1
|
Ems-McClung SC, Cassity M, Prasannajith A, Walczak CE. The Kinesin-14 tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding. Mol Biol Cell 2025; 36:ar72. [PMID: 40327372 DOI: 10.1091/mbc.e25-02-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Proper spindle assembly requires the Kinesin-14 (K-14) family of motors to organize microtubules (MT) into the bipolar spindle by cross-linking and sliding antiparallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT-binding domains (MBD1 and MBD2) within the Xenopus K-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable with full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1mut) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2mut only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2mut slid antiparallel MTs faster than GX-WT and GX-MBD1mut. However, GX-WT and GX-MBD1mut statically cross-linked the majority of parallel MTs, whereas GX-MBD2mut equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MBDs in the K-14 tail balance antiparallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.
Collapse
|
2
|
Lu W, Lee BS, Deng HXY, Lakonishok M, Martin-Blanco E, Gelfand VI. 'Mitotic' kinesin-5 is a dynamic brake for axonal growth in Drosophila. Development 2025; 152:dev204424. [PMID: 40223510 DOI: 10.1242/dev.204424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
During neuronal development, microtubule reorganization shapes axons and dendrites, establishing the framework for efficient nervous system wiring. Our previous work has demonstrated the role of kinesin-1 in driving microtubule sliding, which powers early axon outgrowth and regeneration in Drosophila melanogaster. Here, we reveal a crucial new role for kinesin-5, a mitotic motor, in modulating postmitotic neuron development. The Drosophila kinesin-5, Klp61F, is expressed in larval brain neurons, with high levels in ventral nerve cord (VNC) neurons. Knockdown of Klp61F in neurons leads to severe adult locomotion defects and lethality, primarily due to defects in VNC motor neurons. Klp61F depletion results in excessive microtubule penetration into the axon growth cone, causing significant axon growth defects in culture and in vivo. These defects are rescued by a chimeric human-Drosophila kinesin-5 motor, indicating a conserved role for kinesin-5 in neuronal development. Altogether, we propose that kinesin-5 acts as a brake on kinesin-1-driven microtubule sliding, ensuring proper axon pathfinding in growing neurons.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brad S Lee
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Xue Ying Deng
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Ems-McClung SC, Cassity M, Prasannajith A, Walczak CE. The Kinesin-14 Tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640188. [PMID: 40060502 PMCID: PMC11888285 DOI: 10.1101/2025.02.25.640188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proper spindle assembly requires the Kinesin-14 family of motors to organize microtubules (MTs) into the bipolar spindle by cross-linking and sliding anti-parallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT binding domains (MBD1 and MBD2) within the Xenopus Kinesin-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable to full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1mut) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2mut only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2mut slid anti-parallel MTs faster than GX-WT and GX-MBD1mut. However, GX-WT and GX-MBD1mut statically cross-linked the majority of parallel MTs, whereas GX-MBD2mut equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MT binding domains in the Kinesin-14 tail balance anti-parallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.
Collapse
|
4
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2025; 26:86-103. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Lu W, Lee BS, Deng HXY, Lakonishok M, Martin-Blanco E, Gelfand VI. "Mitotic" kinesin-5 is a dynamic brake for axonal growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612721. [PMID: 39314406 PMCID: PMC11419024 DOI: 10.1101/2024.09.12.612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During neuronal development, neurons undergo significant microtubule reorganization to shape axons and dendrites, establishing the framework for efficient wiring of the nervous system. Previous studies from our laboratory demonstrated the key role of kinesin-1 in driving microtubule-microtubule sliding, which provides the mechanical forces necessary for early axon outgrowth and regeneration in Drosophila melanogaster. In this study, we reveal the critical role of kinesin-5, a mitotic motor, in modulating the development of postmitotic neurons. Kinesin-5, a conserved homotetrameric motor, typically functions in mitosis by sliding antiparallel microtubules apart in the spindle. Here, we demonstrate that the Drosophila kinesin-5 homolog, Klp61F, is expressed in larval brain neurons, with high levels in ventral nerve cord (VNC) neurons. Knockdown of Klp61F using a pan-neuronal driver leads to severe locomotion defects and complete lethality in adult flies, mainly due to the absence of kinesin-5 in VNC motor neurons during early larval development. Klp61F depletion results in significant axon growth defects, both in cultured and in vivo neurons. By imaging individual microtubules, we observe a significant increase in microtubule motility, and excessive penetration of microtubules into the axon growth cone in Klp61F-depleted neurons. Adult lethality and axon growth defects are fully rescued by a chimeric human-Drosophila kinesin-5 motor, which accumulates at the axon tips, suggesting a conserved role of kinesin-5 in neuronal development. Altogether, our findings show that at the growth cone, kinesin-5 acts as a brake on kinesin-1-driven microtubule sliding, preventing premature microtubule entry into the growth cone. This regulatory role of kinesin-5 is essential for precise axon pathfinding during nervous system development.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brad S. Lee
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Xue Ying Deng
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Lu W, Lakonishok M, Gelfand VI. The dynamic duo of microtubule polymerase Mini spindles/XMAP215 and cytoplasmic dynein is essential for maintaining Drosophila oocyte fate. Proc Natl Acad Sci U S A 2023; 120:e2303376120. [PMID: 37722034 PMCID: PMC10523470 DOI: 10.1073/pnas.2303376120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023] Open
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster, 16 interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for maintenance of the oocyte specification. mRNA encoding Msps is transported and concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, ensuring oocyte fate maintenance by promoting high microtubule polymerization activity in the oocyte, and enhancing dynein-dependent nurse cell-to-oocyte transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
7
|
Lu W, Lakonishok M, Gelfand VI. Drosophila oocyte specification is maintained by the dynamic duo of microtubule polymerase Mini spindles/XMAP215 and dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531953. [PMID: 36945460 PMCID: PMC10028982 DOI: 10.1101/2023.03.09.531953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster , 16-cell interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for the oocyte fate determination. mRNA encoding Msps is concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, enhancing dynein-dependent nurse cell-to-oocyte transport and transforming a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Significance statement Oocyte determination in Drosophila melanogaster provides a valuable model for studying cell fate specification. We describe the crucial role of the duo of microtubule polymerase Mini spindles (Msps) and cytoplasmic dynein in this process. We show that Msps is essential for oocyte fate determination. Msps concentration in the oocyte is achieved through dynein-dependent transport of msps mRNA along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, further enhancing nurse cell-to-oocyte transport by dynein. This creates a positive feedback loop that transforms a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Our findings provide important insights into the mechanisms of oocyte specification and have implications for understanding the development of multicellular organisms.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
8
|
Hunter B, Benoit MPMH, Asenjo AB, Doubleday C, Trofimova D, Frazer C, Shoukat I, Sosa H, Allingham JS. Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape. Nat Commun 2022; 13:4198. [PMID: 35859148 PMCID: PMC9300613 DOI: 10.1038/s41467-022-31794-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.
Collapse
Affiliation(s)
- Byron Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matthieu P M H Benoit
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Caitlin Doubleday
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daria Trofimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Irsa Shoukat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
9
|
Popova JV, Pavlova GA, Razuvaeva AV, Yarinich LA, Andreyeva EN, Anders AF, Galimova YA, Renda F, Somma MP, Pindyurin AV, Gatti M. Genetic Control of Kinetochore-Driven Microtubule Growth in Drosophila Mitosis. Cells 2022; 11:cells11142127. [PMID: 35883570 PMCID: PMC9323100 DOI: 10.3390/cells11142127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/08/2023] Open
Abstract
Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.
Collapse
Affiliation(s)
- Julia V. Popova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Gera A. Pavlova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alyona V. Razuvaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyubov A. Yarinich
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeniya N. Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Alina F. Anders
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Yuliya A. Galimova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Fioranna Renda
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Alexey V. Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Correspondence: (A.V.P.); (M.G.)
| | - Maurizio Gatti
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
- Correspondence: (A.V.P.); (M.G.)
| |
Collapse
|
10
|
Bialic M, Al Ahmad Nachar B, Koźlak M, Coulon V, Schwob E. Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes (Basel) 2022; 13:genes13030408. [PMID: 35327961 PMCID: PMC8951228 DOI: 10.3390/genes13030408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell differentiation or various stresses. Characterizing the dynamics of S phase is important as replication defects are associated with genome instability, cancer and ageing. Methods to measure S-phase duration are so far indirect, and rely on mathematical modelling or require cell synchronization. We describe here a simple and robust method to measure S-phase duration in cell cultures using a dual EdU-BrdU pulse-labeling regimen with incremental thymidine chases, and quantification by flow cytometry of cells entering and exiting S phase. Importantly, the method requires neither cell synchronization nor genome engineering, thus avoiding possible artifacts. It measures the duration of unperturbed S phases, but also the effect of drugs or mutations on it. We show that this method can be used for both adherent and suspension cells, cell lines and primary cells of different types from human, mouse and Drosophila. Interestingly, the method revealed that several commonly-used cancer cell lines have a longer S phase compared to untransformed cells.
Collapse
Affiliation(s)
- Marta Bialic
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, 34293 Montpellier, France; (M.B.); (B.A.A.N.); (M.K.); (E.S.)
- Institut de Médecine Régénératrice et Biothérapie, INSERM, CHU, 34295 Montpellier, France
| | - Baraah Al Ahmad Nachar
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, 34293 Montpellier, France; (M.B.); (B.A.A.N.); (M.K.); (E.S.)
| | - Maria Koźlak
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, 34293 Montpellier, France; (M.B.); (B.A.A.N.); (M.K.); (E.S.)
| | - Vincent Coulon
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, 34293 Montpellier, France; (M.B.); (B.A.A.N.); (M.K.); (E.S.)
- Correspondence: ; Tel.: +33-43435-9679
| | - Etienne Schwob
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, 34293 Montpellier, France; (M.B.); (B.A.A.N.); (M.K.); (E.S.)
| |
Collapse
|
11
|
Solon AL, Tan Z, Schutt KL, Jepsen L, Haynes SE, Nesvizhskii AI, Sept D, Stumpff J, Ohi R, Cianfrocco MA. Kinesin-binding protein remodels the kinesin motor to prevent microtubule binding. SCIENCE ADVANCES 2021; 7:eabj9812. [PMID: 34797717 PMCID: PMC8604404 DOI: 10.1126/sciadv.abj9812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
Kinesins are regulated in space and time to ensure activation only in the presence of cargo. Kinesin-binding protein (KIFBP), which is mutated in Goldberg-Shprintzen syndrome, binds to and inhibits the catalytic motor heads of 8 of 45 kinesin superfamily members, but the mechanism remains poorly defined. Here, we used cryo–electron microscopy and cross-linking mass spectrometry to determine high-resolution structures of KIFBP alone and in complex with two mitotic kinesins, revealing structural remodeling of kinesin by KIFBP. We find that KIFBP remodels kinesin motors and blocks microtubule binding (i) via allosteric changes to kinesin and (ii) by sterically blocking access to the microtubule. We identified two regions of KIFBP necessary for kinesin binding and cellular regulation during mitosis. Together, this work further elucidates the molecular mechanism of KIFBP-mediated kinesin inhibition and supports a model in which structural rearrangement of kinesin motor domains by KIFBP abrogates motor protein activity.
Collapse
Affiliation(s)
- April L. Solon
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhenyu Tan
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Katherine L. Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Lauren Jepsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah E. Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Michael A. Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Thomas A, Gallaud E, Pascal A, Serre L, Arnal I, Richard-Parpaillon L, Savoian MS, Giet R. Peripheral astral microtubules ensure asymmetric furrow positioning in neural stem cells. Cell Rep 2021; 37:109895. [PMID: 34706235 DOI: 10.1016/j.celrep.2021.109895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/26/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Neuroblast division is characterized by asymmetric positioning of the cleavage furrow, resulting in a large difference in size between the future daughter cells. In animal cells, furrow placement and assembly are governed by centralspindlin that accumulates at the equatorial cell cortex of the future cleavage site and at the spindle midzone. In neuroblasts, these two centralspindlin populations are spatially and temporally separated. A leading pool is located at the basal cleavage site and a second pool accumulates at the midzone before traveling to the cleavage site. The cortical centralspindlin population requires peripheral astral microtubules and the chromosome passenger complex for efficient recruitment. Loss of this pool does not prevent cytokinesis but enhances centralspindlin signaling at the midzone, leading to equatorial furrow repositioning and decreased size asymmetry. These data show that basal furrow positioning in neuroblasts results from a competition between different centralspindlin pools in which the cortical pool is dominant.
Collapse
Affiliation(s)
- Alexandre Thomas
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Emmanuel Gallaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Aude Pascal
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Laurence Serre
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabelle Arnal
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Laurent Richard-Parpaillon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Matthew Scott Savoian
- School of Fundamental Sciences, Massey University, 4410 Palmerston North, New Zealand
| | - Régis Giet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France.
| |
Collapse
|
13
|
Pandey H, Popov M, Goldstein-Levitin A, Gheber L. Mechanisms by Which Kinesin-5 Motors Perform Their Multiple Intracellular Functions. Int J Mol Sci 2021; 22:6420. [PMID: 34203964 PMCID: PMC8232732 DOI: 10.3390/ijms22126420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bipolar kinesin-5 motor proteins perform multiple intracellular functions, mainly during mitotic cell division. Their specialized structural characteristics enable these motors to perform their essential functions by crosslinking and sliding apart antiparallel microtubules (MTs). In this review, we discuss the specialized structural features of kinesin-5 motors, and the mechanisms by which these features relate to kinesin-5 functions and motile properties. In addition, we discuss the multiple roles of the kinesin-5 motors in dividing as well as in non-dividing cells, and examine their roles in pathogenetic conditions. We describe the recently discovered bidirectional motility in fungi kinesin-5 motors, and discuss its possible physiological relevance. Finally, we also focus on the multiple mechanisms of regulation of these unique motor proteins.
Collapse
Affiliation(s)
| | | | | | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel; (H.P.); (M.P.); (A.G.-L.)
| |
Collapse
|
14
|
Cutillas V, Johnston CA. Mud binds the kinesin-14 Ncd in Drosophila. Biochem Biophys Rep 2021; 26:101016. [PMID: 34027137 PMCID: PMC8134030 DOI: 10.1016/j.bbrep.2021.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/03/2022] Open
Abstract
Maintenance of proper mitotic spindle structure is necessary for error-free chromosome segregation and cell division. Spindle assembly is controlled by force-generating kinesin motors that contribute to its geometry and bipolarity, and balancing motor-dependent forces between opposing kinesins is critical to the integrity of this process. Non-claret dysjunctional (Ncd), a Drosophila kinesin-14 member, crosslinks and slides microtubule minus-ends to focus spindle poles and sustain bipolarity. However, mechanisms that regulate Ncd activity during mitosis are underappreciated. Here, we identify Mushroom body defect (Mud), the fly ortholog of human NuMA, as a direct Ncd binding partner. We demonstrate this interaction involves a short coiled-coil domain within Mud (MudCC) binding the N-terminal, non-motor microtubule-binding domain of Ncd (NcdnMBD). We further show that the C-terminal ATPase motor domain of Ncd (NcdCTm) directly interacts with NcdnMBD as well. Mud binding competes against this self-association and also increases NcdnMBD microtubule binding in vitro. Our results describe an interaction between two spindle-associated proteins and suggest a potentially new mode of minus-end motor protein regulation at mitotic spindle poles.
Collapse
Affiliation(s)
- Vincent Cutillas
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
15
|
Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021; 24:102385. [PMID: 33997675 PMCID: PMC8100630 DOI: 10.1016/j.isci.2021.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Here we identify human Kinesin-5, Kif11/HsEg5, as a cellular target of Zika protease. We show that Zika NS2B-NS3 protease targets several sites within the motor domain of HsEg5 irrespective of motor binding to microtubules. The native integral ER-membrane protease triggers mitotic spindle positioning defects and a prolonged metaphase delay in cultured cells. Our data support a model whereby loss of function of HsEg5 is mediated by Zika protease and is spatially restricted to the ER-mitotic spindle interface during mitosis. The resulting phenotype is distinct from the monopolar phenotype that typically results from uniform inhibition of HsEg5 by RNAi or drugs. In addition, our data reveal novel inter-organelle interactions between the mitotic apparatus and the surrounding reticulate ER network. Given that Kif11 is haplo-insufficient in humans, and reduced dosage results in microcephaly, we propose that Zika protease targeting of HsEg5 may be a key event in the etiology of Zika syndrome microcephaly. Zika protease cleavage of Kinesin-5 impairs mitotic progression Inter-organelle interactions spatially control Zika proteolysis of Kinesin-5 Native Zika protease affects mitosis differently than soluble Zika protease Zika protease may elicit fetal microcephaly and blindness via Kif11/Kinesin-5
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Micquel Downs
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Jesse Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
- The Proteomics Core Facility, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Shoda T, Yamazoe K, Tanaka Y, Asano Y, Inoue YH. Orbit/CLASP determines centriole length by antagonising Klp10A in Drosophila spermatocytes. J Cell Sci 2021; 134:jcs251231. [PMID: 33674447 PMCID: PMC8015252 DOI: 10.1242/jcs.251231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
After centrosome duplication, centrioles elongate before M phase. To identify genes required for this process and to understand the regulatory mechanism, we investigated the centrioles in Drosophila premeiotic spermatocytes expressing fluorescently tagged centriolar proteins. We demonstrated that an essential microtubule polymerisation factor, Orbit (the Drosophila CLASP orthologue, encoded by chb), accumulated at the distal end of centrioles and was required for the elongation. Conversely, a microtubule-severing factor, Klp10A, shortened the centrioles. Genetic analyses revealed that these two proteins functioned antagonistically to determine centriole length. Furthermore, Cp110 in the distal tip complex was closely associated with the factors involved in centriolar dynamics at the distal end. We observed loss of centriole integrity, including fragmentation of centrioles and earlier separation of the centriole pairs, in Cp110-null mutant cells either overexpressing Orbit or depleted of Klp10A Excess centriole elongation in the absence of the distal tip complex resulted in the loss of centriole integrity, leading to the formation of multipolar spindle microtubules emanating from centriole fragments, even when they were unpaired. Our findings contribute to understanding the mechanism of centriole integrity, disruption of which leads to chromosome instability in cancer cells.
Collapse
Affiliation(s)
- Tsuyoshi Shoda
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yuri Tanaka
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yuki Asano
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Khasimbi S, Ali F, Manda K, Sharma A, Chauhan G, Wakode S. Dihydropyrimidinones Scaffold as a Promising Nucleus for Synthetic Profile and Various Therapeutic Targets: A Review. Curr Org Synth 2020; 18:270-293. [PMID: 33290199 DOI: 10.2174/1570179417666201207215710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This review elaborates the updated synthetic and pharmacological approaches of a known group of dihydropyrimidinones/thiones from the multi-component reaction like Biginelli reaction, which was named Pietro Biginelli in 1891. This review consists of the reaction of an aromatic aldehyde, urea and ethyl acetoacetate leading to dihydropyrimidinone/thione. Currently, the scientific movement to develop economically viable green methods using compounds that are reusable, non-volatile, easily obtained, etc. Objective: This review covers the recent synthesis and pharmacological advancement of dihydropyrimidinones/ thiones moiety, along with covering the structure-activity relationship of the most potent compounds, which may prove to become better, more efficacious and safer agents. Thus, this review may help the researchers in drug designing and development of new Dihydropyrimidinones entities. CONCLUSION This review focuses on the wide application of dihydropyrimidinone/thione review reports the design, synthesis and pharmacological activities of nitrogen-sulphur containing dihydropyrimidinone moiety by using multi-component reaction. Dihydropyrimidinones (DHPM) pharmacophore is an important heterocyclic ring in medicinal chemistry. It is derived from multi-component reactions, "Biginelli reaction" and plays a critical role as anticancer, antioxidant, antimicrobial, anti-inflammatory, anti-HIV-1, antimalarial, anti-inflammatory, antihypertensive and anti-tubercular agents. Exhaustive research has led to its vast biological profile, with a wide range of therapeutic application.
Collapse
Affiliation(s)
- Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Sector-3, Pushp Vihar, New Delhi, India
| | - Faraat Ali
- Laboratory Services, Botswana Medicines Regulatory Authority, Gaborone, Botswana
| | - Kiran Manda
- Department of Pharmaceutical Chemistry, Andhra University South Campus, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Anjali Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Sector-3, Pushp Vihar, New Delhi, India
| | - Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Sector-3, Pushp Vihar, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Sector-3, Pushp Vihar, New Delhi, India
| |
Collapse
|
18
|
Mahase V, Sobitan A, Johnson C, Cooper F, Xie Y, Li L, Teng S. Computational analysis of hereditary spastic paraplegia mutations in the kinesin motor domains of KIF1A and KIF5A. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620410035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a genetically heterogeneous collection of neurodegenerative disorders categorized by progressive lower-limb spasticity and frailty. The complex HSP forms are characterized by various neurological features including progressive spastic weakness, urinary sphincter dysfunction, extra pyramidal signs and intellectual disability (ID). The kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motors involved in intracellular transport. Kinesins directionally transport membrane vesicles, protein complexes, and mRNAs along neurites, thus playing important roles in neuronal development and function. Recent genetic studies have identified kinesin mutations in patients with HSPs. In this study, we used the computational approaches to investigate the 40 missense mutations associated with HSP and ID in KIF1A and KIF5A. We performed homology modeling to construct the structures of kinesin–microtubule binding domain and kinesin–tubulin complex. We applied structure-based energy calculation methods to determine the effects of missense mutations on protein stability and protein–protein interaction. The results revealed that the most of disease-causing mutations could change the folding free energy of kinesin motor domain and the binding free energy of kinesin–tubulin complex. We found that E253K associated with ID in KIF1A decrease the protein stability of kinesin motor domains. We showed that the HSP mutations located in kinesin–tubulin complex interface, such as K253N and R280C in KIF5A, can destabilize the kinesin–tubulin complex. The computational analysis provides useful information for understanding the roles of kinesin mutations in the development of ID and HSPs.
Collapse
Affiliation(s)
- Vidhyanand Mahase
- Department of Biology, Howard University, Washington, D.C., 20059 USA
| | - Adebiyi Sobitan
- Department of Biology, Howard University, Washington, D.C., 20059 USA
| | - Christina Johnson
- Department of Biology, Howard University, Washington, D.C., 20059 USA
| | - Farion Cooper
- Department of Biology, Howard University, Washington, D.C., 20059 USA
| | - Yixin Xie
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79902, USA
| | - Lin Li
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79902, USA
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79902, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, D.C., 20059 USA
| |
Collapse
|
19
|
Lin Y, Wei YL, She ZY. Kinesin-8 motors: regulation of microtubule dynamics and chromosome movements. Chromosoma 2020; 129:99-110. [PMID: 32417983 DOI: 10.1007/s00412-020-00736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023]
Abstract
Microtubules are essential for intracellular transport, cell motility, spindle assembly, and chromosome segregation during cell division. Microtubule dynamics regulate the proper spindle organization and thus contribute to chromosome congression and segregation. Accumulating studies suggest that kinesin-8 motors are emerging regulators of microtubule dynamics and organizations. In this review, we provide an overview of the studies focused on kinesin-8 motors in cell division. We discuss the structures and molecular kinetics of kinesin-8 motors. We highlight the essential roles and mechanisms of kinesin-8 in the regulation of microtubule dynamics and spindle organization. We also shed light on the functions of kinesin-8 motors in chromosome movement and the spindle assembly checkpoint during the cell cycle.
Collapse
Affiliation(s)
- Yang Lin
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China.,Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
20
|
Bioenergetics of the Dictyostelium Kinesin-8 Motor Isoform. Biomolecules 2020; 10:biom10040563. [PMID: 32272590 PMCID: PMC7226124 DOI: 10.3390/biom10040563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022] Open
Abstract
The functional organization of microtubules in eukaryotic cells requires a combination of their inherent dynamic properties, interactions with motor machineries, and interactions with accessory proteins to affect growth, shrinkage, stability, and architecture. In most organisms, the Kinesin-8 family of motors play an integral role in these organizations, well known for their mitotic activities in microtubule (MT) length control and kinetochore interactions. In Dictyostelium discoideum, the function of Kinesin-8 remains elusive. We present here some biochemical properties and localization data that indicate that this motor (DdKif10) shares some motility properties with other Kinesin-8s but also illustrates differences in microtubule localization and depolymerase action that highlight functional diversity.
Collapse
|
21
|
Lu W, Lakonishok M, Liu R, Billington N, Rich A, Glotzer M, Sellers JR, Gelfand VI. Competition between kinesin-1 and myosin-V defines Drosophila posterior determination. eLife 2020; 9:54216. [PMID: 32057294 PMCID: PMC7112953 DOI: 10.7554/elife.54216] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 12/05/2022] Open
Abstract
Local accumulation of oskar (osk) mRNA in the Drosophila oocyte determines the posterior pole of the future embryo. Two major cytoskeletal components, microtubules and actin filaments, together with a microtubule motor, kinesin-1, and an actin motor, myosin-V, are essential for osk mRNA posterior localization. In this study, we use Staufen, an RNA-binding protein that colocalizes with osk mRNA, as a proxy for osk mRNA. We demonstrate that posterior localization of osk/Staufen is determined by competition between kinesin-1 and myosin-V. While kinesin-1 removes osk/Staufen from the cortex along microtubules, myosin-V anchors osk/Staufen at the cortex. Myosin-V wins over kinesin-1 at the posterior pole due to low microtubule density at this site, while kinesin-1 wins at anterior and lateral positions because they have high density of cortically-anchored microtubules. As a result, posterior determinants are removed from the anterior and lateral cortex but retained at the posterior pole. Thus, posterior determination of Drosophila oocytes is defined by kinesin-myosin competition, whose outcome is primarily determined by cortical microtubule density. One of the most fundamental steps of embryonic development is deciding which end of the body should be the head, and which should be the tail. Known as 'axis specification', this process depends on the location of genetic material called mRNAs. In fruit flies, for example, the tail-end of the embryo accumulates an mRNA called oskar. If this mRNA is missing, the embryo will not develop an abdomen. The build-up of oskar mRNA happens before the egg is even fertilized and depends on two types of scaffold proteins in the egg cell called microtubules and microfilaments. These scaffolds act like ‘train tracks’ in the cell and have associated protein motors, which work a bit like trains, carrying cargo as they travel up and down along the scaffolds. For microtubules, one of the motors is a protein called kinesin-1, whereas for microfilaments, the motors are called myosins. Most microtubules in the egg cell are pointing away from the membrane, while microfilament tracks form a dense network of randomly oriented filaments just underneath the membrane. It was already known that kinesin-1 and a myosin called myosin-V are important for localizing oskar mRNA to the posterior of the egg. However, it was not clear why the mRNA only builds up in that area. To find out, Lu et al. used a probe to track oskar mRNA, while genetically manipulating each of the motors so that their ability to transport cargo changed. Modulating the balance of activity between the two motors revealed that kinesin-1 and myosin-V engage in a tug-of-war inside the egg: myosin-V tries to keep oskar mRNA underneath the membrane of the cell, while kinesin-1 tries to pull it away from the membrane along microtubules. The winner of this molecular battle depends on the number of microtubule tracks available in the local area of the cell. In most parts of the cell, there are abundant microtubules, so kinesin-1 wins and pulls oskar mRNA away from the membrane. But at the posterior end of the cell there are fewer microtubules, so myosin-V wins, allowing oskar mRNA to localize in this area. Artificially 'shaving' some microtubules in a local area immediately changed the outcome of this tug-of-war creating a build-up of oskar mRNA in the 'shaved' patch. This is the first time a molecular tug-of-war has been shown in an egg cell, but in other types of cell, such as neurons and pigment cells, myosins compete with kinesins to position other molecular cargoes. Understanding these processes more clearly sheds light not only on embryo development, but also on cell biology in general.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Rong Liu
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Neil Billington
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ashley Rich
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - James R Sellers
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
22
|
Fluorescence correlation spectroscopy reveals the dynamics of kinesins interacting with organelles during microtubule-dependent transport in cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118572. [DOI: 10.1016/j.bbamcr.2019.118572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 01/26/2023]
|
23
|
Zeeshan M, Shilliday F, Liu T, Abel S, Mourier T, Ferguson DJP, Rea E, Stanway RR, Roques M, Williams D, Daniel E, Brady D, Roberts AJ, Holder AA, Pain A, Le Roch KG, Moores CA, Tewari R. Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission. PLoS Pathog 2019; 15:e1008048. [PMID: 31600347 PMCID: PMC6786531 DOI: 10.1371/journal.ppat.1008048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Kinesin-8 proteins are microtubule motors that are often involved in regulation of mitotic spindle length and chromosome alignment. They move towards the plus ends of spindle microtubules and regulate the dynamics of these ends due, at least in some species, to their microtubule depolymerization activity. Plasmodium spp. exhibit an atypical endomitotic cell division in which chromosome condensation and spindle dynamics in the different proliferative stages are not well understood. Genome-wide shared orthology analysis of Plasmodium spp. revealed the presence of two kinesin-8 motor proteins, kinesin-8X and kinesin-8B. Here we studied the biochemical properties of kinesin-8X and its role in parasite proliferation. In vitro, kinesin-8X has motility and depolymerization activities like other kinesin-8 motors. To understand the role of Plasmodium kinesin-8X in cell division, we used fluorescence-tagging and live cell imaging to define its location, and gene targeting to analyse its function, during all proliferative stages of the rodent malaria parasite P. berghei life cycle. The results revealed a spatio-temporal involvement of kinesin-8X in spindle dynamics and an association with both mitotic and meiotic spindles and the putative microtubule organising centre (MTOC). Deletion of the kinesin-8X gene revealed a defect in oocyst development, confirmed by ultrastructural studies, suggesting that this protein is required for oocyst development and sporogony. Transcriptome analysis of Δkinesin-8X gametocytes revealed modulated expression of genes involved mainly in microtubule-based processes, chromosome organisation and the regulation of gene expression, supporting a role for kinesin-8X in cell division. Kinesin-8X is thus required for parasite proliferation within the mosquito and for transmission to the vertebrate host.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Fiona Shilliday
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Tianyang Liu
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Tobias Mourier
- Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Desiree Williams
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Anthony J. Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Arnab Pain
- Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, Kingdom of Saudi Arabia
- Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Sapporo, Japan
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Carolyn A. Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
Costa MFA, Ohkura H. The molecular architecture of the meiotic spindle is remodeled during metaphase arrest in oocytes. J Cell Biol 2019; 218:2854-2864. [PMID: 31278080 PMCID: PMC6719438 DOI: 10.1083/jcb.201902110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 11/25/2022] Open
Abstract
Before fertilization, oocytes of most species undergo a long, natural arrest in metaphase. Before this, prometaphase I is also prolonged, due to late stable kinetochore-microtubule attachment. How oocytes stably maintain the dynamic spindle for hours during these periods is poorly understood. Here we report that the bipolar spindle changes its molecular architecture during the long prometaphase/metaphase I in Drosophila melanogaster oocytes. By generating transgenic flies expressing GFP-tagged spindle proteins, we found that 14 of 25 spindle proteins change their distribution in the bipolar spindle. Among them, microtubule cross-linking kinesins, MKlp1/Pavarotti and kinesin-5/Klp61F, accumulate to the spindle equator in late metaphase. We found that the late equator accumulation of MKlp1/Pavarotti is regulated by a mechanism distinct from that in mitosis. While MKlp1/Pavarotti contributes to the control of spindle length, kinesin-5/Klp61F is crucial for maintaining a bipolar spindle during metaphase I arrest. Our study provides novel insight into how oocytes maintain a bipolar spindle during metaphase arrest.
Collapse
Affiliation(s)
- Mariana F A Costa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Persico V, Callaini G, Riparbelli MG. The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster. Front Cell Dev Biol 2019; 7:173. [PMID: 31497602 PMCID: PMC6713071 DOI: 10.3389/fcell.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
The precursor of the flagellar axoneme is already present in the primary spermatocytes of Drosophila melanogaster. During spermatogenesis each primary spermatocyte shows a centriole pair that moves to the cell membrane and organizes an axoneme-based structure, the cilium-like region (CLR). The CLRs persist through the meiotic divisions and are inherited by young spermatids. During spermatid differentiation the ciliary caps elongate giving rise to the sperm axoneme. Mutations in Klp10A, a kinesin-13 of Drosophila, results in defects of centriole/CLR organization in spermatocytes and of ciliary cap assembly in elongating spermatids. Reduced Klp10A expression also results in strong structural defects of sensory type I neurons. We show, here, that this protein displays a peculiar localization during male gametogenesis. The Klp10A signal is first detected at the distal ends of the centrioles when they dock to the plasma membrane of young primary spermatocytes. At the onset of the first meiotic prometaphase, when the CLRs reach their full size, Klp10A is enriched in a distinct narrow area at the distal end of the centrioles and persists in elongating spermatids at the base of the ciliary cap. We conclude that Klp10A could be a core component of the ciliary transition zone in Drosophila.
Collapse
Affiliation(s)
| | - Giuliano Callaini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|
26
|
Mannix KM, Starble RM, Kaufman RS, Cooley L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 2019; 146:dev.176644. [PMID: 31208963 DOI: 10.1242/dev.176644] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals; RCs) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10 μm. Although multiple proteins have been identified as components of RCs, we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. Thus, here, we optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence prey were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins and uncharacterized proteins. A proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective prey. Furthermore, an RNA interference screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.
Collapse
Affiliation(s)
- Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rebecca M Starble
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ronit S Kaufman
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA .,Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Mann BJ, Wadsworth P. Kinesin-5 Regulation and Function in Mitosis. Trends Cell Biol 2019; 29:66-79. [DOI: 10.1016/j.tcb.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
28
|
Edzuka T, Goshima G. Drosophila kinesin-8 stabilizes the kinetochore-microtubule interaction. J Cell Biol 2018; 218:474-488. [PMID: 30538142 PMCID: PMC6363442 DOI: 10.1083/jcb.201807077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Kinesin-8 motor proteins control chromosome alignment in a variety of species, but the specific biochemical activity responsible is unclear. Edzuka and Goshima find that Drosophila kinesin-8 (Klp67A) exhibits both microtubule plus end–stabilizing and –destabilizing activities in vitro. In cells, Klp67A, and likely human kinesin-8 (KIF18A) as well, stabilize the kinetochore–microtubule attachment during mitosis. Kinesin-8 is required for proper chromosome alignment in a variety of animal and yeast cell types. However, it is unclear how this motor protein family controls chromosome alignment, as multiple biochemical activities, including inconsistent ones between studies, have been identified. Here, we find that Drosophila kinesin-8 (Klp67A) possesses both microtubule (MT) plus end–stabilizing and –destabilizing activity, in addition to kinesin-8's commonly observed MT plus end–directed motility and tubulin-binding activity in vitro. We further show that Klp67A is required for stable kinetochore–MT attachment during prometaphase in S2 cells. In the absence of Klp67A, abnormally long MTs interact in an “end-on” fashion with kinetochores at normal frequency. However, the interaction is unstable, and MTs frequently become detached. This phenotype is rescued by ectopic expression of the MT plus end–stabilizing factor CLASP, but not by artificial shortening of MTs. We show that human kinesin-8 (KIF18A) is also important to ensure proper MT attachment. Overall, these results suggest that the MT-stabilizing activity of kinesin-8 is critical for stable kinetochore–MT attachment.
Collapse
Affiliation(s)
- Tomoya Edzuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.,Marine Biological Laboratory, Woods Hole, MA
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan .,Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
29
|
Yukawa M, Yamauchi T, Kurisawa N, Ahmed S, Kimura KI, Toda T. Fission yeast cells overproducing HSET/KIFC1 provides a useful tool for identification and evaluation of human kinesin-14 inhibitors. Fungal Genet Biol 2018; 116:33-41. [DOI: 10.1016/j.fgb.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
|
30
|
Dave S, Anderson SJ, Sinha Roy P, Nsamba ET, Bunning AR, Fukuda Y, Gupta ML. Discrete regions of the kinesin-8 Kip3 tail differentially mediate astral microtubule stability and spindle disassembly. Mol Biol Cell 2018; 29:1866-1877. [PMID: 29874146 PMCID: PMC6085823 DOI: 10.1091/mbc.e18-03-0199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To function in diverse cellular processes, the dynamic properties of microtubules must be tightly regulated. Cellular microtubules are influenced by a multitude of regulatory proteins, but how their activities are spatiotemporally coordinated within the cell, or on specific microtubules, remains mostly obscure. The conserved kinesin-8 motor proteins are important microtubule regulators, and family members from diverse species combine directed motility with the ability to modify microtubule dynamics. Yet how kinesin-8 activities are appropriately deployed in the cellular context is largely unknown. Here we reveal the importance of the nonmotor tail in differentially controlling the physiological functions of the budding yeast kinesin-8, Kip3. We demonstrate that the tailless Kip3 motor domain adequately governs microtubule dynamics at the bud tip to allow spindle positioning in early mitosis. Notably, discrete regions of the tail mediate specific functions of Kip3 on astral and spindle microtubules. The region proximal to the motor domain operates to spatially regulate astral microtubule stability, while the distal tail serves a previously unrecognized role to control the timing of mitotic spindle disassembly. These findings provide insights into how nonmotor tail domains differentially control kinesin functions in cells and the mechanisms that spatiotemporally control the stability of cellular microtubules.
Collapse
Affiliation(s)
- Sandeep Dave
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Samuel J Anderson
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Pallavi Sinha Roy
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Emmanuel T Nsamba
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Angela R Bunning
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yusuke Fukuda
- Cell and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Mohan L Gupta
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
31
|
Kinesin 6 Regulation in Drosophila Female Meiosis by the Non-conserved N- and C- Terminal Domains. G3-GENES GENOMES GENETICS 2018. [PMID: 29514846 PMCID: PMC5940148 DOI: 10.1534/g3.117.300571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bipolar spindle assembly occurs in the absence of centrosomes in the oocytes of most organisms. In the absence of centrosomes in Drosophila oocytes, we have proposed that the kinesin 6 Subito, a MKLP-2 homolog, is required for establishing spindle bipolarity and chromosome biorientation by assembling a robust central spindle during prometaphase I. Although the functions of the conserved motor domains of kinesins is well studied, less is known about the contribution of the poorly conserved N- and C- terminal domains to motor function. In this study, we have investigated the contribution of these domains to kinesin 6 functions in meiosis and early embryonic development. We found that the N-terminal domain has antagonistic elements that regulate localization of the motor to microtubules. Other parts of the N- and C-terminal domains are not required for microtubule localization but are required for motor function. Some of these elements of Subito are more important for either mitosis or meiosis, as revealed by separation-of-function mutants. One of the functions for both the N- and C-terminals domains is to restrict the CPC to the central spindle in a ring around the chromosomes. We also provide evidence that CDK1 phosphorylation of Subito regulates its activity associated with homolog bi-orientation. These results suggest the N- and C-terminal domains of Subito, while not required for localization to the central spindle microtubules, have important roles regulating Subito, by interacting with other spindle proteins and promoting activities such as bipolar spindle formation and homologous chromosome bi-orientation during meiosis.
Collapse
|
32
|
Singh SK, Pandey H, Al-Bassam J, Gheber L. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cell Mol Life Sci 2018; 75:1757-1771. [PMID: 29397398 PMCID: PMC11105280 DOI: 10.1007/s00018-018-2754-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 01/27/2023]
Abstract
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.
Collapse
Affiliation(s)
- Sudhir Kumar Singh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Himanshu Pandey
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
33
|
Zhang DD, Gao XM, Zhao YQ, Hou CC, Zhu JQ. The C-terminal kinesin motor KIFC1 may participate in nuclear reshaping and flagellum formation during spermiogenesis of Larimichthys crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1351-1371. [PMID: 28534180 DOI: 10.1007/s10695-017-0377-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Spermatogenesis is a highly ordered process in the differentiation of male germ cells. Nuclear morphogenesis is one of the most fundamental cellular transformations to take place during spermatogenesis. These striking transformations from spermatogonia to spermatozoa are a result of phase-specific adaption of the cytoskeleton and its association with molecular motor proteins. KIFC1 is a C-terminal kinesin motor protein that plays an essential role in acrosome formation and nuclear reshaping during spermiogenesis in mammals. To explore its functions during the same process in Larimichthys crocea, we cloned and characterized the cDNA of a mammalian KIFC1 homolog (termed lc-KIFC1) from the total RNA of the testis. The 2481 bp complete lc-KIFC1 cDNA contained a 53 bp 5' untranslated region, a 535 bp 3' untranslated region, and a 1893 bp open reading frame that encoded a special protein of 630 amino acids. The predicted lc-KIFC1 protein possesses a divergent tail region, stalk region, and conserved carboxyl motor region. Protein alignment demonstrated that lc-KIFC1 had 73.2, 49.8, 49.3, 54.6, 56.5, 53.1, and 52.1% identity with its homologs in Danio rerio, Eriocheir sinensis, Octopus tankahkeei, Gallus gallus, Xenopus laevis, Mus musculus, and Homo sapiens, respectively. Tissue expression analysis revealed that lc-kifc1 mRNA was mainly expressed in the testis. The trend of lc-kifc1 mRNA expression at different growth stages of the testis showed that the expression increased first and then decreased, in the stage IV of testis, its expression quantity achieved the highest level. In situ hybridization and immunofluorescence results showed that KIFC1 was localized around the nucleus in early spermatids. As spermatid development progressed, the signals increased substantially. These signals peaked and were concentrated at one end of the nucleus when the spermatids began to undergo dramatic changes. In the mature sperm, the signal for KIFC1 gradually became weak and was mainly localized in the tail. In summary, evaluation of the expression pattern for lc-KIFC1 at specific stages of spermiogenesis has shed light on the potential functions of this motor protein in major cytological transformations. In addition, this study may provide a model for researching the molecular mechanisms involved in spermatogenesis in other teleost species, which will lead to a better understanding of the teleost fertilization process.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xin-Ming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
34
|
Goldstein A, Siegler N, Goldman D, Judah H, Valk E, Kõivomägi M, Loog M, Gheber L. Three Cdk1 sites in the kinesin-5 Cin8 catalytic domain coordinate motor localization and activity during anaphase. Cell Mol Life Sci 2017; 74:3395-3412. [PMID: 28455557 PMCID: PMC11107736 DOI: 10.1007/s00018-017-2523-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
Abstract
The bipolar kinesin-5 motors perform essential functions in mitotic spindle dynamics. We previously demonstrated that phosphorylation of at least one of the Cdk1 sites in the catalytic domain of the Saccharomyces cerevisiae kinesin-5 Cin8 (S277, T285, S493) regulates its localization to the anaphase spindle. The contribution of these three sites to phospho-regulation of Cin8, as well as the timing of such contributions, remains unknown. Here, we examined the function and spindle localization of phospho-deficient (serine/threonine to alanine) and phospho-mimic (serine/threonine to aspartic acid) Cin8 mutants. In vitro, the three Cdk1 sites undergo phosphorylation by Clb2-Cdk1. In cells, phosphorylation of Cin8 affects two aspects of its localization to the anaphase spindle, translocation from the spindle-pole bodies (SPBs) region to spindle microtubules (MTs) and the midzone, and detachment from the mitotic spindle. We found that phosphorylation of S277 is essential for the translocation of Cin8 from SPBs to spindle MTs and the subsequent detachment from the spindle. Phosphorylation of T285 mainly affects the detachment of Cin8 from spindle MTs during anaphase, while phosphorylation at S493 affects both the translocation of Cin8 from SPBs to the spindle and detachment from the spindle. Only S493 phosphorylation affected the anaphase spindle elongation rate. We conclude that each phosphorylation site plays a unique role in regulating Cin8 functions and postulate a model in which the timing and extent of phosphorylation of the three sites orchestrates the anaphase function of Cin8.
Collapse
Affiliation(s)
- Alina Goldstein
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Nurit Siegler
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Darya Goldman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Haim Judah
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mardo Kõivomägi
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
35
|
Mares JH, Gramacho KP, Santos EC, da Silva Santiago A, Santana JO, de Sousa AO, Alvim FC, Pirovani CP. Proteomic analysis during of spore germination of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao. BMC Microbiol 2017; 17:176. [PMID: 28818052 PMCID: PMC5561645 DOI: 10.1186/s12866-017-1085-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Background Moniliophthora perniciosa is a phytopathogenic fungus responsible for witches’ broom disease of cacao trees (Theobroma cacao L.). Understanding the molecular events during germination of the pathogen may enable the development of strategies for disease control in these economically important plants. In this study, we determined a comparative proteomic profile of M. perniciosa basidiospores during germination by two-dimensional SDS-PAGE and mass spectrometry. Results A total of 316 proteins were identified. Molecular changes during the development of the germinative tube were identified by a hierarchical clustering analysis based on the differential accumulation of proteins. Proteins associated with fungal filamentation, such as septin and kinesin, were detected only 4 h after germination (hag). A transcription factor related to biosynthesis of the secondary metabolite fumagillin, which can form hybrids with polyketides, was induced 2 hag, and polyketide synthase was observed 4 hag. The accumulation of ATP synthase, binding immunoglobulin protein (BiP), and catalase was validated by western blotting. Conclusions In this study, we showed variations in protein expression during the early germination stages of fungus M. perniciosa. Proteins associated with fungal filamentation, and consequently with virulence, were detected in basidiospores 4 hag., for example, septin and kinesin. We discuss these results and propose a model of the germination of fungus M. perniciosa. This research can help elucidate the mechanisms underlying basic processes of host invasion and to develop strategies for control of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1085-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joise Hander Mares
- Laboratory of Proteomics, Center of Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | | | - Everton Cruz Santos
- Laboratory of Proteomics, Center of Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | | | - Juliano Oliveira Santana
- Laboratory of Proteomics, Center of Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Aurizângela Oliveira de Sousa
- Laboratory of Proteomics, Center of Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Fátima Cerqueira Alvim
- Laboratory of Proteomics, Center of Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Laboratory of Proteomics, Center of Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil.
| |
Collapse
|
36
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Byrnes AE, Slep KC. TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation. J Cell Biol 2017; 216:1641-1657. [PMID: 28512144 PMCID: PMC5461023 DOI: 10.1083/jcb.201610090] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/02/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022] Open
Abstract
XMAP215, CLASP, and Crescerin use arrayed tubulin-binding tumor overexpressed gene (TOG) domains to modulate microtubule dynamics. We hypothesized that TOGs have distinct architectures and tubulin-binding properties that underlie each family's ability to promote microtubule polymerization or pause. As a model, we investigated the pentameric TOG array of a Drosophila melanogaster XMAP215 member, Msps. We found that Msps TOGs have distinct architectures that bind either free or polymerized tubulin, and that a polarized array drives microtubule polymerization. An engineered TOG1-2-5 array fully supported Msps-dependent microtubule polymerase activity. Requisite for this activity was a TOG5-specific N-terminal HEAT repeat that engaged microtubule lattice-incorporated tubulin. TOG5-microtubule binding maintained mitotic spindle formation as deleting or mutating TOG5 compromised spindle architecture and increased the mitotic index. Mad2 knockdown released the spindle assembly checkpoint triggered when TOG5-microtubule binding was compromised, indicating that TOG5 is essential for spindle function. Our results reveal a TOG5-specific role in mitotic fidelity and support our hypothesis that architecturally distinct TOGs arranged in a sequence-specific order underlie TOG array microtubule regulator activity.
Collapse
Affiliation(s)
- Amy E Byrnes
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin C Slep
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
38
|
Renda F, Pellacani C, Strunov A, Bucciarelli E, Naim V, Bosso G, Kiseleva E, Bonaccorsi S, Sharp DJ, Khodjakov A, Gatti M, Somma MP. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure. PLoS Genet 2017; 13:e1006784. [PMID: 28505193 PMCID: PMC5448806 DOI: 10.1371/journal.pgen.1006784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/30/2017] [Accepted: 04/27/2017] [Indexed: 12/01/2022] Open
Abstract
INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.
Collapse
Affiliation(s)
- Fioranna Renda
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Claudia Pellacani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Anton Strunov
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | | | - Valeria Naim
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elena Kiseleva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | | |
Collapse
|
39
|
Recio L, Friedman M, Marroni D, Maynor T, Chepelev NL. Impact of Acrylamide on Calcium Signaling and Cytoskeletal Filaments in Testes From F344 Rat. Int J Toxicol 2017; 36:124-132. [PMID: 28403741 DOI: 10.1177/1091581817697696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acrylamide (AA) at high exposure levels is neurotoxic, induces testicular toxicity, and increases dominant lethal mutations in rats. RNA-sequencing in testes was used to identify differentially expressed genes (DEG), explore AA-induced pathway perturbations that could contribute to AA-induced testicular toxicity and then used to derive a benchmark dose (BMD). Male F344/DuCrl rats were administered 0.0, 0.5, 1.5, 3.0, 6.0, or 12.0 mg AA/kg bw/d in drinking water for 5, 15, or 31 days. The experimental design used exposure levels that spanned and exceeded the exposure levels used in the rat dominant lethal, 2-generation reproductive toxicology, and cancer bioassays. The time of sample collection was based on previous studies that developed gene expression-based BMD. At 12.0 mg/kg, there were 38, 33, and 65 DEG ( P value <.005; fold change >1.5) in the testes after 5, 15, or 31 days of exposure, respectively. At 31 days, there was a dose-dependent increase in the number of DEG, and at 12.0 mg/kg/d the top three functional clusters affected by AA exposure were actin filament organization, response to calcium ion, and regulation of cell proliferation. The BMD lower 95% confidence limit using DEG ranged from 1.8 to 6.8 mg/kg compared to a no-observed-adverse-effect-level of 2.0 mg/kg/d for male reproductive toxicity. These results are consistent with the known effects of AA on calcium signaling and cytoskeletal actin filaments leading to neurotoxicity and suggest that AA can cause rat dominant lethal mutations by these same mechanisms leading to impaired chromosome segregation during cell division.
Collapse
Affiliation(s)
- Leslie Recio
- 1 Integrated Laboratory Systems Inc, Research Triangle Park, NC, USA
| | - Marvin Friedman
- 2 SNF SAS, rue Adrienne Bolland, ZAC de Milieux, Andrézieux, Rhône-Alpes, France
| | - Dennis Marroni
- 2 SNF SAS, rue Adrienne Bolland, ZAC de Milieux, Andrézieux, Rhône-Alpes, France
| | - Timothy Maynor
- 1 Integrated Laboratory Systems Inc, Research Triangle Park, NC, USA
| | | |
Collapse
|
40
|
|
41
|
Moriwaki T, Goshima G. Five factors can reconstitute all three phases of microtubule polymerization dynamics. J Cell Biol 2016; 215:357-368. [PMID: 27799364 PMCID: PMC5100292 DOI: 10.1083/jcb.201604118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted dynamic MT plus end behavior involving all three phases by mixing tubulin with five Drosophila melanogaster proteins (EB1, XMAP215Msps, Sentin, kinesin-13Klp10A, and CLASPMast/Orbit). When singly mixed with tubulin, CLASPMast/Orbit strongly inhibited MT catastrophe and reduced the growth rate. However, in the presence of the other four factors, CLASPMast/Orbit acted as an inducer of pausing. The mitotic kinase Plk1Polo modulated the activity of CLASPMast/Orbit and kinesin-13Klp10A and increased the dynamic instability of MTs, reminiscent of mitotic cells. These results suggest that five conserved proteins constitute the core factors for creating dynamic MTs in cells and that Plk1-dependent phosphorylation is a crucial event for switching from the interphase to mitotic mode.
Collapse
Affiliation(s)
- Takashi Moriwaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
42
|
Gottardo M, Callaini G, Riparbelli MG. Klp10A modulates the localization of centriole-associated proteins during Drosophila male gametogenesis. Cell Cycle 2016; 15:3432-3441. [PMID: 27764551 DOI: 10.1080/15384101.2016.1248005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in Klp10A, a microtubule-depolymerising Kinesin-13, lead to overly long centrioles in Drosophila male germ cells. We demonstrated that the loss of Klp10A modifies the distribution of typical proteins involved in centriole assembly and function. In the absence of Klp10A the distribution of Drosophila pericentrin-like protein (Dplp), Sas-4 and Sak/Plk4 that are restricted in control testes to the proximal end of the centriole increase along the centriole length. Remarkably, the cartwheel is lacking or it appears abnormal in mutant centrioles, suggesting that this structure may spatially delimit protein localization. Moreover, the parent centrioles that in control cells have the same dimensions grow at different rates in mutant testes with the mother centrioles longer than the daughters. Daughter centrioles have often an ectopic position with respect to the proximal end of the mothers and failed to recruit Dplp.
Collapse
Affiliation(s)
- Marco Gottardo
- a Department of Life Sciences , University of Siena , Siena , Italy
| | | | | |
Collapse
|
43
|
PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis. Nat Commun 2016; 7:12355. [PMID: 27492783 PMCID: PMC4980451 DOI: 10.1038/ncomms12355] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 06/24/2016] [Indexed: 02/07/2023] Open
Abstract
Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. One of the cellular functions of the tumour suppressor PTEN is to maintain genome stability. Here, the authors show that PTEN depletion leads to mitotic spindle shortening and chromosome misalignment due to aberrant EG5 activation.
Collapse
|
44
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
45
|
Sturgill EG, Norris SR, Guo Y, Ohi R. Kinesin-5 inhibitor resistance is driven by kinesin-12. J Cell Biol 2016; 213:213-27. [PMID: 27091450 PMCID: PMC5084272 DOI: 10.1083/jcb.201507036] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
The kinesin-5 Eg5 is essential for mitotic progression, and the lethal effects of Eg5 inhibitors make these inhibitors attractive candidates for chemotherapy drugs. Sturgill et al. show that kinesin-12 and a nonmotile Eg5 mutant form an alternative spindle assembly pathway that provides resistance to Eg5 inhibitors. The microtubule (MT) cytoskeleton bipolarizes at the onset of mitosis to form the spindle. In animal cells, the kinesin-5 Eg5 primarily drives this reorganization by actively sliding MTs apart. Its primacy during spindle assembly renders Eg5 essential for mitotic progression, demonstrated by the lethal effects of kinesin-5/Eg5 inhibitors (K5Is) administered in cell culture. However, cultured cells can acquire resistance to K5Is, indicative of alternative spindle assembly mechanisms and/or pharmacological failure. Through characterization of novel K5I-resistant cell lines, we unveil an Eg5 motility-independent spindle assembly pathway that involves both an Eg5 rigor mutant and the kinesin-12 Kif15. This pathway centers on spindle MT bundling instead of Kif15 overexpression, distinguishing it from those previously described. We further show that large populations (∼107 cells) of HeLa cells require Kif15 to survive K5I treatment. Overall, this study provides insight into the functional plasticity of mitotic kinesins during spindle assembly and has important implications for the development of antimitotic regimens that target this process.
Collapse
Affiliation(s)
- Emma G Sturgill
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Stephen R Norris
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
46
|
Ito A, Goshima G. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle. J Cell Biol 2016; 211:999-1009. [PMID: 26644514 PMCID: PMC4674282 DOI: 10.1083/jcb.201507001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Depletion of Drosophila melanogaster Asp, an orthologue of microcephaly protein ASPM, causes spindle pole unfocusing during mitosis. However, it remains unclear how Asp contributes to pole focusing, a process that also requires the kinesin-14 motor Ncd. We show that Asp localizes to the minus ends of spindle microtubule (MT) bundles and focuses them to make the pole independent of Ncd. We identified a critical domain in Asp exhibiting MT cross-linking activity in vitro. Asp was also localized to, and focuses the minus ends of, intraspindle MTs that were nucleated in an augmin-dependent manner and translocated toward the poles by spindle MT flux. Ncd, in contrast, functioned as a global spindle coalescence factor not limited to MT ends. We propose a revised molecular model for spindle pole focusing in which Asp at the minus ends cross-links MTs at the pole and within the spindle. Additionally, this study provides new insight into the dynamics of intraspindle MTs by using Asp as a minus end marker.
Collapse
Affiliation(s)
- Ami Ito
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
47
|
Chen JWC, Barker AR, Wakefield JG. The Ran Pathway in Drosophila melanogaster Mitosis. Front Cell Dev Biol 2015; 3:74. [PMID: 26636083 PMCID: PMC4659922 DOI: 10.3389/fcell.2015.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.
Collapse
Affiliation(s)
- Jack W C Chen
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK ; Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
48
|
Inaba M, Buszczak M, Yamashita YM. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 2015; 523:329-32. [PMID: 26131929 PMCID: PMC4586072 DOI: 10.1038/nature14602] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
Stem cell niches provide resident stem cells with signals that specify their identity. Niche signals act over a short range such that only stem cells but not their differentiating progeny receive the self-renewing signals. However, the cellular mechanisms that limit niche signalling to stem cells remain poorly understood. Here we show that the Drosophila male germline stem cells form previously unrecognized structures, microtubule-based nanotubes, which extend into the hub, a major niche component. Microtubule-based nanotubes are observed specifically within germline stem cell populations, and require intraflagellar transport proteins for their formation. The bone morphogenetic protein (BMP) receptor Tkv localizes to microtubule-based nanotubes. Perturbation of microtubule-based nanotubes compromises activation of Dpp signalling within germline stem cells, leading to germline stem cell loss. Moreover, Dpp ligand and Tkv receptor interaction is necessary and sufficient for microtubule-based nanotube formation. We propose that microtubule-based nanotubes provide a novel mechanism for selective receptor-ligand interaction, contributing to the short-range nature of niche-stem-cell signalling.
Collapse
Affiliation(s)
- Mayu Inaba
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA [3] Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Yukiko M Yamashita
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA
| |
Collapse
|
49
|
Jonsson E, Yamada M, Vale RD, Goshima G. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. NATURE PLANTS 2015; 1:15087. [PMID: 26322239 PMCID: PMC4548964 DOI: 10.1038/nplants.2015.87] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/23/2015] [Indexed: 05/18/2023]
Abstract
The molecular motors kinesin and dynein drive bidirectional motility along microtubules (MTs) in most eukaryotic cells. Land plants, however, are a notable exception, because they contain a large number of kinesins but lack cytoplasmic dynein, the foremost processive retrograde transporter. It remains unclear how plants achieve retrograde cargo transport without dynein. Here, we have analysed the motility of the six members of minus-end-directed kinesin-14 motors in the moss Physcomitrella patens and found that none are processive as native dimers. However, when artificially clustered into as little as dimer of dimers, the type-VI kinesin-14 (a homologue of Arabidopsis KCBP (kinesin-like calmodulin binding protein)) exhibited highly processive and fast motility (up to 0.6 μm s-1). Multiple kin14-VI dimers attached to liposomes also induced transport of this membrane cargo over several microns. Consistent with these results, in vivo observations of green fluorescent protein-tagged kin14-VI in moss cells revealed fluorescent punctae that moved processively towards the minus-ends of the cytoplasmic MTs. These data suggest that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for retrograde transport in plants.
Collapse
Affiliation(s)
- Erik Jonsson
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, 600 16th St., San Francisco, California 94158, USA
| | - Moé Yamada
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ronald D. Vale
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, 600 16th St., San Francisco, California 94158, USA
| | - Gohta Goshima
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Correspondence and requests for materials should be addressed to G.G.
| |
Collapse
|
50
|
Yukawa M, Ikebe C, Toda T. The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. ACTA ACUST UNITED AC 2015; 209:549-62. [PMID: 25987607 PMCID: PMC4442821 DOI: 10.1083/jcb.201412111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
Abstract
Msd1–Wdr8 are delivered by Pkl1 to mitotic spindle pole bodies, where the Msd1–Wdr8–Pkl1 complex anchors the minus ends of spindle microtubules and antagonizes the outward-pushing forces generated by Cut7/kinesin-5 in fission yeast. The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.
Collapse
Affiliation(s)
- Masashi Yukawa
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Chiho Ikebe
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| |
Collapse
|