1
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
3
|
Bera A, Gupta ML. Microtubules in Microorganisms: How Tubulin Isotypes Contribute to Diverse Cytoskeletal Functions. Front Cell Dev Biol 2022; 10:913809. [PMID: 35865635 PMCID: PMC9294176 DOI: 10.3389/fcell.2022.913809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The cellular functions of the microtubule (MT) cytoskeleton range from relatively simple to amazingly complex. Assembled from tubulin, a heterodimeric protein with α- and β-tubulin subunits, microtubules are long, hollow cylindrical filaments with inherent polarity. They are intrinsically dynamic polymers that utilize GTP binding by tubulin, and subsequent hydrolysis, to drive spontaneous assembly and disassembly. Early studies indicated that cellular MTs are composed of multiple variants, or isotypes, of α- and β-tubulins, and that these multi-isotype polymers are further diversified by a range of posttranslational modifications (PTMs) to tubulin. These findings support the multi-tubulin hypothesis whereby individual, or combinations of tubulin isotypes possess unique properties needed to support diverse MT structures and/or cellular processes. Beginning 40 years ago researchers have sought to address this hypothesis, and the role of tubulin isotypes, by exploiting experimentally accessible, genetically tractable and functionally conserved model systems. Among these systems, important insights have been gained from eukaryotic microbial models. In this review, we illustrate how using microorganisms yielded among the earliest evidence that tubulin isotypes harbor distinct properties, as well as recent insights as to how they facilitate specific cellular processes. Ongoing and future research in microorganisms will likely continue to reveal basic mechanisms for how tubulin isotypes facilitate MT functions, along with valuable perspectives on how they mediate the range of conserved and diverse processes observed across eukaryotic microbes.
Collapse
|
4
|
Ludueña RF, Walss-Bass C, Portyanko A, Guo J, Yeh IT. Nuclear βII-Tubulin and its Possible Utility in Cancer Diagnosis, Prognosis and Treatment. Front Cell Dev Biol 2022; 10:870088. [PMID: 35706904 PMCID: PMC9190298 DOI: 10.3389/fcell.2022.870088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules are organelles that usually occur only in the cytosol. Walss et al. (1999) discovered the βII isotype of tubulin, complexed with α, in the nuclei of certain cultured cells, in non-microtubule form. When fluorescently labeled tubulins were microinjected into the cells, only αβII appeared in the nucleus, and only after one cycle of nuclear disassembly and reassembly. It appeared as if αβII does not cross the nuclear envelope but is trapped in the nucleus by the re-forming nuclear envelope in whose reassembly βII may be involved. βII is present in the cytoplasm and nuclei of many tumor cells. With some exceptions, normal tissues that expressed βII rarely had βII in their nuclei. It is possible that βII is involved in nuclear reassembly and then disappears from the nucleus. Ruksha et al. (2019) observed that patients whose colon cancer cells in the invasive front showed no βII had a median survival of about 5.5 years, which was more than halved if they had cytosolic βII and further lessened if they had nuclear βII, suggesting that the presence and location of βII in biopsies could be a useful prognostic indicator and also that βII may be involved in cancer progression. Yeh and Ludueña. (2004) observed that many tumors were surrounded by non-cancerous cells exhibiting cytosolic and nuclear βII, suggesting a signaling pathway that causes βII to be synthesized in nearby cells and localized to their nuclei. βII could be useful in cancer diagnosis, since the presence of βII in non-cancerous cells could indicate a nearby tumor. Investigation of this pathway might reveal novel targets for chemotherapy. Another possibility would be to combine αβII with CRISPR-Cas9. This complex would likely enter the nucleus of a cancer cell and, if guided to the appropriate gene, might destroy the cancer cell or make it less aggressive; possible targets will be discussed here. The possibilities raised here about the utility of βII in cancer diagnosis, prognosis, biology and therapy may repay further investigation.
Collapse
Affiliation(s)
- Richard F Ludueña
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | | - I-Tien Yeh
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
Yunes SA, Willoughby JLS, Kwan JH, Biagi JM, Pokharel N, Chin HG, York EA, Su KC, George K, Shah JV, Emili A, Schaus SE, Hansen U. Factor quinolinone inhibitors disrupt spindles and multiple LSF (TFCP2)-protein interactions in mitosis, including with microtubule-associated proteins. PLoS One 2022; 17:e0268857. [PMID: 35704642 PMCID: PMC9200292 DOI: 10.1371/journal.pone.0268857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Factor quinolinone inhibitors (FQIs), a first-in-class set of small molecule inhibitors targeted to the transcription factor LSF (TFCP2), exhibit promising cancer chemotherapeutic properties. FQI1, the initial lead compound identified, unexpectedly induced a concentration-dependent delay in mitotic progression. Here, we show that FQI1 can rapidly and reversibly lead to mitotic arrest, even when added directly to mitotic cells, implying that FQI1-mediated mitotic defects are not transcriptionally based. Furthermore, treatment with FQIs resulted in a striking, concentration-dependent diminishment of spindle microtubules, accompanied by a concentration-dependent increase in multi-aster formation. Aberrant γ-tubulin localization was also observed. These phenotypes suggest that perturbation of spindle microtubules is the primary event leading to the mitotic delays upon FQI1 treatment. Previously, FQIs were shown to specifically inhibit not only LSF DNA-binding activity, which requires LSF oligomerization to tetramers, but also other specific LSF-protein interactions. Other transcription factors participate in mitosis through non-transcriptional means, and we recently reported that LSF directly binds α-tubulin and is present in purified cellular tubulin preparations. Consistent with a microtubule role for LSF, here we show that LSF enhanced the rate of tubulin polymerization in vitro, and FQI1 inhibited such polymerization. To probe whether the FQI1-mediated spindle abnormalities could result from inhibition of mitotic LSF-protein interactions, mass spectrometry was performed using as bait an inducible, tagged form of LSF that is biotinylated by endogenous enzymes. The global proteomics analysis yielded expected associations for a transcription factor, notably with RNA processing machinery, but also to nontranscriptional components. In particular, and consistent with spindle disruption due to FQI treatment, mitotic, FQI1-sensitive interactions were identified between the biotinylated LSF and microtubule-associated proteins that regulate spindle assembly, positioning, and dynamics, as well as centrosome-associated proteins. Probing the mitotic LSF interactome using small molecule inhibitors therefore supported a non-transcriptional role for LSF in mediating progression through mitosis.
Collapse
Affiliation(s)
- Sarah A. Yunes
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| | - Jennifer L. S. Willoughby
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Julian H. Kwan
- Department of Biochemistry and Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jessica M. Biagi
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Niranjana Pokharel
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Hang Gyeong Chin
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Emily A. York
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Kelly George
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jagesh V. Shah
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew Emili
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Biochemistry and Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Scott E. Schaus
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Ulla Hansen
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Gao S, Wang S, Zhao Z, Zhang C, Liu Z, Ye P, Xu Z, Yi B, Jiao K, Naik GA, Wei S, Rais-Bahrami S, Bae S, Yang WH, Sonpavde G, Liu R, Wang L. TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling. Nat Commun 2022; 13:2792. [PMID: 35589707 PMCID: PMC9120517 DOI: 10.1038/s41467-022-30409-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/28/2022] [Indexed: 01/22/2023] Open
Abstract
Human tubulin beta class IVa (TUBB4A) is a member of the β-tubulin family. In most normal tissues, expression of TUBB4A is little to none, but it is highly expressed in human prostate cancer. Here we show that high expression levels of TUBB4A are associated with aggressive prostate cancers and poor patient survival, especially for African-American men. Additionally, in prostate cancer cells, TUBB4A knockout (KO) reduces cell growth and migration but induces DNA damage through increased γH2AX and 53BP1. Furthermore, during constricted cell migration, TUBB4A interacts with MYH9 to protect the nucleus, but either TUBB4A KO or MYH9 knockdown leads to severe DNA damage and reduces the NF-κB signaling response. Also, TUBB4A KO retards tumor growth and metastasis. Functional analysis reveals that TUBB4A/GSK3β binds to the N-terminal of MYH9, and that TUBB4A KO reduces MYH9-mediated GSK3β ubiquitination and degradation, leading to decreased activation of β-catenin signaling and its relevant epithelial-mesenchymal transition. Likewise, prostate-specific deletion of Tubb4a reduces spontaneous tumor growth and metastasis via inhibition of NF-κB, cyclin D1, and c-MYC signaling activation. Our results suggest an oncogenic role of TUBB4A and provide a potentially actionable therapeutic target for prostate cancers with TUBB4A overexpression. The β-tubulin family protein TUBB4A is highly expressed in cancer but it’s molecular role is unclear. Here, the authors show that TUBB4A is required to protect the nucleus from genomic instability during migration and that it’s over expression promotes cancer progression.
Collapse
Affiliation(s)
- Song Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuaibin Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiying Zhao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhicao Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ping Ye
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhifang Xu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baozhu Yi
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gurudatta A Naik
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shi Wei
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soroush Rais-Bahrami
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | | | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Ludueña RF. Possible Roles of Specific Amino Acids in β-Tubulin Isotypes in the Growth and Maintenance of Neurons: Novel Insights From Cephalopod Mollusks. Front Mol Neurosci 2022; 15:838393. [PMID: 35493322 PMCID: PMC9048481 DOI: 10.3389/fnmol.2022.838393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Microtubules, are formed of the protein tubulin, which is a heterodimer of α- and β-tubulin subunits. Both α- and β-tubulin exist as numerous isotypes, differing in amino acid sequence and tissue distribution. Among the vertebrate β isotypes, βIII has a very narrow distribution, being found primarily in neurons and in advanced cancers. The places in the amino acid sequence where βIII differs from the other β isotypes are highly conserved in evolution. βIII appears to be highly resistant to reactive oxygen species and it forms highly dynamic microtubules. The first property would be very useful in neurons, which have high concentrations of free radicals, and the high dynamicity would aid neurite outgrowth. The same properties make βIII useful in cancers. Examination of the amino acid sequences indicates a cysteine cluster at positions 124-129 in βIII (CXXCXC). This occurs in all βIII isotypes but not in βI, βII, or βIV. βIII also lacks the easily oxidized C239. Both features could play roles in free radical resistance. Many aggressive tumors over-express βIII. However, a recent study of breast cancer patients showed that many of them mutated their βI, βII, and βIV at particular places to change the residues to those found at the corresponding sites in βIII; these are all sites that are highly conserved in vertebrate βIII. It is possible that these residues are important, not only in the resistance to free radicals, but also in the high dynamicity of βIII. The cephalopod mollusks are well known to be highly intelligent and can remodel their own brains. Interestingly, several cephalopods contain the cysteine cluster as well as up to 7 of the 17 residues that are highly conserved in vertebrate βIII, but are not found in βI, βII, or βIV. In short, it is possible that we are looking at a case of convergent evolution, that a βIII-like isotype may be required for neuronal growth and function and that a structure-function study of the particular residues conserved between vertebrate βIII and cephalopod tubulin isotypes could greatly increase our understanding of the role of the various tubulin isotypes in neuronal growth and function and could aid in the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Richard F. Ludueña
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
Maurin J, Morel A, Guérit D, Cau J, Urbach S, Blangy A, Bompard G. The Beta-Tubulin Isotype TUBB6 Controls Microtubule and Actin Dynamics in Osteoclasts. Front Cell Dev Biol 2021; 9:778887. [PMID: 34869381 PMCID: PMC8639228 DOI: 10.3389/fcell.2021.778887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoclasts are bone resorbing cells that participate in the maintenance of bone health. Pathological increase in osteoclast activity causes bone loss, eventually resulting in osteoporosis. Actin cytoskeleton of osteoclasts organizes into a belt of podosomes, which sustains the bone resorption apparatus and is maintained by microtubules. Better understanding of the molecular mechanisms regulating osteoclast cytoskeleton is key to understand the mechanisms of bone resorption, in particular to propose new strategies against osteoporosis. We reported recently that β-tubulin isotype TUBB6 is key for cytoskeleton organization in osteoclasts and for bone resorption. Here, using an osteoclast model CRISPR/Cas9 KO for Tubb6, we show that TUBB6 controls both microtubule and actin dynamics in osteoclasts. Osteoclasts KO for Tubb6 have reduced microtubule growth speed with longer growth life time, higher levels of acetylation, and smaller EB1-caps. On the other hand, lack of TUBB6 increases podosome life time while the belt of podosomes is destabilized. Finally, we performed proteomic analyses of osteoclast microtubule-associated protein enriched fractions. This highlighted ARHGAP10 as a new microtubule-associated protein, which binding to microtubules appears to be negatively regulated by TUBB6. ARHGAP10 is a negative regulator of CDC42 activity, which participates in actin organization in osteoclasts. Our results suggest that TUBB6 plays a key role in the control of microtubule and actin cytoskeleton dynamics in osteoclasts. Moreover, by controlling ARHGAP10 association with microtubules, TUBB6 may participate in the local control of CDC42 activity to ensure efficient bone resorption.
Collapse
Affiliation(s)
- Justine Maurin
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, Montpellier University, Montpellier, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, Montpellier University, Montpellier, France
| | - David Guérit
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, Montpellier University, Montpellier, France
| | - Julien Cau
- BioCampus Montpellier, CNRS, INSERM, Montpellier University, Montpellier, France
| | - Serge Urbach
- Institute of Functional Genomics, CNRS, INSERM, Montpellier University, Montpellier, France
| | - Anne Blangy
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, Montpellier University, Montpellier, France
| | - Guillaume Bompard
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
9
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
10
|
Nichterwitz S, Nijssen J, Storvall H, Schweingruber C, Comley LH, Allodi I, Lee MVD, Deng Q, Sandberg R, Hedlund E. LCM-seq reveals unique transcriptional adaptation mechanisms of resistant neurons and identifies protective pathways in spinal muscular atrophy. Genome Res 2020; 30:1083-1096. [PMID: 32820007 PMCID: PMC7462070 DOI: 10.1101/gr.265017.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
Somatic motor neurons are selectively vulnerable in spinal muscular atrophy (SMA), which is caused by a deficiency of the ubiquitously expressed survival of motor neuron protein. However, some motor neuron groups, including oculomotor and trochlear (ocular), which innervate eye muscles, are for unknown reasons spared. To reveal mechanisms of vulnerability and resistance in SMA, we investigate the transcriptional dynamics in discrete neuronal populations using laser capture microdissection coupled with RNA sequencing (LCM-seq). Using gene correlation network analysis, we reveal a TRP53-mediated stress response that is intrinsic to all somatic motor neurons independent of their vulnerability, but absent in relatively resistant red nucleus and visceral motor neurons. However, the temporal and spatial expression analysis across neuron types shows that the majority of SMA-induced modulations are cell type-specific. Using Gene Ontology and protein network analyses, we show that ocular motor neurons present unique disease-adaptation mechanisms that could explain their resilience. Specifically, ocular motor neurons up-regulate (1) Syt1, Syt5, and Cplx2, which modulate neurotransmitter release; (2) the neuronal survival factors Gdf15, Chl1, and Lif; (3) Aldh4, that protects cells from oxidative stress; and (4) the caspase inhibitor Pak4. Finally, we show that GDF15 can rescue vulnerable human spinal motor neurons from degeneration. This confirms that adaptation mechanisms identified in resilient neurons can be used to reduce susceptibility of vulnerable neurons. In conclusion, this in-depth longitudinal transcriptomics analysis in SMA reveals novel cell type-specific changes that, alone and combined, present compelling targets, including Gdf15, for future gene therapy studies aimed toward preserving vulnerable motor neurons.
Collapse
Affiliation(s)
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Storvall
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Laura Helen Comley
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ilary Allodi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mirjam van der Lee
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Qiaolin Deng
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Redox Regulation of PPAR γ in Polarized Macrophages. PPAR Res 2020; 2020:8253831. [PMID: 32695149 PMCID: PMC7350077 DOI: 10.1155/2020/8253831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPARγ) is a central mediator of cellular lipid metabolism and immune cell responses during inflammation. This is facilitated by its role as a transcription factor as well as a DNA-independent protein interaction partner. We addressed how the cellular redox milieu in the cytosol and the nucleus of lipopolysaccharide (LPS)/interferon-γ- (IFNγ-) and interleukin-4- (IL4-) polarized macrophages (MΦ) initiates posttranslational modifications of PPARγ, that in turn alter its protein function. Using the redox-sensitive GFP2 (roGFP2), we validated oxidizing and reducing conditions following classical and alternative activation of MΦ, while the redox status of PPARγ was determined via mass spectrometry. Cysteine residues located in the zinc finger regions (amino acid fragments AA 90-115, AA 116-130, and AA 160-167) of PPARγ were highly oxidized, accompanied by phosphorylation of serine 82 in response to LPS/IFNγ, whereas IL4-stimulation provoked minor serine 82 phosphorylation and less cysteine oxidation, favoring a reductive milieu. Mutating these cysteines to alanine to mimic a redox modification decreased PPARγ-dependent reporter gene transactivation supporting a functional shift of PPARγ associated with the MΦ phenotype. These data suggest distinct mechanisms for regulating PPARγ function based on the redox state of MΦ.
Collapse
|
12
|
Altonsy MO, Ganguly A, Amrein M, Surmanowicz P, Li SS, Lauzon GJ, Mydlarski PR. Beta3-Tubulin is Critical for Microtubule Dynamics, Cell Cycle Regulation, and Spontaneous Release of Microvesicles in Human Malignant Melanoma Cells (A375). Int J Mol Sci 2020; 21:ijms21051656. [PMID: 32121295 PMCID: PMC7084453 DOI: 10.3390/ijms21051656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules (MTs), microfilaments, and intermediate filaments, the main constituents of the cytoskeleton, undergo continuous structural changes (metamorphosis), which are central to cellular growth, division, and release of microvesicles (MVs). Altered MTs dynamics, uncontrolled proliferation, and increased production of MVs are hallmarks of carcinogenesis. Class III beta-tubulin (β3-tubulin), one of seven β-tubulin isotypes, is a primary component of MT, which correlates with enhanced neoplastic cell survival, metastasis and resistance to chemotherapy. We studied the effects of β3-tubulin gene silencing on MTs dynamics, cell cycle, and MVs release in human malignant melanoma cells (A375). The knockdown of β3-tubulin induced G2/M cell cycle arrest, impaired MTs dynamics, and reduced spontaneous MVs release. Additional studies are therefore required to elucidate the pathophysiologic and therapeutic role of β3-tubulin in melanoma.
Collapse
Affiliation(s)
- Mohammed O. Altonsy
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Department of Zoology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Anutosh Ganguly
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Philip Surmanowicz
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
| | - Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gilles J. Lauzon
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
| | - P. Régine Mydlarski
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Correspondence: ; Tel.: +1-403-955-8345; Fax: +1-403-955-8200
| |
Collapse
|
13
|
Bergendahl LT, Gerasimavicius L, Miles J, Macdonald L, Wells JN, Welburn JPI, Marsh JA. The role of protein complexes in human genetic disease. Protein Sci 2019; 28:1400-1411. [PMID: 31219644 DOI: 10.1002/pro.3667] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Many human genetic disorders are caused by mutations in protein-coding regions of DNA. Taking protein structure into account has therefore provided key insight into the molecular mechanisms underlying human genetic disease. Although most studies have focused on the intramolecular effects of mutations, the critical role of the assembly of proteins into complexes is being increasingly recognized. Here, we review multiple ways in which consideration of protein complexes can help us to understand and explain the effects of pathogenic mutations. First, we discuss disorders caused by mutations that perturb intersubunit interactions in homomeric and heteromeric complexes. Second, we address how protein complex assembly can facilitate a dominant-negative mechanism, whereby mutated subunits can disrupt the activity of wild-type protein. Third, we show how mutations that change protein expression levels can lead to damaging stoichiometric imbalances. Finally, we review how mutations affecting different subunits of the same heteromeric complex often cause similar diseases, whereas mutations in different interfaces of the same subunit can cause distinct phenotypes.
Collapse
Affiliation(s)
- L Therese Bergendahl
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jamilla Miles
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lewis Macdonald
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14850
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
14
|
Randazzo D, Khalique U, Belanto JJ, Kenea A, Talsness DM, Olthoff JT, Tran MD, Zaal KJ, Pak K, Pinal-Fernandez I, Mammen AL, Sackett D, Ervasti JM, Ralston E. Persistent upregulation of the β-tubulin tubb6, linked to muscle regeneration, is a source of microtubule disorganization in dystrophic muscle. Hum Mol Genet 2019; 28:1117-1135. [PMID: 30535187 DOI: 10.1093/hmg/ddy418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 12/20/2022] Open
Abstract
In healthy adult skeletal muscle fibers microtubules form a three-dimensional grid-like network. In the mdx mouse, a model of Duchenne muscular dystrophy (DMD), microtubules are mostly disordered, without periodicity. These microtubule defects have been linked to the mdx mouse pathology. We now report that increased expression of the beta 6 class V β-tubulin (tubb6) contributes to the microtubule changes of mdx muscles. Wild-type muscle fibers overexpressing green fluorescent protein (GFP)-tubb6 (but not GFP-tubb5) have disorganized microtubules whereas mdx muscle fibers depleted of tubb6 (but not of tubb5) normalize their microtubules, suggesting that increasing tubb6 is toxic. However, tubb6 increases spontaneously during differentiation of mouse and human muscle cultures. Furthermore, endogenous tubb6 is not uniformly expressed in mdx muscles but is selectively increased in fiber clusters, which we identify as regenerating. Similarly, mdx-based rescued transgenic mice that retain a higher than expected tubb6 level show focal expression of tubb6 in subsets of fibers. Tubb6 is also upregulated in cardiotoxin-induced mouse muscle regeneration, in human myositis and DMD biopsies, and the tubb6 level correlates with that of embryonic myosin heavy chain, a regeneration marker. In conclusion, modulation of a β-tubulin isotype plays a role in muscle differentiation and regeneration. Increased tubb6 expression and microtubule reorganization are not pathological per se but reflect a return to an earlier developmental stage. However, chronic elevation of tubb6, as occurs in the mdx mouse, may contribute to the repeated cycles of regeneration and to the pathology of the disease.
Collapse
Affiliation(s)
- Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Umara Khalique
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Aster Kenea
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Michelle D Tran
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kristien J Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine Pak
- Laboratory of Muscle Stem Cells and Gene Regulation, Muscle Disease Unit, NIAMS, NIH, Bethesda, MD, USA
| | - Iago Pinal-Fernandez
- Laboratory of Muscle Stem Cells and Gene Regulation, Muscle Disease Unit, NIAMS, NIH, Bethesda, MD, USA.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew L Mammen
- Laboratory of Muscle Stem Cells and Gene Regulation, Muscle Disease Unit, NIAMS, NIH, Bethesda, MD, USA.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Evelyn Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Zhang S, Li Q, Zhang Q, Wang J, Zhang H, Zhang Z, Wang Q, Yang X, Gu Y, Zhang H. Expression of ERCC1 and Class III β-Tubulin in Resected Non-Small Cell Lung Cancer and its Correlation with Platinum-Based Adjuvant Chemotherapy. Int J Biol Markers 2018; 25:141-9. [DOI: 10.1177/172460081002500304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective To explore the relationship between the expression of excision repair cross-complementation group 1 (ERCC1) and class III β-tubulin and the clinical characteristics and overall survival of patients with non-small cell lung cancer (NSCLC). Methods Immunohistochemical analysis was used to determine the protein expression of ERCC1 and class III β-tubulin in 160 completely resected NSCLC primary tumor samples, 50 of which were paired with adjacent normal tissue samples and another 40 benign lung lesion tissue samples as controls. Clinical data at baseline, disease-free survival and overall survival were also collected. Univariate and multivariate Cox models were used to analyze the risk factors. Results In 160 tumor samples, the ERCC1 and class III β-tubulin positive rates obtained with immunohistochemistry were 46.9% and 49.4%, respectively. Both biomarkers had a higher positive rate in male patients. For patients who did not receive adjuvant chemotherapy, ERCC1 positivity was associated with longer survival (median survival time 73 vs 53 months, p=0.041), while in patients treated with platinum chemotherapy, ERCC1 positivity tended to be associated with poor survival (median survival time 41 vs 54 months, p=0.014). Class III β-tubulin positivity was also associated with poor survival (median survival time 38 vs 58 months, p<0.001), but had no influence on the survival of patients who did not receive adjuvant chemotherapy. Conclusions ERCC1 and class III β-tubulin could be important survival predictors for completely resected NSCLC patients treated with adjuvant chemotherapy. Further prospective studies need to be performed to test this hypothesis in Chinese patients.
Collapse
Affiliation(s)
- Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| | - Qi Li
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| | - Quan Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| | - Haiqing Zhang
- Department of Pathology, Beijing Chest Hospital, Beijing - China
| | - Zongde Zhang
- Department of Molecular Biology, Beijing Chest Hospital, Beijing - China
| | - Qunhui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| | - Xinjie Yang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| | - Yanfei Gu
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| | - Hui Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing - China
| |
Collapse
|
16
|
Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation. Oncotarget 2018; 7:34395-419. [PMID: 27284014 PMCID: PMC5085164 DOI: 10.18632/oncotarget.9118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the profuse development of multidrug resistance in cancer.
Collapse
|
17
|
Cis-trimethoxy resveratrol induces intrinsic apoptosis via prometaphase arrest and prolonged CDK1 activation pathway in human Jurkat T cells. Oncotarget 2017; 9:4969-4984. [PMID: 29435156 PMCID: PMC5797027 DOI: 10.18632/oncotarget.23576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cis-trimethoxy resveratrol (cis-3M-RES) induced dose-dependent cytotoxicity and apoptotic DNA fragmentation in Jurkat T cell clones (JT/Neo); however, it induced only cytostasis in BCL-2-overexpressing cells (JT/BCL-2). Treatment with 0.25 μM cis-3M-RES induced G2/M arrest, BAK activation, Δψm loss, caspase-9 and caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage in JT/Neo cells time-dependently but did not induce these events, except G2/M arrest, in JT/BCL-2 cells. Moreover, cis-3M-RES induced CDK1 activation, BCL-2 phosphorylation at Ser-70, MCL-1 phosphorylation at Ser-159/Thr-163, and BIM (BIMEL and BIML) phosphorylation irrespective of BCL-2 overexpression. Enforced G1/S arrest by using a G1/S blocker aphidicolin completely inhibited cis-3M-RES-induced apoptotic events. Cis-3M-RES-induced phosphorylation of BCL-2 family proteins and mitochondrial apoptotic events were suppressed by a validated CDK1 inhibitor RO3306. Immunofluorescence microscopy showed that cis-3M-RES induced mitotic spindle defects and prometaphase arrest. The rate of intracellular polymeric tubulin to monomeric tubulin decreased markedly by cis-3M-RES (0.1-1.0 μM). Wild-type Jurkat clone A3, FADD-deficient Jurkat clone I2.1, and caspase-8-deficient Jurkat clone I9.2 exhibited similar susceptibilities to the cytotoxicity of cis-3M-RES, excluding contribution of the extrinsic death receptor-dependent pathway to the apoptosis. IC50 values of cis-3M-RES against Jurkat E6.1, U937, HL-60, and HeLa cells were 0.07-0.17 μM, whereas those against unstimulated human peripheral T cells and phytohaemagglutinin A-stimulated peripheral T cells were >10.0 and 0.23 μM, respectively. These results indicate that the antitumor activity of cis-3M-RES is mediated by microtubule damage, and subsequent prometaphase arrest and prolonged CDK1 activation that cause BAK-mediated mitochondrial apoptosis, and suggest that cis-3M-RES is a promising agent to treat leukemia.
Collapse
|
18
|
Fazeli W, Herkenrath P, Stiller B, Neugebauer A, Fricke J, Lang-Roth R, Nürnberg G, Thoenes M, Becker J, Altmüller J, Volk AE, Kubisch C, Heller R. A TUBB6 mutation is associated with autosomal dominant non-progressive congenital facial palsy, bilateral ptosis and velopharyngeal dysfunction. Hum Mol Genet 2017; 26:4055-4066. [DOI: 10.1093/hmg/ddx296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
|
19
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Joo E, Lombaert I, Yamada K. Hyperacetylation of Microtubules in Mesenchymal Cells Increases Cytokeratin 14-Positive Epithelial Progenitors in Developing Salivary Glands. J Dent Res 2016; 95:1518-1527. [PMID: 27542391 PMCID: PMC5119680 DOI: 10.1177/0022034516662450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cells engage in bidirectional communication with their surroundings. This reciprocal dialogue between cells and their cellular microenvironments often governs the maintenance and differentiation of stem/progenitor cells. Here, the authors present evidence that in developing salivary gland explants, a single posttranslational change in microtubules in mesenchymal cells alters the mesenchymal microenvironment and promotes the maintenance and differentiation of a subset of epithelial progenitor cells that impairs branching morphogenesis. Specifically, the authors report that hyperacetylation of microtubules in mesenchymal cells increased cytokeratin 14-positive (K14+) progenitors and their differentiated progeny, myoepithelial cells, in epithelial basal and suprabasal layers in the distal endbud region of developing salivary glands. Mechanistically, this process engages the transforming growth factor β1 protein and Notch signaling pathways. This report establishes that a simple posttranslational change in the cytoskeletal system of mesenchyme dictates the maintenance and differentiation of adjacent epithelial progenitor cells to alter branching morphogenesis of the epithelium.
Collapse
Affiliation(s)
- E.E. Joo
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I.M.A. Lombaert
- Laboratory of Cell and Developmental Biology, Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K.M. Yamada
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
22
|
Renauld J, Johnen N, Thelen N, Cloes M, Thiry M. Spatio-temporal dynamics of β-tubulin isotypes during the development of the sensory auditory organ in rat. Histochem Cell Biol 2015. [DOI: 10.1007/s00418-015-1350-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Zhuo Y, Guo Q. [Down-regulated βIII-tubulin expression can reverse paclitaxel resistance in A549/taxol cells lines]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:581-7. [PMID: 25130963 PMCID: PMC6000364 DOI: 10.3779/j.issn.1009-3419.2014.08.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC) cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. METHODS Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. RESULTS βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87)% (P<0.01); Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60)% (P<0.01). The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01); G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05). CONCLUSIONS βIII-tubulin down-regulated significantly sensitized NSCLC A549/Taxol cells to Paclitaxel.
Collapse
Affiliation(s)
- Yinling Zhuo
- Department of Internal Medicine, Shandong Province Hospital of Occupational Diseases, Jinan 250002, China
| | - Qisen Guo
- Department of Internal Medicine, Shandong Province Hospital of Occupational Diseases, Jinan 250002, China
| |
Collapse
|
24
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
25
|
Dependency of 2-methoxyestradiol-induced mitochondrial apoptosis on mitotic spindle network impairment and prometaphase arrest in human Jurkat T cells. Biochem Pharmacol 2015; 94:257-69. [PMID: 25732194 DOI: 10.1016/j.bcp.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/23/2022]
Abstract
The present study sought to determine the correlation between 2-methoxyestradiol (2-MeO-E2)-induced cell cycle arrest and 2-MeO-E2-induced apoptosis. Exposure of Jurkat T cell clone (JT/Neo) to 2-MeO-E2 (0.5-1.0 μM) caused G2/M arrest, Bak activation, Δψm loss, caspase-9 and -3 activation, PARP cleavage, intracellular ROS accumulation, and apoptotic DNA fragmentation, whereas none of these events except for G2/M arrest were induced in Jurkat T cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, Cdk1 phosphorylation at Thr-161 and dephosphorylation at Tyr-15, up-regulation of cyclin B1 expression, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation at Ser-159/Thr-163, and Bim phosphorylation were detected irrespective of Bcl-2 overexpression. Concomitant treatment of JT/Neo cells with 2-MeO-E2 and the G1/S blocking agent aphidicolin resulted in G1/S arrest and abrogation of all apoptotic events, including Cdk1 activation, phosphorylation of Bcl-2, Mcl-1 and Bim, and ROS accumulation. The 2-MeO-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor, but not by an Aurora A kinase (AURKA), Aurora B kinase (AURKB), JNK, or p38 MAPK inhibitor. Immunofluorescence microscopic analysis revealed that 2-MeO-E2-induced mitotic arrest was caused by mitotic spindle network impairment and prometaphase arrest. Whereas 10-20 μM 2-MeO-E2 reduced the proportion of intracellular polymeric tubulin to monomeric tubulin, 0.5-5.0 μM 2-MeO-E2 increased it. These results demonstrate that the apoptogenic effect of 2-MeO-E2 (0.5-1.0 μM) was attributable to mitotic spindle defect-mediated prometaphase arrest, Cdk1 activation, phosphorylation of Bcl-2, Mcl-1, and Bim, and activation of Bak and mitochondria-dependent caspase cascade.
Collapse
|
26
|
Lobert S, Graichen ME, Hamilton RD, Pitman KT, Garrett MR, Hicks C, Koganti T. Prognostic biomarkers for HNSCC using quantitative real-time PCR and microarray analysis: β-tubulin isotypes and the p53 interactome. Cytoskeleton (Hoboken) 2014; 71:628-37. [PMID: 25355403 DOI: 10.1002/cm.21195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/18/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
In 2014, more than 40,000 people in the United States will be diagnosed with head and neck squamous cell cancer (HNSCC) and nearly 8400 people will die of the disease (www.cancer.org/acs/groups). Little is known regarding molecular targets that might lead to better therapies and improved outcomes for these patients. The incorporation of taxanes into the standard cisplatin/5-fluouracil initial chemotherapy for HNSCC has been associated with improved response rate and survival. Taxanes target the β-subunit of the tubulin heterodimers, the major protein in microtubules, and halt cell division at G2/M phase. Both laboratory and clinical research suggest a link between β-tubulin expression and cancer patient survival, indicating that patterns of expression for β-tubulin isotypes along with activity of tumor suppressors such as p53 or micro-RNAs could be useful prognostic biomarkers and could suggest therapeutic targets. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharon Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | |
Collapse
|
27
|
Yang J, Yang J, Gao Y, Zhao L, Liu L, Qin Y, Wang X, Song T, Huang C. Identification of potential serum proteomic biomarkers for clear cell renal cell carcinoma. PLoS One 2014; 9:e111364. [PMID: 25368985 PMCID: PMC4219714 DOI: 10.1371/journal.pone.0111364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/23/2014] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate discriminating protein patterns and serum biomarkers between clear cell renal cell carcinoma (ccRCC) patients and healthy controls, as well as between paired pre- and post-operative ccRCC patients. Methods We used magnetic bead-based separation followed by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) to identify patients with ccRCC. A total of 162 serum samples were analyzed in this study, among which there were 58 serum samples from ccRCC patients, 40 from additional paired pre- and post-operative ccRCC patients (n = 20), and 64 from healthy volunteers as healthy controls. ClinProTools software identified several distinct markers between ccRCC patients and healthy controls, as well as between pre- and post-operative patients. Results Patients with ccRCC could be identified with a mean sensitivity of 88.38% and a mean specificity of 91.67%. Of 67 m/z peaks that differed among the ccRCC, healthy controls, pre- and post-operative ccRCC patients, 24 were significantly different (P<0.05). Three candidate peaks, which were upregulated in ccRCC group and showed a tendency to return to healthy control values after surgery, were identified as peptide regions of RNA-binding protein 6 (RBP6), tubulin beta chain (TUBB), and zinc finger protein 3 (ZFP3) with the m/z values of 1466.98, 1618.22, and 5905.23, respectively. Conclusion MB-MALDI-TOF-MS method could generate serum peptidome profiles of ccRCC, and provide a new approach to identify potential biomarkers for diagnosis as well as prognosis of this malignancy.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Jin Yang
- Department of Medical Oncology, First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi′an, China
| | - Yan Gao
- Department of Medical Oncology, First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi′an, China
| | - Lingyu Zhao
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Yannan Qin
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Tusheng Song
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
- * E-mail:
| |
Collapse
|
28
|
Zuo J, Brewer DS, Arlt VM, Cooper CS, Phillips DH. Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genomics 2014; 15:880. [PMID: 25297811 PMCID: PMC4209037 DOI: 10.1186/1471-2164-15-880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP. RESULTS BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated. CONCLUSIONS Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism.
Collapse
Affiliation(s)
- Jie Zuo
- />Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS UK
| | - Daniel S Brewer
- />School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Volker M Arlt
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Colin S Cooper
- />The Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - David H Phillips
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
29
|
Miyazaki T, Ikeda Y, Kubo I, Suganuma S, Fujita N, Itakura M, Hayashi T, Takabayashi S, Katoh H, Ohira Y, Sato M, Noguchi M, Tokumoto T. Identification of genomic locus responsible for experimentally induced testicular teratoma 1 (ett1) on mouse Chr 18. Mamm Genome 2014; 25:317-26. [PMID: 24997020 DOI: 10.1007/s00335-014-9529-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene "experimental testicular teratoma 1 (ett1)". To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
31
|
Ko DC, Jaslow SL. The marriage of quantitative genetics and cell biology: a novel screening approach reveals people have genetically encoded variation in microtubule stability. BIOARCHITECTURE 2014; 4:58-61. [PMID: 24618686 DOI: 10.4161/bioa.28481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microtubules play a central role in many essential cellular processes, including chromosome segregation, intracellular transport, and cell polarity. As these dynamic polymers are crucial components of eukaryotic cellular architecture, we were surprised by our recent discovery that a common human genetic difference leads to variation in microtubule stability in cells from different people. A single nucleotide polymorphism (SNP) near the TUBB6 gene, encoding class V β-tubulin, is associated with the expression level of this protein, which reduces microtubule stability at higher levels of expression. We discuss the novel cellular GWAS (genome-wide association study) platform that led to this discovery of natural, common variation in microtubule stability and the implications this finding may have for human health and disease, including cancer and neurological disorders. Furthermore, our generalizable approach provides a gateway for cell biologists to help interpret the functional consequences of human genetic variation.
Collapse
Affiliation(s)
- Dennis C Ko
- Department of Molecular Genetics and Microbiology; School of Medicine; Duke University; Durham, NC USA; Department of Medicine and the Center for Human Genome Variation; School of Medicine; Duke University; Durham, NC USA
| | - Sarah L Jaslow
- Department of Molecular Genetics and Microbiology; School of Medicine; Duke University; Durham, NC USA
| |
Collapse
|
32
|
English DP, Roque DM, Santin AD. Class III b-tubulin overexpression in gynecologic tumors: implications for the choice of microtubule targeted agents? Expert Rev Anticancer Ther 2014; 13:63-74. [DOI: 10.1586/era.12.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Yin S, Zeng C, Hari M, Cabral F. Paclitaxel resistance by random mutagenesis of α-tubulin. Cytoskeleton (Hoboken) 2013; 70:849-62. [DOI: 10.1002/cm.21154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Shanghua Yin
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| | - Changqing Zeng
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| | - Malathi Hari
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| |
Collapse
|
34
|
Salinas RE, Ogohara C, Thomas MI, Shukla KP, Miller SI, Ko DC. A cellular genome-wide association study reveals human variation in microtubule stability and a role in inflammatory cell death. Mol Biol Cell 2013; 25:76-86. [PMID: 24173717 PMCID: PMC3873895 DOI: 10.1091/mbc.e13-06-0294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interindividual variation was screened for inflammatory cell death—pyroptosis. Natural variation in expression of the tubulin isoform TUBB6 or experimental manipulation of expression altered microtubule stability and susceptibility of cells to pyroptosis. Diversity in microtubule stability regulates pyroptosis and likely other human traits. Pyroptosis is proinflammatory cell death that occurs in response to certain microbes. Activation of the protease caspase-1 by molecular platforms called inflammasomes is required for pyroptosis. We performed a cellular genome-wide association study (GWAS) using Salmonella typhimurium infection of human lymphoblastoid cell lines as a means of dissecting the genetic architecture of susceptibility to pyroptosis and identifying unknown regulatory mechanisms. Cellular GWAS revealed that a common human genetic difference that regulates pyroptosis also alters microtubule stability. An intergenic single-nucleotide polymorphism on chromosome 18 is associated with decreased pyroptosis and increased expression of TUBB6 (tubulin, β 6 class V). TUBB6 is unique among tubulin isoforms in that its overexpression can completely disrupt the microtubule network. Cells from individuals with higher levels of TUBB6 expression have lower microtubule stability and less pyroptosis. Reducing TUBB6 expression or stabilizing microtubules pharmacologically with paclitaxel (Taxol) increases pyroptosis without affecting the other major readout of caspase-1 activation, interleukin-1β secretion. The results reveal a new role for microtubules and possibly specific tubulin isoforms in the execution of pyroptosis. Furthermore, the finding that there is common diversity in TUBB6 expression and microtubule stability could have broad consequences for other microtubule-dependent phenotypes, diseases, and pharmacological responses.
Collapse
Affiliation(s)
- Raul E Salinas
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710 Department of Medicine and Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27710 Department of Microbiology, University of Washington, Seattle, WA 98195 Departments of Medicine, Genome Sciences, and Immunology, University of Washington, Seattle, WA 98195
| | | | | | | | | | | |
Collapse
|
35
|
Horak CE, Pusztai L, Xing G, Trifan OC, Saura C, Tseng LM, Chan S, Welcher R, Liu D. Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer. Clin Cancer Res 2013; 19:1587-95. [PMID: 23340299 DOI: 10.1158/1078-0432.ccr-12-1359] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Predictive biomarkers offer the potential to improve the benefit:risk ratio of a therapeutic agent. Ixabepilone achieves comparable pathologic complete response (pCR) rates to other active drugs in the neoadjuvant setting. This phase II trial was designed to investigate potential biomarkers that differentiate response to this agent. EXPERIMENTAL DESIGN Women with untreated, histologically confirmed primary invasive breast adenocarcinoma received neoadjuvant doxorubicin/cyclophosphamide, followed by 1:1 randomization to ixabepilone (n = 148) or paclitaxel (n = 147). Rates of pCR were compared between treatment arms based on predefined biomarker sets: TUBB3, TACC3, and CAPG gene expression, a 20- and 26-gene expression model, MDR1 protein expression, and other potential markers of sensitivity. βIII-tubulin protein expression is reported separately but is referred to here for completeness. All patients underwent a core needle biopsy of the primary cancer for molecular marker analysis before chemotherapy. Gene expression profiling data were used for molecular subtyping. RESULTS There was no significant difference in the rate of pCR in both treatment arms in βIII-tubulin-positive patients. Higher pCR rates were observed among βIII-tubulin-positive patients than in βIII-tubulin-negative patients. Furthermore, no correlation was evident between TUBB3, TACC3, and CAPG gene expression, MDR1 protein expression, multi-gene expression models, and the efficacy of ixabepilone or paclitaxel, even within the estrogen receptor-negative subset. CONCLUSION These results indicate that βIII-tubulin protein and mRNA expression, MDR1 protein expression, TACC3 and CAPG gene expression, and multigene expression models (20- and 26-gene) are not predictive markers for differentiating treatment benefit between ixabepilone and paclitaxel in early-stage breast cancer.
Collapse
|
36
|
Ye JL, Han JQ, Guo XJ, Wang FM. Relationship among expression of β-tubulin Ⅲ, Stathmin and P-gp proteins, response to paclitaxel chemotherapy, and prognosis in ESCC. Shijie Huaren Xiaohua Zazhi 2012; 20:2613-2617. [DOI: 10.11569/wcjd.v20.i27.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship among the expression of β-tubulin Ⅲ, Stathmin and P-gp proteins, and response to paclitaxel chemotherapy, and prognosis in esophageal squamous cell carcinoma (ESCC).
METHODS: Seventy-six ESCC patients were enrolled in this study and their tumor samples were collected for analysis. The expression of β-tubulin Ⅲ, Stathmin, and P-gp proteins in these ESCC samples and 40 normal esophageal mucosal samples was detected by immunohistochemistry. The correlation among the expression of these proteins, response to paclitaxel chemotherapy, and prognosis was then analyzed.
RESULTS: The positive rates of β-tubulin Ⅲ, Stathmin, and P-gp in ESCC were significantly higher than those in normal esophageal mucosal tissue (63.2% vs 10.0%, 54% vs 10%, 64.5% vs 20.0%, all P < 0.05). Increased expression of β-tubulin Ⅲ, Stathmin, and P-gp was significantly correlated with poor tumor differentiation, lymph node metastasis, and advanced tumor stage (all P < 0.05). In 64 cases treated by paclitaxel chemotherapy, the response rate was significantly lower in patients who had positive expression of β-tubulin Ⅲ, Stathmin, and P-gp than in those who had negative expression (P = 0.024, 0.024, 0.012).
CONCLUSION: The expression of β-tubulin Ⅲ, Stathmin, P-gp is increased in ESCC. Increased expression of β-tubulin Ⅲ, Stathmin, and P-gp is associated with high malignancy and poor prognosis.
Collapse
|
37
|
Christoph DC, Kasper S, Gauler TC, Loesch C, Engelhard M, Theegarten D, Poettgen C, Hepp R, Peglow A, Loewendick H, Welter S, Stamatis G, Hirsch FR, Schuler M, Eberhardt WEE, Wohlschlaeger J. βV-tubulin expression is associated with outcome following taxane-based chemotherapy in non-small cell lung cancer. Br J Cancer 2012; 107:823-30. [PMID: 22836512 PMCID: PMC3425975 DOI: 10.1038/bjc.2012.324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Tubulin-binding agents (TBAs) are effective in non-small cell lung cancer (NSCLC) treatment. Both βIII- and βV-tubulins are expressed by cancer cells and may lead to resistance against TBAs. Methods: Pre-treatment samples from 65 locally advanced or oligometastatic NSCLC patients, who underwent uniform induction chemotherapy with paclitaxel and platinum followed by radiochemotherapy with vinorelbine and platinum were retrospectively analysed by immunohistochemistry. Protein expression of βIII- and βV-tubulin was morphometrically quantified. Results: Median pre-treatment H-score for βIII-tubulin was 110 (range: 0–290), and 160 for βV-tubulin (range: 0–290). Low βIII-tubulin expression was associated with improved overall survival (OS) (P=0.0127, hazard ratio (HR): 0.328). An association between high βV-tubulin expression and prolonged progression-free survival (PFS, median 19.2 vs 9.4 months in high vs low expressors; P=0.0315, HR: 1.899) was found. Further, high βV-tubulin expression was associated with objective response (median H-score 172.5 for CR+PR vs 120 for SD+PD patients, P=0.0104) or disease control following induction chemotherapy (170 for CR+PR+SD vs 100 for PD patients, P=0.0081), but not radiochemotherapy. Conclusion: Expression of βV-tubulin was associated with treatment response and PFS following paclitaxel-based chemotherapy of locally advanced and oligometastatic NSCLC patients. Prolonged OS was associated with low levels of βIII-tubulin. Prospective evaluation of βIII/βV-tubulin expression in NSCLC is warranted.
Collapse
Affiliation(s)
- D C Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chao SK, Wang Y, Verdier-Pinard P, Yang CPH, Liu L, Rodriguez-Gabin A, McDaid HM, Horwitz SB. Characterization of a human βV-tubulin antibody and expression of this isotype in normal and malignant human tissue. Cytoskeleton (Hoboken) 2012; 69:566-76. [PMID: 22903939 DOI: 10.1002/cm.21043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 11/07/2022]
Abstract
There are seven distinct β-tubulin isotypes and eight α-tubulin isotypes in mammals that are hypothesized to have tissue- and cell-specific functions. There is an interest in the use of tubulin isotypes as prognostic markers of malignancy. βV-tubulin, like βIII-tubulin, has been implicated in malignant transformation and drug resistance, however little is known about its localization and function. Thus, we generated for the first time, a rabbit polyclonal antibody specific for human βV-tubulin. The antibody did not cross-react with mouse βV-tubulin or other human β-tubulin isotypes and specifically labeled βV-tubulin by immunoblotting, immunofluorescence and immunohistochemistry. Immunohistochemistry of various human normal tissues revealed that βV-tubulin was expressed in endothelial cells, myocytes and cells with muscle differentiation, structures with transport and/or secretory function such as renal tubules, pancreatic ducts and bile ducts, and epithelium with secretory function such as prostate. βV-tubulin was also specifically expressed in pancreatic islets and intratubular germ cell neoplasia, where it may have diagnostic utility. Initial studies in breast, lung and ovarian cancers indicated aberrant expression of βV-tubulin, suggesting that this isoform may be associated with tumorigenesis. Thus, βV-tubulin expression is a potentially promising prognostic marker of malignancy.
Collapse
Affiliation(s)
- Suzan K Chao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yin S, Zeng C, Hari M, Cabral F. Random mutagenesis of β-tubulin defines a set of dispersed mutations that confer paclitaxel resistance. Pharm Res 2012; 29:2994-3006. [PMID: 22669706 DOI: 10.1007/s11095-012-0794-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/21/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE Previous research showed that mutations in β1-tubulin are frequently involved in paclitaxel resistance but the question of whether the mutations are restricted by cell-type specific differences remains obscure. METHODS To circumvent cellular constraints, we randomly mutagenized β-tubulin cDNA, transfected it into CHO cells, and selected for paclitaxel resistance. RESULTS A total of 26 β1-tubulin mutations scattered throughout the sequence were identified and a randomly chosen subset were confirmed to confer paclitaxel resistance using site-directed mutagenesis of β-tubulin cDNA and transfection into wild-type cells. Immunofluorescence microscopy and biochemical fractionation studies indicated that cells expressing mutant tubulin had decreased microtubule polymer and frequently suffered mitotic defects that led to the formation of large multinucleated cells, suggesting a resistance mechanism that involves destabilization of the microtubule network. Consistent with this conclusion, the mutations were predominantly located in regions that are likely to be involved in lateral or longitudinal subunit interactions. Notably, fourteen of the new mutations overlapped previously reported mutations in drug resistant cells or in patients with developmental brain abnormalities. CONCLUSIONS A random mutagenesis approach allowed isolation of a wider array of drug resistance mutations and demonstrated that similar mutations can cause paclitaxel resistance and human neuronal abnormalities.
Collapse
Affiliation(s)
- Shanghua Yin
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, 6431 Fannin St., Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
40
|
Small heat-shock protein HSPB1 mutants stabilize microtubules in Charcot-Marie-Tooth neuropathy. J Neurosci 2011; 31:15320-8. [PMID: 22031878 DOI: 10.1523/jneurosci.3266-11.2011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in the small heat shock protein HSPB1 (HSP27) are causative for Charcot-Marie-Tooth (CMT) neuropathy. We previously showed that a subset of these mutations displays higher chaperone activity and enhanced affinity to client proteins. We hypothesized that this excessive binding property might cause the HSPB1 mutant proteins to disturb the function of proteins essential for the maintenance or survival of peripheral neurons. In the present work, we explored this hypothesis further and compared the protein complexes formed by wild-type and mutant HSPB1. Tubulin came out as the most striking differential interacting protein, with hyperactive mutants binding more strongly to both tubulin and microtubules. This anomalous binding leads to a stabilization of the microtubule network in a microtubule-associated protein-like manner as reflected by resistance to cold depolymerization, faster network recovery after nocodazole treatment, and decreased rescue and catastrophe rates of individual microtubules. In a transgenic mouse model for mutant HSPB1 that recapitulates all features of CMT, we could confirm the enhanced interaction of mutant HSPB1 with tubulin. Increased stability of the microtubule network was also clear in neurons isolated from these mice. Since neuronal cells are particularly vulnerable to disturbances in microtubule dynamics, this mechanism might explain the neuron-specific CMT phenotype caused by HSPB1 mutations.
Collapse
|
41
|
Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1816:164-71. [PMID: 21741453 PMCID: PMC3202616 DOI: 10.1016/j.bbcan.2011.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Mechanisms to explain tumor cell resistance to drugs that target the microtubule cytoskeleton have relied on the assumption that the drugs act either to suppress microtubule dynamics or to perturb the balance between assembled and nonassembled tubulin. Recently, however, it was found that these drugs also alter the stability of microtubule attachment to centrosomes, and do so at the same concentrations that are needed to inhibit cell division. Based on this new information, a new model is presented that explains resistance resulting from a variety of molecular changes that have been reported in the literature. The improved understanding of drug action and resistance has important implications for chemotherapy with these agents.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
42
|
Ganguly A, Yang H, Cabral F. Class III β-tubulin counteracts the ability of paclitaxel to inhibit cell migration. Oncotarget 2011; 2:368-77. [PMID: 21576762 PMCID: PMC3248193 DOI: 10.18632/oncotarget.250] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Class III β-tubulin (β3) is associated with tumor aggressiveness, resistance to therapy, and patient relapse. To elucidate its action, we tested β3's effect on cell migration. Expression of β3 in HeLa and MCF-7 did not alter the intrinsic rate of cell migration, but it prevented the inhibition of migration by low, nontoxic concentrations of paclitaxel. The effects on cell motility were confirmed in CHO cells with tetracycline regulated expression of β3. Cell migration and microtubule dynamics were inhibited by similar concentrations of paclitaxel, but required a 5-10 fold higher drug concentration when β3 was expressed. The directionality of migration was normal in paclitaxel, but cells spent more time in a "paused" state during which there was no net movement. These studies support a model in which paclitaxel inhibits cell migration by suppressing microtubule dynamics and β3-tubulin counteracts paclitaxel action by maintaining microtubule dynamic activity. The results provide a potential explanation for the aggressiveness of β3-expressing tumors.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Bouchet BP, Puisieux A, Galmarini CM. βIII-Tubulin is required for interphase microtubule dynamics in untransformed human mammary epithelial cells. Eur J Cell Biol 2011; 90:872-8. [PMID: 21820201 DOI: 10.1016/j.ejcb.2011.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022] Open
Abstract
Numerous works have questioned the pertinence of using βII- and/or βIII-tubulin expression as markers of prognosis and/or prediction of breast cancer response to chemotherapy containing microtubule-targeting agents. The rationale of such studies was essentially based on microtubule dynamics analysis using purified tubulin in vitro and cancer cell lines. Nonetheless, the significance of βII- and βIII-tubulin expression in the control of microtubule dynamics in normal mammary epithelium has never been addressed. Here we investigate the expression and the consequences of βII- and/or βIII-tubulin depletion in interphase microtubule dynamics in non-tumor human mammary epithelial cells. We find that both isoforms contribute to the tubulin isotype composition in primary and immortalized human mammary epithelial cells. Moreover, while βII-tubulin depletion has limited effects on interphase microtubule behavior, βIII-tubulin depletion causes a strong exclusion of microtubules from lamella and a severe suppression of dynamic instability. These results demonstrate that, while βII-tubulin is dispensable, βIII-tubulin is required for interphase microtubule dynamics in untransformed mammary epithelial cells. This strongly suggests that βIII-tubulin is an essential regulator of interphase microtubule functions in normal breast epithelium cells.
Collapse
|
44
|
Corbo CP, Alonso ADC. Therapeutic targets in Alzheimer's disease and related tauopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:47-83. [PMID: 21199770 DOI: 10.1016/b978-0-12-385506-0.00002-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease that is characterized histopathologically by the presence of plaques, mainly composed of Abeta amyloid and the tangles, mainly composed of hyperphosphorylated tau. To date, there is no treatment that can reverse the disease, and all the current therapeutics is directed to cope with the symptoms of the disease. Here we describe the efforts dedicated to attack the plaques and, in more detail, the process of neurofibrillary degeneration, linked to the presence of the hyperphosphorylated microtubule associated protein tau. We have identified the different putative targets for therapeutics and the current knowledge on them.
Collapse
Affiliation(s)
- Christopher P Corbo
- College of Staten Island, Program in evelopmental Neuroscience, The Graduate Center, City University of New York (CUNY), Staten Island, New York, USA
| | | |
Collapse
|
45
|
Two different docetaxel resistant MCF-7 sublines exhibited different gene expression pattern. Mol Biol Rep 2011; 39:3505-16. [PMID: 21720762 DOI: 10.1007/s11033-011-1123-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
Abstract
The objective of the present study was to investigate gene expression pattern of two docetaxel resistant MCF-7 breast carcinoma sublines step wisely selected in 30 and 120 nM docetaxel. Cell proliferation assay was performed in order to demonstrate development of docetaxel resistance. cDNA microarray analysis was performed using Affymetrix(®) Human Genome U133 Plus 2.0 Arrays in duplicate experiments. Quantitative and semi-quantitative gene expression analysis was also performed to confirm gene expression analysis for selected genes. XTT results demonstrated that 30 (MCF-7/30nM DOC) and 120 nM (MCF-7/120nM DOC) docetaxel selected cells were 13- and 47-fold resistant, respectively. cDNA microarray analysis demonstrated that expression profiles of MCF-7 and MCF-7/30nM DOC were more similar to each other where expression profile of MCF-7/120nM DOC was different as examined by line graphs and scatter plots. 2,837 and 4,036 genes were significantly altered in 30 and 120 nM docetaxel resistant sublines, respectively. Among these, 849 genes were altered in common in two docetaxel resistant sublines. Antiapoptotic gene expression (e.g., Bcl-2 and APRIL) were noticeably altered in MCF-7/30nM DOC. However, docetaxel resistance in MCF-7/120nM DOC were more complicated with the involvement of ECM related gene expression, cytokine and growth factor signaling, ROS metabolism and EMT related gene expression together with higher level of MDR1 expression. Expression profiles in 30 and 120 nM docetaxel resistant sublines changed gradually with increasing resistance index. Drug resistance development seems to be step wise event in MCF-7 cells.
Collapse
|
46
|
Lobert S, Jefferson B, Morris K. Regulation of β-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells. Cytoskeleton (Hoboken) 2011; 68:355-62. [PMID: 21634028 DOI: 10.1002/cm.20517] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/21/2022]
Abstract
Antimitotic drugs are key components of combination chemotherapy protocols for hematological and solid tumors. The taxanes (e.g., paclitaxel) bind to the β subunit of the tubulin heterodimer and reduce microtubule dynamics, leading to cell cycle arrest in G2/M. The effectiveness of combination chemotherapy is limited by tumor resistance to drugs initially or as a cumulative effect after several cycles of treatment. Because changes in the drug receptor may be linked to drug resistance, we investigated changes in β-tubulin isotypes in response to paclitaxel treatment in MCF7 breast cancer cells. We found that paclitaxel induced a 2-3 fold increase in mRNA for β-tubulin IIA and III genes, TUBB2A, and TUBB3. β-Tubulin class III protein increased; however, β-tubulin class II protein was not detected in these cells. Paclitaxel treatment following pretreatment with actinomycin D showed that the change in β-tubulin class III was due to increased transcription and linked to G2/M arrest. The increase in β-tubulin IIA mRNA was due to both enhanced stability and increased transcription, unassociated with G2/M arrest. We used micro-RNA superarrays to look for changes in families of micro-RNAs that might be linked to drug-induced changes in β-tubulin isotype mRNA and/or protein. We found a significant decrease in the tumor suppressor, miR-100, in MCF7 cells in response to paclitaxel treatment. Transfection of MCF7 cells with miR-100 significantly reduced β-tubulin I, IIA, IIB and V mRNA and prevented paclitaxel-induced increases in β-tubulin isotypes. This is the first report of a micro-RNA that regulates these specific β-tubulin isotype mRNAs.
Collapse
Affiliation(s)
- Sharon Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | |
Collapse
|
47
|
Ganguly A, Yang H, Cabral F. Overexpression of mitotic centromere-associated Kinesin stimulates microtubule detachment and confers resistance to paclitaxel. Mol Cancer Ther 2011; 10:929-37. [PMID: 21471284 PMCID: PMC3112244 DOI: 10.1158/1535-7163.mct-10-1109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous studies have implicated mutations in tubulin or the overexpression of specific tubulin genes in resistance to microtubule-targeted drugs. Much less is known about the role of accessory proteins that modulate microtubule behavior in the genesis of drug resistance. Here, we examine mitotic centromere-associated kinesin (MCAK), a member of the kinesin family of microtubule motor proteins that has the ability to stimulate microtubule depolymerization, and show that overexpressing the protein confers resistance to paclitaxel and epothilone A, but increases sensitivity to colcemid. Cells transfected with FLAG-tagged MCAK cDNA using a tet-off-regulated expression system had a disrupted microtubule cytoskeleton and were able to survive a toxic concentration of paclitaxel in the absence, but not in the presence of tetracycline, showing that drug resistance was caused by ectopic MCAK production. Moreover, a population that was heterogeneous with respect to FLAG-MCAK expression became enriched with cells that produced the ectopic protein when it was placed under paclitaxel selection. Similar to previously isolated mutants with altered tubulin, paclitaxel resistant cells resulting from MCAK overexpression were found to have decreased microtubule polymer and a seven-fold increase in the frequency of microtubule detachment from centrosomes. These data are consistent with a model for paclitaxel resistance that is based on stability of the attachment of microtubules to their nucleating centers, and they implicate MCAK in the mechanism of microtubule detachment.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| | - Hailing Yang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|
48
|
Yang H, Ganguly A, Cabral F. Megakaryocyte lineage-specific class VI β-tubulin suppresses microtubule dynamics, fragments microtubules, and blocks cell division. Cytoskeleton (Hoboken) 2011; 68:175-87. [PMID: 21309084 PMCID: PMC3082363 DOI: 10.1002/cm.20503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/07/2011] [Indexed: 02/04/2023]
Abstract
Class VI β-tubulin (β6) is the most divergent tubulin produced in mammals and is found only in platelets and mature megakaryocytes. To determine how this unique tubulin isotype affects microtubule assembly and organization, we expressed the cDNA in tissue culture cells under the control of a tetracycline regulated promoter. The β6 coassembled with other endogenous β-tubulin isotypes into a normal microtubule array; but once the cells entered mitosis it caused extensive fragmentation of the microtubules, disrupted the formation of the spindle apparatus, and allowed entry into G1 phase without cytokinesis to produce large multinucleated cells. The microtubule fragments persisted into subsequent cell cycles and accumulated around the membrane in a marginal band-like appearance. The persistence of the fragments could be traced to a pronounced suppression of microtubule dynamic instability. Impairment of centrosomal nucleation also contributed to the loss of a normal microtubule cytoskeleton. Incorporation of β6 allowed microtubules to resist the effects of colcemid and maytansine, but not vinblastine or paclitaxel; however, cellular resistance to colcemid or maytansine did not occur because expression of β6 prevented cell division. The results indicate that many of the morphological features of megakaryocyte differentiation can be recapitulated in non-hematopoietic cells by β6 expression and they provide a mechanistic basis for understanding these changes.
Collapse
Affiliation(s)
- Hailing Yang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| | - Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|
49
|
Bhattacharya R, Yang H, Cabral F. Class V β-tubulin alters dynamic instability and stimulates microtubule detachment from centrosomes. Mol Biol Cell 2011; 22:1025-34. [PMID: 21289088 PMCID: PMC3069006 DOI: 10.1091/mbc.e10-10-0822] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for multiple tubulin genes in vertebrate organisms is poorly understood. This article shows that a minor, ubiquitious β-tubulin isotype strongly influences microtubule plasticity by altering dynamic behavior and the stability of microtubule attachment to centrosomes. A multigene family produces tubulin isotypes that are expressed in a tissue-specific manner, but the role of these isotypes in microtubule assembly and function is unclear. Recently we showed that overexpression or depletion of β5-tubulin, a minor isotype with wide tissue distribution, inhibits cell division. We now report that elevated β5-tubulin causes uninterrupted episodes of microtubule shortening and increased shortening rates. Conversely, depletion of β5-tubulin reduces shortening rates and causes very short excursions of growth and shortening. A tubulin conformation-sensitive antibody indicated that the uninterrupted shortening can be explained by a relative absence of stabilized patches along the microtubules that contain tubulin in an assembly-competent conformation and normally act to restore microtubule growth. In addition to these changes in dynamic instability, overexpression of β5-tubulin causes fragmentation that results from microtubule detachment from centrosomes, and it is this activity that best explains the effects of β5 on cell division. Paclitaxel inhibits microtubule detachment, increases the number of assembly-competent tubulin patches, and inhibits microtubule shortening, thus providing an explanation for why the drug can counteract the phenotypic effects of β5 overexpression. On the basis of these observations, we propose that cells can use β5-tubulin expression to adjust the behavior of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Rajat Bhattacharya
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|
50
|
Gong EY, Park E, Chattopadhyay S, Lee SY, Lee K. Gene expression profile of rat prostate during pubertal growth and maturation. Reprod Sci 2010; 18:426-34. [PMID: 21193804 DOI: 10.1177/1933719110391275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Temporal gene expression profiling can provide valuable insight into mechanisms of differentiation and may be helpful in laying a foundation for characterization of the molecular aspects of development. Prostate development begins in fetal life and is complete at sexual maturity, and androgen stimulation is both necessary and sufficient for development and maturity of the prostate. In this study, we investigated gene expression profiles of rat prostate at 3 different developmental stages (2 weeks, 3.5 weeks, and 8 weeks), when serum testosterone levels are low, intermediate, and high. Through this analysis, we attempted to narrow down genes whose expression is affected by androgen increase during pubertal growth and maturation of the prostate.
Collapse
Affiliation(s)
- Eun-Yeung Gong
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|