1
|
Ritter AJ, Draper JM, Vollmers C, Sanford JR. Long-read subcellular fractionation and sequencing reveals the translational fate of full-length mRNA isoforms during neuronal differentiation. Genome Res 2024; 34:2000-2011. [PMID: 38839373 PMCID: PMC11610577 DOI: 10.1101/gr.279170.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Alternative splicing (AS) alters the cis-regulatory landscape of mRNA isoforms, leading to transcripts with distinct localization, stability, and translational efficiency. To rigorously investigate mRNA isoform-specific ribosome association, we generated subcellular fractionation and sequencing (Frac-seq) libraries using both conventional short reads and long reads from human embryonic stem cells (ESCs) and neural progenitor cells (NPCs) derived from the same ESCs. We performed de novo transcriptome assembly from high-confidence long reads from cytosolic, monosomal, light, and heavy polyribosomal fractions and quantified their abundance using short reads from their respective subcellular fractions. Thousands of transcripts in each cell type exhibited association with particular subcellular fractions relative to the cytosol. Of the multi-isoform genes, 27% and 19% exhibited significant differential isoform sedimentation in ESCs and NPCs, respectively. Alternative promoter usage and internal exon skipping accounted for the majority of differences between isoforms from the same gene. Random forest classifiers implicated coding sequence (CDS) and untranslated region (UTR) lengths as important determinants of isoform-specific sedimentation profiles, and motif analyses reveal potential cell type-specific and subcellular fraction-associated RNA-binding protein signatures. Taken together, our data demonstrate that alternative mRNA processing within the CDS and UTRs impacts the translational control of mRNA isoforms during stem cell differentiation, and highlight the utility of using a novel long-read sequencing-based method to study translational control.
Collapse
Affiliation(s)
- Alexander J Ritter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jolene M Draper
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
2
|
Shin CH, Rossi M, Anerillas C, Martindale JL, Yang X, Ji E, Pal A, Munk R, Yang JH, Tsitsipatis D, Mazan-Mamczarz K, Abdelmohsen K, Gorospe M. Increased ANKRD1 Levels in Early Senescence Mediated by RBMS1-Elicited ANKRD1 mRNA Stabilization. Mol Cell Biol 2024; 44:194-208. [PMID: 38769646 PMCID: PMC11123458 DOI: 10.1080/10985549.2024.2350540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
da Silva AM, Yevdokimova V, Benoit YD. Sam68 is a druggable vulnerability point in cancer stem cells. Cancer Metastasis Rev 2024; 43:441-456. [PMID: 37792222 PMCID: PMC11016129 DOI: 10.1007/s10555-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Sam68 (Src associated in mitosis of 68 kDa) is an RNA-binding and multifunctional protein extensively characterized in numerous cellular functions, such as RNA processing, cell cycle regulation, kinase- and growth factor signaling. Recent investigations highlighted Sam68 as a primary target of a class of reverse-turn peptidomimetic drugs, initially developed as inhibitors of Wnt/β-catenin mediated transcription. Further investigations on such compounds revealed their capacity to selectively eliminate cancer stem cell (CSC) activity upon engaging Sam68. This work highlighted previously unappreciated roles for Sam68 in the maintenance of neoplastic self-renewal and tumor-initiating functions. Here, we discuss the implication of Sam68 in tumorigenesis, where central findings support its contribution to chromatin regulation processes essential to CSCs. We also review advances in CSC-targeting drug discovery aiming to modulate Sam68 cellular distribution and protein-protein interactions. Ultimately, Sam68 constitutes a vulnerability point of CSCs and an attractive therapeutic target to impede neoplastic stemness in human tumors.
Collapse
Affiliation(s)
- Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Veronika Yevdokimova
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Naro C, Barbagallo F, Caggiano C, De Musso M, Panzeri V, Di Agostino S, Paronetto MP, Sette C. Functional Interaction Between the Oncogenic Kinase NEK2 and Sam68 Promotes a Splicing Program Involved in Migration and Invasion in Triple-Negative Breast Cancer. Front Oncol 2022; 12:880654. [PMID: 35530315 PMCID: PMC9068942 DOI: 10.3389/fonc.2022.880654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and high propensity to metastasize. Dysregulation of alternative splicing has recently emerged as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its regulation could uncover new druggable cancer vulnerabilities. The oncogenic kinase NEK2 is significantly upregulated in TNBC and contributes to shaping their unique splicing profile. Herein, we found that NEK2 interacts with the RNA binding protein Sam68 in TNBC cells and that NEK2-mediated phosphorylation of Sam68 enhances its splicing activity. Genome-wide transcriptome analyses identified the splicing targets of Sam68 in TNBC cells and revealed a common set of exons that are co-regulated by NEK2. Functional annotation of splicing-regulated genes highlighted cell migration and spreading as biological processes regulated by Sam68. Accordingly, Sam68 depletion reduces TNBC cell migration and invasion, and these effects are potentiated by the concomitant inhibition of NEK2 activity. Our findings indicate that Sam68 and NEK2 functionally cooperate in the regulation of a splicing program that sustains the pro-metastatic features of TNBC cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Zuccotti P, Peroni D, Potrich V, Quattrone A, Dassi E. Hyperconserved Elements in Human 5'UTRs Shape Essential Post-transcriptional Regulatory Networks. Front Mol Biosci 2020; 7:220. [PMID: 33005630 PMCID: PMC7484617 DOI: 10.3389/fmolb.2020.00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Post-transcriptional regulation (PTR) of gene expression is a powerful determinant of cellular phenotypes. The 5′ and 3′ untranslated regions of the mRNA (UTRs) mediate this role through sequence and secondary structure elements bound by RNA-binding proteins (RBPs) and non-coding RNAs. While functional regions in the 3′UTRs have been extensively studied, the 5′UTRs are still relatively uncharacterized. To fill this gap, we used a computational approach exploiting phylogenetic conservation to identify hyperconserved elements in human 5′UTRs (5′HCEs). Our assumption was that 5′HCEs would represent evolutionarily stable and hence important PTR sites. We identified over 5000 5′HCEs occurring in 10% of human protein-coding genes. These sequence elements are rather short and mostly found in narrowly-spaced clusters. 5′HCEs-containing genes are enriched in essential cellular functions and include 20% of all homeotic genes. Homeotic genes are essential transcriptional regulators, driving body plan and neuromuscular development. However, the role of PTR in their expression is mostly unknown. By integrating computational and experimental approaches we identified RBMX as the initiator RBP of a post-transcriptional cascade regulating many homeotic genes. This work thus establishes 5′HCEs as mediators of essential post-transcriptional regulatory networks.
Collapse
Affiliation(s)
- Paola Zuccotti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Daniele Peroni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valentina Potrich
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
6
|
Naro C, Pellegrini L, Jolly A, Farini D, Cesari E, Bielli P, de la Grange P, Sette C. Functional Interaction between U1snRNP and Sam68 Insures Proper 3' End Pre-mRNA Processing during Germ Cell Differentiation. Cell Rep 2020; 26:2929-2941.e5. [PMID: 30865884 DOI: 10.1016/j.celrep.2019.02.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells, and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites, a feature observed also upon depletion of the spliceosomal U1snRNP in somatic cells. Notably, Sam68-regulated ALEs are characterized by proximity between U1snRNP and Sam68 binding motifs. We demonstrate a physical association between Sam68 and U1snRNP and show that U1snRNP recruitment to Sam68-regulated ALEs is impaired in Sam68-/- germ cells. Thus, our study reveals an unexpected cooperation between Sam68 and U1snRNP that insures proper processing of transcripts essential for male fertility.
Collapse
Affiliation(s)
- Chiara Naro
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Livia Pellegrini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ariane Jolly
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Eleonora Cesari
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pierre de la Grange
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
7
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
8
|
Goel RK, Paczkowska M, Reimand J, Napper S, Lukong KE. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase, Src- related Kinase Lacking C-terminal Regulatory Tyrosine and N-terminal Myristoylation Sites (SRMS). Mol Cell Proteomics 2018; 17:925-947. [PMID: 29496907 DOI: 10.1074/mcp.ra118.000643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/23/2023] Open
Abstract
SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites), also known as PTK 70 (Protein tyrosine kinase 70), is a non-receptor tyrosine kinase that belongs to the BRK family of kinases (BFKs). To date less is known about the cellular role of SRMS primarily because of the unidentified substrates or signaling intermediates regulated by the kinase. In this study, we used phosphotyrosine antibody-based immunoaffinity purification in large-scale label-free quantitative phosphoproteomics to identify novel candidate substrates of SRMS. Our analyses led to the identification of 1258 tyrosine-phosphorylated peptides which mapped to 663 phosphoproteins, exclusively from SRMS-expressing cells. DOK1, a previously characterized SRMS substrate, was also identified in our analyses. Functional enrichment analyses revealed that the candidate SRMS substrates were enriched in various biological processes including protein ubiquitination, mitotic cell cycle, energy metabolism and RNA processing, as well as Wnt and TNF signaling. Analyses of the sequence surrounding the phospho-sites in these proteins revealed novel candidate SRMS consensus substrate motifs. We utilized customized high-throughput peptide arrays to validate a subset of the candidate SRMS substrates identified in our MS-based analyses. Finally, we independently validated Vimentin and Sam68, as bona fide SRMS substrates through in vitro and in vivo assays. Overall, our study identified a number of novel and biologically relevant SRMS candidate substrates, which suggests the involvement of the kinase in a vast array of unexplored cellular functions.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Marta Paczkowska
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada
| | - Jüri Reimand
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada.,¶Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto M5G 1L7, Ontario, Canada
| | - Scott Napper
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada.,‖Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon S7N 5E3, Saskatchewan, Canada
| | - Kiven Erique Lukong
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada;
| |
Collapse
|
9
|
MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression. Proc Natl Acad Sci U S A 2018; 115:E2772-E2781. [PMID: 29496961 DOI: 10.1073/pnas.1715439115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.
Collapse
|
10
|
Passacantilli I, Panzeri V, Bielli P, Farini D, Pilozzi E, Fave GD, Capurso G, Sette C. Alternative polyadenylation of ZEB1 promotes its translation during genotoxic stress in pancreatic cancer cells. Cell Death Dis 2017; 8:e3168. [PMID: 29120411 PMCID: PMC5775412 DOI: 10.1038/cddis.2017.562] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 01/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis. The standard chemotherapeutic drug, gemcitabine, does not offer significant improvements for PDAC management due to the rapid acquisition of drug resistance by patients. Recent evidence indicates that epithelial-to-mesenchymal transition (EMT) of PDAC cells is strictly associated to early metastasization and resistance to chemotherapy. However, it is not exactly clear how EMT is related to drug resistance or how chemotherapy influences EMT. Herein, we found that ZEB1 is the only EMT-related transcription factor that clearly segregates mesenchymal and epithelial PDAC cell lines. Gemcitabine treatment caused upregulation of ZEB1 protein through post-transcriptional mechanisms in mesenchymal PDAC cells within a context of global inhibition of protein synthesis. The increase in ZEB1 protein correlates with alternative polyadenylation of the transcript, leading to shortening of the 3' untranslated region (UTR) and deletion of binding sites for repressive microRNAs. Polysome profiling indicated that shorter ZEB1 transcripts are specifically retained on the polysomes of PDAC cells during genotoxic stress, while most mRNAs, including longer ZEB1 transcripts, are depleted. Thus, our findings uncover a novel layer of ZEB1 regulation through 3'-end shortening of its transcript and selective association with polysomes under genotoxic stress, strongly suggesting that PDAC cells rely on upregulation of ZEB1 protein expression to withstand hostile environments.
Collapse
Affiliation(s)
- Ilaria Passacantilli
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome ‘Tor Vergata’, Rome, Italy
- Department of science medical/chirurgic and translational medicine, University of Rome ‘Sapienza’, Rome, Italy
| | - Valentina Panzeri
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome ‘Tor Vergata’, Rome, Italy
- Department of science medical/chirurgic and translational medicine, University of Rome ‘Sapienza’, Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome ‘Tor Vergata’, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Emanuela Pilozzi
- Department of science medical/chirurgic and translational medicine, University of Rome ‘Sapienza’, Rome, Italy
| | - Gianfranco Delle Fave
- Department of science medical/chirurgic and translational medicine, University of Rome ‘Sapienza’, Rome, Italy
| | - Gabriele Capurso
- Department of science medical/chirurgic and translational medicine, University of Rome ‘Sapienza’, Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome ‘Tor Vergata’, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
11
|
Dominguez CE, Cunningham D, Chandler DS. SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities. Hum Genet 2017; 136:1173-1191. [PMID: 28852871 PMCID: PMC6201753 DOI: 10.1007/s00439-017-1835-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Low levels of the survival of motor neuron (SMN) protein cause the neurodegenerative disease spinal muscular atrophy (SMA). SMA is a pediatric disease characterized by spinal motor neuron degeneration. SMA exhibits several levels of severity ranging from early antenatal fatality to only mild muscular weakness, and disease prognosis is related directly to the amount of functional SMN protein that a patient is able to express. Current therapies are being developed to increase the production of functional SMN protein; however, understanding the effect that natural stresses have on the production and function of SMN is of critical importance to ensuring that these therapies will have the greatest possible effect for patients. Research has shown that SMN, both on the mRNA and protein level, is highly affected by cellular stress. In this review we will summarize the research that highlights the roles of SMN in the disease process and the response of SMN to various environmental stresses.
Collapse
Affiliation(s)
- Catherine E Dominguez
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David Cunningham
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Dawn S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
12
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
13
|
An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation. Dev Cell 2017; 41:82-93.e4. [PMID: 28366282 PMCID: PMC5392497 DOI: 10.1016/j.devcel.2017.03.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022]
Abstract
Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis.
Collapse
|
14
|
Nazio F, Carinci M, Valacca C, Bielli P, Strappazzon F, Antonioli M, Ciccosanti F, Rodolfo C, Campello S, Fimia GM, Sette C, Bonaldo P, Cecconi F. Fine-tuning of ULK1 mRNA and protein levels is required for autophagy oscillation. J Cell Biol 2016; 215:841-856. [PMID: 27932573 PMCID: PMC5166502 DOI: 10.1083/jcb.201605089] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/19/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
ULK1 is a key kinase in autophagy initiation. Nazio et al. demonstrate that the E3 ubiquitin ligase NEDD4L targets ULK1 for degradation soon after autophagy induction, whereas a simultaneous ULK1 mRNA transcription is needed for priming subsequent rounds of autophagy. Autophagy is an intracellular degradation pathway whose levels are tightly controlled to secure cell homeostasis. Unc-51–like kinase 1 (ULK1) is a conserved serine–threonine kinase that plays a central role in the initiation of autophagy. Here, we report that upon autophagy progression, ULK1 protein levels are specifically down-regulated by the E3 ligase NEDD4L, which ubiquitylates ULK1 for degradation by the proteasome. However, whereas ULK1 protein is degraded, ULK1 mRNA is actively transcribed. Upon reactivation of mTOR-dependent protein synthesis, basal levels of ULK1 are promptly restored, but the activity of newly synthesized ULK1 is inhibited by mTOR. This prepares the cell for a new possible round of autophagy stimulation. Our results thus place NEDD4L and ULK1 in a key position to control oscillatory activation of autophagy during prolonged stress to keep the levels of this process under a safe and physiological threshold.
Collapse
Affiliation(s)
- Francesca Nazio
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, 00146 Rome, Italy.,Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marianna Carinci
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cristina Valacca
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pamela Bielli
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Flavie Strappazzon
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Manuela Antonioli
- Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany.,National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico "L. Spallanzani," 00149 Rome, Italy
| | - Fabiola Ciccosanti
- National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico "L. Spallanzani," 00149 Rome, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico "L. Spallanzani," 00149 Rome, Italy.,Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Claudio Sette
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Cecconi
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, 00146 Rome, Italy .,Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.,Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Licatalosi DD. Roles of RNA-binding Proteins and Post-transcriptional Regulation in Driving Male Germ Cell Development in the Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:123-51. [PMID: 27256385 DOI: 10.1007/978-3-319-29073-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
SAM68: Signal Transduction and RNA Metabolism in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:528954. [PMID: 26273626 PMCID: PMC4529925 DOI: 10.1155/2015/528954] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting
splicing regulatory sequences contribute to cancer phenotypes. Genome-wide
studies have revealed more than 15,000 tumor-associated splice variants derived from
genes involved in almost every aspect of cancer cell biology, including proliferation,
differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and
angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been
implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to
the STAR (signal transduction and activation of RNA metabolism) family of RBPs.
SAM68 is involved in several steps of mRNA metabolism, from transcription to
alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling
pathways associated with cell response to stimuli, cell cycle transitions, and viral
infections. Recent evidence has linked this RBP to the onset and progression of
different tumors, highlighting misregulation of SAM68-regulated splicing events as a
key step in neoplastic transformation and tumor progression. Here we review recent
studies on the role of SAM68 in splicing regulation and we discuss its contribution to
aberrant pre-mRNA processing in cancer.
Collapse
|
17
|
Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation. J Virol 2015. [PMID: 26202240 DOI: 10.1128/jvi.01677-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially enhance the translation of virus protein. To our knowledge, this is the first report that describes Sam68 actively participating in the life cycle of EV71 at a molecular level. These studies will not only improve our understanding of the replication of EV71 but also have the potential for aiding in developing a therapeutic strategy against EV71 infection.
Collapse
|
18
|
Wang Y, Liang L, Zhang J, Li M, Zhu J, Gong C, Yang L, Zhu J, Chen L, Ni R. Sam68 promotes cellular proliferation and predicts poor prognosis in esophageal squamous cell carcinoma. Tumour Biol 2015; 36:8735-45. [PMID: 26050229 DOI: 10.1007/s13277-015-3631-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022] Open
Abstract
Sam68 (Src-associated in mitosis of 68 kD) is a KH domain RNA-binding protein. The expression of Sam68 was correlated with kinds of tumors. Yet, the expression mechanisms and physiological significance of Sam68 in ESCC remains unclear. In this study, we clarified a potential role of Sam68 in the treatment of ESCC. Western blot and immunohistochemistry (IHC) analysis revealed that the protein level of Sam68 was higher in ESCC tumor tissues and cell lines. In addition, IHC stain revealed that Sam68 was positively correlated with clinical pathologic variables such as tumor grade and tumor invasion. In addition, Sam68 could be an independent prognostic indicator for patients' overall survival. In vitro studies such as starvation and refeeding assay along with Sam68-shRNA transfection assay demonstrated that Sam68 expression promoted proliferation of ESCC cells. And Sam68 downregulation caused decreased rate of cell growth and colony formation. Reasons are associated with growth arrest of cell cycle at G1/S phase. Moreover, our results clarified that Sam68 could promote ESCC cell proliferation via the activation of Akt/GSK-3β pathway. This research indicated that Sam68 might accelerate the cell cycle progression and be considered as a new therapy target in ESCC.
Collapse
Affiliation(s)
- Yayun Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Li Liang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Mei Li
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Junya Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chen Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Linlin Yang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Jia Zhu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Lingling Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
19
|
Zhang Z, Yu C, Li Y, Jiang L, Zhou F. Utility of SAM68 in the progression and prognosis for bladder cancer. BMC Cancer 2015; 15:364. [PMID: 25944080 PMCID: PMC4425873 DOI: 10.1186/s12885-015-1367-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Muscle invasive bladder cancer (MIBC) is often lethal and non-MIBC (NMIBC) can recur and progress, yet prognostic markers are currently inadequate. SAM68, a member of RNA-binding proteins, has been reported to contribute to progression of other cancers. The aim of this study is to investigate the potential utility of SAM68 in the progression and prognosis of bladder cancer. Methods Quantitative PCR and immunohistochemistry were utilized to examine the expression of SAM68 in ten pairs of MIBC and adjacent normal bladder urothelium, and eight pairs of MIBC and non-MIBC (NMIBC) tissues from the same patient. Moreover, SAM68 protein expression level and localization were examined by immunohistochemistry in 129 clinicopathologically characterized MIBC samples. Prognostic associations were determined by multivariable analysis incorporating standard prognostic factors. Results SAM68 expression was elevated in MIBC tissues compared with adjacent normal bladder urothelium, and was increased at both transcriptional and translational levels in MIBC tissues compared with NMIBC tissues of the same patient. For MIBC, high expression and nucleus-cytoplasm co-expression of SAM68 were associated with higher T-stage, higher N-stage and worse recurrence-free survival. Five-year recurrence-free survival was 80% and 52.9% for MIBC patients with low and high SAM68 expression, respectively (p = 0.001). SAM68 nucleus-cytoplasm co-expression associated with worse 5-year recurrence-free survival rate (49.2%) than SAM68 expression confined to the nucleus (82.5%) or cytoplasm (75.5%) alone. On multivariable analysis SAM68 expression level, SAM68 nucleus-cytoplasm co-expression, T-stage, and N-stage were all independent prognostic factors for recurrence-free survival of MIBC patients. Conclusions SAM68 expression is increased in MIBC when compared to normal urothelium and NMIBC, and appears to be a potentially useful prognostic marker for MIBC.
Collapse
Affiliation(s)
- Zhiling Zhang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Chunping Yu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yonghong Li
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Lijuan Jiang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Fangjian Zhou
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Cappellari M, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Saarikettu J, Silvennoinen O, Sette C. The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene 2014; 33:3794-802. [PMID: 23995791 DOI: 10.1038/onc.2013.360] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/03/2013] [Accepted: 07/05/2013] [Indexed: 01/12/2023]
Abstract
Splicing abnormalities have profound impact in human cancer. Several splicing factors, including SAM68, have pro-oncogenic functions, and their increased expression often correlates with human cancer development and progression. Herein, we have identified using mass spectrometry proteins that interact with endogenous SAM68 in prostate cancer (PCa) cells. Among other interesting proteins, we have characterized the interaction of SAM68 with SND1, a transcriptional co-activator that binds spliceosome components, thus coupling transcription and splicing. We found that both SAM68 and SND1 are upregulated in PCa cells with respect to benign prostate cells. Upregulation of SND1 exerts a synergic effect with SAM68 on exon v5 inclusion in the CD44 mRNA. The effect of SND1 on CD44 splicing required SAM68, as it was compromised after knockdown of this protein or mutation of the SAM68-binding sites in the CD44 pre-mRNA. More generally, we found that SND1 promotes the inclusion of CD44 variable exons by recruiting SAM68 and spliceosomal components on CD44 pre-mRNA. Inclusion of the variable exons in CD44 correlates with increased proliferation, motility and invasiveness of cancer cells. Strikingly, we found that knockdown of SND1, or SAM68, reduced proliferation and migration of PCa cells. Thus, our findings strongly suggest that SND1 is a novel regulator of alternative splicing that promotes PCa cell growth and survival.
Collapse
Affiliation(s)
- M Cappellari
- 1] Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy [2] Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - P Bielli
- 1] Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy [2] Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - M P Paronetto
- 1] Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy [2] Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - F Ciccosanti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases 'Lazzaro Spallanzani', Rome, Italy
| | - G M Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases 'Lazzaro Spallanzani', Rome, Italy
| | - J Saarikettu
- Laboratory of Molecular Immunology, School of Medicine and Institute of Biomedical Technology, Biomeditech, University of Tampere, Tampere, Finland
| | - O Silvennoinen
- 1] Laboratory of Molecular Immunology, School of Medicine and Institute of Biomedical Technology, Biomeditech, University of Tampere, Tampere, Finland [2] Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - C Sette
- 1] Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy [2] Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
21
|
Li LJ, Zhang FB, Liu SY, Tian YH, Le F, Lou HY, Huang HF, Jin F. Decreased expression of SAM68 in human testes with spermatogenic defects. Fertil Steril 2014; 102:61-67.e3. [PMID: 24794312 DOI: 10.1016/j.fertnstert.2014.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/02/2014] [Accepted: 03/20/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the expression patterns of SAM68 in the testes of azoospermic patients with normal and abnormal spermatogenesis. DESIGN Retrospective study and in vitro study. SETTING University hospital. PATIENT(S) Testicular biopsies of azoospermic men with normal spermatogenesis (OAZ; n=20), with maturation arrest at the spermatocyte stage (MA; n=20), and with Sertoli cell-only syndrome (SCOS; n=10). INTERVENTION(S) No interventions with patients. Knockdown of Sam68 was performed in the GC-2spd(ts) cell line. MAIN OUTCOME MEASURE(S) SAM68 expression was analyzed using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry analysis in tissues. Moreover, Sam68 was knocked down in GC-2spd(ts) cells. Cell viability was measured using the MTT assay, and the apoptosis rate was detected using flow cytometry with the Annexin V-FITC kit. RESULT(S) Using qRT-PCR, the expression level of testicular SAM68 mRNA in MA and SCOS patients was statistically reduced compared with in OAZ patients. In addition, using qRT-PCR, Western blot, and immunohistochemistry analyses, mRNA and protein expressions of SAM68 were absent or barely detectable in testicular tissues in 45% (9 of 20) of patients with MA and in all patients with SCOS. Furthermore, decreased expression of Sam68 suppressed germ cell proliferation and induced apoptosis in transfected GC-2spd(ts) cells. CONCLUSION(S) Deficient SAM68 expression was observed in the human testis with MA at the spermatocyte stage and SCOS. These results may offer new perspectives on the molecular basis of abnormal spermatogenesis.
Collapse
Affiliation(s)
- Le-Jun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Feng-Bin Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Shu-Yuan Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yong-Hong Tian
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Hang-Ying Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - He-Feng Huang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Health Laboratory of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
Sánchez-Jiménez F, Sánchez-Margalet V. Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci 2013; 14:23402-23419. [PMID: 24287914 PMCID: PMC3876053 DOI: 10.3390/ijms141223402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/10/2023] Open
Abstract
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| |
Collapse
|
23
|
Schmid R, Grellscheid SN, Ehrmann I, Dalgliesh C, Danilenko M, Paronetto MP, Pedrotti S, Grellscheid D, Dixon RJ, Sette C, Eperon IC, Elliott DJ. The splicing landscape is globally reprogrammed during male meiosis. Nucleic Acids Res 2013; 41:10170-84. [PMID: 24038356 PMCID: PMC3905889 DOI: 10.1093/nar/gkt811] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meiosis requires conserved transcriptional changes, but it is not known whether there is a corresponding set of RNA splicing switches. Here, we used RNAseq of mouse testis to identify changes associated with the progression from mitotic spermatogonia to meiotic spermatocytes. We identified ∼150 splicing switches, most of which affect conserved protein-coding exons. The expression of many key splicing regulators changed in the course of meiosis, including downregulation of polypyrimidine tract binding protein (PTBP1) and heterogeneous nuclear RNP A1, and upregulation of nPTB, Tra2β, muscleblind, CELF proteins, Sam68 and T-STAR. The sequences near the regulated exons were significantly enriched in target sites for PTB, Tra2β and STAR proteins. Reporter minigene experiments investigating representative exons in transfected cells showed that PTB binding sites were critical for splicing of a cassette exon in the Ralgps2 mRNA and a shift in alternative 5′ splice site usage in the Bptf mRNA. We speculate that nPTB might functionally replace PTBP1 during meiosis for some target exons, with changes in the expression of other splicing factors helping to establish meiotic splicing patterns. Our data suggest that there are substantial changes in the determinants and patterns of alternative splicing in the mitotic-to-meiotic transition of the germ cell cycle.
Collapse
Affiliation(s)
- Ralf Schmid
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK, School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK, Department of Health Sciences, University of 00135 Rome 'Foro Italico', Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy, Institute of Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, UK and Life Technologies Ltd., Paisley PA4 9RF, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
RNA-binding protein Sam68 controls synapse number and local β-actin mRNA metabolism in dendrites. Proc Natl Acad Sci U S A 2013; 110:3125-30. [PMID: 23382180 DOI: 10.1073/pnas.1209811110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proper synaptic function requires the spatial and temporal compartmentalization of RNA metabolism via transacting RNA-binding proteins (RBPs). Loss of RBP activity leads to abnormal posttranscriptional regulation and results in diverse neurological disorders with underlying deficits in synaptic morphology and transmission. Functional loss of the 68-kDa RBP Src associated in mitosis (Sam68) is associated with the pathogenesis of the neurological disorder fragile X tremor/ataxia syndrome. Sam68 binds to the mRNA of β-actin (actb), an integral cytoskeletal component of dendritic spines. We show that Sam68 knockdown or disruption of the binding between Sam68 and its actb mRNA cargo in primary hippocampal cultures decreases the amount of actb mRNA in the synaptodendritic compartment and results in fewer dendritic spines. Consistent with these observations, we find that Sam68-KO mice have reduced levels of actb mRNA associated with synaptic polysomes and diminished levels of synaptic actb protein, suggesting that Sam68 promotes the translation of actb mRNA at synapses in vivo. Moreover, genetic knockout of Sam68 or acute knockdown in vivo results in fewer excitatory synapses in the hippocampal formation as assessed morphologically and functionally. Therefore, we propose that Sam68 regulates synapse number in a cell-autonomous manner through control of postsynaptic actb mRNA metabolism. Our research identifies a role for Sam68 in synaptodendritic posttranscriptional regulation of actb and may provide insight into the pathophysiology of fragile X tremor/ataxia syndrome.
Collapse
|
25
|
Messina V, Meikar O, Paronetto MP, Calabretta S, Geremia R, Kotaja N, Sette C. The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One 2012; 7:e39729. [PMID: 22745822 PMCID: PMC3382170 DOI: 10.1371/journal.pone.0039729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/25/2012] [Indexed: 12/13/2022] Open
Abstract
The chromatoid body (CB) is a unique structure of male germ cells composed of thin filaments that condense into a perinuclear organelle after meiosis. Due to the presence of proteins involved in different steps of RNA metabolism and of different classes of RNAs, including microRNAs (miRNAs), the CB has been recently suggested to function as an RNA processing centre. Herein, we show that the RNA binding protein SAM68 transiently localizes in the CB, in concomitance with the meiotic divisions of mouse spermatocytes. Precise staging of the seminiferous tubules and co-localization studies with MVH and MILI, two well recognized CB markers, documented that SAM68 transiently associates with the CB in secondary spermatocytes and early round spermatids. Furthermore, although SAM68 co-immunoprecipitated with MVH in secondary spermatocytes, its ablation did not affect the proper localization of MVH in the CB. On the other hand, ablation of the CB constitutive component MIWI did not impair association of SAM68 with the CB. Isolation of CBs from Sam68 wild type and knockout mouse testes and comparison of their protein content by mass spectrometry indicated that Sam68 ablation did not cause overall alterations in the CB proteome. Lastly, we found that SAM68 interacts with DROSHA and DICER in secondary spermatocytes and early round spermatids and that a subset of miRNAs were altered in Sam68−/−germ cells. These results suggest a novel role for SAM68 in the miRNA pathway during spermatogenesis.
Collapse
Affiliation(s)
- Valeria Messina
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Oliver Meikar
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maria Paola Paronetto
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Sara Calabretta
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Digestive and Liver Disease Unit, II Medical School, University of Rome “La Sapienza”, S. Andrea Hospital, Rome, Italy
| | - Raffaele Geremia
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Claudio Sette
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
26
|
Versatility of RNA-Binding Proteins in Cancer. Comp Funct Genomics 2012; 2012:178525. [PMID: 22666083 PMCID: PMC3359819 DOI: 10.1155/2012/178525] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 01/22/2023] Open
Abstract
Posttranscriptional gene regulation is a rapid and efficient process to adjust the proteome of a cell to a changing environment. RNA-binding proteins (RBPs) are the master regulators of mRNA processing and translation and are often aberrantly expressed in cancer. In addition to well-studied transcription factors, RBPs are emerging as fundamental players in tumor development. RBPs and their mRNA targets form a complex network that plays a crucial role in tumorigenesis. This paper describes mechanisms by which RBPs influence the expression of well-known oncogenes, focusing on precise examples that illustrate the versatility of RBPs in posttranscriptional control of cancer development. RBPs appeared very early in evolution, and new RNA-binding domains and combinations of them were generated in more complex organisms. The identification of RBPs, their mRNA targets, and their mechanism of action have provided novel potential targets for cancer therapy.
Collapse
|
27
|
Nir R, Grossman R, Paroush Z, Volk T. Phosphorylation of the Drosophila melanogaster RNA-binding protein HOW by MAPK/ERK enhances its dimerization and activity. PLoS Genet 2012; 8:e1002632. [PMID: 22479211 PMCID: PMC3315481 DOI: 10.1371/journal.pgen.1002632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster Held Out Wings (HOW) is a conserved RNA-binding protein (RBP) belonging to the STAR family, whose closest mammalian ortholog Quaking (QKI) has been implicated in embryonic development and nervous system myelination. The HOW RBP modulates a variety of developmental processes by controlling mRNA levels and the splicing profile of multiple key regulatory genes; however, mechanisms regulating its activity in tissues have yet to be elucidated. Here, we link receptor tyrosine kinase (RTK) signaling to the regulation of QKI subfamily of STAR proteins, by showing that HOW undergoes phosphorylation by MAPK/ERK. Importantly, we show that this modification facilitates HOW dimerization and potentiates its ability to bind RNA and regulate its levels. Employing an antibody that specifically recognizes phosphorylated HOW, we show that HOW is phosphorylated in embryonic muscles and heart cardioblasts in vivo, thus documenting for the first time Serine/Threonine (Ser/Thr) phosphorylation of a STAR protein in the context of an intact organism. We also identify the sallimus/D-titin (sls) gene as a novel muscle target of HOW-mediated negative regulation and further show that this regulation is phosphorylation-dependent, underscoring the physiological relevance of this modification. Importantly, we demonstrate that HOW Thr phosphorylation is reduced following muscle-specific knock down of Drosophila MAPK rolled and that, correspondingly, Sls is elevated in these muscles, similarly to the HOW RNAi effect. Taken together, our results provide a coherent mechanism of differential HOW activation; MAPK/ERK-dependent phosphorylation of HOW promotes the formation of HOW dimers and thus enhances its activity in controlling mRNA levels of key muscle-specific genes. Hence, our findings bridge between MAPK/ERK signaling and RNA regulation in developing muscles.
Collapse
Affiliation(s)
- Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Grossman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
28
|
Pedrotti S, Busà R, Compagnucci C, Sette C. The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res 2011; 40:1021-32. [PMID: 21984414 PMCID: PMC3273811 DOI: 10.1093/nar/gkr819] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian tissues display a remarkable complexity of splicing patterns. Nevertheless, only few examples of tissue-specific splicing regulators are known. Herein, we characterize a novel splicing regulator named RBM11, which contains an RNA Recognition Motif (RRM) at the amino terminus and a region lacking known homology at the carboxyl terminus. RBM11 is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 mRNA levels fluctuate in a developmentally regulated manner, peaking perinatally in brain and cerebellum, and at puberty in testis, in concomitance with differentiation events occurring in neurons and germ cells. Deletion analysis indicated that the RRM of RBM11 is required for RNA binding, whereas the carboxyl terminal region permits nuclear localization and homodimerization. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. Transcription inhibition/release experiments and exposure of cells to stress revealed a dynamic movement of RBM11 between nucleoplasm and speckles, suggesting that its localization is affected by the transcriptional status of the cell. Splicing assays revealed a role for RBM11 in the modulation of alternative splicing. In particular, RBM11 affected the choice of alternative 5′ splice sites in BCL-X by binding to specific sequences in exon 2 and antagonizing the SR protein SRSF1. Thus, our findings identify RBM11 as a novel tissue-specific splicing factor with potential implication in the regulation of alternative splicing during neuron and germ cell differentiation.
Collapse
Affiliation(s)
- Simona Pedrotti
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | |
Collapse
|
29
|
Di Florio A, Adesso L, Pedrotti S, Capurso G, Pilozzi E, Corbo V, Scarpa A, Geremia R, Delle Fave G, Sette C. Src kinase activity coordinates cell adhesion and spreading with activation of mammalian target of rapamycin in pancreatic endocrine tumour cells. Endocr Relat Cancer 2011; 18:541-554. [PMID: 21712346 DOI: 10.1530/erc-10-0153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic endocrine tumours (PETs) are rare and heterogeneous neoplasms, often diagnosed at metastatic stage, for which no cure is currently available. Recently, activation of two pathways that support proliferation and invasiveness of cancer cells, the Src family kinase (SFK) and mammalian target of rapamycin (mTOR) pathways, was demonstrated in PETs. Since both pathways represent suitable targets for therapeutic intervention, we investigated their possible interaction in PETs. Western blot and immunofluorescence analyses indicated that SFK and mTOR activity correlate in PET cell lines. We also found that SFKs coordinate cell adhesion and spreading with activation of the mTOR pathway in PET cells. Live cell metabolic labelling and biochemical studies demonstrated that SFK activity enhance mTOR-dependent translation initiation. Furthermore, microarray analysis of the mRNAs associated with polyribosomes revealed that SFKs regulate mTOR-dependent translation of specific transcripts, with an enrichment in mRNAs encoding cell cycle proteins. Importantly, a synergic inhibition of proliferation was observed in PET cells concomitantly treated with SFK and mTOR inhibitors, without activation of the phosphatidylinositol 3-kinase/AKT pro-survival pathway. Tissue microarray analysis revealed activation of Src and mTOR in some PET samples, and identified phosphorylation of 4E-BP1 as an independent marker of poor prognosis in PETs. Thus, our work highlights a novel link between the SFK and mTOR pathways, which regulate the translation of mRNAs for cell cycle regulators, and suggest that crosstalk between these pathways promotes PET cell proliferation.
Collapse
Affiliation(s)
- Alessia Di Florio
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bielli P, Busà R, Paronetto MP, Sette C. The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 2011; 18:R91-R102. [PMID: 21565971 DOI: 10.1530/erc-11-0041] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Src associated in mitosis, of 68 kDa (Sam68) is a KH domain RNA-binding protein that belongs to the signal transduction and activation of RNA family. Although ubiquitously expressed, Sam68 plays very specialized roles in different cellular environments. In most cells, Sam68 resides in the nucleus and is involved in several steps of mRNA processing, from transcription, to alternative splicing, to nuclear export. In addition, Sam68 translocates to the cytoplasm upon cell stimulation, cell cycle transitions or viral infections, where it takes part to signaling complexes and associates with the mRNA translation machinery. Recent evidence has linked Sam68 function to the onset and progression of endocrine tumors, such as prostate and breast carcinomas. Notably, all the biochemical activities reported for Sam68 seem to be implicated in carcinogenesis. Herein, we review the recent advancement in the knowledge of Sam68 function and regulation and discuss it in the frame of its participation to neoplastic transformation and tumor progression.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Italy
| | | | | | | |
Collapse
|
31
|
Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. ACTA ACUST UNITED AC 2011; 33:309-37. [PMID: 21757510 DOI: 10.2164/jandrol.111.014167] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional status of messenger RNAs (mRNA) can be affected by many factors, most of which are RNA-binding proteins (RBP) that either bind mRNA in a nonspecific manner or through specific motifs, usually located in the 3' untranslated regions. RBPs can also be recruited by small noncoding RNAs (sncRNA), which have been shown to be involved in posttranscriptional regulations and transposon repression (eg, microRNAs or P-element-induced wimpy testis-interacting RNA) as components of the sncRNA effector complex. Non-sncRNA-binding RBPs have much more diverse effects on their target mRNAs. Some can cause degradation of their target transcripts and/or repression of translation, whereas others can stabilize and/or activate translation. The splicing and exportation of transcripts from the nucleus to the cytoplasm are often mediated by sequence-specific RBPs. The mechanisms by which RBPs regulate mRNA transcripts involve manipulating the 3' poly(A) tail, targeting the transcript to polysomes or to other ribonuclear protein particles, recruiting regulatory proteins, or competing with other RBPs. Here, we briefly review the known mechanisms of posttranscriptional regulation mediated by RBPs, with an emphasis on how these mechanisms might control spermatogenesis in general.
Collapse
Affiliation(s)
- R Keegan Idler
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
32
|
Sánchez-Jiménez F, Pérez-Pérez A, González-Yanes C, Varone CL, Sánchez-Margalet V. Sam68 mediates leptin-stimulated growth by modulating leptin receptor signaling in human trophoblastic JEG-3 cells. Hum Reprod 2011; 26:2306-15. [PMID: 21672929 DOI: 10.1093/humrep/der187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sam68, a member of the signal transduction and activation of RNA metabolism (STAR) family of RNA-binding proteins, has been previously implicated as an adaptor molecule in different signaling systems, including leptin receptor (LEPR) signaling. LEPR activation is known to stimulate JAK-STAT, MAPK and PI3K signaling pathways, thus mediating the biological effects of leptin in different cell types, including trophoblastic cells. We have recently found that leptin stimulation also promotes the overexpression and tyrosine phosphorylation of Sam68 in human trophoblastic JEG-3 cells, suggesting a role for Sam68 in leptin signaling and action in these cells. In the present work, we have studied the participation of Sam68 in the main signaling pathways activated by LEPR to increase growth and proliferation in trophoblastic JEG-3 cells. METHODS We used an antisense strategy to down-regulate Sam68 expression in these cells, and we studied LEPR signaling by immunoprecipitation and poly-U affinity precipitation and by analyzing phosphorylation levels of signaling proteins by immunoblot. The effect of leptin on protein synthesis and proliferation was studied by ³[H]-leucine and ³[H]-thymidine incorporation. RESULTS Sam68 knockdown impaired leptin activation of JAK-STAT, PI3K and MAPK signaling pathways in JEG-3 cells. We have also found that leptin-stimulated Sam68 tyrosine phosphorylation is dependent on JAK-2 activity, since the pharmacological inhibitor AG490 prevents the phosphorylation of Sam68 in JEG-3 cells. Finally, the trophic and proliferative effect of leptin in trophoblastic cells is dependent on Sam68 expression, since its down-regulation impaired the leptin-stimulated DNA and protein synthesis. CONCLUSIONS These data demonstrate that Sam68 participates in the main signaling pathways of LEPR to mediate the trophic and proliferative effect of leptin in human trophoblastic cells.
Collapse
Affiliation(s)
- F Sánchez-Jiménez
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Seville 41071, Spain
| | | | | | | | | |
Collapse
|
33
|
Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li ZH, Liu XD, Wang SG, Bie P, Jiang P, Dong JH, Li XW. Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis 2011; 32:1419-26. [PMID: 21642356 DOI: 10.1093/carcin/bgr088] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The Src family kinase Fyn, heterogenous nuclear ribonucleoprotein (HnRNP) A2B1 and Sam68 are thought to be associated with the metastasis of tumors, but their roles in the regulation of apoptosis remain unclear. This study investigated the role of Fyn and its potential relationship with HnRNPA2B1 and Sam68 in the regulation of apoptosis in pancreatic cancer. Experimental design. We examined both the activity of Fyn and the expression of HnRNPA2B1 in human pancreatic cancer tissues and systematically investigated the apoptotic mechanisms induced by Fyn activity using multiple experimental approaches. RESULTS We found that Fyn activity was increased in metastatic pancreatic cancer tissues. In the pancreatic cancer BxPc3 cell line, the inhibition of Fyn activity by kinase-dead Fyn downregulated HnRNPA2B1 expression. Further analysis showed that HnRNPA2B1 expression was associated with pancreatic cancer progression. In BxPc3 cells, HnRNPA2B1 bound to Bcl-x messenger RNA (mRNA), which affected splicing and therefore, the formation of Bcl-x(s). Downregulation of HnRNPA2B1 by RNA interference (RNAi) resulted in the increased formation of the pro-apoptotic Bcl-x(s) and promoted apoptosis of BxPc3 cells. In addition, deactivation of Fyn in BxPc3 cells reduced Sam68 phosphorylation. This resulted in increased binding between Sam68 and Bcl-x mRNA, promoting the formation of the anti-apoptotic Bcl-x(L). The knockdown of Sam68 by RNAi also increased the formation of Bcl-x(L). Finally, HnRNPA2B1 overexpression or Sam68 knockdown could rescue pancreatic cancer cells from apoptosis. CONCLUSION Our results suggest a mechanism by which Fyn requires HnRNPA2B1 and Sam68 to coordinate and regulate apoptosis, thus promoting the proliferation and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Department of Hepatobiliary Surgery Institute, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Paronetto MP, Messina V, Barchi M, Geremia R, Richard S, Sette C. Sam68 marks the transcriptionally active stages of spermatogenesis and modulates alternative splicing in male germ cells. Nucleic Acids Res 2011; 39:4961-74. [PMID: 21355037 PMCID: PMC3130265 DOI: 10.1093/nar/gkr085] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sam68 plays an essential role in mouse spermatogenesis and male fertility. Herein, we report an interaction between Sam68 and the phosphorylated forms of the RNA polymerase II (RNAPII) in meiotic spermatocytes. RNase treatment decreased but did not abolish the interaction, consistently with in vitro binding of RNAPII to the Sam68 carboxyl-terminal region. Sam68 retention in the spermatocyte nucleus was dependent on the integrity of cellular RNAs, suggesting that the protein is recruited to transcriptionally active chromatin. Mouse knockout models characterized by stage-specific arrest of spermatogenesis and staining with the phosphorylated form of RNAPII documented that Sam68 expression is confined to the transcriptionally active stages of spermatogenesis. Furthermore, Sam68 associates with splicing regulators in germ cells and we report that alternative splicing of Sgce exon 8 is regulated in a Sam68-dependent manner during spermatogenesis. RNA and chromatin crosslink immunoprecipitation experiments showed that Sam68 binds in vivo to sequences surrounding the intron 7/exon 8 boundary, thereby affecting the recruitment of the phosphorylated RNAPII and of the general splicing factor U2AF65. These results suggest that Sam68 regulates alternative splicing at transcriptionally active sites in differentiating germ cells and provide new insights into the regulation of Sam68 expression during spermatogenesis.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Bianchi E, Barbagallo F, Valeri C, Geremia R, Salustri A, De Felici M, Sette C. Ablation of the Sam68 gene impairs female fertility and gonadotropin-dependent follicle development. Hum Mol Genet 2010; 19:4886-4894. [DOI: 10.1093/hmg/ddq422] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Affiliation(s)
- Enrica Bianchi
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy and
- Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Federica Barbagallo
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy and
- Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Claudia Valeri
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy and
| | - Raffaele Geremia
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy and
| | - Antonietta Salustri
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy and
| | - Massimo De Felici
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy and
| | - Claudio Sette
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy and
- Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
36
|
Song L, Wang L, Li Y, Xiong H, Wu J, Li J, Li M. Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J Pathol 2010; 222:227-37. [PMID: 20662004 DOI: 10.1002/path.2751] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The biosynthesis and metabolism of RNA play important roles in regulating gene expression. On the other hand, it has been shown that RNA expression profiling is differentially distinct between cancer and normal cells, suggesting the possibility that aberrant regulation of RNA metabolism might be associated with the development and progression of cancer. In the current study, we found that Sam68, an RNA-binding protein that links cellular signalling to RNA processing, was markedly overexpressed in breast cancer cells and tissues. Immunohistochemical analysis showed that the expression and cytoplasmic localization of Sam68 significantly correlated with clinical characteristics of patients, including clinical stage, tumour-nodule-metastasis (TNM) classification, histological grade, and ER expression. Univariate and multivariate analyses showed that the expression level and cytoplasmic localization of Sam68 were identified as independent prognostic factors. Furthermore, we found that siRNA knockdown of endogenous Sam68 inhibited cell proliferation and tumourigenicity of breast cancer cells in vitro, through blocking the G1 to S phase transition. Moreover, we demonstrated that the anti-proliferative effect of silencing Sam68 on breast cancer cells was associated with up-regulation of cyclin-dependent kinase inhibitor p21(Cip1) and p27(Kip1), enhanced transactivation of FOXO factors, and attenuation of Akt/GSK-3β signalling. Taken together, our results suggest that Sam68 might play an important role in promoting the proliferation and carcinogenesis of human breast cancer, and thereby might be a novel and useful prognostic marker and a potential target for human breast cancer treatment.
Collapse
Affiliation(s)
- Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Busà R, Sette C. An emerging role for nuclear RNA-mediated responses to genotoxic stress. RNA Biol 2010; 7:390-6. [PMID: 20639695 DOI: 10.4161/rna.7.4.12466] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Defects in the regulation of alternative splicing have strong relevance in the onset and progression of several types of human cancer. Modulation of alternative splicing allows cancer cells to adapt to hostile environments through production of specific mRNA variants. In particular, genotoxic stress exerted by chemotherapeutic drugs or irradiation strongly affects splicing of many genes. A key role in this aberrant regulation is played by the unbalanced expression of several splicing factors in cancer cells. Among them, the RNA-binding protein Sam68, which is overexpressed in various tumors, was shown to accumulate in nuclear foci of active transcription, together with other splicing regulators, and to affect splicing of target mRNAs in response to genotoxic stress. We suggest that subcellular redistribution of splicing factors is guided by changes in chromatin conformation elicited by DNA-damaging drugs. This event might represent an escape mechanism used by cancer cells to survive to genotoxic insults through expression of pro-survival, cancer-specific gene products.
Collapse
Affiliation(s)
- Roberta Busà
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
38
|
Messina V, Di Sauro A, Pedrotti S, Adesso L, Latina A, Geremia R, Rossi P, Sette C. Differential contribution of the MTOR and MNK pathways to the regulation of mRNA translation in meiotic and postmeiotic mouse male germ cells. Biol Reprod 2010; 83:607-15. [PMID: 20574055 DOI: 10.1095/biolreprod.110.085050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Translation of stored mRNAs accounts for protein synthesis during the transcriptionally inactive stages of spermatogenesis. A key step in mRNA translation is the assembly of the initiation complex EIF4F, which is regulated by the MTOR (mammalian target of rapamycin) and MNK1/2 (MAP kinase-interacting kinase 1 and 2) pathways. We investigated the expression and activity of regulatory proteins of these pathways in male germ cells at different stages of differentiation. All translation factors analyzed were expressed in germ cells throughout spermatogenesis. However, while EIF4G and PABP1 (poly[A]-binding protein 1) were more abundant in postmeiotic cells, MTOR and its target EIF4EBP1 (4E-BP1) decreased steadily during spermatogenesis. In vivo labeling showed that pachytene spermatocytes display higher rates of protein synthesis, which are partially dependent on MTOR and MNK activity. By contrast, haploid spermatids are characterized by lower levels of protein synthesis, which are independent of the activity of these pathways. Accordingly, MTOR and MNK activity enhanced formation of the EIF4F complex in pachytene spermatocytes but not in round spermatids. Moreover, external cues differentially modulated the activity of these pathways in meiotic and haploid cells. Heat shock decreased MTOR and MNK activity in pachytene spermatocytes, whereas round spermatids were much less sensitive. On the other hand, treatment with the phosphatase inhibitor okadaic acid activated MTOR and MNK in both cell types. These results indicate that translational regulation is differentially dependent on the MTOR and MNK pathways in mouse spermatocytes and spermatids and suggest that the late stages of germ cell differentiation display constitutive assembly of the translation initiation complex.
Collapse
Affiliation(s)
- Valeria Messina
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
40
|
Almog T, Naor Z. The role of Mitogen activated protein kinase (MAPK) in sperm functions. Mol Cell Endocrinol 2010; 314:239-43. [PMID: 19467295 DOI: 10.1016/j.mce.2009.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 11/28/2022]
Abstract
The generation of mature spermatozoa in the epididymis includes the activation of the MAPK cascade in a complex manner. MAPKs are thought to be involved in the regulation of transcription and ectoplasmic specialization (ES) in the testis. MAPKs also regulate mature spermatozoa flagellar motility, hyperactivation and the acrosome reaction. Here we review the current data regarding the functions of MAPKs in spermatogenesis and in mature spermatozoa.
Collapse
Affiliation(s)
- Tal Almog
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
41
|
Busà R, Geremia R, Sette C. Genotoxic stress causes the accumulation of the splicing regulator Sam68 in nuclear foci of transcriptionally active chromatin. Nucleic Acids Res 2010; 38:3005-18. [PMID: 20110258 PMCID: PMC2875014 DOI: 10.1093/nar/gkq004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA-damaging agents cause a multifaceted cellular stress response. Cells set in motion either repair mechanisms or programmed cell death pathways, depending on the extent of the damage and on their ability to withstand it. The RNA-binding protein (RBP) Sam68, which is up-regulated in prostate carcinoma, promotes prostate cancer cell survival to genotoxic stress. Herein, we have investigated the function of Sam68 in this cellular response. Mitoxantrone (MTX), a topoisomerase II inhibitor, induced relocalization of Sam68 from the nucleoplasm to nuclear granules, together with several other RBPs involved in alternative splicing, such as TIA-1, hnRNP A1 and the SR proteins SC35 and ASF/SF2. Sam68 accumulation in nuclear stress granules was independent of signal transduction pathways activated by DNA damage. Using BrU labelling and immunofluorescence, we demonstrate that MTX-induced nuclear stress granules are transcriptionally active foci where Sam68 and the phosphorylated form of RNA polymerase II accumulate. Finally, we show that MTX-induced relocalization of Sam68 correlates with changes in alternative splicing of its mRNA target CD44, and that MTX-induced CD44 splicing depends on Sam68 expression. These results strongly suggest that Sam68 is part of a RNA-mediated stress response of the cell that modulates alternative splicing in response to DNA damage.
Collapse
Affiliation(s)
- Roberta Busà
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | |
Collapse
|
42
|
|
43
|
Expression and functions of the star proteins Sam68 and T-STAR in mammalian spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:67-81. [PMID: 21189686 DOI: 10.1007/978-1-4419-7005-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spermatogenesis is one of the few major developmental pathways which are still ongoing in the adult. In this chapter we review the properties of Sam68 and T-STAR, which are the STAR proteins functionally implicated in mammalian spermatogenesis. Sam68 is a ubiquitously expressed member of the STAR family, but has an essential role in spermatogenesis. Sam68 null mice are male infertile and at least in part this is due to a failure in important translational controls that operate during and after meiosis. The homologous T-STAR protein has a much more restricted anatomic expression pattern than Sam68, with highest levels seen in the testis and the developing brain. The focus of this chapter is the functional role of Sam68 and T-STAR proteins in male germ cell development. Since these proteins are known to have many cellular functions we extrapolate from other cell types and tissues to speculate on each of their likely functions within male germ cells, including control of alternative pre-mRNA splicing patterns in male germ cells.
Collapse
|
44
|
|
45
|
Sette C. Post-translational regulation of star proteins and effects on their biological functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:54-66. [PMID: 21189685 DOI: 10.1007/978-1-4419-7005-3_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
STAR (Signal Transduction and Activation of RNA) proteins owed their name to the presence in their structure ofa RNA-binding domain and several hallmarks of their involvement in signal transduction pathways. In many members of the family, the STAR RNA-binding domain (also named GSG, an acronym for GRP33/Sam68/ GLD-1) is flanked by regulatory regions containing proline-rich sequences, which serve as docking sites for proteins containing SH3 and WW domains and also a tyrosine-rich region at the C-terminus, which can mediateprotein-protein interactions with partners through SH2 domains. These regulatory regions contain consensus sequences for additional modifications, including serine/threonine phosphorylation, methylation, acetylation and sumoylation. Since their initial description, evidence has been gathered in different cell types and model organisms that STAR proteins can indeed integrate signals from external and internal cues with changes in transcription and processing of target RNAs. The most striking example of the high versatility of STAR proteins is provided by Sam68 (KHDRBS1), whose function, subcellular localization and affinity for RNA are strongly modulated by several signaling pathways through specific modifications. Moreover, the recent development of genetic knockout models has unveiled the physiological function of some STAR proteins, pointing to a crucial role of their post-translational modifications in the biological processes regulated by these RNA-binding proteins. This chapter offers an overview of the most updated literature on the regulation of STAR proteins by post-translational modifications and illustrates examples of how signal transduction pathways can modulate their activity and affect biological processes.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
46
|
Rajan P, Dalgliesh C, Bourgeois CF, Heiner M, Emami K, Clark EL, Bindereif A, Stevenin J, Robson CN, Leung HY, Elliott DJ. Proteomic identification of heterogeneous nuclear ribonucleoprotein L as a novel component of SLM/Sam68 Nuclear Bodies. BMC Cell Biol 2009; 10:82. [PMID: 19912651 PMCID: PMC2784748 DOI: 10.1186/1471-2121-10-82] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/13/2009] [Indexed: 11/25/2022] Open
Abstract
Background Active pre-mRNA splicing occurs co-transcriptionally, and takes place throughout the nucleoplasm of eukaryotic cells. Splicing decisions are controlled by networks of nuclear RNA-binding proteins and their target sequences, sometimes in response to signalling pathways. Sam68 (Src-associated in mitosis 68 kDa) is the prototypic member of the STAR (Signal Transduction and Activation of RNA) family of RNA-binding proteins, which regulate splicing in response to signalling cascades. Nuclear Sam68 protein is concentrated within subnuclear organelles called SLM/Sam68 Nuclear Bodies (SNBs), which also contain some other splicing regulators, signalling components and nucleic acids. Results We used proteomics to search for the major interacting protein partners of nuclear Sam68. In addition to Sam68 itself and known Sam68-associated proteins (heterogeneous nuclear ribonucleoproteins hnRNP A1, A2/B1 and G), we identified hnRNP L as a novel Sam68-interacting protein partner. hnRNP L protein was predominantly present within small nuclear protein complexes approximating to the expected size of monomers and dimers, and was quantitatively associated with nucleic acids. hnRNP L spatially co-localised with Sam68 as a novel component of SNBs and was also observed within the general nucleoplasm. Localisation within SNBs was highly specific to hnRNP L and was not shared by the closely-related hnRNP LL protein, nor any of the other Sam68-interacting proteins we identified by proteomics. The interaction between Sam68 and hnRNP L proteins was observed in a cell line which exhibits low frequency of SNBs suggesting that this association also takes place outside SNBs. Although ectopic expression of hnRNP L and Sam68 proteins independently affected splicing of CD44 variable exon v5 and TJP1 exon 20 minigenes, these proteins did not, however, co-operate with each other in splicing regulation of these target exons. Conclusion Here we identify hnRNP L as a novel SNB component. We show that, compared with other identified Sam68-associated hnRNP proteins and hnRNP LL, this co-localisation within SNBs is specific to hnRNP L. Our data suggest that the novel Sam68-hnRNP L protein interaction may have a distinct role within SNBs.
Collapse
Affiliation(s)
- Prabhakar Rajan
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P. Global survey of protein expression during gonadal sex determination in mice. Mol Cell Proteomics 2009; 8:2624-41. [PMID: 19617587 DOI: 10.1074/mcp.m900108-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development.
Collapse
Affiliation(s)
- Katherine Ewen
- Division of Molecular Genetics and Development, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
48
|
Henao-Mejia J, He JJ. Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1. Exp Cell Res 2009; 315:3381-95. [PMID: 19615357 DOI: 10.1016/j.yexcr.2009.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/21/2009] [Accepted: 07/08/2009] [Indexed: 12/25/2022]
Abstract
Sam68 has been implicated in a variety of important cellular processes such as RNA metabolism and intracellular signaling. We have recently shown that Sam68 cytoplasmic mutants induce stress granules (SG) and inhibit HIV-1 nef mRNA translation [J. Henao-Mejia, Y. Liu, I.W. Park, J. Zhang, J. Sanford, J.J. He, Suppression of HIV-1 Nef translation by Sam68 mutant-induced stress granules and nef mRNA sequestration, Mol. Cell 33 (2009) 87-96]. These findings prompted us to investigate the possibility and the underlying mechanisms of the wild-type counterpart Sam68 SG recruitment. Herein, we revealed that Sam68 was significantly recruited into cytoplasmic SG under oxidative stress. We then demonstrated that domain aa269-321 and KH domain were both essential for this recruitment. Nevertheless, Sam68 knockdown had no effects on SG assembly, indicating that Sam68 is not a constitutive component of the SG. Moreover, we showed that Sam68 cytoplasmic mutant-induced SG formation was independent of eIF2alpha phosphorylation. Lastly, we demonstrated that Sam68 was complexed with T-cell intracellular antigen-1 (TIA-1), a core SG component, and that the complex formation was correlated with Sam68 SG recruitment. Taken together, these results provide direct evidence for the first time that Sam68 is recruited into SG through complexing with TIA-1 in response to oxidative stress and suggest that cytoplasmic SG recruitment of Sam68 and ensuing changes in Sam68 physiological functions are part of the host response to external stressful conditions.
Collapse
Affiliation(s)
- Jorge Henao-Mejia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
49
|
Paronetto MP, Messina V, Bianchi E, Barchi M, Vogel G, Moretti C, Palombi F, Stefanini M, Geremia R, Richard S, Sette C. Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. ACTA ACUST UNITED AC 2009; 185:235-49. [PMID: 19380878 PMCID: PMC2700383 DOI: 10.1083/jcb.200811138] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sam68 is a KH-type RNA-binding protein involved in several steps of RNA metabolism with potential implications in cell differentiation and cancer. However, its physiological roles are still poorly understood. Herein, we show that Sam68(-/-) male mice are infertile and display several defects in spermatogenesis, demonstrating an essential role for Sam68 in male fertility. Sam68(-/-) mice produce few spermatozoa, which display dramatic motility defects and are unable to fertilize eggs. Expression of a subset of messenger mRNAs (mRNAs) is affected in the testis of knockout mice. Interestingly, Sam68 is associated with polyadenylated mRNAs in the cytoplasm during the meiotic divisions and in round spermatids, when it interacts with the translational machinery. We show that Sam68 is required for polysomal recruitment of specific mRNAs and for accumulation of the corresponding proteins in germ cells and in a heterologous system. These observations demonstrate a novel role for Sam68 in mRNA translation and highlight its essential requirement for the development of a functional male gamete.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aivatiadou E, Ripolone M, Brunetti F, Berruti G. cAMP-Epac2-mediated activation of Rap1 in developing male germ cells: RA-RhoGAP as a possible direct down-stream effector. Mol Reprod Dev 2009; 76:407-16. [PMID: 18937323 DOI: 10.1002/mrd.20963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rap1 is a small GTPase that functions as a positional signal and organizer of cell architecture. Recently Rap1 is emerged to play a critical role during sperm differentiation since its inactivation in haploid cells leads to a premature release of spermatids from the supporting Sertoli cell resulting in male infertility. How Rap1 is activated in spermatogenic cells has not yet been determined. Our objective was to investigate on a possible cAMP-mediated activation of Rap1 employing a cAMP analogue selective to Epac, the Rap1 activator directly responsive to cAMP, for stimulating cultured testis germ cells. Here we provide biochemical, cellular and functional evidence that the Epac variant known as Epac2 is expressed as both a transcript and a protein and that it is able to promote Rap1 activation in the cultured cells. A time course immunofluorescence analysis carried out on stimulated cells revealed the translocation of endogenous Epac2, which is cytosolic, towards the site where Rap1 is located, i.e., the Golgi complex, thus documenting the effective Rap1-Epac2 protein interaction 'in vivo' leading to Rap1-GTP loading. A combination of biochemical and molecular techniques supported the immunofluorescence data. The search for the presence of a putative Rap1 downstream effector, described in differentiating somatic cells as a target of cAMP-Epac-activated Rap1, revealed the presence in spermatogenic cells of RA-RhoGAP, a Rap1-activated Rho GTPase-activating protein. Taken together, our results, obtained with endogenously expressed proteins, are consistent with a cAMP/Epac2/Rap1-mediated signaling that could exert its action, among others, through RA-RhoGAP to promote the progression of spermatogenesis.
Collapse
Affiliation(s)
- Evanthia Aivatiadou
- Laboratory of Cellular and Molecular Biology of Reproduction, Department of Biology, University of Milan, Italy
| | | | | | | |
Collapse
|