1
|
Coleman CE, Landin C, Neuer A, Sayegh FM, Marshall PA. Calmodulin kinase 2 genetically interacts with Rch1p to negatively regulate calcium import into Saccharomyces cerevisiae after extracellular calcium pulse. Arch Microbiol 2022; 204:519. [DOI: 10.1007/s00203-022-03095-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
|
2
|
Pleiotropic Effects of the P5-Type ATPase SpfA on Stress Response Networks Contribute to Virulence in the Pathogenic Mold Aspergillus fumigatus. mBio 2021; 12:e0273521. [PMID: 34663092 PMCID: PMC8524344 DOI: 10.1128/mbio.02735-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a human-pathogenic mold that extracts nutrients from the environment or from host tissues by secreting hydrolytic enzymes. The ability of A. fumigatus to adjust secretion levels in proportion to demand relies on the assistance of the unfolded protein response (UPR), an adaptive stress response pathway that regulates the unique protein-folding environment of the endoplasmic reticulum (ER). The P5-type ATPase Spf1 has recently been implicated in a novel mechanism of ER homeostasis that involves correcting errors in ER-membrane protein targeting. However, the contribution of this protein to the biology of A. fumigatus is unknown. Here, we employed a gene knockout and RNA sequencing strategy to determine the functional role of the A. fumigatus gene coding for the orthologous P5 ATPase SpfA. The data reveal that the spfA gene is induced by ER stress in a UPR-dependent manner. In the absence of spfA, the A. fumigatus transcriptome shifts toward a profile of altered redox and lipid balance, in addition to a signature of ER stress that includes srcA, encoding a second P-type ATPase in the ER. A ΔspfA deletion mutant showed increased sensitivity to ER stress, oxidative stress, and antifungal drugs that target the cell wall or plasma membrane. The combined loss of spfA and srcA exacerbated these phenotypes and attenuated virulence in two animal infection models. These findings demonstrate that the ER-resident ATPases SpfA and SrcA act jointly to support diverse adaptive functions of the ER that are necessary for fitness in the host environment. IMPORTANCE The fungal UPR is an adaptive signaling pathway in the ER that buffers fluctuations in ER stress but also serves as a virulence regulatory hub in species of pathogenic fungi that rely on secretory pathway homeostasis for pathogenicity. This study demonstrates that the gene encoding the ER-localized P5-type ATPase SpfA is a downstream target of the UPR in the pathogenic mold A. fumigatus and that it works together with a second ER-localized P-type ATPase, SrcA, to support ER homeostasis, oxidative stress resistance, susceptibility to antifungal drugs, and virulence of A. fumigatus.
Collapse
|
3
|
CgEnd3 Regulates Endocytosis, Appressorium Formation, and Virulence in the Poplar Anthracnose Fungus Colletotrichum gloeosporioides. Int J Mol Sci 2021; 22:ijms22084029. [PMID: 33919762 PMCID: PMC8103510 DOI: 10.3390/ijms22084029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023] Open
Abstract
The hemibiotrophic ascomycete fungus Colletotrichum gloeosporioides is the causal agent of anthracnose on numerous plants, and it causes considerable economic losses worldwide. Endocytosis is an essential cellular process in eukaryotic cells, but its roles in C. gloeosporioides remain unknown. In our study, we identified an endocytosis-related protein, CgEnd3, and knocked it out via polyethylene glycol (PEG)-mediated protoplast transformation. The lack of CgEnd3 resulted in severe defects in endocytosis. C. gloeosporioides infects its host through a specialized structure called appressorium, and ΔCgEnd3 showed deficient appressorium formation, melanization, turgor pressure accumulation, penetration ability of appressorium, cellophane membrane penetration, and pathogenicity. CgEnd3 also affected oxidant adaptation and the expression of core effectors during the early stage of infection. CgEnd3 contains one EF hand domain and four calcium ion-binding sites, and it is involved in calcium signaling. A lack of CgEnd3 changed the responses to cell-wall integrity agents and fungicide fludioxonil. However, CgEnd3 regulated appressorium formation and endocytosis in a calcium signaling-independent manner. Taken together, these results demonstrate that CgEnd3 plays pleiotropic roles in endocytosis, calcium signaling, cell-wall integrity, appressorium formation, penetration, and pathogenicity in C. gloeosporioides, and it suggests that CgEnd3 or endocytosis-related genes function as promising antifungal targets.
Collapse
|
4
|
Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca 2+-ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of Aspergillus fumigatus. mBio 2020; 11:mBio.01060-20. [PMID: 32487759 PMCID: PMC7267887 DOI: 10.1128/mbio.01060-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many species of pathogenic fungi deploy the unfolded protein response (UPR) to expand the folding capacity of the endoplasmic reticulum (ER) in proportion to the demand for virulence-related proteins that traffic through the secretory pathway. Although Ca2+ plays a pivotal role in ER function, the mechanism by which transcriptional upregulation of the protein folding machinery is coordinated with Ca2+ homeostasis is incompletely understood. In this study, we investigated the link between the UPR and genes encoding P-type Ca2+-ATPases in the human-pathogenic mold Aspergillus fumigatus We demonstrate that acute ER stress increases transcription of the srcA gene, encoding a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family, as well as that of pmrA, encoding a secretory pathway Ca2+-ATPase (SPCA) in the Golgi membrane. Loss of the UPR transcription factor HacA prevented the induction of srcA and pmrA transcription during ER stress, defining these ER/Golgi Ca2+ pumps as novel downstream targets of this pathway. While deletion of srcA alone caused no major deficiencies, a ΔsrcA/ΔpmrA mutant displayed a severe polarity defect, was hypersensitive to ER stress, and showed attenuated virulence. In addition, cell wall analyses revealed a striking reduction in mannose levels in the absence of both Ca2+ pumps. The ΔhacA mutant was hypersensitive to agents that block calcineurin-dependent signaling, consistent with a functional coupling between the UPR and Ca2+ homeostasis. Together, these findings demonstrate that the UPR integrates the need for increased levels of chaperone and folding enzymes with an influx of Ca2+ into the secretory pathway to support fungal growth, stress adaptation, and pathogenicity.IMPORTANCE The UPR is an intracellular signal transduction pathway that maintains homeostasis of the ER. The pathway is also tightly linked to the expression of virulence-related traits in diverse species of human-pathogenic and plant-pathogenic fungal species, including the predominant mold pathogen infecting humans, Aspergillus fumigatus Despite advances in the understanding of UPR signaling, the linkages and networks that are governed by this pathway are not well defined. In this study, we revealed that the UPR is a major driving force for stimulating Ca2+ influx at the ER and Golgi membranes and that the coupling between the UPR and Ca2+ import is important for virulence, cell wall biosynthesis, and resistance to antifungal compounds that inhibit Ca2+ signaling.
Collapse
|
5
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
Sharma M, Dwivedi D. A CRACker of an adaptor connects dynein-mediated transport to calcium signaling. J Cell Biol 2019; 218:1429-1431. [PMID: 31010854 PMCID: PMC6504887 DOI: 10.1083/jcb.201904069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many different adaptor proteins activate the processivity of dynein-dynactin complexes and determine the specific cargo for retrograde transport by binding cargo receptors such as Rab GTP-binding (G) proteins. In this issue, Wang et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201806097) identify two GTPases that can function directly as dynein adaptors during endocytosis and are regulated by calcium.
Collapse
Affiliation(s)
- Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
7
|
Zwetsloot AJ, Tut G, Straube A. Measuring microtubule dynamics. Essays Biochem 2018; 62:725-735. [PMID: 30287587 PMCID: PMC6281472 DOI: 10.1042/ebc20180035] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
Microtubules are key players in cellular self-organization, acting as structural scaffolds, cellular highways, force generators and signalling platforms. Microtubules are polar filaments that undergo dynamic instability, i.e. transition between phases of growth and shrinkage. This allows microtubules to explore the inner space of the cell, generate pushing and pulling forces and remodel themselves into arrays with different geometry and function such as the mitotic spindle. To do this, eukaryotic cells employ an arsenal of regulatory proteins to control microtubule dynamics spatially and temporally. Plants and microorganisms have developed secondary metabolites that perturb microtubule dynamics, many of which are in active use as cancer chemotherapeutics and anti-inflammatory drugs. Here, we summarize the methods used to visualize microtubules and to measure the parameters of dynamic instability to study both microtubule regulatory proteins and the action of small molecules interfering with microtubule assembly and/or disassembly.
Collapse
Affiliation(s)
- Alexander James Zwetsloot
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, U.K
- MRC Doctoral Training Partnership, University of Warwick, Coventry, CV4 7AL, U.K
| | - Gokhan Tut
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, U.K
- MRC Doctoral Training Partnership, University of Warwick, Coventry, CV4 7AL, U.K
| | - Anne Straube
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, U.K.
- Division of Biomedical Sciences, Warwick Medical School, Coventry, CV4 7AL, U.K
| |
Collapse
|
8
|
Chen JT, Wei L, Chen TL, Huang CJ, Chen RM. Regulation of cytochrome P450 gene expression by ketamine: a review. Expert Opin Drug Metab Toxicol 2018; 14:709-720. [PMID: 29888644 DOI: 10.1080/17425255.2018.1487397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although used as an anesthetic drug for decades, ketamine appears to have garnered renewed interest due to its potential therapeutic uses in pain therapy, neurology, and psychiatry. Ketamine undergoes extensive oxidative metabolism by cytochrome P450 (CYP) enzymes. Considerable efforts have been expended to elucidate the ketamine-induced regulation of CYP gene expression. The safety profile of chronic ketamine administration is still unclear. Understanding how ketamine regulates CYP gene expression is clinically meaningful. Areas covered: In this article, the authors provide a brief review of clinical applications of ketamine and its metabolism by CYP enzymes. We discuss the effects of ketamine on the regulation of CYP gene expression, exploring aspects of cytoskeletal remodeling, mitochondrial functions, and calcium homeostasis. Expert opinion: Ketamine may inhibit CYP gene expression through inhibiting calcium signaling, decreasing ATP levels, producing excessive reactive oxygen species, and subsequently perturbing cytoskeletal dynamics. Further research is still needed to avoid possible ketamine-drug interactions during long-term use in the clinic.
Collapse
Affiliation(s)
- Jui-Tai Chen
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Li Wei
- c Department of Neurosurgery, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ta-Liang Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan
| | - Chun-Jen Huang
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ruei-Ming Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan.,e Graduate Institute of Medical Sciences, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,f Cellular Physiology and Molecular Image Research Center, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| |
Collapse
|
9
|
Gicking AM, Swentowsky KW, Dawe RK, Qiu W. Functional diversification of the kinesin‐14 family in land plants. FEBS Lett 2018; 592:1918-1928. [DOI: 10.1002/1873-3468.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - R. Kelly Dawe
- Department of Plant Biology University of Georgia Athens GA USA
- Department of Genetics University of Georgia Athens GA USA
| | - Weihong Qiu
- Department of Physics Oregon State University Corvallis OR USA
| |
Collapse
|
10
|
Liu JY, Chang MC, Meng JL, Feng CP, Wang Y. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3716-3725. [PMID: 29584419 DOI: 10.1021/acs.jafc.8b00383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In some industrial processes, cold and light stresses are recognized as two important environmental triggers for the transformation of mycelia into fruit-bodies via intermediate primordia in Flammulina velutipes cultivation. To gain insights into the mechanism of regulation of F. velutipes mycelia in response to cold and light stress, proteins expressed abundantly and characteristically at particular stress states were investigated by using the isobaric tags for the relative and absolute quantitation labeling technique. Among the 1046 nonredundant proteins identified with a high degree of confidence, 264 proteins, which were detected as differentially expressed proteins, were associated with 176 specific KEGG pathways. In-depth data analysis revealed that the regulatory network underlying the cold and light response mechanisms of F. velutipes mycelia was complex and multifaceted, as it included varied functions such as rapid energy supply, the biosynthesis of lysine, phenylalanine, tyrosine, and γ-aminobutyric acid, the calcium signal transduction process, dynein-dependent actin and microtubule cytoskeleton formation, autolysis, oxidative stress adaptation, pigment secretion, tissue and organ morphogenesis, and other interesting stress-related processes. Insights into the proteins might shed light on an intuitive understanding of the cold and light stress response mechanism underlying the fruiting processes of F. velutipes. Furthermore, the data might also provide further insights into the stress response mechanism of macro-fungi and valuable information for scientific improvement of some mushroom cultivation techniques in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Ming-Chang Chang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Jun-Long Meng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Cui-Ping Feng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Yu Wang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
| |
Collapse
|
11
|
Xiang X. Nuclear movement in fungi. Semin Cell Dev Biol 2017; 82:3-16. [PMID: 29241689 DOI: 10.1016/j.semcdb.2017.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
12
|
Wang J, Zhu XG, Ying SH, Feng MG. Differential Roles for Six P-Type Calcium ATPases in Sustaining Intracellular Ca 2+ Homeostasis, Asexual Cycle and Environmental Fitness of Beauveria bassiana. Sci Rep 2017; 7:1420. [PMID: 28469160 PMCID: PMC5431182 DOI: 10.1038/s41598-017-01570-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
A global insight into the roles of multiple P-type calcium ATPase (CA) pumps in sustaining the life of a filamentous fungal pathogen is lacking. Here we elucidated the functions of five CA pumps (Eca1, Spf1 and PmcA/B/C) following previous characterization of Pmr1 in Beauveria bassiana, a fungal insect pathogen. The fungal CA pumps interacted at transcriptional level, at which singular deletions of five CA genes depressed eca1 expression by 76–98% and deletion of spf1 resulted in drastic upregulation of four CA genes by 36–50-fold. Intracellular Ca2+ concentration increased differentially in most deletion mutants exposed to the stresses of Ca2+, EDTA chelator, and/or endoplasmic reticulum and calcineurin inhibitors, accompanied with their changed sensitivities to not only the mentioned agents but also Fe2+, Cu2+ and Zn2+. Liquid culture acidification was delayed in the Δspf1, Δpmr1 and ΔpmcA mutants, coinciding well with altered levels of their extracellular lactic and oxalic acids. Moreover, all deletion mutants showed differential defects in conidial germination, vegetative growth, conidiation capacity, antioxidant activity, cell wall integrity, conidial UV-B resistance and/or virulence. Our results provide the first global insight into differential roles for six CA pumps in sustaining intracellular Ca2+ level, asexual cycle and environmental fitness of B. bassiana.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
13
|
Guimaraes SC, Schuster M, Bielska E, Dagdas G, Kilaru S, Meadows BRA, Schrader M, Steinberg G. Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes. J Cell Biol 2015; 211:945-54. [PMID: 26620910 PMCID: PMC4674278 DOI: 10.1083/jcb.201505086] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023] Open
Abstract
Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell.
Collapse
Affiliation(s)
| | - Martin Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, England, UK
| | - Ewa Bielska
- Biosciences, University of Exeter, Exeter EX4 4QD, England, UK
| | - Gulay Dagdas
- Biosciences, University of Exeter, Exeter EX4 4QD, England, UK
| | - Sreedhar Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, England, UK
| | - Ben R A Meadows
- Biosciences, University of Exeter, Exeter EX4 4QD, England, UK
| | | | - Gero Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, England, UK
| |
Collapse
|
14
|
Dettmann A, Heilig Y, Ludwig S, Schmitt K, Illgen J, Fleißner A, Valerius O, Seiler S. HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Mol Microbiol 2013; 90:796-812. [PMID: 24028079 DOI: 10.1111/mmi.12399] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
Intercellular communication and somatic cell fusion are important for fungal colony establishment, multicellular differentiation and have been associated with host colonization and virulence of pathogenic species. By a combination of genetic, biochemical and live cell imaging techniques, we characterized the Neurospora crassa STRIPAK complex that is essential for self-signalling and consists of the six proteins HAM-2/STRIP, HAM-3/striatin, HAM-4/SLMAP, MOB-3/phocein, PPG-1/PP2A-C and PP2A-A. We describe that the core STRIPAK components HAM-2 and HAM-3 are central for the assembly of the complex at the nuclear envelope, while the phosphatase PPG-1 only transiently associates with this central subcomplex. Our data connect the STRIPAK complex with two MAP kinase pathways: (i) nuclear accumulation of the cell wall integrity MAP kinase MAK-1 depends on the functional integrity of the STRIPAK complex at the nuclear envelope, and (ii) phosphorylation of MOB-3 by the MAP kinase MAK-2 impacts the nuclear accumulation of MAK-1. In summary, these data support a model, in which MAK-2-dependent phosphorylation of MOB-3 is part of a MAK-1 import mechanism. Although self-communication remained intact in the absence of nuclear MAK-1 accumulation, supporting the presence of multiple mechanisms that co-ordinate robust intercellular communication, proper fruiting body morphology was dependent on the MAK-2-phosphorylated N-terminus of MOB-3.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Biology II - Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu Y, Gianinazzi-Pearson V, Arnould C, Wipf D, Zhao B, van Tuinen D. Fungal genes related to calcium homeostasis and signalling are upregulated in symbiotic arbuscular mycorrhiza interactions. Fungal Biol 2012; 117:22-31. [PMID: 23332830 DOI: 10.1016/j.funbio.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 12/25/2022]
Abstract
Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca(2+) in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca(2+)-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-type Medicago truncatula (line J5) compared to the mycorrhiza-defective mutant dmi3/Mtsym13. Symbiotic fungal activity was monitored using stearoyl-CoA desaturase and phosphate transporter genes. Laser microdissection based-mapping of fungal gene expression in mycorrhizal root tissues indicated that the Ca(2+)-related genes were differentially upregulated in arbuscules and/or in intercellular hyphae. The spatio-temporal variations in gene expression suggest that the encoded proteins may have different functions in fungal development or function during symbiosis development. Full-length cDNA obtained for two genes with interesting expression profiles confirmed a close similarity with an endoplasmic reticulum P-type ATPase and a Vcx1-like vacuolar Ca(2+) ion transporter functionally characterized in other fungi and involved in the regulation of cell calcium pools. Possible mechanisms are discussed in which Ca(2+)-related proteins G. intraradices BEG141 may play a role in mobilization and perception of the intracellular messenger by the AM fungus during symbiotic interactions with host roots.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
16
|
Waldeck-Weiermair M, Alam MR, Khan MJ, Deak AT, Vishnu N, Karsten F, Imamura H, Graier WF, Malli R. Spatiotemporal correlations between cytosolic and mitochondrial Ca(2+) signals using a novel red-shifted mitochondrial targeted cameleon. PLoS One 2012; 7:e45917. [PMID: 23029314 PMCID: PMC3448721 DOI: 10.1371/journal.pone.0045917] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023] Open
Abstract
The transfer of Ca(2+) from the cytosol into the lumen of mitochondria is a crucial process that impacts cell signaling in multiple ways. Cytosolic Ca(2+) ([Ca(2+)](cyto)) can be excellently quantified with the ratiometric Ca(2+) probe fura-2, while genetically encoded Förster resonance energy transfer (FRET)-based fluorescent Ca(2+) sensors, the cameleons, are efficiently used to specifically measure Ca(2+) within organelles. However, because of a significant overlap of the fura-2 emission with the spectra of the cyan and yellow fluorescent protein of most of the existing cameleons, the measurement of fura-2 and cameleons within one given cell is a complex task. In this study, we introduce a novel approach to simultaneously assess [Ca(2+)](cyto) and mitochondrial Ca(2+) ([Ca(2+)](mito)) signals at the single cell level. In order to eliminate the spectral overlap we developed a novel red-shifted cameleon, D1GO-Cam, in which the green and orange fluorescent proteins were used as the FRET pair. This ratiometric Ca(2+) probe could be successfully targeted to mitochondria and was suitable to be used simultaneously with fura-2 to correlate [Ca(2+)](cyto) and [Ca(2+)](mito) within same individual cells. Our data indicate that depending on the kinetics of [Ca(2+)](cyto) rises there is a significant lag between onset of [Ca(2+)](cyto) and [Ca(2+)](mito) signals, pointing to a certain threshold of [Ca(2+)](cyto) necessary to activate mitochondrial Ca(2+) uptake. The temporal correlation between [Ca(2+)](mito) and [Ca(2+)](cyto) as well as the efficiency of the transfer of Ca(2+) from the cytosol into mitochondria varies between different cell types. Moreover, slow mitochondrial Ca(2+) extrusion and a desensitization of mitochondrial Ca(2+) uptake cause a clear difference in patterns of mitochondrial and cytosolic Ca(2+) oscillations of pancreatic beta-cells in response to D-glucose.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Rizwan Alam
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Jadoon Khan
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Andras T. Deak
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Neelanjan Vishnu
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Felix Karsten
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Hiromi Imamura
- Precursory Research for Embryonic Science, Japan Science and Technology Agency, Tokyo, Japan
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A, Duncan R, Gilroy S, Kang S. Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca(2+) signatures associated with polarized growth, development, and pathogenesis. Fungal Genet Biol 2012; 49:589-601. [PMID: 22683653 DOI: 10.1016/j.fgb.2012.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Steinberg G. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers. PLoS One 2012; 7:e38181. [PMID: 22666476 PMCID: PMC3362563 DOI: 10.1371/journal.pone.0038181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/01/2012] [Indexed: 12/17/2022] Open
Abstract
The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles) has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs). When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T1/2∼2 min). Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a) Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b) the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c) fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the drug cargo, these results demonstrate the potential of Transfersomes in the treatment of all fungal diseases.
Collapse
Affiliation(s)
- Gero Steinberg
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
19
|
Steinberg G. Motors in fungal morphogenesis: cooperation versus competition. Curr Opin Microbiol 2011; 14:660-7. [DOI: 10.1016/j.mib.2011.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 10/15/2022]
|
20
|
Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 2011; 22:3645-57. [PMID: 21832152 PMCID: PMC3183019 DOI: 10.1091/mbc.e11-03-0217] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to the growing cell tip (anterograde). Occasionally, EEs run up to 90 μm in one direction. The underlying MT array consists of unipolar MTs at both cell ends and antipolar bundles in the middle region of the cell. Cytoplasmic MT-organizing centers, labeled with a γ-tubulin ring complex protein, are distributed along the antipolar MTs but are absent from the unipolar regions. Dynein colocalizes with EEs for 10-20 μm after they have left the cell tip. Inactivation of temperature-sensitive dynein abolishes EE motility within the unipolar MT array, whereas long-range motility is not impaired. In contrast, kinesin-3 is continuously present, and its inactivation stops long-range EE motility. This indicates that both motors participate in EE motility, with dynein transporting the organelles through the unipolar MT array near the cell ends, and kinesin-3 taking over at the beginning of the medial antipolar MT array. The cooperation of both motors mediates EE movements over the length of the entire cell.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Doi Y, Shinzawa N, Fukumoto S, Okano H, Kanuka H. Calcium signal regulates temperature-dependent transformation of sporozoites in malaria parasite development. Exp Parasitol 2011; 128:176-80. [PMID: 21335005 DOI: 10.1016/j.exppara.2011.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022]
Abstract
The infection by the malaria parasite of its mammalian host is initiated by the asexual reproduction of the parasite within the host hepatocyte. Before the reproduction, the elongated sporozoites undergo a depolarizing morphogenesis to the spherical exo-erythrocytic form (EEF). This change can be induced in vitro by shifting the environmental conditions, in the absence of host hepatocytes. Using rodent malaria parasites expressing a FRET-based calcium sensor, YC3.60, we observed that the intracellular calcium increased at the center of the bulbous structure during sporozoite transformation. Modulators of intracellular calcium signaling (A23187 and W-7) accelerated the sporozoite-rounding process. These data suggest that calcium signaling regulates the morphological development of the malaria parasite sporozoite to the EEF, and support a fundamental role for calcium as a universal transducer of external stimuli in the parasitic life cycle.
Collapse
Affiliation(s)
- Yuko Doi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | |
Collapse
|
22
|
Schuster M, Kilaru S, Ashwin P, Lin C, Severs NJ, Steinberg G. Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J 2011; 30:652-64. [PMID: 21278707 PMCID: PMC3041956 DOI: 10.1038/emboj.2010.360] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023] Open
Abstract
Bidirectional transport of early endosomes (EEs) involves microtubules (MTs) and associated motors. In fungi, the dynein/dynactin motor complex concentrates in a comet-like accumulation at MT plus-ends to receive kinesin-3-delivered EEs for retrograde transport. Here, we analyse the loading of endosomes onto dynein by combining live imaging of photoactivated endosomes and fluorescent dynein with mathematical modelling. Using nuclear pores as an internal calibration standard, we show that the dynein comet consists of ∼55 dynein motors. About half of the motors are slowly turned over (T(1/2): ∼98 s) and they are kept at the plus-ends by an active retention mechanism involving an interaction between dynactin and EB1. The other half is more dynamic (T(1/2): ∼10 s) and mathematical modelling suggests that they concentrate at MT ends because of stochastic motor behaviour. When the active retention is impaired by inhibitory peptides, dynein numbers in the comet are reduced to half and ∼10% of the EEs fall off the MT plus-ends. Thus, a combination of stochastic accumulation and active retention forms the dynein comet to ensure capturing of arriving organelles by retrograde motors.
Collapse
Affiliation(s)
| | | | - Peter Ashwin
- Mathematics Research Institute, University of Exeter, Exeter, UK
| | - Congping Lin
- School of Biosciences, University of Exeter, Exeter, UK
- Mathematics Research Institute, University of Exeter, Exeter, UK
| | - Nicholas J Severs
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
23
|
Chen JT, Chen RM. Mechanisms of ketamine-involved regulation of cytochrome P450 gene expression. Expert Opin Drug Metab Toxicol 2010; 6:273-81. [DOI: 10.1517/17425250903505108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Abstract
Proper regulation of MT (microtubule) dynamics is essential for various vital processes, including the segregation of chromosomes, directional cell migration and differentiation. MT assembly and disassembly is modulated by a complex network of intracellular factors that co-operate or antagonize each other, are highly regulated in space and time and are thus attuned to the cell cycle and differentiation processes. While we only begin to appreciate how the concerted action of MT stabilizers and destabilizers shapes different MT patterns, a clear picture of how individual factors affect the MT structure is emerging. In this paper, we review the current knowledge about proteins that modulate MT dynamic instability.
Collapse
|
25
|
Wang P, Xu S, Zhao K, Xiao B, Guo J. Increase in cytosolic calcium maintains plasma membrane integrity through the formation of microtubule ring structure in apoptotic cervical cancer cells induced by trichosanthin. Cell Biol Int 2009; 33:1149-54. [PMID: 19706333 DOI: 10.1016/j.cellbi.2009.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 06/08/2009] [Accepted: 08/17/2009] [Indexed: 11/16/2022]
Abstract
This study investigates the role of dysregulated cytosolic free calcium ([Ca(2+)]c) homeostasis on microtubule (MT) ring structure in apoptotic cervical cancer (HeLa) cells induced by trichosanthin (TCS), a type I ribosome inactivating protein (RIP). The TCS-induced decrease in cell viability was significantly enhanced in combination with the specific calcium chelator, EGTA-AM. Sequestration of [Ca(2+)]c markedly disrupted the special MT ring structure. Furthermore, TCS tended to increase LDH release, whereas no significant differences were observed until 48 h of the treatment. In contrast, combined addition of EGTA-AM or colchicine (an inhibitor of tubulin polymerization) significantly reinforced LDH release. The data suggest that TCS-elevated [Ca(2+)]c maintains plasma membrane integrity via the formation of the MT ring structure in apoptotic HeLa cells.
Collapse
Affiliation(s)
- Ping Wang
- Medical School, Ningbo University, Ningbo 315211, China.
| | | | | | | | | |
Collapse
|
26
|
Buljan V, Ivanova EP, Cullen KM. How calcium controls microtubule anisotropic phase formation in the presence of microtubule-associated proteins in vitro. Biochem Biophys Res Commun 2009; 381:224-8. [DOI: 10.1016/j.bbrc.2009.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 02/08/2009] [Indexed: 10/21/2022]
|
27
|
Brand A, Lee K, Veses V, Gow NAR. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol 2009; 71:1155-64. [PMID: 19154328 PMCID: PMC2680325 DOI: 10.1111/j.1365-2958.2008.06592.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyphae of the dimorphic fungus, Candida albicans, exhibit directional tip responses when grown in contact with surfaces. On hard surfaces or in liquid media, the trajectory of hyphal growth is typically linear, with tip re-orientation events limited to encounters with topographical features (thigmotropism). In contrast, when grown on semisolid surfaces, the tips of C. albicans hyphae grow in an oscillatory manner to form regular two-dimensional sinusoidal curves and three-dimensional helices. We show that, like thigmotropism, initiation of directional tip oscillation in C. albicans hyphae is severely attenuated when Ca2+ homeostasis is perturbed. Chelation of extracellular Ca2+ or deletion of the Ca2+ transporters that modulate cytosolic [Ca2+] (Mid1, Cch1 or Pmr1) did not affect hyphal length but curve formation was severely reduced in mid1Delta and cch1Delta and abolished in pmr1Delta. Sinusoidal hypha morphology was altered in the mid1Delta, chs3Delta and heterozygous pmr1Delta/PMR1 strains. Treatments that affect cell wall integrity, changes in surface mannosylation or the provision of additional carbon sources had significant but less pronounced effects on oscillatory growth. The induction of two- and three-dimensional sinusoidal growth in wild-type C. albicans hyphae is therefore the consequence of mechanisms that involve Ca2+ influx and signalling rather than gross changes in the cell wall architecture.
Collapse
Affiliation(s)
- Alexandra Brand
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
28
|
Chang HC, Chen TL, Chen RM. Cytoskeleton interruption in human hepatoma HepG2 cells induced by ketamine occurs possibly through suppression of calcium mobilization and mitochondrial function. Drug Metab Dispos 2009; 37:24-31. [PMID: 18845661 DOI: 10.1124/dmd.108.023325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ketamine is an intravenous anesthetic agent often used for inducing and maintaining anesthesia. Cytoskeletons contribute to the regulation of hepatocyte activity of drug biotransformation. In this study, we attempted to evaluate the effects of ketamine on F-actin and microtubular cytoskeletons in human hepatoma HepG2 cells and its possible molecular mechanisms. Exposure of HepG2 cells to ketamine at
Collapse
Affiliation(s)
- Huai-Chia Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 110, Taiwan
| | | | | |
Collapse
|
29
|
Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 2008; 68:1348-65. [PMID: 18433453 DOI: 10.1111/j.1365-2958.2008.06242.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed an RNA-silencing vector, pSilent-Dual1 (pSD1), with a convergent dual promoter system that provides a high-throughput platform for functional genomics research in filamentous fungi. In the pSD1 system, the target gene was designed to be transcribed as a chimeric RNA with enhanced green fluorescent protein (eGFP) RNA. This enabled us to efficiently screen the resulting transformants using GFP fluorescence as an indicator of gene silencing. A model study with the eGFP gene showed that pSD1-based vectors induced gene silencing via the RNAi pathway with slightly lower efficiency than did hairpin eGFP RNA-expressing vectors. To demonstrate the applicability of the pSD1 system for elucidating gene function in the rice-blast fungus Magnaporthe oryzae, 37 calcium signalling-related genes that include almost all known calcium-signalling proteins in the genome were targeted for gene silencing by the vector. Phenotypic analyses of the silenced transformants showed that at least 26, 35 and 15 of the 37 genes examined were involved in hyphal growth, sporulation and pathogenicity, respectively, in M. oryzae. These included several novel findings such as that Pmc1-, Spf1- and Neo1-like Ca(2+) pumps, calreticulin and calpactin heavy chain were essential for fungal pathogenicity.
Collapse
Affiliation(s)
- Quoc Bao Nguyen
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Li WM, Webb SE, Chan CM, Miller AL. Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos. Dev Biol 2008; 316:228-48. [PMID: 18313658 DOI: 10.1016/j.ydbio.2008.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/16/2023]
Abstract
The generation of a required series of localized Ca(2+) transients during cytokinesis in zebrafish embryos suggests that Ca(2+) plays a necessary role in regulating this process. Here, we report that cortical actin remodeling, characterized by the reorganization of the contractile band and the formation during furrow deepening of pericleavage F-actin enrichments (PAEs), requires a localized increase in intracellular Ca(2+), which is released from IP(3)-sensitive stores. We demonstrate that VAMP-2 vesicle fusion at the deepening furrow also requires Ca(2+) released via IP(3) receptors, as well as the presence of PAEs and the action of calpains. Finally, by expressing a dominant-negative form of the kinesin-like protein, kif23, we demonstrate that its recruitment to the furrow region is required for VAMP-2 vesicle transport; and via FRAP analysis, that kif23 localization is also Ca(2+)-dependent. Collectively, our data demonstrate that a localized increase in intracellular Ca(2+) is involved in regulating several key events during furrow deepening and subsequent apposition.
Collapse
Affiliation(s)
- Wai Ming Li
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
31
|
Fan W, Idnurm A, Breger J, Mylonakis E, Heitman J. Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect Immun 2007; 75:3394-405. [PMID: 17502401 PMCID: PMC1932933 DOI: 10.1128/iai.01977-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The basidiomycetous fungal pathogen Cryptococcus neoformans is adapted to survive challenges in the soil and environment and within the unique setting of the mammalian host. A C. neoformans mutant was isolated with enhanced virulence in a soil amoeba model that nevertheless exhibits dramatically reduced growth at mammalian body temperature (37 degrees C). This mutant phenotype results from an insertion in the ECA1 gene, which encodes a sarcoplasmic/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA)-type calcium pump. Infection in murine macrophages, amoebae (Acanthamoeba castellanii), nematodes (Caenorhabditis elegans), and wax moth (Galleria mellonella) larvae revealed that the eca1 mutants are virulent or hypervirulent at permissive growth temperatures but attenuated at 37 degrees C. Deletion mutants lacking the entire ECA1 gene were also hypersensitive to the calcineurin inhibitors cyclosporin and FK506 and to ER and osmotic stresses. An eca1Delta cna1Delta mutant lacking both Eca1 and the calcineurin catalytic subunit was more sensitive to high temperature and ER stresses than the single mutants and exhibited reduced survival in C. elegans and attenuated virulence towards wax moth larvae at temperatures that permit normal growth in vitro. Eca1 is likely involved in maintaining ER function, thus contributing to stress tolerance and virulence acting in parallel with Ca2+-calcineurin signaling.
Collapse
Affiliation(s)
- Weihua Fan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
32
|
Steinberg G. Tracks for traffic: microtubules in the plant pathogen Ustilago maydis. THE NEW PHYTOLOGIST 2007; 174:721-733. [PMID: 17504456 DOI: 10.1111/j.1469-8137.2007.02072.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pathogenic development of the corn smut fungus Ustilago maydis depends on the ability of the hypha to grow invasively. Extended hyphal growth and mitosis require microtubules, as revealed by recent studies on the microtubule cytoskeleton. Surprisingly, hyphal tip growth involves only two out of 10 kinesins. Kinesin-3 is responsible for tip-directed (anterograde) endosome motility of early endosomes, which are thought to support hyphal elongation by apical membrane recycling. In addition, kinesin-3, together with kinesin-1 and myosin-5, appear to deliver secretory vesicles to the hyphal tip. Kinesin-1 also affects endosome motility by targeting cytoplasmic dynein to microtubule plus ends. This plus-end localization of dynein is essential for cell body-directed (retrograde) endosome motility, but also allows force generation during spindle elongation in mitosis. Furthermore, kinesin-1 and dynein participate in the organization of the microtubule array, thereby building their own network of tracks for intracellular motility. The recent progress in understanding microtubule-based processes in U. maydis has revealed an unexpected complexity of motor functions essential for the virulence of this pathogen. Further studies on structural and regulatory requirements for motor activity should help identify novel targets for fungicide development.
Collapse
Affiliation(s)
- Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, Germany
| |
Collapse
|
33
|
Klosterman SJ, Perlin MH, Garcia-Pedrajas M, Covert SF, Gold SE. Genetics of morphogenesis and pathogenic development of Ustilago maydis. ADVANCES IN GENETICS 2007; 57:1-47. [PMID: 17352901 DOI: 10.1016/s0065-2660(06)57001-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ustilago maydis has emerged as an important model system for the study of fungi. Like many fungi, U. maydis undergoes remarkable morphological transitions throughout its life cycle. Fusion of compatible, budding, haploid cells leads to the production of a filamentous dikaryon that penetrates and colonizes the plant, culminating in the production of diploid teliospores within fungal-induced plant galls or tumors. These dramatic morphological transitions are controlled by components of various signaling pathways, including the pheromone-responsive MAP kinase and cAMP/PKA (cyclic AMP/protein kinase A) pathways, which coregulate the dimorphic switch and sexual development of U. maydis. These signaling pathways must somehow cooperate with the regulation of the cytoskeletal and cell cycle machinery. In this chapter, we provide an overview of these processes from pheromone perception and mating to gall production and sporulation in planta. Emphasis is placed on the genetic determinants of morphogenesis and pathogenic development of U. maydis and on the fungus-host interaction. Additionally, we review advances in the development of tools to study U. maydis, including the recently available genome sequence. We conclude with a brief assessment of current challenges and future directions for the genetic study of U. maydis.
Collapse
Affiliation(s)
- Steven J Klosterman
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
34
|
Steinberg G. Preparing the way: fungal motors in microtubule organization. Trends Microbiol 2006; 15:14-21. [PMID: 17129730 DOI: 10.1016/j.tim.2006.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/27/2006] [Accepted: 11/15/2006] [Indexed: 12/24/2022]
Abstract
Fungal growth, development and pathogenicity require hyphal tip growth, which is supported by polar exocytosis at the expanding growth region. It is assumed that molecular motors transport growth supplies along the fibrous elements of the cytoskeleton, such as microtubules, to the hyphal apex. Recent advances in live-cell imaging of fungi revealed additional roles for motors in organizing their own tracks. These unexpected roles of the molecular motors are modifying microtubule dynamics directly, targeting stability-determining factors to microtubule plus ends, and transporting and arranging already-assembled microtubules.
Collapse
Affiliation(s)
- Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| |
Collapse
|
35
|
Fink G, Schuchardt I, Colombelli J, Stelzer E, Steinberg G. Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis. EMBO J 2006; 25:4897-908. [PMID: 17024185 PMCID: PMC1618106 DOI: 10.1038/sj.emboj.7601354] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 08/22/2006] [Indexed: 12/22/2022] Open
Abstract
Spindle elongation segregates chromosomes and occurs in anaphase, an essential step in mitosis. Dynein-mediated pulling forces position the spindle, but their role in anaphase is a matter of debate. Here, we demonstrate that dynein is responsible for rapid spindle elongation in the model fungus Ustilago maydis. We show that initial slow elongation is supported by kinesin-5, which is located in the spindle mid-zone. When the spindle reaches approximately 2 microm in length, the elongation rate increases four-fold. This coincides with the appearance of long and less-dynamic microtubules (MTs) at each pole that accumulate dynein at their tips. Laser-mediated nanosurgery revealed that these MTs exert pulling forces in control cells, but not in dynein mutants. In addition, dynein mutants undergo initial slow anaphase, but fail to establish less-dynamic MTs and do not perform rapid spindle elongation, suggesting that dynein drives anaphase B. This is most likely mediated by cortical sliding of astral MTs along stationary dynein, which is off-loaded from the MT plus-end to the cortex.
Collapse
Affiliation(s)
- Gero Fink
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Isabel Schuchardt
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | | | - Ernst Stelzer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
- Max-Planck-Institut für terrestrische Mikrobiology, Karl-von-Frisch-Straße, 35043 Marburg, Germany. Tel.: +49 6421 178 530; Fax: +49 6421 178 599; E-mail:
| |
Collapse
|
36
|
Maruyama JI, Kikuchi S, Kitamoto K. Differential distribution of the endoplasmic reticulum network as visualized by the BipA-EGFP fusion protein in hyphal compartments across the septum of the filamentous fungus, Aspergillus oryzae. Fungal Genet Biol 2006; 43:642-54. [PMID: 16759887 DOI: 10.1016/j.fgb.2005.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 11/12/2005] [Accepted: 11/21/2005] [Indexed: 11/27/2022]
Abstract
We visualized the endoplasmic reticulum (ER) network by expression of the BipA-EGFP fusion protein in the filamentous fungus, Aspergillus oryzae, and focused on the spatial difference of the ER distribution throughout hyphae. The ER formed an interconnected network with motility and displayed a gradient distribution from the apical region. The ER was also found as a tubular network along the septum, which was formed soon after the completion of septation. Discontinuity of the ER network distribution was noticed between the adjacent compartments across the septum, suggesting that the cellular activities in these compartments were independently regulated although they are considered to communicate with each other through the septal pore. Moreover, the ER-visualized strain was subjected to a hypotonic shock, leading to hyphal tip bursting where the Woronin body plugs septal pores and prevents excessive loss of the cytoplasm. In the compartment adjacent to the burst apical tip, the ER network structure and motility were still retained. We also observed re-growth of hyphae from the plugged septa forming intrahyphal hyphae in which the ER network distribution, specialized for apical growth, was regenerated.
Collapse
Affiliation(s)
- Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Japan
| | | | | |
Collapse
|
37
|
Fink G, Steinberg G. Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol Biol Cell 2006; 17:3242-53. [PMID: 16672380 PMCID: PMC1483053 DOI: 10.1091/mbc.e05-12-1118] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microtubules (MTs) are often organized by a nucleus-associated MT organizing center (MTOC). In addition, in neurons and epithelial cells, motor-based transport of assembled MTs determines the polarity of the MT array. Here, we show that MT motility participates in MT organization in the fungus Ustilago maydis. In budding cells, most MTs are nucleated by three to six small and motile gamma-tubulin-containing MTOCs at the boundary of mother and daughter cell, which results in a polarized MT array. In addition, free MTs and MTOCs move rapidly throughout the cytoplasm. Disruption of MTs with benomyl and subsequent washout led to an equal distribution of the MTOC and random formation of highly motile and randomly oriented MTs throughout the cytoplasm. Within 3 min after washout, MTOCs returned to the neck region and the polarized MT array was reestablished. MT motility and polarity of the MT array was lost in dynein mutants, indicating that dynein-based transport of MTs and MTOCs polarizes the MT cytoskeleton. Observation of green fluorescent protein-tagged dynein indicated that this is achieved by off-loading dynein from the plus-ends of motile MTs. We propose that MT organization in U. maydis involves dynein-mediated motility of MTs and nucleation sites.
Collapse
Affiliation(s)
- Gero Fink
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| |
Collapse
|
38
|
Straube A, Hause G, Fink G, Steinberg G. Conventional kinesin mediates microtubule-microtubule interactions in vivo. Mol Biol Cell 2005; 17:907-16. [PMID: 16339079 PMCID: PMC1356599 DOI: 10.1091/mbc.e05-06-0542] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.
Collapse
Affiliation(s)
- Anne Straube
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Kraus PR, Nichols CB, Heitman J. Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. EUKARYOTIC CELL 2005; 4:1079-87. [PMID: 15947200 PMCID: PMC1151996 DOI: 10.1128/ec.4.6.1079-1087.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of calcium as a signaling molecule is conserved in eukaryotes from fungi to humans. Previous studies have identified the calcium-activated phosphatase calcineurin as a critical factor in governing growth of the human pathogenic fungus Cryptococcus neoformans at mammalian body temperature. Here, we employed insertional mutagenesis to identify new genes required for growth at 37 degrees C. One insertion mutant, cam1-ts, that displayed a growth defect at 37 degrees C and hypersensitivity to the calcineurin inhibitor FK506 at 25 degrees C was isolated. Both phenotypes were linked to the dominant marker in genetic crosses, and molecular analysis revealed that the insertion occurred in the 3' untranslated region of the gene encoding the calcineurin activator calmodulin (CAM1) and impairs growth at 37 degrees C by significantly reducing calmodulin mRNA abundance. The CAM1 gene was demonstrated to be essential using genetic analysis of a CAM1/cam1Delta diploid strain. In the absence of calcineurin function, the cam1-ts mutant displayed a severe morphological defect with impaired bud formation. Expression of a calmodulin-independent calcineurin mutant did not suppress the growth defect of the cam1-ts mutant at 37 degrees C, indicating that calmodulin promotes growth at high temperature via calcineurin-dependent and -independent pathways. In addition, a Ca2+-binding-defective allele of CAM1 complemented the 37 degrees C growth defect, FK506 hypersensitivity, and morphogenesis defect of the cam1-ts mutant. Our findings reveal that calmodulin performs Ca2+- and calcineurin-independent and -dependent roles in controlling C. neoformans morphogenesis and high-temperature growth.
Collapse
Affiliation(s)
- Peter R Kraus
- Department of Molecular Genetics and Microbiology, 322 CARL Building, Box 3546, Research Drive, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
40
|
Fuchs U, Manns I, Steinberg G. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell 2005; 16:2746-58. [PMID: 15829564 PMCID: PMC1142421 DOI: 10.1091/mbc.e05-03-0176] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 11/11/2022] Open
Abstract
Fungal pathogenicity often involves a yeast-to-hypha transition, but the structural basis for this dimorphism is largely unknown. Here we analyze the role of the cytoskeleton in early steps of pathogenic development in the corn pathogen Ustilago maydis. On the plant yeast-like cells recognize each other, undergo a cell cycle arrest, and form long conjugation hyphae, which fuse and give rise to infectious filaments. F-actin is essential for polarized growth at all these stages and for cell-cell fusion. Furthermore, F-actin participates in pheromone secretion, but not perception. Although U. maydis contains prominent tubulin arrays, microtubules are neither required for cell-cell recognition, nor for cell-cell fusion, and have only minor roles in morphogenesis of yeast-like cells. Without microtubules hyphae are formed, albeit at 60% reduced elongation rates, but they reach only approximately 50 mum in length and the nucleus fails to migrate into the hypha. A similar phenotype is found in dynein mutants that have a nuclear migration defect and stop hyphal elongation at approximately 50 mum. These results demonstrate that microtubules are dispensable for polarized growth during morphological transition, but become essential in long-distance hyphal growth, which is probably due to their role in nuclear migration.
Collapse
Affiliation(s)
- Uta Fuchs
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | |
Collapse
|
41
|
Straube A, Weber I, Steinberg G. A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J 2005; 24:1674-85. [PMID: 15861140 PMCID: PMC1142577 DOI: 10.1038/sj.emboj.7600644] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 03/11/2005] [Indexed: 12/18/2022] Open
Abstract
In animals, the nuclear envelope disassembles in mitosis, while budding and fission yeast form an intranuclear spindle. Ultrastructural data indicate that basidiomycetes, such as the pathogen Ustilago maydis, undergo an 'open mitosis'. Here we describe the mechanism of nuclear envelope break-down in U. maydis. In interphase, the nucleus resides in the mother cell and the spindle pole body is inactive. Prior to mitosis, it becomes activated and nucleates microtubules that reach into the daughter cell. Dynein appears at microtubule tips and exerts force on the spindle pole body, which leads to the formation of a long nuclear extension that reaches into the bud. Chromosomes migrate through this extension and together with the spindle pole bodies leave the old envelope, which remains in the mother cell until late telophase. Inhibition of nuclear migration or deletion of a Tem1p-like GTPase leads to a 'closed' mitosis, indicating that spindle pole bodies have to reach into the bud where MEN signalling participates in envelope removal. Our data indicate that dynein-mediated premitotic nuclear migration is essential for envelope removal in U. maydis.
Collapse
Affiliation(s)
- Anne Straube
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Isabella Weber
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
- MPI für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany. Tel.: +49 6421 178530; Fax: +49 6421 178509; E-mail:
| |
Collapse
|
42
|
Feldbrügge M, Kämper J, Steinberg G, Kahmann R. Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol 2005; 7:666-72. [PMID: 15556041 DOI: 10.1016/j.mib.2004.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plant pathogenic fungus Ustilago maydis induces disease only in its dikaryotic stage that is generated after mating. This process involves coordinated cAMP and mitogen-activated protein kinase signalling to regulate transcriptional as well as morphological responses. Among the induced products is the key regulator for pathogenic development. Recent advances identified crucial nodes that interconnect these pathways. The key regulator orchestrates a complex transcriptional cascade, the components of which have been uncovered by genomic strategies. This is complemented by insights into organization, dynamics and function of the cytoskeleton, which begin to establish the links between signalling, intracellular transport processes and morphology.
Collapse
Affiliation(s)
- Michael Feldbrügge
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
43
|
Genetics of Morphogenesis in Basidiomycetes. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Kahmann R, Kämper J. Ustilago maydis: how its biology relates to pathogenic development. THE NEW PHYTOLOGIST 2004; 164:31-42. [PMID: 33873482 DOI: 10.1111/j.1469-8137.2004.01156.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The smut fungus Ustilago maydis is a ubiquitous pathogen of corn. Although of minor economical importance, U. maydis has become the most attractive model among the plant pathogenic basidiomycetes under study. This fungus undergoes a number of morphological transitions throughout its life-cycle, the most prominent being the dimorphic switch from budding to filamentous growth that is prerequisite for entry into the biotrophic phase. The morphological transition is controlled by the tetrapolar mating system. Understanding the mating system has allowed connections to signalling cascades operating during pathogenic development. Here, we will review the status and recent insights into understanding pathogenic development of U. maydis and emphasize areas and directions of future research. Contents Summary 31 I. Introduction 31 II. Important tools for exprimentation with Ustilago myadis 32 III. Cell fusion requres a complex signalling network 33 IV. Development of the dikaryon: the bE/bW complex at work 34 V. A connection between cell cycle, morphogenesis and virulence 36 VI. The early infection stages 38 VII. Proliferation and differentiaton in the plant host 38 VIII. The Ustilago maydis genome 39 IX. Conclusions 40 Acknowledgements 40 References 40.
Collapse
Affiliation(s)
- Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kämper
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|