDE and Panc-1 cells with marginal decrease in Aspc-1 cells. RhoC, a Rho-family GTPase involved in cell motility, increased in the presence of O-DDHSL, suggesting a possible compensatory response to alteration in other migration associated genes. Our results indicate that O-DDHSL could be an effective biomolecule in eukaryotic systems with multimodal function for essential molecular targeting in pancreatic cancer.
Collapse
Affiliation(s)
- Ashwath S. Kumar
- Comparative Oncology and Epigenetics Laboratory, Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey N. Bryan
- Comparative Oncology and Epigenetics Laboratory, Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, United States of America
| | - Senthil R. Kumar
- Comparative Oncology and Epigenetics Laboratory, Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, United States of America
- Harry S. Truman Veterans Hospital, Columbia, Missouri, United States of America
| |
Collapse
|
31
|
Role of small GTPase protein Rac1 in cardiovascular diseases: development of new selective pharmacological inhibitors. J Cardiovasc Pharmacol 2014; 62:425-35. [PMID: 23921306 DOI: 10.1097/fjc.0b013e3182a18bcc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A pathway-based genome-wide association analysis has recently identified Rac1 as one of the biologically important gene in coronary heart diseases. The role of the small GTPase Rac1 in cardiac hypertrophy and atherosclerosis has also been documented in clinical studies with the HMG-CoA reductase inhibitors and in in vitro and in vivo settings using transgenic and knockout mice. Thus, Rac1 has emerged as a new pharmacological target for the treatment of cardiovascular diseases. The activation state of Rac1 depends on the release of guanosine diphosphate and the binding of guanosine triphosphate. This cycling is regulated by the guanine nucleotide exchange factors, as activators, and by the GTPase-activating proteins. Three categories of selective Rac1 inhibitors have been developed affecting different steps of this pathway: antagonists of Rac1-guanine nucleotide exchange factor interaction, allosteric inhibitors of nucleotide binding to Rac1, and antagonists of Rac1-mediated NADPH oxidase activity. These chemical compounds have shown to selectively inhibit Rac1 activation in cultured cell lines without affecting the homologous proteins RhoA and Cdc42. Moreover, pioneer studies have been conducted with Rac1 inhibitors in in vivo experimental models of cardiovascular diseases with encouraging results. The present review summarizes the current knowledge of the role of Rac1 in cardiovascular diseases and the pharmacological approaches that have been developed to selectively inhibit its function.
Collapse
|
32
|
Chan E, Saito A, Honda T, Di Guglielmo GM. The acetylenic tricyclic bis(cyano enone), TBE-31 inhibits non-small cell lung cancer cell migration through direct binding with actin. Cancer Prev Res (Phila) 2014; 7:727-37. [PMID: 24806663 DOI: 10.1158/1940-6207.capr-13-0403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The migratory and invasive potential of the epithelial-derived tumor cells depends on epithelial-to-mesenchymal transition (EMT) as well as the reorganization of the cell cytoskeleton. Here, we show that the tricyclic compound acetylenic tricyclic bis(cyano enone), TBE-31, directly binds to actin and inhibits linear and branched actin polymerization in vitro. Furthermore, we observed that TBE-31 inhibits stress fiber formation in fibroblasts as well as in non-small cell lung cancer cells during TGFβ-dependent EMT. Interestingly, TBE-31 does not interfere with TGFβ-dependent signaling or changes in E-cadherin and N-cadherin protein levels during EMT. Finally, we observed that TBE-31 inhibits fibroblast and non-small cell lung tumor cell migration with an IC50 of 1.0 and 2.5 μmol/L, respectively. Taken together, our results suggest that TBE-31 targets linear actin polymerization to alter cell morphology and inhibit cell migration.
Collapse
Affiliation(s)
- Eddie Chan
- Authors' Affiliations: Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Akira Saito
- Institute of Chemical Biology and Drug Discovery; and
| | - Tadashi Honda
- Institute of Chemical Biology and Drug Discovery; and Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Gianni M Di Guglielmo
- Authors' Affiliations: Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada;
| |
Collapse
|
33
|
Foroutannejad S, Rohner N, Reimer M, Kwon G, Schober JM. A novel role for IQGAP1 protein in cell motility through cell retraction. Biochem Biophys Res Commun 2014; 448:39-44. [PMID: 24747073 DOI: 10.1016/j.bbrc.2014.04.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
Abstract
IQGAP1 has emerged as a key component in the regulation of cytoskeleton dynamics during cell migration, maintenance of adherens junctions, microbial pathogenesis and intracellular trafficking. IQGAP1 is known to localize to the protruding edge of lamellipodia in a variety of cell types and interact with regulators of actin dynamics. Here, we provide evidence suggesting a novel role of IQGAP1 in cell motility through cell edge retraction. In some of the cell lines examined, IQGAP1 was markedly separated from WAVE localization suggesting IQGAP1 may localize to retracting edges. B16F10 mouse melanoma cells exhibited the most restricted separation in which the appearance of GFP-IQGAP1 correlated with cell edge retraction velocity and the disappearance of mCherry-Arp3. These results demonstrate that in some cell types IQGAP1 may function to promote cell retraction not lamellipodium edge protrusion. In addition, we examined co-localization of IQGAP1 with adhesion site markers, myosin IIA, calmodulin and IQGAP2. In areas rich in IQGAP1 there was decreased immunofluorescence staining of vinculin, paxillin and phosphorylated-tyrosine indicating adhesion site disassembly. Interestingly, calmodulin, but not myosin IIA or IQGAP2, co-localized with IQGAP1 in areas of cell retraction. Overall these results suggest a new role of IQGAP1, distinct form IQGAP2, in cell migration through up regulation of contractility and downregulation of adhesion sites potentially through calmodulin interaction.
Collapse
Affiliation(s)
- Sahar Foroutannejad
- Department of Pharmaceutical Sciences, Southern Illinois University School of Pharmacy, Edwardsville, IL 62026, USA
| | - Nathan Rohner
- Department of Pharmaceutical Sciences, Southern Illinois University School of Pharmacy, Edwardsville, IL 62026, USA
| | - Michael Reimer
- Department of Pharmaceutical Sciences, Southern Illinois University School of Pharmacy, Edwardsville, IL 62026, USA
| | - Guim Kwon
- Department of Pharmaceutical Sciences, Southern Illinois University School of Pharmacy, Edwardsville, IL 62026, USA
| | - Joseph M Schober
- Department of Pharmaceutical Sciences, Southern Illinois University School of Pharmacy, Edwardsville, IL 62026, USA.
| |
Collapse
|
34
|
Bañón-Rodríguez I, Gálvez-Santisteban M, Vergarajauregui S, Bosch M, Borreguero-Pascual A, Martín-Belmonte F. EGFR controls IQGAP basolateral membrane localization and mitotic spindle orientation during epithelial morphogenesis. EMBO J 2014; 33:129-45. [PMID: 24421325 DOI: 10.1002/embj.201385946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Establishing the correct orientation of the mitotic spindle is an essential step in epithelial cell division in order to ensure that epithelial tubules form correctly during organ development and regeneration. While recent findings have identified some of the molecular mechanisms that underlie spindle orientation, many aspects of this process remain poorly understood. Here, we have used the 3D-MDCK model system to demonstrate a key role for a newly identified protein complex formed by IQGAP1 and the epithelial growth factor receptor (EGFR) in controlling the orientation of the mitotic spindle. IQGAP1 is a scaffolding protein that regulates many cellular pathways, from cell-cell adhesion to microtubule organization, and its localization in the basolateral membrane ensures correct spindle orientation. Through its IQ motifs, IQGAP1 binds to EGFR, which is responsible for maintaining IQGAP1 in the basolateral membrane domain. Silencing IQGAP1, or disrupting the basolateral localization of either IQGAP1 or EGFR, results in a non-polarized distribution of NuMA, mitotic spindle misorientation and defects in single lumen formation.
Collapse
Affiliation(s)
- Inmaculada Bañón-Rodríguez
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Jiao ZY, Wu J, Wen B, Zhao WZ, Du XL. M3 muscarinic acetylcholine receptor dysfunction inhibits Rac1 activity and disrupts VE-cadherin/β-catenin and actin cytoskeleton interaction. Biochem Cell Biol 2014; 92:137-44. [PMID: 24697698 DOI: 10.1139/bcb-2013-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The objective was to investigate whether M3 muscarinic acetylcholine receptor (mAChR) dysfunction disrupts the linkage between the vascular endothelial (VE)-cadherin in the adherens junctional complex and the actin-based cytoskeleton, increasing vascular permeability in atherosclerosis. Western blotting revealed that a selective M3 receptor antagonist, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), and M3 receptor siRNA decrease VE-cadherin and β-catenin in Triton X-100-insoluble fractions, indicating that M3 receptor inhibition weakens the linkage between the VE-cadherin/β-catenin complex and the actin cytoskeleton. Co-immunoprecipitation assays showed that M3 receptor inhibition reduces Rac1 activity and the association of IQ motif-containing GTPase-activating protein 1 (IQGAP1) with Ras-related C3 botulinum toxin substrate 1 (Rac1), while increasing the interaction between IQGAP1 and β-catenin. Using IQGAP1 siRNA, we found that IQGAP1 is required for stable interaction between VE-cadherin/β-catenin and the actin cytoskeleton in quiescent endothelial cells; IQGAP1 siRNA augments the M3 receptor inhibition-induced dissociation between them. Moreover, S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, attenuates this disassociation and Rac1 activity inhibition. The M3 receptor facilitates interaction of the VE-cadherin-based adherens junctional complex and the actin-based cytoskeleton by maintaining Rac1 activity, which regulates the interaction between IQGAP1/Rac1 and IQGAP1/β-catenin, and may contribute to endothelial barrier function under physiological conditions.
Collapse
Affiliation(s)
- Zhou-Yang Jiao
- a Department of Cardiovascular Surgery, Xiehe Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | |
Collapse
|
36
|
Holm A, Vikström E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. FRONTIERS IN PLANT SCIENCE 2014; 5:309. [PMID: 25018766 PMCID: PMC4071818 DOI: 10.3389/fpls.2014.00309] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/10/2014] [Indexed: 05/10/2023]
Abstract
Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS) system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation, and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g., to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P. aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL). We focus on how this conversation changes the behavior and function of neutrophils, macrophages, and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria-host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future.
Collapse
Affiliation(s)
| | - Elena Vikström
- *Correspondence: Elena Vikström, Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping SE-58185, Sweden e-mail:
| |
Collapse
|
37
|
Abstract
Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site.
Collapse
|
38
|
Jacquemet G, Morgan MR, Byron A, Humphries JD, Choi CK, Chen CS, Caswell PT, Humphries MJ. Rac1 is deactivated at integrin activation sites through an IQGAP1-filamin-A-RacGAP1 pathway. J Cell Sci 2013; 126:4121-35. [PMID: 23843620 DOI: 10.1242/jcs.121988] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell migration makes a fundamental contribution to both normal physiology and disease pathogenesis. Integrin engagement with extracellular ligands spatially controls, via the cyclical activation and deactivation of the small GTPase Rac1, the dynamic membrane protrusion and cytoskeletal reorganization events that are required for directional migration. Although the pathways that control integrin-mediated Rac1 activation are reasonably well defined, the mechanisms that are responsible for switching off activity are poorly understood. Here, proteomic analysis of activated integrin-associated complexes suggests filamin-A and IQ-motif-containing GTPase-activating protein 1 (IQGAP1) as candidates that link β1 integrin to Rac1. siRNA-mediated knockdown of either filamin-A or IQGAP1 induced high, dysregulated Rac1 activity during cell spreading on fibronectin. Using immunoprecipitation and immunocytochemistry, filamin-A and IQGAP1 were shown to be part of a complex that is recruited to active β1 integrin. Mass spectrometric analysis of individual filamin-A, IQGAP1 and Rac1 pull-downs and biochemical analysis, identified RacGAP1 as a novel IQGAP1 binding partner. Further immunoprecipitation and immunocytochemistry analyses demonstrated that RacGAP1 is recruited to IQGAP1 and active β1 integrin, and that suppression of RacGAP1 expression triggered elevated Rac1 activity during spreading on fibronectin. Consistent with these findings, reduced expression of filamin-A, IQGAP1 or RacGAP1 triggered unconstrained membrane protrusion and disrupted directional cell migration on fibrillar extracellular matrices. These findings suggest a model whereby integrin engagement, followed by filamin-A, IQGAP1 and RacGAP1 recruitment, deactivates Rac1 to constrain its activity spatially and thereby coordinate directional cell migration.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Karlsson T, Turkina MV, Yakymenko O, Magnusson KE, Vikström E. The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration. PLoS Pathog 2012; 8:e1002953. [PMID: 23071436 PMCID: PMC3469656 DOI: 10.1371/journal.ppat.1002953] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 08/23/2012] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C12-HSL with a sensor bioassay. Moreover, 3O-C12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P.aeruginosa 3O-C12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial – human cell communication. The human pathogen Pseudomonas aeruginosa and other bacteria communicate with each other using quorum sensing (QS). This is important for their growth, virulence, motility and the formation of biofilms. Furthermore, eukaryotic cells “listen and respond” to QS signaling, but the exact mechanisms and receptors on mammalian cells have not been identified. We have previously shown that N-acylhomoserine lactones (AHL) alter epithelial barrier functions and increase chemotaxis in human neutrophils. We show here that 3O-C12-HSL modulates the migration of epithelial cells in a dose- and time-dependent manner. Using newly designed and validated biotin- and fluorescein-based 3O-C12-HSL probes we identified the IQ-motif-containing GTPase-activating protein IQGAP1 as a human target of 3O-C12-HSL. We propose that the interaction between IQGAP1 and 3O-C12-HSL provides a novel mechanism for its mode of action on eukaryotic cells, and by affecting the distribution of IQGAP1 and phosphorylation of Rac1 and Cdc42, upstream effectors of filamentous actin remodeling, also cell migration. We suggest that recognition of IQGAP1 by 3O-C12-HSL is a very early event in the communication between bacteria and human epithelial cells.
Collapse
Affiliation(s)
- Thommie Karlsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Maria V. Turkina
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olena Yakymenko
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
40
|
Casteel DE, Turner S, Schwappacher R, Rangaswami H, Su-Yuo J, Zhuang S, Boss GR, Pilz RB. Rho isoform-specific interaction with IQGAP1 promotes breast cancer cell proliferation and migration. J Biol Chem 2012; 287:38367-78. [PMID: 22992742 DOI: 10.1074/jbc.m112.377499] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We performed a proteomics screen for Rho isoform-specific binding proteins to clarify the tumor-promoting effects of RhoA and C that contrast with the tumor-suppressive effects of RhoB. We found that the IQ-motif-containing GTPase-activating protein IQGAP1 interacts directly with GTP-bound, prenylated RhoA and RhoC, but not with RhoB. Co-immunoprecipitation of IQGAP1 with endogenous RhoA/C was enhanced when RhoA/C were activated by epidermal growth factor (EGF) or transfection of a constitutively active guanine nucleotide exchange factor (GEF). Overexpression of IQGAP1 increased GTP-loading of RhoA/C, while siRNA-mediated depletion of IQGAP1 prevented endogenous RhoA/C activation by growth factors. IQGAP1 knockdown also reduced the amount of GTP bound to GTPase-deficient RhoA/C mutants, suggesting that IQGAP enhances Rho activation by GEF(s) or stabilizes Rho-GTP. IQGAP1 depletion in MDA-MB-231 breast cancer cells blocked EGF- and RhoA-induced stimulation of DNA synthesis. Infecting cells with adenovirus encoding constitutively active RhoA(L63) and measuring absolute amounts of RhoA-GTP in infected cells demonstrated that the lack of RhoA(L63)-induced DNA synthesis in IQGAP1-depleted cells was not due to reduced GTP-bound RhoA. These data suggested that IQGAP1 functions downstream of RhoA. Overexpression of IQGAP1 in MDA-MB-231 cells increased DNA synthesis irrespective of siRNA-mediated RhoA knockdown. Breast cancer cell motility was increased by expressing a constitutively-active RhoC(V14) mutant or overexpressing IQGAP1. EGF- or RhoC-induced migration required IQGAP1, but IQGAP1-stimulated migration independently of RhoC, placing IQGAP1 downstream of RhoC. We conclude that IQGAP1 acts both upstream of RhoA/C, regulating their activation state, and downstream of RhoA/C, mediating their effects on breast cancer cell proliferation and migration, respectively.
Collapse
Affiliation(s)
- Darren E Casteel
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kozlova I, Ruusala A, Voytyuk O, Skandalis SS, Heldin P. IQGAP1 regulates hyaluronan-mediated fibroblast motility and proliferation. Cell Signal 2012; 24:1856-62. [DOI: 10.1016/j.cellsig.2012.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
42
|
Zhang L, Li X, Zhang L, Wang B, Zhang T, Ye J. Chlamydophila (Chlamydia) pneumoniae infection promotes vascular smooth muscle cell adhesion and migration through IQ domain GTPase-activating protein 1. Microb Pathog 2012; 53:207-13. [PMID: 22835851 DOI: 10.1016/j.micpath.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 01/16/2023]
Abstract
The mechanisms for Chlamydophila (Chlamydia) pneumoniae (C. pneumoniae) infection-induced atherosclerosis are still unclear. Cell adhesion has important roles in vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis. However, it is still unknown whether IQ domain GTPase-activating protein 1 (IQGAP1) plays pivotal roles in C. pneumoniae infection-induced the adhesion and migration of rat primary VSMCs. Accordingly, in this study, we demonstrated that rat primary VSMC adhesion (P < 0.001) and migration (P < 0.01) measured by cell adhesion assay and Transwell assay, respectively, were significantly enhanced after C. pneumoniae infection. Reverse transcription-polymerase chain reaction analysis revealed that the mRNA expression levels of IQGAP1 in the infected rat primary VSMCs were found to increase gradually to reach a peak and then decrease gradually to a level similar to the control. We further showed that the increases in rat primary VSMC adhesion to Matrigel (P < 0.001) and migration (P < 0.01) caused by C. pneumoniae infection were markedly inhibited after IQGAP1 knockdown by a pool of four short hairpin RNAs. Taken together, our results suggest that C. pneumoniae infection may promote the adhesion and migration of VSMCs possibly by upregulating the IQGAP1 expression.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | | | | | | | | | | |
Collapse
|
43
|
Huang Z, Kim J, Lacruz RS, Bringas P, Glogauer M, Bromage TG, Kaartinen VM, Snead ML. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. Eur J Oral Sci 2012; 119 Suppl 1:168-76. [PMID: 22243243 DOI: 10.1111/j.1600-0722.2011.00904.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (Rac1) gene encodes a 21-kDa GTP-binding protein belonging to the RAS superfamily. RAS members play important roles in controlling focal adhesion complex formation and cytoskeleton contraction, activities with consequences for cell growth, adhesion, migration, and differentiation. To examine the role(s) played by RAC1 protein in cell-matrix interactions and enamel matrix biomineralization, we used the Cre/loxP binary recombination system to characterize the expression of enamel matrix proteins and enamel formation in Rac1 knockout mice (Rac1(-/-)). Mating between mice bearing the floxed Rac1 allele and mice bearing a cytokeratin 14-Cre transgene generated mice in which Rac1 was absent from epithelial organs. Enamel of the Rac1 conditional knockout mouse was characterized by light microscopy, backscattered electron imaging in the scanning electron microscope, microcomputed tomography, and histochemistry. Enamel matrix protein expression was analyzed by western blotting. Major findings showed that the Tomes' processes of Rac1(-/-) ameloblasts lose contact with the forming enamel matrix in unerupted teeth, the amounts of amelogenin and ameloblastin are reduced in Rac1(-/-) ameloblasts, and after eruption, the enamel from Rac1(-/-) mice displays severe structural defects with a complete loss of enamel. These results support an essential role for RAC1 in the dental epithelium involving cell-matrix interactions and matrix biomineralization.
Collapse
Affiliation(s)
- Zhan Huang
- The Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Malarkannan S, Awasthi A, Rajasekaran K, Kumar P, Schuldt KM, Bartoszek A, Manoharan N, Goldner NK, Umhoefer CM, Thakar MS. IQGAP1: a regulator of intracellular spacetime relativity. THE JOURNAL OF IMMUNOLOGY 2012; 188:2057-63. [PMID: 22345702 DOI: 10.4049/jimmunol.1102439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rigothier C, Auguste P, Welsh GI, Lepreux S, Deminière C, Mathieson PW, Saleem MA, Ripoche J, Combe C. IQGAP1 interacts with components of the slit diaphragm complex in podocytes and is involved in podocyte migration and permeability in vitro. PLoS One 2012; 7:e37695. [PMID: 22662192 PMCID: PMC3360763 DOI: 10.1371/journal.pone.0037695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 04/24/2012] [Indexed: 12/18/2022] Open
Abstract
IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties.
Collapse
|
46
|
Regulation of adherens junctions by Rho GTPases and p120-catenin. Arch Biochem Biophys 2012; 524:48-55. [PMID: 22583808 DOI: 10.1016/j.abb.2012.04.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 01/05/2023]
Abstract
The molecular mechanisms leading to tumor progression and acquisition of a metastatic phenotype are highly complex and only partially understood. The spatiotemporal regulation of E-cadherin-mediated adherens junctions is essential for normal epithelia function and tissue integrity. Perturbation of the E-cadherin complex assembly is a key event in epithelial-mesenchymal transition and is directed by a huge number of mechanisms that differ greatly with regard to cell types and tissues. The reduction in intercellular adhesion interferes with tissue integrity and allows cancer cells to disseminate from the primary tumor thereby initiating cancer metastasis. In the present review we will summarize the current findings about the influence of Rho GTPases on the formation and maintenance of adherens junction and will then proceed to discuss the involvement of p120-catenin on cell-cell adhesion and tumor cell migration.
Collapse
|
47
|
Tekletsadik YK, Sonn R, Osman MA. A conserved role of IQGAP1 in regulating TOR complex 1. J Cell Sci 2012; 125:2041-52. [PMID: 22328503 DOI: 10.1242/jcs.098947] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Defining the mechanisms that control cell growth and division is crucial to understanding cell homeostasis, which impacts human diseases such as cancer and diabetes. IQGAP1, a widely conserved effector and/or regulator of the GTPase CDC42, is a putative oncoprotein that controls cell proliferation; however, its mechanism in tumorigenesis is unknown. The mechanistic target of rapamycin (mTOR) pathway, the center of cell growth control, is commonly activated in human cancers, but has proved to be an ineffective clinical target because of an incomplete understanding of its mechanisms in cell growth inhibition. Using complementary studies in yeast and mammalian cells, we examined a potential role for IQGAP1 in regulating the negative feedback loop (NFL) of mTOR complex 1 (mTORC1) that controls cell growth. Two-hybrid screens identified the yeast TORC1-specific subunit Tco89p as an Iqg1p-binding partner, sharing roles in rapamycin-sensitive growth, axial-bud-site selection and cytokinesis, thus coupling cell growth and division. Mammalian IQGAP1 binds mTORC1 and Akt1 and in response to epidermal growth factor (EGF), cells expressing the mTORC1-Akt1-binding region (IQGAP1(IR-WW)) contained attenuated phosphorylated ERK1/2 (ERK1/2-P) activity and inactive glycogen synthase kinase 3α/β (GSK3α/β), which control apoptosis. Interestingly, these cells displayed a high level of Akt1 S473-P, but an attenuated level of the mTORC1-dependent kinase S6K1 T389-P and induced mTORC1-Akt1- and EGF-dependent transformed phenotypes. Moreover, IQGAP1 appears to influence cell abscission and its activity is elevated in carcinoma cell lines. These findings support the hypothesis that IQGAP1 acts upstream on the mTORC1-S6K1→Akt1 NFL and downstream of it, to couple cell growth and division, and thus like a rheostat, regulates cell homeostasis, dysregulation of which leads to tumorigenesis or other diseases. These results could have implications for the development of the next generation of anticancer therapeutics.
Collapse
Affiliation(s)
- Yemsrach K Tekletsadik
- Institute for Biotechnology and Life Sciences, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
48
|
David S, Ghosh CC, Mukherjee A, Parikh SM. Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler Thromb Vasc Biol 2012; 31:2643-52. [PMID: 21885850 DOI: 10.1161/atvbaha.111.233189] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE IQ domain GTPase-activating protein 1 (IQGAP1) contributes to cytoskeletal network regulation in epithelial cells by its scaffolding properties and by binding the Rho GTPase Rac1 to maintain its activity. The functions of IQGAP1 in endothelial cells beyond angiogenesis remain unclear. We hypothesized that IQGAP1 participates in the regulation of endothelial barrier function. METHODS AND RESULTS Silencing IQGAP1 in human microvascular endothelial cells resulted in a disruption of adherens junctions, formation of interendothelial gaps, and a reduction in barrier function. Furthermore, silencing of IQGAP1 abrogated the barrier enhancement effect of angiopoietin-1 (Angpt-1) and abolished the barrier-stabilizing effect of Angpt-1 on thrombin-stimulated cells. Coimmunoprecipitation detected binding of endogenous IQGAP1 with Rac1 at baseline that was stronger when Rac1 was activated and weaker when it was deactivated. Measurement of GTP-bound Rac1 revealed that Angpt-1 failed to activate Rac1 not only if IQGAP1 was silenced but also if cells were transfected with a mutant disabled in Rac1 binding (T1050AX2). Furthermore, a dominant-active Rac1 was sufficient to completely reverse the morphological and functional changes induced by reduction in IQGAP1. CONCLUSION These experiments are the first demonstration of IQGAP1 regulating barrier function in any cell type. Further, our data show that Angpt-1 requires IQGAP1 as an indispensable activator of Rac1.
Collapse
Affiliation(s)
- Sascha David
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
49
|
Saso J, Shields SK, Zuo Y, Chakraborty C. Role of Rho GTPases in Human Trophoblast Migration Induced by IGFBP11. Biol Reprod 2012; 86:1-9. [DOI: 10.1095/biolreprod.111.094698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
50
|
Sahoo PK, Murawala P, Sawale PT, Sahoo MR, Tripathi MM, Gaikwad SR, Seshadri V, Joseph J. Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism. Biol Open 2011; 1:109-19. [PMID: 23213403 PMCID: PMC3507204 DOI: 10.1242/bio.2011023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells often respond to diverse environmental stresses by inducing stress granules (SGs) as an adaptive mechanism. SGs are generally assembled as a result of aggregation of mRNAs stalled in a translational pre-initiation complex, mediated by a set of RNA-binding proteins such as G3BP and TIA-1. SGs may serve as triage centres for storage, translation re-initiation or degradation of specific mRNAs. However, the mechanism involved in the modulation of their assembly/disassembly is unclear. Here we report that Wnt signalling negatively regulates SG assembly through Dishevelled (Dvl), a cytoplasmic Wnt effector. Overexpression of Dvl2, an isoform of Dvl, leads to impairment of SG assembly through a DEP domain dependent mechanism. Intriguingly, the Dvl2 mutant K446M, which corresponds to an analogous mutation in Drosophila Dishevelled DEP domain (dsh1) that results in defective PCP pathway, fails to antagonize SG assembly. Furthermore, we show that Dvl2 exerts the antagonistic effect on SG assembly through a mechanism involving Rac1-mediated inhibition of RhoA. Dvl2 interacts with G3BP, a downstream component of Ras signalling involved in SG assembly, and functional analysis suggests a model wherein the Dvl-Rac1-RhoA axis regulates G3BP's SG-nucleating activity. Collectively, these results define an antagonistic effect of Wnt signalling on SG assembly, and reveal a novel role for Wnt/Dvl pathway in the modulation of mRNA functions.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- National Centre for Cell Science , Ganeshkhind, Pune 411 007 , India
| | | | | | | | | | | | | | | |
Collapse
|