1
|
Li L, Zhang N, Beati SAH, De Las Heras Chanes J, di Pietro F, Bellaiche Y, Müller HAJ, Großhans J. Kinesin-1 patterns Par-1 and Rho signaling at the cortex of syncytial embryos of Drosophila. J Cell Biol 2024; 223:e202206013. [PMID: 37955925 PMCID: PMC10641515 DOI: 10.1083/jcb.202206013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.
Collapse
Affiliation(s)
- Long Li
- Department of Biology, Philipps University, Marburg, Germany
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Seyed Amir Hamze Beati
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jose De Las Heras Chanes
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Hans-Arno J Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
2
|
Wu X, Kong K, Xiao W, Liu F. Attractive internuclear force drives the collective behavior of nuclear arrays in Drosophila embryos. PLoS Comput Biol 2021; 17:e1009605. [PMID: 34797833 PMCID: PMC8641897 DOI: 10.1371/journal.pcbi.1009605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 12/03/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
The collective behavior of the nuclear array in Drosophila embryos during nuclear cycle (NC) 11 to NC14 is crucial in controlling cell size, establishing developmental patterns, and coordinating morphogenesis. After live imaging on Drosophila embryos with light sheet microscopy, we extract the nuclear trajectory, speed, and internuclear distance with an automatic nuclear tracing method. We find that the nuclear speed shows a period of standing waves along the anterior-posterior (AP) axis after each metaphase as the nuclei collectively migrate towards the embryo poles and partially move back. And the maximum nuclear speed dampens by 28-45% in the second half of the standing wave. Moreover, the nuclear density is 22-42% lower in the pole region than the middle of the embryo during the interphase of NC12-14. To find mechanical rules controlling the collective motion and packing patterns of the nuclear array, we use a deep neural network (DNN) to learn the underlying force field from data. We apply the learned spatiotemporal attractive force field in the simulations with a particle-based model. And the simulations recapitulate nearly all the observed characteristic collective behaviors of nuclear arrays in Drosophila embryos.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Kakit Kong
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Wenlei Xiao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Feng Liu
- Center for Quantitative Biology, Peking University, Beijing, China
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
3
|
Nazockdast E, Redemann S. Mechanics of the spindle apparatus. Semin Cell Dev Biol 2020; 107:91-102. [PMID: 32747191 DOI: 10.1016/j.semcdb.2020.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022]
Abstract
During mitosis microtubules self-organize to form a bipolar mitotic spindle structure, which positions the sister chromatids on the spindle mid-plane and separates them afterwards. Previous studies have identified many spindle associated proteins. Yet, we do not fully understand how these nanoscopic proteins lead to force generation through interactions of individual microtubules, motor proteins and chromosomes, and how a large number of these local interactions ultimately determine the structure and mechanics of the spindle in micron scale. Here we review the current understanding and open questions related to the structure and mechanics of the mitotic spindle. We then discuss how a combination of electron microscopy and computational modeling can be used to tackle some of these open questions.
Collapse
Affiliation(s)
- Ehssan Nazockdast
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA.
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Dutta S, Djabrayan NJV, Smits CM, Rowley CW, Shvartsman SY. Excess dNTPs Trigger Oscillatory Surface Flow in the Early Drosophila Embryo. Biophys J 2020; 118:2349-2353. [PMID: 32247330 DOI: 10.1016/j.bpj.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the first 2 hours of Drosophila development, precisely orchestrated nuclear cleavages, cytoskeletal rearrangements, and directed membrane growth lead to the formation of an epithelial sheet around the yolk. The newly formed epithelium remains relatively quiescent during the next hour as it is patterned by maternal inductive signals and zygotic gene products. We discovered that this mechanically quiet period is disrupted in embryos with high levels of dNTPs, which have been recently shown to cause abnormally fast nuclear cleavages and interfere with zygotic transcription. High levels of dNTPs are associated with robust onset of oscillatory two-dimensional flows during the third hour of development. Tissue cartography, particle image velocimetry, and dimensionality reduction techniques reveal that these oscillatory flows are low dimensional and are characterized by the presence of spiral vortices. We speculate that these aberrant flows emerge through an instability triggered by deregulated mechanical coupling between the nascent epithelium and three-dimensional yolk. These results highlight an unexplored connection between a core metabolic process and large-scale mechanics in a rapidly developing embryo.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Nareg J-V Djabrayan
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Celia M Smits
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Clarence W Rowley
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey; Department of Molecular Biology, Princeton University, Princeton, New Jersey; Center for Computational Biology, Flatiron Institute, New York, New York.
| |
Collapse
|
5
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
6
|
Dutta S, Djabrayan NJV, Torquato S, Shvartsman SY, Krajnc M. Self-Similar Dynamics of Nuclear Packing in the Early Drosophila Embryo. Biophys J 2019; 117:743-750. [PMID: 31378311 DOI: 10.1016/j.bpj.2019.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
Abstract
Embryonic development starts with cleavages, a rapid sequence of reductive divisions that result in an exponential increase of cell number without changing the overall size of the embryo. In Drosophila, the final four rounds of cleavages occur at the surface of the embryo and give rise to ∼6000 nuclei under a common plasma membrane. We use live imaging to study the dynamics of this process and to characterize the emergent nuclear packing in this system. We show that the characteristic length scale of the internuclear interaction scales with the density, which allows the densifying embryo to sustain the level of structural order at progressively smaller length scales. This is different from nonliving materials, which typically undergo disorder-order transition upon compression. To explain this dynamics, we use a particle-based model that accounts for density-dependent nuclear interactions and synchronous divisions. We reproduce the pair statistics of the disordered packings observed in embryos and recover the scaling relation between the characteristic length scale and the density both in real and reciprocal space. This result reveals how the embryo can robustly preserve the nuclear-packing structure while being densified. In addition to providing quantitative description of self-similar dynamics of nuclear packings, this model generates dynamic meshes for the computational analysis of pattern formation and tissue morphogenesis.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Nareg J-V Djabrayan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey; Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| | - Matej Krajnc
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
7
|
Prelogović M, Winters L, Milas A, Tolić IM, Pavin N. Pivot-and-bond model explains microtubule bundle formation. Phys Rev E 2019; 100:012403. [PMID: 31499770 DOI: 10.1103/physreve.100.012403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 06/10/2023]
Abstract
During mitosis, microtubules form a spindle, which is responsible for proper segregation of the genetic material. A common structural element in a mitotic spindle is a parallel bundle, consisting of two or more microtubules growing from the same origin and held together by cross-linking proteins. An interesting question is what are the physical principles underlying the formation and stability of such microtubule bundles. Here we show, by introducing the pivot-and-bond model, that random angular movement of microtubules around the spindle pole and forces exerted by cross-linking proteins can explain the formation of microtubule bundles as observed in our experiments. The model predicts that stable parallel bundles can form in the presence of either passive crosslinkers or plus-end directed motors, but not minus-end directed motors. In the cases where bundles form, the time needed for their formation depends mainly on the concentration of cross-linking proteins and the angular diffusion of the microtubule. In conclusion, the angular motion drives the alignment of microtubules, which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.
Collapse
Affiliation(s)
- Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Lamson AR, Edelmaier CJ, Glaser MA, Betterton MD. Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly. Biophys J 2019; 116:1719-1731. [PMID: 31010665 PMCID: PMC6507341 DOI: 10.1016/j.bpj.2019.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022] Open
Abstract
Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which microtubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mechanisms of this process include regulated filament polymerization, cross-linking, and motor-protein activity. Remarkably, using passive cross-linkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization because of dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive cross-linkers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include cross-linker-binding kinetics and other stochastic effects. Our results show that rapid cross-linker reorganization to microtubule overlaps facilitates cross-linker-driven spindle assembly, a testable prediction for future experiments. Combining these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization.
Collapse
Affiliation(s)
- Adam R Lamson
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
9
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
10
|
Fegaras E, Forer A. Precocious cleavage furrows simultaneously move and ingress when kinetochore microtubules are depolymerized in Mesostoma ehrenbergii spermatocytes. PROTOPLASMA 2018; 255:1401-1411. [PMID: 29564559 DOI: 10.1007/s00709-018-1239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
A "precocious" cleavage furrow develops and ingresses during early prometaphase in Mesostoma ehrenbergii spermatocytes (Forer and Pickett-Heaps Eur J Cell Biol 89:607-618, 2010). In response to chromosome movements which regularly occur during prometaphase and that alter the balance of chromosomes in the two half-spindles, the precocious furrow shifts its position along the cell, moving 2-3 μm towards the half cell with fewer chromosomes (Ferraro-Gideon et al. Cell Biol Int 37:892-898, 2013). This process continues until proper segregation is achieved and the cell enters anaphase with the cleavage furrow again in the middle of the cell. At anaphase, the furrow recommences ingression. Spindle microtubules (MTs) are implicated in various furrow positioning models, and our experiments studied the responses of the precocious furrows to the absence of spindle MTs. We depolymerized spindle MTs during prometaphase using various concentrations of nocodazole (NOC) and colcemid. The expected result is that the furrow should regress and chromosomes remain in the midzone of the cell (Cassimeris et al. J Cell Sci 96:9-15, 1990). Instead, the furrows commenced ingression and all three bivalent chromosomes moved to one pole while the univalent chromosomes, that usually reside at the two poles, either remained at their poles or moved to the opposite pole along with the bivalents, as described elsewhere (Fegaras and Forer 2018). The microtubules were completely depolymerized by the drugs, as indicated by immunofluorescence staining of treated cells (Fegaras and Forer 2018), and in the absence of microtubules, the furrows often ingressed (in 33/61 cells) at a rate similar to normal anaphase ingression (~ 1 μm/min), while often simultaneously moving toward one pole. Thus, these results indicate that in the absence of anaphase and of spindle microtubules, cleavage furrows resume ingression.
Collapse
Affiliation(s)
- Eleni Fegaras
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Arthur Forer
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
11
|
Schmidt A, Grosshans J. Dynamics of cortical domains in early Drosophila development. J Cell Sci 2018; 131:131/7/jcs212795. [DOI: 10.1242/jcs.212795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Underlying the plasma membrane of eukaryotic cells is an actin cortex that includes actin filaments and associated proteins. A special feature of all polarized and epithelial cells are cortical domains, each of which is characterized by specific sets of proteins. Typically, an epithelial cell contains apical, subapical, lateral and basal domains. The domain-specific protein sets contain evolutionarily conserved proteins, as well as cell-type-specific factors. Among the conserved proteins are, the Par proteins, Crumbs complex and the lateral proteins Scribbled and Discs large 1. Organization of the plasma membrane into cortical domains is dynamic and depends on cell type, differentiation and developmental stage. The dynamics of cortical organization is strikingly visible in early Drosophila embryos, which increase the number of distinct cortical domains from one, during the pre-blastoderm stage, to two in syncytial blastoderm embryos, before finally acquiring the four domains that are typical for epithelial cells during cellularization. In this Review, we will describe the dynamics of cortical organization in early Drosophila embryos and discuss the processes and mechanisms underlying cortical remodeling.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
12
|
De Simone A, Gönczy P. Computer simulations reveal mechanisms that organize nuclear dynein forces to separate centrosomes. Mol Biol Cell 2017; 28:3165-3170. [PMID: 28701341 PMCID: PMC5687019 DOI: 10.1091/mbc.e16-12-0823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 11/11/2022] Open
Abstract
Computational simulations are used to probe potential mechanisms through which nuclear dynein organizes forces in an anisotropic manner to promote centrosome separation. Two mechanisms are key: one relies on steric interactions between microtubules and centrosomes and the other on the initial position of centrosomes in the cell. Centrosome separation along the surface of the nucleus at the onset of mitosis is critical for bipolar spindle assembly. Dynein anchored on the nuclear envelope is known to be important for centrosome separation, but it is unclear how nuclear dynein forces are organized in an anisotropic manner to promote the movement of centrosomes away from each other. Here we use computational simulations of Caenorhabditis elegans embryos to address this fundamental question, testing three potential mechanisms by which nuclear dynein may act. First, our analysis shows that expansion of the nuclear volume per se does not generate nuclear dynein–driven separation forces. Second, we find that steric interactions between microtubules and centrosomes contribute to robust onset of nuclear dynein–mediated centrosome separation. Third, we find that the initial position of centrosomes, between the male pronucleus and cell cortex at the embryo posterior, is a key determinant in organizing microtubule aster asymmetry to power nuclear dynein–dependent separation. Overall our work reveals that accurate initial centrosome position, together with steric interactions, ensures proper anisotropic organization of nuclear dynein forces to separate centrosomes, thus ensuring robust bipolar spindle assembly.
Collapse
Affiliation(s)
- Alessandro De Simone
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. SCIENCE ADVANCES 2017; 3:e1601603. [PMID: 28116355 PMCID: PMC5249259 DOI: 10.1126/sciadv.1601603] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 05/10/2023]
Abstract
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- PULS Group, Department of Physics and Cluster of Excellence: Engineering of Advanced Materials, Friedrich-Alexander University Erlangen-Nurnberg, Nagelsbachstr. 49b, Erlangen, Germany
| | | | | | - Adam Lamson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zachary R. Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Eileen O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Loren E. Hough
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
15
|
Winkler F, Gummalla M, Künneke L, Lv Z, Zippelius A, Aspelmeier T, Grosshans J. Fluctuation Analysis of Centrosomes Reveals a Cortical Function of Kinesin-1. Biophys J 2016; 109:856-68. [PMID: 26331244 PMCID: PMC4564942 DOI: 10.1016/j.bpj.2015.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 07/20/2015] [Accepted: 07/31/2015] [Indexed: 01/28/2023] Open
Abstract
The actin and microtubule networks form the dynamic cytoskeleton. Network dynamics is driven by molecular motors applying force onto the networks and the interactions between the networks. Here we assay the dynamics of centrosomes in the scale of seconds as a proxy for the movement of microtubule asters. With this assay we want to detect the role of specific motors and of network interaction. During interphase of syncytial embryos of Drosophila, cortical actin and the microtubule network depend on each other. Centrosomes induce cortical actin to form caps, whereas F-actin anchors microtubules to the cortex. In addition, lateral interactions between microtubule asters are assumed to be important for regular spatial organization of the syncytial embryo. The functional interaction between the microtubule asters and cortical actin has been largely analyzed in a static manner, so far. We recorded the movement of centrosomes at 1 Hz and analyzed their fluctuations for two processes—pair separation and individual movement. We found that F-actin is required for directional movements during initial centrosome pair separation, because separation proceeds in a diffusive manner in latrunculin-injected embryos. For assaying individual movement, we established a fluctuation parameter as the deviation from temporally and spatially slowly varying drift movements. By analysis of mutant and drug-injected embryos, we found that the fluctuations were suppressed by both cortical actin and microtubules. Surprisingly, the microtubule motor Kinesin-1 also suppressed fluctuations to a similar degree as F-actin. Kinesin-1 may mediate linkage of the microtubule (+)-ends to the actin cortex. Consistent with this model is our finding that Kinesin-1-GFP accumulates at the cortical actin caps.
Collapse
Affiliation(s)
- Franziska Winkler
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany
| | - Maheshwar Gummalla
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany
| | - Lutz Künneke
- Institute for Theoretical Physics, Georg-August-University Göttingen, Göttingen, Germany
| | - Zhiyi Lv
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany
| | - Annette Zippelius
- Institute for Theoretical Physics, Georg-August-University Göttingen, Göttingen, Germany
| | - Timo Aspelmeier
- Institute for Mathematical Stochastics, Georg-August-University Göttingen, Göttingen, Germany; Felix Bernstein Institute for Statistics in the Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
16
|
Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell 2016; 27:3490-3514. [PMID: 27146110 PMCID: PMC5221583 DOI: 10.1091/mbc.e15-07-0505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results. Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309.,Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Ammon Crapo
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | | |
Collapse
|
17
|
Lozoya OA, Gilchrist CL, Guilak F. Universally Conserved Relationships between Nuclear Shape and Cytoplasmic Mechanical Properties in Human Stem Cells. Sci Rep 2016; 6:23047. [PMID: 26976044 PMCID: PMC4792134 DOI: 10.1038/srep23047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/25/2016] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to proliferate, differentiate, transduce extracellular signals and assemble tissues involves structural connections between nucleus and cytoskeleton. Yet, how the mechanics of these connections vary inside stem cells is not fully understood. To address those questions, we combined two-dimensional particle-tracking microrheology and morphological measures using variable reduction techniques to measure whether cytoplasmic mechanics allow for discrimination between different human adherent stem cell types and across different culture conditions. Here we show that nuclear shape is a quantifiable discriminant of mechanical properties in the perinuclear cytoskeleton (pnCSK) of various stem cell types. Also, we find the pnCSK is a region with different mechanical properties than elsewhere in the cytoskeleton, with heterogeneously distributed locations exhibiting subdiffusive features, and which obeys physical relations conserved among various stem cell types. Finally, we offer a prospective basis to discriminate between stem cell types by coupling perinuclear mechanical properties to nuclear shape.
Collapse
Affiliation(s)
- Oswaldo A Lozoya
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Farshid Guilak
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.,Departments of Orthopaedic Surgery, Biomedical Engineering, and Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
De Simone A, Nédélec F, Gönczy P. Dynein Transmits Polarized Actomyosin Cortical Flows to Promote Centrosome Separation. Cell Rep 2016; 14:2250-2262. [DOI: 10.1016/j.celrep.2016.01.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/23/2015] [Accepted: 01/27/2016] [Indexed: 01/27/2023] Open
|
19
|
Yukawa M, Ikebe C, Toda T. The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. ACTA ACUST UNITED AC 2015; 209:549-62. [PMID: 25987607 PMCID: PMC4442821 DOI: 10.1083/jcb.201412111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
Abstract
Msd1–Wdr8 are delivered by Pkl1 to mitotic spindle pole bodies, where the Msd1–Wdr8–Pkl1 complex anchors the minus ends of spindle microtubules and antagonizes the outward-pushing forces generated by Cut7/kinesin-5 in fission yeast. The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.
Collapse
Affiliation(s)
- Masashi Yukawa
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Chiho Ikebe
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| |
Collapse
|
20
|
Vasquez PA, Forest MG. Complex Fluids and Soft Structures in the Human Body. COMPLEX FLUIDS IN BIOLOGICAL SYSTEMS 2015. [DOI: 10.1007/978-1-4939-2065-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Rogers-Nieman GM, Dinu CZ. Therapeutic applications of carbon nanotubes: opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:327-37. [PMID: 24715535 DOI: 10.1002/wnan.1268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 11/11/2022]
Abstract
UNLABELLED Based on their physicochemical properties that allow efficient functionalization with biomolecules and cellular membrane translocation, as well as on their applications in Raman and near-infrared fluorescence imaging, carbon nanotubes (CNTs) have been proposed as viable candidates for developing therapeutic platforms that ensure targeting of tumor cells without affecting healthy cells. This article reviews the research on toxicological effects of CNTs on host cells, as well as their pharmacological profiles on cancer cells. The potential impact of this approach is discussed along with some potential pitfalls that will need to be overcome when therapeutic implementation CNTs are considered. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors declare no competing financial interest.
Collapse
|
22
|
Analysis of mitotic protein dynamics and function in Drosophila embryos by live cell imaging and quantitative modeling. Methods Mol Biol 2014; 1136:3-30. [PMID: 24633790 DOI: 10.1007/978-1-4939-0329-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mitosis depends upon the mitotic spindle, a dynamic protein machine that uses ensembles of dynamic microtubules (MTs) and MT-based motor proteins to assemble itself, control its own length (pole-pole spacing), and segregate chromosomes during anaphase A (chromosome-to-pole motility) and anaphase B (spindle elongation). In this review, we describe how the molecular and biophysical mechanisms of these processes can be analyzed in the syncytial Drosophila embryo by combining (1) time-lapse imaging and other fluorescence light microscopy techniques to study the dynamics of mitotic proteins such as tubulins, mitotic motors, and chromosome or centrosome proteins; (2) the perturbation of specific mitotic protein function using microinjected inhibitors (e.g., antibodies) or mutants to infer protein function; and (3) mathematical modeling of the qualitative models derived from these experiments, which can then be used to make predictions which are in turn tested experimentally. We provide details of the methods we use for embryo preparation, fluorescence imaging, and mathematical modeling.
Collapse
|
23
|
Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 2013; 531:133-49. [PMID: 23954229 DOI: 10.1016/j.gene.2013.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022]
Abstract
Kinesin motor proteins comprise an ATPase superfamily that works hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on multi-faceted analyses of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic.
Collapse
|
24
|
Stephens AD, Haggerty RA, Vasquez PA, Vicci L, Snider CE, Shi F, Quammen C, Mullins C, Haase J, Taylor RM, Verdaasdonk JS, Falvo MR, Jin Y, Forest MG, Bloom K. Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. ACTA ACUST UNITED AC 2013; 200:757-72. [PMID: 23509068 PMCID: PMC3601350 DOI: 10.1083/jcb.201208163] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During mitosis, cohesin- and condensin-based pericentric chromatin loops function as a spring network to balance spindle microtubule force. The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Silkworth WT, Cimini D. Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div 2012; 7:19. [PMID: 22883214 PMCID: PMC3509025 DOI: 10.1186/1747-1028-7-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022] Open
Abstract
Assembly of a bipolar mitotic spindle is essential to ensure accurate chromosome segregation and prevent aneuploidy, and severe mitotic spindle defects are typically associated with cell death. Recent studies have shown that mitotic spindles with initial geometric defects can undergo specific rearrangements so the cell can complete mitosis with a bipolar spindle and undergo bipolar chromosome segregation, thus preventing the risk of cell death associated with abnormal spindle structure. Although this may appear as an advantageous strategy, transient defects in spindle geometry may be even more threatening to a cell population or organism than permanent spindle defects. Indeed, transient spindle geometry defects cause high rates of chromosome mis-segregation and aneuploidy. In this review, we summarize our current knowledge on two specific types of transient spindle geometry defects (transient multipolarity and incomplete spindle pole separation) and describe how these mechanisms cause chromosome mis-segregation and aneuploidy. Finally, we discuss how these transient spindle defects may specifically contribute to the chromosomal instability observed in cancer cells.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA, 24061, USA.
| | | |
Collapse
|
26
|
Kanesaki T, Edwards CM, Schwarz US, Grosshans J. Dynamic ordering of nuclei in syncytial embryos: a quantitative analysis of the role of cytoskeletal networks. Integr Biol (Camb) 2011; 3:1112-9. [PMID: 22001900 DOI: 10.1039/c1ib00059d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In syncytial embryos nuclei undergo cycles of division and rearrangement within a common cytoplasm. It is presently unclear to what degree and how the nuclear array maintains positional order in the face of rapid cell divisions. Here we establish a quantitative assay, based on image processing, for analysing the dynamics of the nuclear array. By tracking nuclear trajectories in Drosophila melanogaster embryos, we are able to define and evaluate local and time-dependent measures for the level of geometrical order in the array. We find that after division, order is re-established in a biphasic manner, indicating the competition of different ordering processes. Using mutants and drug injections, we show that the order of the nuclear array depends on cytoskeletal networks organised by centrosomes. While both f-actin and microtubules are required for re-establishing order after mitosis, only f-actin is required to maintain the stability of this arrangement. Furthermore, f-actin function relies on myosin-independent non-contractile filaments that suppress individual nuclear mobility, whereas microtubules promote mobility and attract adjacent nuclei. Actin caps are shown to act to prevent nuclear incorporation into adjacent microtubule baskets. Our data demonstrate that two principal ordering mechanisms thus simultaneously contribute: (1) a passive crowding mechanism in which nuclei and actin caps act as spacers and (2) an active self-organisation mechanism based on a microtubule network.
Collapse
Affiliation(s)
- Takuma Kanesaki
- Institute for Biochemistry, Medical School, University of Göttingen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
27
|
Field CM, Wühr M, Anderson GA, Kueh HY, Strickland D, Mitchison TJ. Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos. J Cell Sci 2011; 124:2086-95. [PMID: 21610091 DOI: 10.1242/jcs.082263] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanical properties of cells change as they proceed through the cell cycle, primarily owing to regulation of actin and myosin II. Most models for cell mechanics focus on actomyosin in the cortex and ignore possible roles in bulk cytoplasm. We explored cell cycle regulation of bulk cytoplasmic actomyosin in Xenopus egg extracts, which is almost undiluted cytoplasm from unfertilized eggs. We observed dramatic gelation-contraction of actomyosin in mitotic (M phase) extract where Cdk1 activity is high, but not in interphase (I-phase) extract. In spread droplets, M-phase extract exhibited regular, periodic pulses of gelation-contraction a few minutes apart that continued for many minutes. Comparing actin nucleation, disassembly and myosin II activity between M-phase and I-phase extracts, we conclude that regulation of nucleation is likely to be the most important for cell cycle regulation. We then imaged F-actin in early zebrafish blastomeres using a GFP-Utrophin probe. Polymerization in bulk cytoplasm around vesicles increased dramatically during mitosis, consistent with enhanced nucleation. We conclude that F-actin polymerization in bulk cytoplasm is cell cycle regulated in early vertebrate embryos and discuss possible biological functions of this regulation.
Collapse
|
28
|
Sommi P, Cheerambathur D, Brust-Mascher I, Mogilner A. Actomyosin-dependent cortical dynamics contributes to the prophase force-balance in the early Drosophila embryo. PLoS One 2011; 6:e18366. [PMID: 21483831 PMCID: PMC3069073 DOI: 10.1371/journal.pone.0018366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/28/2011] [Indexed: 01/12/2023] Open
Abstract
Background The assembly of the Drosophila embryo mitotic spindle during prophase depends upon a balance of outward forces generated by cortical dynein and inward forces generated by kinesin-14 and nuclear elasticity. Myosin II is known to contribute to the dynamics of the cell cortex but how this influences the prophase force-balance is unclear. Principal Findings Here we investigated this question by injecting the myosin II inhibitor, Y27632, into early Drosophila embryos. We observed a significant increase in both the area of the dense cortical actin caps and in the spacing of the spindle poles. Tracking of microtubule plus ends marked by EB1-GFP and of actin at the cortex revealed that astral microtubules can interact with all regions of these expanded caps, presumably via their interaction with cortical dynein. In Scrambled mutants displaying abnormally small actin caps but normal prophase spindle length in late prophase, myosin II inhibition produced very short spindles. Conclusions These results suggest that two complementary outward forces are exerted on the prophase spindle by the overlying cortex. Specifically, dynein localized on the mechanically firm actin caps and the actomyosin-driven contraction of the deformable soft patches of the actin cortex, cooperate to pull astral microtubules outward. Thus, myosin II controls the size and dynamic properties of the actin-based cortex to influence the spacing of the poles of the underlying spindle during prophase.
Collapse
Affiliation(s)
- Patrizia Sommi
- Human Physiology Section, Department of Physiology, University of Pavia, Pavia, Italy
| | - Dhanya Cheerambathur
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
| | - Ingrid Brust-Mascher
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Alex Mogilner
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
- Department of Mathematics, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tanenbaum ME, Medema RH. Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 2011; 19:797-806. [PMID: 21145497 DOI: 10.1016/j.devcel.2010.11.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
Abstract
Accurate segregation of chromosomes during cell division is accomplished through the assembly of a bipolar microtubule-based structure called the mitotic spindle. Work over the past two decades has identified a core regulator of spindle bipolarity, the microtubule motor protein kinesin-5. However, an increasing body of evidence has emerged demonstrating that kinesin-5-independent mechanisms driving bipolar spindle assembly exist as well. Here, we discuss different pathways that promote initial centrosome separation and bipolar spindle assembly.
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department of Medical Oncology, University Medical Center, CG Utrecht, the Netherlands
| | | |
Collapse
|
30
|
Precocious (pre-anaphase) cleavage furrows in Mesostoma spermatocytes. Eur J Cell Biol 2010; 89:607-18. [PMID: 20434231 DOI: 10.1016/j.ejcb.2010.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/22/2022] Open
Abstract
It generally is assumed that cleavage furrows start ingression at anaphase, but this is not always true. Cleavage furrows are initiated during prometaphase in spermatocytes of the flatworm Mesostoma, becoming detectable soon after the spindles achieve bipolarity. The furrows deepen during prometaphase, but ingression soon arrests. After anaphase the pre-existing furrow recommences its ingression and rapidly cleaves the cell. Such "precocious" furrowing also commonly occurs in diatoms and other algae. The position of the "precocious" cleavage furrow changes when there are changes in the distribution of chromosomes. Each of the 4 unipolarly-oriented univalent chromosomes moves to a pole at the start of prometaphase but later in prometaphase may move to the opposite pole. The furrow position adjusts during prometaphase according to the numbers of univalents at the two poles: when there are two univalent chromosomes at each pole the furrow is symmetrical at the spindle equator, but when there are unequal numbers at the poles the furrow shifts 2-3 microm toward the half-spindle with fewer univalents. Nocodazole causes spindle microtubules to disappear. After addition of nocodazole, bivalents become detached from one pole and move toward the other, which causes the furrow to shift 2-3 microm toward the pole with fewer chromosomes. Furrow positioning thus is sensitive to the positioning of chromosomes in the spindle and furrow positions change in the absence of spindle microtubules.
Collapse
|
31
|
Reich A, Meurer M, Eckes B, Friedrichs J, Muller DJ. Surface morphology and mechanical properties of fibroblasts from scleroderma patients. J Cell Mol Med 2010; 13:1644-1652. [PMID: 18624756 DOI: 10.1111/j.1582-4934.2008.00401.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Overproduction of extracellular matrix components by fibroblasts plays a key role in the pathogenesis of scleroderma. To investigate whether these functional alterations are accompanied by changes in the mechanical properties and morphology of fibroblast, atomic force microscopy was applied to dermal fibroblasts derived either from scleroderma patients or from healthy donors. No significant morphological differences could be observed among the different cell strains showing long cytoskeleton fibres similar in length and irregularly distributed protrusions on the cell surface. In contrast, significant differences in cellular stiffness of dermal fibroblasts derived from scleroderma lesions were detected. Compared to fibroblasts from healthy donors, diseased cells were characterized by a reduced elastic constant both when the global and local mechanical properties were probed. The altered stiffness of scleroderma fibroblasts may be important in the pathogenesis of the disease as it could lead to the abnormal response of fibroblasts to mechanical stimuli.
Collapse
Affiliation(s)
- Adam Reich
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland.,Department of Dermatology, Carl Gustav Carus Medical Faculty, University of Technology, Dresden, Germany.,Biotechnology Center, University of Technology, Dresden, Germany
| | - Michael Meurer
- Department of Dermatology, Carl Gustav Carus Medical Faculty, University of Technology, Dresden, Germany
| | - Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Jens Friedrichs
- Biotechnology Center, University of Technology, Dresden, Germany
| | - Daniel J Muller
- Biotechnology Center, University of Technology, Dresden, Germany
| |
Collapse
|
32
|
Sommi P, Ananthakrishnan R, Cheerambathur DK, Kwon M, Morales-Mulia S, Brust-Mascher I, Mogilner A. A mitotic kinesin-6, Pav-KLP, mediates interdependent cortical reorganization and spindle dynamics in Drosophila embryos. J Cell Sci 2010; 123:1862-72. [PMID: 20442250 DOI: 10.1242/jcs.064048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the role of Pav-KLP, a kinesin-6, in the coordination of spindle and cortical dynamics during mitosis in Drosophila embryos. In vitro, Pav-KLP behaves as a dimer. In vivo, it localizes to mitotic spindles and furrows. Inhibition of Pav-KLP causes defects in both spindle dynamics and furrow ingression, as well as causing changes in the distribution of actin and vesicles. Thus, Pav-KLP stabilizes the spindle by crosslinking interpolar microtubule bundles and contributes to actin furrow formation possibly by transporting membrane vesicles, actin and/or actin regulatory molecules along astral microtubules. Modeling suggests that furrow ingression during cellularization depends on: (1) a Pav-KLP-dependent force driving an initial slow stage of ingression; and (2) the subsequent Pav-KLP-driven transport of actin- and membrane-containing vesicles to the furrow during a fast stage of ingression. We hypothesize that Pav-KLP is a multifunctional mitotic motor that contributes both to bundling of interpolar microtubules, thus stabilizing the spindle, and to a biphasic mechanism of furrow ingression by pulling down the furrow and transporting vesicles that deliver new material to the descending furrow.
Collapse
Affiliation(s)
- Patrizia Sommi
- LCCB, Center for Genetics and Development, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Cao J, Crest J, Fasulo B, Sullivan W. Cortical actin dynamics facilitate early-stage centrosome separation. Curr Biol 2010; 20:770-6. [PMID: 20409712 PMCID: PMC3032811 DOI: 10.1016/j.cub.2010.02.060] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 02/07/2023]
Abstract
Proper centrosome separation is a prerequisite for positioning the bipolar spindle. Although studies demonstrate that microtubules (MTs) and their associated motors drive centrosome separation [1], the role of actin in centrosome separation remains less clear. Studies in tissue culture cells indicate that actin- and myosin-based cortical flow is primarily responsible for driving late centrosome separation [2], whereas other studies suggest that actin plays a more passive role by serving as an attachment site for astral MTs to pull centrosomes apart [3-6]. Here we demonstrate that prior to nuclear envelope breakdown (NEB) in Drosophila embryos, proper centrosome separation does not require myosin II but requires dynamic actin rearrangements at the growing edge of the interphase cap. Both Arp2/3- and Formin-mediated actin remodeling are required for separating the centrosome pairs before NEB. The Apc2-Armadillo complex appears to link cap expansion to centrosome separation. In contrast, the mechanisms driving centrosome separation after NEB are independent of the actin cytoskeleton and compensate for earlier separation defects. Our studies show that the dynamics of actin polymerization drive centrosome separation, and this has important implications for centrosome positioning during processes such as cell migration [7, 8], cell polarity maintenance [9, 10], and asymmetric cell division [11, 12].
Collapse
Affiliation(s)
- Jian Cao
- Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Do actin dynamics play an active role in mitotic spindle assembly? A new study demonstrates that cortical actin polymerization assists with the earliest phase of spindle pole migration.
Collapse
Affiliation(s)
- Gregory C Rogers
- Department of Cell Biology and Anatomy, Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
35
|
Civelekoglu-Scholey G, Tao L, Brust-Mascher I, Wollman R, Scholey JM. Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. ACTA ACUST UNITED AC 2010; 188:49-68. [PMID: 20065089 PMCID: PMC2812851 DOI: 10.1083/jcb.200908150] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We tested the classical hypothesis that astral, prometaphase bipolar mitotic spindles are maintained by balanced outward and inward forces exerted on spindle poles by kinesin-5 and -14 using modeling of in vitro and in vivo data from Drosophila melanogaster embryos. Throughout prometaphase, puncta of both motors aligned on interpolar microtubules (MTs [ipMTs]), and motor perturbation changed spindle length, as predicted. Competitive motility of purified kinesin-5 and -14 was well described by a stochastic, opposing power stroke model incorporating motor kinetics and load-dependent detachment. Motor parameters from this model were applied to a new stochastic force-balance model for prometaphase spindles, providing a good fit to data from embryos. Maintenance of virtual spindles required dynamic ipMTs and a narrow range of kinesin-5 to kinesin-14 ratios matching that found in embryos. Functional perturbation and modeling suggest that this range can be extended significantly by a disassembling lamin-B envelope that surrounds the prometaphase spindle and augments the finely tuned, antagonistic kinesin force balance to maintain robust prometaphase spindles as MTs assemble and chromosomes are pushed to the equator.
Collapse
Affiliation(s)
- Gul Civelekoglu-Scholey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
36
|
Fisher JK, Ballenger M, O'Brien ET, Haase J, Superfine R, Bloom K. DNA relaxation dynamics as a probe for the intracellular environment. Proc Natl Acad Sci U S A 2009; 106:9250-5. [PMID: 19478070 PMCID: PMC2695107 DOI: 10.1073/pnas.0812723106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Indexed: 12/12/2022] Open
Abstract
Investigations into the biophysical properties of single molecules traditionally involve well defined in vitro systems where parameters such as solvent viscosity and applied forces are known a priori. These systems provide means to develop models describing the polymers response to a variety of conditions, including the entropically driven relaxation of a stretched biopolymer upon release of the tension inducing force. While these techniques have proven instrumental for recent advancements in the fields of polymer physics and biophysics, how applicable they are to life inside the cell remains poorly understood. Here we report an investigation of in vivo stretched polymer relaxation dynamics using chromatin relaxation following the breakage of a dicentric chromosome subjected to microtubule-based spindle forces. Additionally, we have developed an in vitro system used to verify the conformations observed during the in vivo relaxation, including the predicted but previously unidentified taut conformation. These observations motivate our use of existing polymer models to determine both the in vivo viscosity as seen by the relaxing chromatin and the tension force applied by the microtubule-based spindle in vivo. As a result, the technique described herein may be used as a biophysical strategy to probe the intranuclear environment.
Collapse
Affiliation(s)
- J K Fisher
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Delattre M, Félix MA. The evolutionary context of robust and redundant cell biological mechanisms. Bioessays 2009; 31:537-45. [DOI: 10.1002/bies.200800215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Cai S, Weaver LN, Ems-McClung SC, Walczak CE. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 2009; 20:1348-59. [PMID: 19116309 PMCID: PMC2649268 DOI: 10.1091/mbc.e08-09-0971] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/15/2008] [Accepted: 12/22/2008] [Indexed: 11/11/2022] Open
Abstract
Kinesin-14 family proteins are minus-end directed motors that cross-link microtubules and play key roles during spindle assembly. We showed previously that the Xenopus Kinesin-14 XCTK2 is regulated by Ran via the association of a bipartite NLS in the tail of XCTK2 with importin alpha/beta, which regulates its ability to cross-link microtubules during spindle formation. Here we show that mutation of the nuclear localization signal (NLS) of human Kinesin-14 HSET caused an accumulation of HSET in the cytoplasm, which resulted in strong microtubule bundling. HSET overexpression in HeLa cells resulted in longer spindles, similar to what was seen with NLS mutants of XCTK2 in extracts, suggesting that Kinesin-14 proteins play similar roles in extracts and in somatic cells. Conversely, HSET knockdown by RNAi resulted in shorter spindles but did not affect pole formation. The change in spindle length was not dependent on K-fibers, as elimination of the K-fiber by Nuf2 RNAi resulted in an increase in spindle length that was partially rescued by co-RNAi of HSET. However, these changes in spindle length did require microtubule sliding, as overexpression of an HSET mutant that had its sliding activity uncoupled from its ATPase activity resulted in cells with spindle lengths shorter than cells overexpressing wild-type HSET. Our results are consistent with a model in which Ran regulates the association of Kinesin-14s with importin alpha/beta to prevent aberrant cross-linking and bundling of microtubules by sequestering Kinesin-14s in the nucleus during interphase. Kinesin-14s act during mitosis to cross-link and slide between parallel microtubules to regulate spindle length.
Collapse
|
39
|
Brust-Mascher I, Sommi P, Cheerambathur DK, Scholey JM. Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol Biol Cell 2009; 20:1749-62. [PMID: 19158379 DOI: 10.1091/mbc.e08-10-1033] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We used antibody microinjection and genetic manipulations to dissect the various roles of the homotetrameric kinesin-5, KLP61F, in astral, centrosome-controlled Drosophila embryo spindles and to test the hypothesis that it slides apart interpolar (ip) microtubules (MT), thereby controlling poleward flux and spindle length. In wild-type and Ncd null mutant embryos, anti-KLP61F dissociated the motor from spindles, producing a spatial gradient in the KLP61F content of different spindles, which was visible in KLP61F-GFP transgenic embryos. The resulting mitotic defects, supported by gene dosage experiments and time-lapse microscopy of living klp61f mutants, reveal that, after NEB, KLP61F drives persistent MT bundling and the outward sliding of antiparallel MTs, thereby contributing to several processes that all appear insensitive to cortical disruption. KLP61F activity contributes to the poleward flux of both ipMTs and kinetochore MTs and to the length of the metaphase spindle. KLP61F activity maintains the prometaphase spindle by antagonizing Ncd and another unknown force-generator and drives anaphase B, although the rate of spindle elongation is relatively insensitive to the motor's concentration. Finally, KLP61F activity contributes to normal chromosome congression, kinetochore spacing, and anaphase A rates. Thus, a KLP61F-driven sliding filament mechanism contributes to multiple aspects of mitosis in this system.
Collapse
Affiliation(s)
- Ingrid Brust-Mascher
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
40
|
Théry M, Bornens M. Get round and stiff for mitosis. HFSP JOURNAL 2008; 2:65-71. [PMID: 19404473 DOI: 10.2976/1.2895661] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Indexed: 01/06/2023]
Abstract
Cell rounding is a common feature of cell division. The spherical shape that cells adopt during mitosis is apparently neither a simple detachment nor a global softening or stiffening that allows cells to adopt what seems to be a mechanical equilibrium. It is a highly complex mechanical transformation by which membrane folding and peripheral signals focusing can match spindle size in order to ensure a proper cell division. Recent new insight into the mechanism involved will prompt the scientific community to focus on the regulation of the physical links that exist between the lipid bilayer membrane and the underlying actin cytoskeleton since it now appears that these will strongly influence some crucial cellular events such as the spatial organization of cell division.
Collapse
|
41
|
Buttrick GJ, Beaumont LMA, Leitch J, Yau C, Hughes JR, Wakefield JG. Akt regulates centrosome migration and spindle orientation in the early Drosophila melanogaster embryo. J Cell Biol 2008; 180:537-48. [PMID: 18268102 PMCID: PMC2234228 DOI: 10.1083/jcb.200705085] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 01/07/2008] [Indexed: 01/16/2023] Open
Abstract
Correct positioning and morphology of the mitotic spindle is achieved through regulating the interaction between microtubules (MTs) and cortical actin. Here we find that, in the Drosophila melanogaster early embryo, reduced levels of the protein kinase Akt result in incomplete centrosome migration around cortical nuclei, bent mitotic spindles, and loss of nuclei into the interior of the embryo. We show that Akt is enriched at the embryonic cortex and is required for phosphorylation of the glycogen synthase kinase-3beta homologue Zeste-white 3 kinase (Zw3) and for the cortical localizations of the adenomatosis polyposis coli (APC)-related protein APC2/E-APC and the MT + Tip protein EB1. We also show that reduced levels of Akt result in mislocalization of APC2 in postcellularized embryonic mitoses and misorientation of epithelial mitotic spindles. Together, our results suggest that Akt regulates a complex containing Zw3, Armadillo, APC2, and EB1 and that this complex has a role in stabilizing MT-cortex interactions, facilitating both centrosome separation and mitotic spindle orientation.
Collapse
Affiliation(s)
- Graham J Buttrick
- Department of Zoology, University of Oxford, Oxford OX1 3PS, England, UK
| | | | | | | | | | | |
Collapse
|
42
|
Pandey R, Heeger S, Lehner CF. Rapid effects of acute anoxia on spindle kinetochore interactions activate the mitotic spindle checkpoint. J Cell Sci 2007; 120:2807-18. [PMID: 17652159 DOI: 10.1242/jcs.007690] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dramatic chromosome instability in certain tumors might reflect a synergy of spindle checkpoint defects with hypoxic conditions. In Caenorhabditis elegans and Drosophila melanogaster, spindle checkpoint activation has been implicated in the response to acute anoxia. The activation mechanism is unknown. Our analyses in D. melanogaster demonstrate that oxygen deprivation affects microtubule organization within minutes. The rapid effects of anoxia are identical in wild-type and spindle checkpoint-deficient Mps1 mutant embryos. Therefore, the anoxia effects on the mitotic spindle are not a secondary consequence of spindle checkpoint activation. Some motor, centrosome and kinetochore proteins (dynein, Kin-8, Cnn, TACC, Cenp-C, Nuf2) are rapidly relocalized after oxygen deprivation. Kinetochores congress inefficiently into the metaphase plate and do not experience normal pulling forces. Spindle checkpoint proteins accumulate mainly within the spindle midzone and inhibit anaphase onset. In checkpoint-deficient embryos, mitosis is still completed after oxygen deprivation, although accompanied by massive chromosome missegregation. Inhibitors of oxidative phosphorylation mimic anoxia effects. We conclude that oxygen deprivation impairs the chromosome segregation machinery more rapidly than spindle checkpoint function. Although involving adenosine triphosphate (ATP)-consuming kinases, the spindle checkpoint can therefore be activated by spindle damage in response to acute anoxia and protect against aneuploidies.
Collapse
Affiliation(s)
- Rahul Pandey
- Department of Genetics, BZMB, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
43
|
Burbank KS, Mitchison TJ, Fisher DS. Slide-and-Cluster Models for Spindle Assembly. Curr Biol 2007; 17:1373-83. [PMID: 17702580 DOI: 10.1016/j.cub.2007.07.058] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/25/2007] [Accepted: 07/19/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitotic and meiotic spindles are assemblies of microtubules (MTs) that form during cell division to physically separate sister chromosomes. How the various components of spindles act together to establish and maintain the dynamic bipolar structure of spindles is not understood. Interactions between MTs and motors have been studied both experimentally and theoretically in many contexts, including the self-organization of arrays of MTs by motors and the competition between different classes of motors to move a single load. This work demonstrates how the interplay between two types of motors together with continual nucleation of MTs by chromosomes could organize the MTs into spindles. RESULTS We propose a slide-and-cluster model based on four known molecular activities: MT nucleation near chromosomes, the sliding of MTs by a plus-end-directed motor, the clustering of their minus ends by a minus-end-directed motor, and the loss of MTs by dynamic instability. Our model applies to overlapping, nonkinetochore MTs in anastral spindles, and perhaps also to interpolar MTs in astral spindles. We show mathematically that the slide-and-cluster mechanism robustly forms bipolar spindles with sharp poles and a stable steady-state length. This model accounts for several experimental observations that were difficult to explain with existing models. Three new predictions of the model were tested and verified in Xenopus egg extracts. CONCLUSIONS We show that a simple two-motor model could create stable, bipolar spindles under a wide range of physical parameters. Our model is the first self-contained model for anastral spindle assembly and MT sliding (known as poleward flux). Our experimental results support the slide-and-cluster scenario; most significantly, we find that MT sliding slows near spindle poles, confirming the model's primary prediction.
Collapse
Affiliation(s)
- Kendra S Burbank
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02140, USA.
| | | | | |
Collapse
|
44
|
Tao L, Mogilner A, Civelekoglu-Scholey G, Wollman R, Evans J, Stahlberg H, Scholey JM. A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays. Curr Biol 2007; 16:2293-302. [PMID: 17141610 DOI: 10.1016/j.cub.2006.09.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mitosis depends upon the cooperative action of multiple microtubule (MT)-based motors. Among these, a kinesin-5, KLP61F, and the kinesin-14, Ncd, are proposed to generate antagonistic-sliding forces that control the spacing of the spindle poles. We tested whether purified KLP61F homotetramers and Ncd homodimers can generate a force balance capable of maintaining a constant spindle length in Drosophila embryos. RESULTS Using fluorescence microscopy and cryo-EM, we observed that purified full-length, motorless, and tailless KLP61F tetramers (containing a tetramerization domain) and Ncd dimers can all cross-link MTs into bundles in MgATP. In multiple-motor motility assays, KLP61F and Ncd drive plus-end and minus-end MT sliding at 0.04 and 0.1 microm/s, respectively, but the motility of either motor is decreased by increasing the mole fraction of the other. At the "balance point," the mean velocity was zero and MTs paused briefly and then oscillated, taking approximately 0.3 microm excursions at approximately 0.02 microm/s toward the MT plus end and then the minus end. CONCLUSIONS The results, combined with quantitative analysis, suggest that these motors could act as mutual brakes to modulate the rate of pole-pole separation and could maintain a prometaphase spindle displaying small fluctuations in its steady-state length.
Collapse
Affiliation(s)
- Li Tao
- Laboratory of Cell and Computational Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Gardner MK, Odde DJ. Modeling of chromosome motility during mitosis. Curr Opin Cell Biol 2007; 18:639-47. [PMID: 17046231 DOI: 10.1016/j.ceb.2006.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/03/2006] [Indexed: 11/19/2022]
Abstract
Chromosome motility is a highly regulated and complex process that ultimately achieves proper segregation of the replicated genome. Recent modeling studies provide a computational framework for investigating how microtubule assembly dynamics, motor protein activity and mitotic spindle mechanical properties are integrated to drive chromosome motility. Among other things, these studies show that metaphase chromosome oscillations can be explained by a range of assumptions, and that non-oscillatory states can be achieved with modest changes to the model parameters. In addition, recent microscopy studies provide new insight into the nature of the coupling between force on the kinetochore and kinetochore-microtubule assembly/disassembly. Together, these studies facilitate advancement toward a unified model that quantitatively predicts chromosome motility.
Collapse
Affiliation(s)
- Melissa K Gardner
- Department of Biomedical Engineering, University of Minnesota, 7-132 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
46
|
Brust-Mascher I, Scholey JM. Mitotic spindle dynamics in Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:139-72. [PMID: 17425941 DOI: 10.1016/s0074-7696(06)59004-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitosis, the process by which the replicated chromosomes are segregated equally into daughter cells, has been studied for over a century. Drosophila melanogaster is an ideal organism for this research. Drosophila embryos are well suited to image mitosis, because during cycles 10-13 nuclei divide rapidly at the surface of the embryo, but mitotic cells during larval stages and spermatocytes are also used for the study of mitosis. Drosophila can be easily maintained, many mutant stocks exist, and transgenic flies expressing mutated or fluorescently labeled proteins can be made. In addition, the genome has been completed and RNA interference can be used in Drosophila tissue culture cells. Here, we review our current understanding of spindle dynamics, looking at the experiments and quantitative modeling on which it is based. Many molecular players in the Drosophila mitotic spindle are similar to those in mammalian spindles, so findings in Drosophila can be extended to other organisms.
Collapse
Affiliation(s)
- Ingrid Brust-Mascher
- Section of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| | | |
Collapse
|
47
|
Venkei Z, Gáspár I, Tóth G, Szabad J. α4-Tubulin is involved in rapid formation of long microtubules to push apart the daughter centrosomes during earlyxDrosophilaembryogenesis. J Cell Sci 2006; 119:3238-48. [PMID: 16847053 DOI: 10.1242/jcs.03039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although α4-tubulin comprises only about one-fifth of the α-tubulin pool in every Drosophila egg, in the absence of α4-tubulin - in eggs of the kavar0/- hemizygous females - only a tassel of short microtubules forms with two barely separated daughter centrosomes. We report that α4-tubulin is enriched in the long microtubules that embrace the nuclear envelope and suggest that they push apart daughter centrosomes along the nuclear perimeter during the initial cleavage divisions. In vitro tubulin polymerization showed that α4-tubulin is required for rapid tubulin polymerization. Since tubulin polymerization is slow inside eggs of the kavar0/- females, only short microtubules can form within the 4 to 5 minutes allowed for the process. A tassel of short microtubules with two barely separated centrosomes forms in every egg of the Kavar18c/+ females, in which the cytoplasm contains both wild-type and Kavar18c-encoded α4-tubulin with an E82K amino acid substitution (E82K-α4-tubulin). E82K-α4-tubulin is incorporated into the microtubules and renders them unstable. When injected into wild-type early cleavage embryos E82K-α4-tubulin slows down the formation of long microtubules and the separation of the daughter centrosomes. Surprisingly, when injected into late cleavage embryos E82K-α4-tubulin is non-toxic. Similarly, in the neuroblasts, ectopically expressed E82K-α4-tubulin becomes incorporated into the microtubules that grow sufficiently long and function normally.
Collapse
Affiliation(s)
- Zsolt Venkei
- Maternal Effect and Embryogenesis Research Group of the Hungarian Academy of Sciences at the University of Szeged, Faculty of Medicine, Department of Biology, Somogyi B. u. 4, H-6720 Szeged, Hungary
| | | | | | | |
Collapse
|
48
|
Mogilner A, Wollman R, Civelekoglu-Scholey G, Scholey J. Modeling mitosis. Trends Cell Biol 2006; 16:88-96. [PMID: 16406522 DOI: 10.1016/j.tcb.2005.12.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/21/2005] [Accepted: 12/19/2005] [Indexed: 11/25/2022]
Abstract
The mitotic spindle is a fascinating protein machine that uses bipolar arrays of dynamic microtubules and many mitotic motors to coordinate the accurate segregation of sister chromatids. Here we discuss recent mathematical models and computer simulations that, in concert with experimental studies, help explain the molecular mechanisms by which the spindle machinery performs its crucial functions. We review current models of spindle assembly, positioning, maintenance and elongation; of chromosome capture and congression; and of the spindle assembly checkpoint. We discuss some limitations of the application of modeling to other aspects of mitosis and the feasibility of building more comprehensive system-level models.
Collapse
Affiliation(s)
- Alex Mogilner
- Laboratory of Cell and Computational Biology, Center for Genetics and Development, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|