1
|
Nita A, Abraham SP, Elrefaay ER, Fafilek B, Cizkova E, Ursachi VC, Gudernova I, Koudelka A, Dudeja P, Gregor T, Feketova Z, Rico G, Svozilova K, Celiker C, Czyrek AA, Barta T, Trantirek L, Wiedlocha A, Krejci P, Bosakova M. FGFR2 residence in primary cilia is necessary for epithelial cell signaling. J Cell Biol 2025; 224:e202311030. [PMID: 40257378 PMCID: PMC12010920 DOI: 10.1083/jcb.202311030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Primary cilium projects from cells to provide a communication platform with neighboring cells and the surrounding environment. This is ensured by the selective entry of membrane receptors and signaling molecules, producing fine-tuned and effective responses to the extracellular cues. In this study, we focused on one family of signaling molecules, the fibroblast growth factor receptors (FGFRs), their residence within cilia, and its role in FGFR signaling. We show that FGFR1 and FGFR2, but not FGFR3 and FGFR4, localize to primary cilia of the developing mouse tissues and in vitro cells. For FGFR2, we demonstrate that the ciliary residence is necessary for its signaling and expression of target morphogenic genes. We also show that the pathogenic FGFR2 variants have minimal cilium presence, which can be rescued for the p.P253R variant associated with the Apert syndrome by using the RLY-4008 kinase inhibitor. Finally, we determine the molecular regulators of FGFR2 trafficking to cilia, including IFT144, BBS1, and the conserved T429V430 motif within FGFR2.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Eman R. Elrefaay
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Cizkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vlad Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Gustavo Rico
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksandra A. Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Trantirek
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprograming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| |
Collapse
|
2
|
Wang W, Shan Y, Liu R, Li D, Zhou J, Lu Q, Zhao H. Coordination of IFT20 With Other IFT Components Is Required for Ciliogenesis. J Clin Lab Anal 2025; 39:e70000. [PMID: 40192002 PMCID: PMC12078756 DOI: 10.1002/jcla.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Primary cilia are organelles formed on the cell surface. They can act as cellular antennae to sense signals and play important roles in various biological processes. Abnormalities in primary cilia lead to a variety of diseases collectively known as ciliopathies. Intraflagellar transport protein 20 (IFT20) has been implicated in ciliogenesis. METHODS IFT20 knockout cell lines were established using the CRISPR-Cas9 gene editing technology. The GFP-IFT20 plasmid was constructed with the Gateway cloning system. Protein levels were detected via immunoblotting, and the localization of IFT20, acetylated α-tubulin, ARL13B, CP110, MKS3, IFT88, and IFT140 in wild-type and IFT20 knockout cells was examined by immunofluorescence microscopy. The fluorescence intensities were analyzed using ImageJ. Data quantifications and mass spectrometry results were analyzed using GraphPad Prism and Metascape. RESULTS The IFT20 deficiency impaired ciliogenesis and reduced cilium length. IFT20 depletion did not affect the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole or the recruitment of Meckel-Gruber syndrome type 3 (MKS3) to the transition zone. Mass spectrometry analysis revealed that proteins interacting with IFT20 were mainly IFT components. IFT20 knockout decreased the levels of both IFT88 and IFT140, and abrogated IFT88 localization at the basal body and ciliary axoneme. IFT20 knockout also impaired IFT140 localization at the ciliary axoneme but did not affect its localization at the basal body. CONCLUSIONS IFT20 is involved in ciliogenesis by regulating the level and localization of other IFT proteins and may have important implications in ciliopathies and related diseases.
Collapse
Affiliation(s)
- Weishu Wang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Ying Shan
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Jun Zhou
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Quanlong Lu
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
3
|
Azizzanjani MO, Turn RE, Asthana A, Linde-Garelli KY, Xu LA, Labrie LE, Mobedi M, Jackson PK. Synchronized temporal-spatial analysis via microscopy and phosphoproteomics (STAMP) of quiescence. SCIENCE ADVANCES 2025; 11:eadt9712. [PMID: 40279433 PMCID: PMC12024681 DOI: 10.1126/sciadv.adt9712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
Coordinated cell cycle regulation is essential for homeostasis, with most cells in the body residing in quiescence (G0). Many pathologies arise due to disruptions in tissue-specific G0, yet little is known about the temporal-spatial mechanisms that establish G0 and its signaling hub, primary cilia. Mechanistic insight is limited by asynchronous model systems and failure to connect context-specific, transient mechanisms to function. To address this gap, we developed STAMP (synchronized temporal-spatial analysis via microscopy and phosphoproteomics) to track changes in cellular landscape occurring throughout G0 transition and ciliogenesis. We synchronized ciliogenesis and G0 transition in two cell models and combined microscopy with phosphoproteomics to order signals for further targeted analyses. We propose that STAMP is broadly applicable for studying temporal-spatial signaling in many biological contexts. The findings revealed through STAMP provide critical insight into healthy cellular functions often disrupted in pathologies, paving the way for targeted therapeutics.
Collapse
Affiliation(s)
- Mohammad Ovais Azizzanjani
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel E. Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushweta Asthana
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen Y. Linde-Garelli
- Department of Structural Biology, Department of Chemical Systems Biology, Department of Pathology, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucy Artemis Xu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leilani E. Labrie
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammadamin Mobedi
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Tasaki K, Satoda Y, Chiba S, Shin HW, Katoh Y, Nakayama K. Mutually independent and cilia-independent assembly of IFT-A and IFT-B complexes at mother centriole. Mol Biol Cell 2025; 36:ar48. [PMID: 40020180 PMCID: PMC12005097 DOI: 10.1091/mbc.e24-11-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes and powered by dynein-2 and kinesin-2 motors, is crucial for bidirectional trafficking of ciliary proteins and their import/export across the transition zone (TZ). Stepwise assembly of anterograde IFT trains was proposed previously; that is, the IFT-B complex first forms a TZ-tethered scaffold with sequential incorporation of IFT-A, dynein-2, and finally kinesin-2. However, IFT-A and IFT-B complexes also demonstrate distinct localization to the basal body/mother centriole. We show that IFT-A, IFT-B, and dynein-2 complexes are recruited to the mother centriole independently of ciliogenesis. Furthermore, mother centriole recruitment of IFT-A and IFT-B can occur in the absence of IFT-B and IFT-A, respectively, and dynein-2 recruitment is independent of IFT-A and IFT-B. Expansion microscopy revealed that the IFT-A/IFT-B pool at the basal body is distinct from that at the TZ. We conclude that IFT-A and IFT-B are recruited to the mother centriole in a mutually independent and ciliogenesis-independent manner before IFT train assembly.
Collapse
Affiliation(s)
- Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
6
|
Wang H, Li Y, Li X, Sun Z, Yu F, Pashang A, Kulasiri D, Li HW, Chen H, Hou H, Zhang Y. The Primary Cilia are Associated with the Axon Initial Segment in Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407405. [PMID: 39804991 PMCID: PMC11884599 DOI: 10.1002/advs.202407405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Indexed: 01/16/2025]
Abstract
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive. To study the link between the primary cilia and neuronal excitability, manipulation of somatostatin receptor 3 (SSTR3) is investigated, as an example of how alterations in ciliary signaling may affect neuronal activity. It is found that aberrant SSTR3 expression perturbed not only ciliary morphology but also disrupted ciliary signaling cascades. Genetic deletion of SSTR3 resulted in perturbed spatial memory and synaptic plasticity. The axon initial segment (AIS) is a specialized region in the axon where action potentials are initiated. Interestingly, loss of ciliary SSTR3 led to decrease of Akt-dependent cyclic AMP-response element binding protein (CREB)-mediated transcription at the AIS, specifically downregulating AIS master organizer adaptor protein ankyrin G (AnkG) expression. In addition, alterations of other ciliary proteins serotonin 6 receptor (5-HT6R)and intraflagellar transport protein 88 (IFT88) also induced length changes of the AIS. The findings elucidate a specific interaction between the primary cilia and AIS, providing insight into the impact of the primary cilia on neuronal excitability and circuit integrity.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Yu Li
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Xin Li
- Beijing Life Science AcademyBeijing102200China
| | - Zehui Sun
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Fengdan Yu
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Abolghasem Pashang
- Centre for Advanced Computational Solutions (C‐fACS)AGLS facultyLincoln UniversityCanterbury7647New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C‐fACS)AGLS facultyLincoln UniversityCanterbury7647New Zealand
| | - Hung Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong Kong999077China
| | - Huan Chen
- Beijing Life Science AcademyBeijing102200China
| | - Hongwei Hou
- Beijing Life Science AcademyBeijing102200China
| | - Yan Zhang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
7
|
Sakinah-Syed G, Liew JS, Abdul Majid N, Inche Zainal Abidin SA. Alteration of primary cilia and intraflagellar transport 20 (IFT20) expression in oral squamous cell carcinoma (OSCC) cell lines. PeerJ 2025; 13:e18931. [PMID: 40017656 PMCID: PMC11867036 DOI: 10.7717/peerj.18931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Background Aberrations in primary cilia expression and intraflagellar transport (IFT) protein function have been implicated in tumourigenesis. This study explores the relationship between the alteration of primary cilia and tumourigenesis by investigating primary cilia expression and the role of IFT20 in regulating matrix metalloproteinase 9 (MMP-9) expression in oral squamous cell carcinoma (OSCC) cell lines. Methods The frequency and length of primary cilia were determined in OKF6-TERT2 cells, HSC-2 cells, and HSC-3 cells using immunofluorescence. Additionally, primary cilia presence in non-proliferating OSCC cells was examined. OSCC cells were treated with either small interfering RNA (siRNA) negative control or siRNA targeting IFT20 for functional analysis. mRNA expression levels of IFT20 and MMP-9 were quantified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Results showed that HSC-2 cells exhibit abundant primary cilia when cultured in low serum media (2% serum) for 48 h, followed by serum starvation for over 72 h. No significant changes in cilia expression were observed in HSC-3 cells compared to OKF6-TERT2 cells. Ciliated cells were found in non-proliferating HSC-2 and HSC-3 cells. OSCC cells showed longer cilia than OKF6-TERT2 cells, indicating ciliary abnormalities. Changes in ciliation and cilium length of OSCC cells were accompanied by increased expression of IFT20, an intraflagellar transport protein crucial for the primary cilia assembly. However, IFT20 knockdown did not affect MMP-9 at the mRNA level in these cells. Conclusions This study reveals the differences in primary cilia expression among OSCC cells. Furthermore, the increased abundance and elongation of primary cilia in OSCC cells are accompanied by elevated expression of IFT20. Nonetheless, IFT20 did not affect MMP-9 mRNA expression in OSCC cells.
Collapse
Affiliation(s)
- Gulam Sakinah-Syed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Jia Shi Liew
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| | - Siti Amalina Inche Zainal Abidin
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, WP Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Peixoto E, Pant K, Richard S, Abrahante JE, Czaja W, Gradilone SA. Cholangiocytes' Primary Cilia Regulate DNA Damage Response and Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635267. [PMID: 39975310 PMCID: PMC11838267 DOI: 10.1101/2025.01.28.635267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Primary cilia have been considered tumor-suppressing organelles in cholangiocarcinoma (CCA), though the mechanisms behind their protective role are not fully understood. This study investigates how the loss of primary cilia affects DNA damage response (DDR) and DNA repair processes in CCA. Human cholangiocyte cell lines were used to examine the colocalization of DNA repair proteins at the cilia and assess the impact of experimental deciliation on DNA repair pathways. Deciliation was induced using shRNA knockdown or CRISPR knockout of IFT20, IFT88, or KIF3A, followed by exposure to the genotoxic agents cisplatin, methyl methanesulfonate (MMS), or irradiation. Cell survival, cell cycle progression, and apoptosis rates were evaluated, and DNA damage was assessed using comet assays and γH2AX quantification. An in vivo liver-specific IFT88 knockout model was generated using Cre/Lox recombination. Results showed that RAD51 localized at the cilia base, while ATR, PARP1, CHK1 and CHK2 were found within the cilia. Deciliated cells displayed dysregulation in critical DNA repair. These cells also showed reduced survival and increased S-phase arrest after genotoxic challenges as compared to ciliated cells. Enhanced DNA damage was observed via increased γH2AX signals and comet assay results. An increase in γH2AX expression was also observed in our in vivo model, indicating elevated DNA damage. Additionally, key DDR proteins, such as ATM, p53, and p21, were downregulated in deciliated cells after irradiation. This study underscores the crucial role of primary cilia in regulating DNA repair and suggests that targeting cilia-related mechanisms could present a novel therapeutic approach for CCA. New and Noteworthy: Our findings reveal a novel connection between primary cilia and DNA repair in cholangiocytes. We showed that DDR and DNA repair proteins localize to cilia, and that deciliation leads to impaired cell survival and S-phase arrest under genotoxic stress. Deciliated cells exhibit heightened DNA damage, evidenced by increased γH2AX signals and comet assay results, a phenotype mirrored in in vivo IFT88 knockout mice. Furthermore, key DDR regulators, including ATM, p53, and p21, are downregulated in deciliated cells following irradiation, highlighting a crucial role for primary cilia in maintaining genome stability.
Collapse
|
9
|
Donati A, Schneider-Maunoury S, Vesque C. Centriole Translational Planar Polarity in Monociliated Epithelia. Cells 2024; 13:1403. [PMID: 39272975 PMCID: PMC11393834 DOI: 10.3390/cells13171403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left-right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish. Cilia also have a central role in the motility and feeding of free-swimming larvae in a variety of marine organisms. These diverse functions rely on the coordinated orientation (rotational polarity) and asymmetric localization (translational polarity) of cilia and of their centriole-derived basal bodies across the epithelium, both being forms of planar cell polarity (PCP). Here, we review our current knowledge on the mechanisms of the translational polarity of basal bodies in vertebrate monociliated epithelia from the molecule to the whole organism. We highlight the importance of live imaging for understanding the dynamics of centriole polarization. We review the roles of core PCP pathways and of apicobasal polarity proteins, such as Par3, whose central function in this process has been recently uncovered. Finally, we emphasize the importance of the coordination between polarity proteins, the cytoskeleton and the basal body itself in this highly dynamic process.
Collapse
Affiliation(s)
- Antoine Donati
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvie Schneider-Maunoury
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| | - Christine Vesque
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| |
Collapse
|
10
|
Lewis TR, Castillo CM, Klementieva NV, Hsu Y, Hao Y, Spencer WJ, Drack AV, Pazour GJ, Arshavsky VY. Contribution of intraflagellar transport to compartmentalization and maintenance of the photoreceptor cell. Proc Natl Acad Sci U S A 2024; 121:e2408551121. [PMID: 39145934 PMCID: PMC11348033 DOI: 10.1073/pnas.2408551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The first steps of vision take place in the ciliary outer segment compartment of photoreceptor cells. The protein composition of outer segments is uniquely suited to perform this function. The most abundant among these proteins is the visual pigment, rhodopsin, whose outer segment trafficking involves intraflagellar transport (IFT). Here, we report three major findings from the analysis of mice in which ciliary transport was acutely impaired by conditional knockouts of IFT-B subunits. First, we demonstrate the existence of a sorting mechanism whereby mislocalized rhodopsin is recruited to and concentrated in extracellular vesicles prior to their release, presumably to protect the cell from adverse effects of protein mislocalization. Second, reducing rhodopsin expression significantly delays photoreceptor degeneration caused by IFT disruption, suggesting that controlling rhodopsin levels may be an effective therapy for some cases of retinal degenerative disease. Last, the loss of IFT-B subunits does not recapitulate a phenotype observed in mutants of the BBSome (another ciliary transport protein complex relying on IFT) in which non-ciliary proteins accumulate in the outer segment. Whereas it is widely thought that the role of the BBSome is to primarily participate in ciliary transport, our data suggest that the BBSome has another major function independent of IFT and possibly related to maintaining the diffusion barrier of the ciliary transition zone.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | | | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - William J. Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA01605
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
11
|
Patiabadi Z, Razmkabir M, EsmailizadehKoshkoiyeh A, Moradi MH, Rashidi A, Mahmoudi P. Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS One 2024; 19:e0309023. [PMID: 39150936 PMCID: PMC11329119 DOI: 10.1371/journal.pone.0309023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
The present study aimed to identify the selection signature associated with temperature adaptation in Iranian sheep breeds raised in cold and hot environments. The Illumina HD ovine SNP600K BeadChip genomic arrays were utilized to analyze 114 animals from eight Iranian sheep breeds, namely Ghezel, Afshari, Shall, Sanjabi, Lori-Bakhtiari, Karakul, Kermani, and Balochi. All animals were classified into two groups: cold-weather breeds and hot-weather breeds, based on the environments to which they are adapted and the regions where they have been raised for many years. The unbiased FST (Theta) and hapFLK tests were used to identify the selection signatures. The results revealed five genomic regions on chromosomes 2, 10, 11, 13, and 14 using the FST test, and three genomic regions on chromosomes 10, 14, and 15 using the hapFLK test to be under selection in cold and hot groups. Further exploration of these genomic regions revealed that most of these regions overlapped with genes previously identified to affect cold and heat stress, nervous system function, cell division and gene expression, skin growth and development, embryo and skeletal development, adaptation to hypoxia conditions, and the immune system. These regions overlapped with QTLs that had previously been identified as being associated with various important economic traits, such as body weight, skin color, and horn characteristics. The gene ontology and gene network analyses revealed significant pathways and networks that distinguished Iranian cold and hot climates sheep breeds from each other. We identified positively selected genomic regions in Iranian sheep associated with pathways related to cell division, biological processes, cellular responses to calcium ions, metal ions and inorganic substances. This study represents the initial effort to identify selective sweeps linked to temperature adaptation in Iranian indigenous sheep breeds. It may provide valuable insights into the genomic regions involved in climate adaptation in sheep.
Collapse
Affiliation(s)
- Zahra Patiabadi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | | | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
12
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EF, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. EMBO Rep 2024; 25:3040-3063. [PMID: 38849673 PMCID: PMC11239879 DOI: 10.1038/s44319-024-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K Rezi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mariam G Aslanyan
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaurav D Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Mohamed Chamlali
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | - Kleo B Pauly
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Fa Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Copenhagen, Denmark
| | | | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Agborbesong E, Li X. The Immune Checkpoint Protein PD-L1 Regulates Ciliogenesis and Hedgehog Signaling. Cells 2024; 13:1003. [PMID: 38920633 PMCID: PMC11201989 DOI: 10.3390/cells13121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The primary cilium, an antenna-like sensory organelle that protrudes from the surface of most eukaryotic cell types, has become a signaling hub of growing interest given that defects in its structure and/or function are associated with human diseases and syndromes, known as ciliopathies. With the continuously expanding role of primary cilia in health and diseases, identifying new players in ciliogenesis will lead to a better understanding of the function of this organelle. It has been shown that the primary cilium shares similarities with the immune synapse, a highly organized structure at the interface between an antigen-presenting or target cell and a lymphocyte. Studies have demonstrated a role for known cilia regulators in immune synapse formation. However, whether immune synapse regulators modulate ciliogenesis remains elusive. Here, we find that programmed death ligand 1 (PD-L1), an immune checkpoint protein and regulator of immune synapse formation, plays a role in the regulation of ciliogenesis. We found that PD-L1 is enriched at the centrosome/basal body and Golgi apparatus of ciliated cells and depleting PD-L1 enhanced ciliogenesis and increased the accumulation of ciliary membrane trafficking proteins Rab8a, BBS5, and sensory receptor protein PC-2. Moreover, PD-L1 formed a complex with BBS5 and PC-2. In addition, we found that depletion of PD-L1 resulted in the ciliary accumulation of Gli3 and the downregulation of Gli1. Our results suggest that PD-L1 is a new player in ciliogenesis, contributing to PC-2-mediated sensory signaling and the Hh signaling cascade.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, R, 200 1st Street, SW, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, R, 200 1st Street, SW, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Berg K, Gorham J, Lundt F, Seidman J, Brueckner M. Endocardial primary cilia and blood flow are required for regulation of EndoMT during endocardial cushion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594405. [PMID: 38798559 PMCID: PMC11118576 DOI: 10.1101/2024.05.15.594405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Blood flow is critical for heart valve formation, and cellular mechanosensors are essential to translate flow into transcriptional regulation of development. Here, we identify a role for primary cilia in vivo in the spatial regulation of cushion formation, the first stage of valve development, by regionally controlling endothelial to mesenchymal transition (EndoMT) via modulation of Kruppel-like Factor 4 (Klf4) . We find that high shear stress intracardiac regions decrease endocardial ciliation over cushion development, correlating with KLF4 downregulation and EndoMT progression. Mouse embryos constitutively lacking cilia exhibit a blood-flow dependent accumulation of KLF4 in these regions, independent of upstream left-right abnormalities, resulting in impaired cushion cellularization. snRNA-seq revealed that cilia KO endocardium fails to progress to late-EndoMT, retains endothelial markers and has reduced EndoMT/mesenchymal genes that KLF4 antagonizes. Together, these data identify a mechanosensory role for endocardial primary cilia in cushion development through regional regulation of KLF4.
Collapse
|
16
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EFA, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566524. [PMID: 37987012 PMCID: PMC10659422 DOI: 10.1101/2023.11.10.566524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K. Rezi
- Department of Biology, University of Copenhagen, Denmark
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | | | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Denmark
| | - Kleo B. Pauly
- Department of Biology, University of Copenhagen, Denmark
| | | | - Eduardo F. A. Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Denmark
| | | | | | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H. Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R. Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
17
|
Udupa P, Ghosh DK. The emerging functions of intraflagellar transport 52 in ciliary transport and ciliopathies. Traffic 2024; 25:e12929. [PMID: 38272449 DOI: 10.1111/tra.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.
Collapse
Affiliation(s)
- Prajna Udupa
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
18
|
Kretschmer V, Schneider S, Matthiessen PA, Reichert D, Hotaling N, Glasßer G, Lieberwirth I, Bharti K, De Cegli R, Conte I, Nandrot EF, May-Simera HL. Deletion of IFT20 exclusively in the RPE ablates primary cilia and leads to retinal degeneration. PLoS Biol 2023; 21:e3002402. [PMID: 38048369 PMCID: PMC10721183 DOI: 10.1371/journal.pbio.3002402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/14/2023] [Accepted: 10/26/2023] [Indexed: 12/06/2023] Open
Abstract
Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.
Collapse
Affiliation(s)
- Viola Kretschmer
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Sandra Schneider
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Andreas Matthiessen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Reichert
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan Hotaling
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gunnar Glasßer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- University of Naples “Federico II”, Naples, Italy
| | | | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
19
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
20
|
Chiu TY, Lo CH, Lin YH, Lai YD, Lin SS, Fang YT, Huang WS, Huang SY, Tsai PY, Yang FH, Chong WM, Wu YC, Tsai HC, Liu YW, Hsu CL, Liao JC, Wang WJ. INPP5E regulates CD3ζ enrichment at the immune synapse by phosphoinositide distribution control. Commun Biol 2023; 6:911. [PMID: 37670137 PMCID: PMC10480498 DOI: 10.1038/s42003-023-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
The immune synapse, a highly organized structure formed at the interface between T lymphocytes and antigen-presenting cells (APCs), is essential for T cell activation and the adaptive immune response. It has been shown that this interface shares similarities with the primary cilium, a sensory organelle in eukaryotic cells, although the roles of ciliary proteins on the immune synapse remain elusive. Here, we find that inositol polyphosphate-5-phosphatase E (INPP5E), a cilium-enriched protein responsible for regulating phosphoinositide localization, is enriched at the immune synapse in Jurkat T-cells during superantigen-mediated conjugation or antibody-mediated crosslinking of TCR complexes, and forms a complex with CD3ζ, ZAP-70, and Lck. Silencing INPP5E in Jurkat T-cells impairs the polarized distribution of CD3ζ at the immune synapse and correlates with a failure of PI(4,5)P2 clearance at the center of the synapse. Moreover, INPP5E silencing decreases proximal TCR signaling, including phosphorylation of CD3ζ and ZAP-70, and ultimately attenuates IL-2 secretion. Our results suggest that INPP5E is a new player in phosphoinositide manipulation at the synapse, controlling the TCR signaling cascade.
Collapse
Grants
- National Science and Technology Council, Taiwan, NSTC 110-2326-B-A49A-503-MY3, 111-2628-B-A49A-016, and 112-2628-B-A49-009-MY3
- National Health Research Institutes (NHRI-EX109-10610BC) National Taiwan University and Academia Sinica Innovative Joint Program (109L104303)
- National Science and Technology Council, Taiwan, NSTC 109-2628-B-010-016 Cancer Progression Research Center NYCU, from the Higher Education Sprout Project by MOE
- National Science and Technology Council, Taiwan, NSTC 107-2313-B-001-009 National Science and Technology Council, Taiwan, NSTC 108-2313-B-001-003 National Taiwan University and Academia Sinica Innovative Joint Program Grant (NTU-SINICA- 108L104303)
Collapse
Affiliation(s)
- Tzu-Yuan Chiu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
- The Scripps Research Institute, La Jolla, 92037, USA
| | - Chien-Hui Lo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Hsuan Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yun-Di Lai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Ya-Tian Fang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Syun Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Shen-Yan Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Pei-Yuan Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Fu-Hua Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Weng Man Chong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Yi-Chieh Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsing-Chen Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100233, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan.
- Syncell Inc., Taipei, 115202, Taiwan.
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
21
|
Lee J, Kim Y, Ataliotis P, Kim HG, Kim DW, Bennett DC, Brown NA, Layman LC, Kim SH. Coordination of canonical and noncanonical Hedgehog signalling pathways mediated by WDR11 during primordial germ cell development. Sci Rep 2023; 13:12309. [PMID: 37516749 PMCID: PMC10387110 DOI: 10.1038/s41598-023-38017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023] Open
Abstract
WDR11, a gene associated with Kallmann syndrome, is important in reproductive system development but molecular understanding of its action remains incomplete. We previously reported that Wdr11-deficient embryos exhibit defective ciliogenesis and developmental defects associated with Hedgehog (HH) signalling. Here we demonstrate that WDR11 is required for primordial germ cell (PGC) development, regulating canonical and noncanonical HH signalling in parallel. Loss of WDR11 disrupts PGC motility and proliferation driven by the cilia-independent, PTCH2/GAS1-dependent noncanonical HH pathway. WDR11 modulates the growth of somatic cells surrounding PGCs by regulating the cilia-dependent, PTCH1/BOC-dependent canonical HH pathway. We reveal that PTCH1/BOC or PTCH2/GAS1 receptor context dictates SMO localisation inside or outside of cilia, respectively, and loss of WDR11 affects the signalling responses of SMO in both situations. We show that GAS1 is induced by PTCH2-specific HH signalling, which is lost in the absence of WDR11. We also provide evidence supporting a role for WDR11 in ciliogenesis through regulation of anterograde intraflagellar transport potentially via its interaction with IFT20. Since WDR11 is a target of noncanonical SMO signalling, WDR11 represents a novel mechanism by which noncanonical and canonical HH signals communicate and cooperate.
Collapse
Affiliation(s)
- Jiyoung Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Kernel Diagnostic Laboratories LTD, London, UK
| | - Yeonjoo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- The Babraham Institute, Cambridge, UK
| | - Paris Ataliotis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Institute for Medical and Biomedical Education, St. George's, University of London, London, UK
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Dae-Won Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Nigel A Brown
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Department of Neuroscience and Regenerative Medicine, Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.
| |
Collapse
|
22
|
Tu HQ, Li S, Xu YL, Zhang YC, Li PY, Liang LY, Song GP, Jian XX, Wu M, Song ZQ, Li TT, Hu HB, Yuan JF, Shen XL, Li JN, Han QY, Wang K, Zhang T, Zhou T, Li AL, Zhang XM, Li HY. Rhythmic cilia changes support SCN neuron coherence in circadian clock. Science 2023; 380:972-979. [PMID: 37262147 DOI: 10.1126/science.abm1962] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/13/2023] [Indexed: 06/03/2023]
Abstract
The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.
Collapse
Affiliation(s)
- Hai-Qing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Ling Xu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Pei-Yao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Li-Yun Liang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Guang-Ping Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Xiao Jian
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Ting-Ting Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Huai-Bin Hu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Lin Shen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jia-Ning Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhang
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui-Yan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Jeong J, Kang I, Kim Y, Ku KB, Park JH, Kim HJ, Kim CW, La J, Jung HE, Kim HC, Choi YJ, Kim J, Kim J, Lee HK. Regulation of c-SMAC formation and AKT-mTOR signaling by the TSG101-IFT20 axis in CD4 + T cells. Cell Mol Immunol 2023; 20:525-539. [PMID: 37029318 PMCID: PMC10202954 DOI: 10.1038/s41423-023-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
CD4+ T cells play major roles in the adaptive immune system, which requires antigen recognition, costimulation, and cytokines for its elaborate orchestration. Recent studies have provided new insight into the importance of the supramolecular activation cluster (SMAC), which comprises concentric circles and is involved in the amplification of CD4+ T cell activation. However, the underlying mechanism of SMAC formation remains poorly understood. Here, we performed single-cell RNA sequencing of CD4+ T cells left unstimulated and stimulated with anti-CD3 and anti-CD28 antibodies to identify novel proteins involved in their regulation. We found that intraflagellar transport 20 (IFT20), previously known as cilia-forming protein, was upregulated in antibody-stimulated CD4+ T cells compared to unstimulated CD4+ T cells. We also found that IFT20 interacted with tumor susceptibility gene 101 (TSG101), a protein that endocytoses ubiquitinated T-cell receptors. The interaction between IFT20 and TSG101 promoted SMAC formation, which led to amplification of AKT-mTOR signaling. However, IFT20-deficient CD4+ T cells showed SMAC malformation, resulting in reduced CD4+ T cell proliferation, aerobic glycolysis, and cellular respiration. Finally, mice with T-cell-specific IFT20 deficiency exhibited reduced allergen-induced airway inflammation. Thus, our data suggest that the IFT20-TSG101 axis regulates AKT-mTOR signaling via SMAC formation.
Collapse
Affiliation(s)
- Jiung Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chae Won Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
24
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
25
|
Li XW, Ran JH, Zhou H, He JZ, Qiu ZW, Wang SY, Wu MN, Zhu S, An YP, Ma A, Li M, Quan YZ, Li NN, Ren CQ, Yang BX. 1-Indanone retards cyst development in ADPKD mouse model by stabilizing tubulin and down-regulating anterograde transport of cilia. Acta Pharmacol Sin 2023; 44:406-420. [PMID: 35906293 PMCID: PMC9889777 DOI: 10.1038/s41401-022-00937-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/β-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.
Collapse
Affiliation(s)
- Xiao-Wei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Wei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ya-Zhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chao-Qun Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
26
|
Zhao H, Khan Z, Westlake CJ. Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol 2023; 133:20-31. [PMID: 35351373 PMCID: PMC9510604 DOI: 10.1016/j.semcdb.2022.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
Ciliogenesis is a complex multistep process used to describe assembly of cilia and flagella. These organelles play essential roles in motility and signaling on the surface of cells. Cilia are built at the distal ends of centrioles through the formation of an axoneme that is surrounded by the ciliary membrane. As is the case in the biogenesis of other cellular organelles, regulators of membrane trafficking play essential roles in ciliogenesis, albeit with a unique feature that membranes are organized around microtubule-based structures. Membrane association with the distal end of the centriole is a critical initiating step for ciliogenesis. Studies of this process in different cell types suggests that a singular mechanism may not be utilized to initiate cilium assembly. In this review, we focus on recent insights into cilium biogenesis and the roles membrane trafficking regulators play in described ciliogenesis mechanisms with relevance to human disease.
Collapse
Affiliation(s)
- Huijie Zhao
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Ziam Khan
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
Van Heurck R, Bonnefont J, Wojno M, Suzuki IK, Velez-Bravo FD, Erkol E, Nguyen DT, Herpoel A, Bilheu A, Beckers S, Ledent C, Vanderhaeghen P. CROCCP2 acts as a human-specific modifier of cilia dynamics and mTOR signaling to promote expansion of cortical progenitors. Neuron 2023; 111:65-80.e6. [PMID: 36334595 PMCID: PMC9831670 DOI: 10.1016/j.neuron.2022.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/12/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The primary cilium is a central signaling component during embryonic development. Here we focus on CROCCP2, a hominid-specific gene duplicate from ciliary rootlet coiled coil (CROCC), also known as rootletin, that encodes the major component of the ciliary rootlet. We find that CROCCP2 is highly expressed in the human fetal brain and not in other primate species. CROCCP2 gain of function in the mouse embryonic cortex and human cortical cells and organoids results in decreased ciliogenesis and increased cortical progenitor amplification, particularly basal progenitors. CROCCP2 decreases ciliary dynamics by inhibition of the IFT20 ciliary trafficking protein, which then impacts neurogenesis through increased mTOR signaling. Loss of function of CROCCP2 in human cortical cells and organoids leads to increased ciliogenesis, decreased mTOR signaling, and impaired basal progenitor amplification. These data identify CROCCP2 as a human-specific modifier of cortical neurogenesis that acts through modulation of ciliary dynamics and mTOR signaling.
Collapse
Affiliation(s)
- Roxane Van Heurck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium,Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Jérôme Bonnefont
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium,Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Marta Wojno
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium,Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Ikuo K. Suzuki
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium,Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fausto D. Velez-Bravo
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium,Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Emir Erkol
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium,Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Dan Truc Nguyen
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Adèle Herpoel
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Sofie Beckers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Catherine Ledent
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium,Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium,Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium,Corresponding author
| |
Collapse
|
28
|
Tingey M, Ruba A, Yang W. High-SPEED super-resolution SPEED microscopy to study primary cilium signaling in vivo. Methods Cell Biol 2023; 176:181-197. [PMID: 37164537 DOI: 10.1016/bs.mcb.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The primary cilium is a surface exposed organelle found in eukaryotic cells that functions to decode a variety of intracellular signals with significant implications in human developmental disorders and diseases. It is therefore highly desirable to obtain in vivo information regarding the dynamic processes occurring within the primary cilium. However, current techniques are limited by either the physical limitations of light microscopy or the static nature of electron microscopy. To overcome these limitations, single-point edge-excitation sub-diffraction (SPEED) microscopy was developed to obtain dynamic in vivo information in subcellular organelles such as cilia and nuclear pore complexes using single-molecule super-resolution light microscopy with a spatiotemporal resolution of 10-20nm and 0.4-2ms. Three-dimensional (3D) structural and dynamic information in these organelles can be further obtained through a post-processing 2D-to-3D transformation algorithm. Here we present a modular step-by-step protocol for studying primary cilium signaling dynamics, including Intraflagellar transport (IFT) via IFT20 and somatostatin g-protein-coupled receptor activity via SSTR3.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Andrew Ruba
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
29
|
Petriman NA, Loureiro‐López M, Taschner M, Zacharia NK, Georgieva MM, Boegholm N, Wang J, Mourão A, Russell RB, Andersen JS, Lorentzen E. Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B. EMBO J 2022; 41:e112440. [PMID: 36354106 PMCID: PMC9753473 DOI: 10.15252/embj.2022112440] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.
Collapse
Affiliation(s)
- Narcis A Petriman
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Marta Loureiro‐López
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Michael Taschner
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Nevin K Zacharia
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | | | - Niels Boegholm
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Jiaolong Wang
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - André Mourão
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Jens S Andersen
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Esben Lorentzen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| |
Collapse
|
30
|
Li L, Chen Y, Liao W, Yu Q, Lin H, Shi Y, Zhang L, Fu G, Wang Z, Li X, Kong X, Zhou T, Qin L. Associations of IFT20 and GM130 protein expressions with clinicopathological features and survival of patients with lung adenocarcinoma. BMC Cancer 2022; 22:809. [PMID: 35869490 PMCID: PMC9308367 DOI: 10.1186/s12885-022-09905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022] Open
Abstract
Background Lung cancer is the leading cause of malignancy-related mortality and lung adenocarcinoma accounts for about 40% of lung malignancies. The aim of this study was to investigate the associations of intraflagellar transport protein 20 (IFT20) and Golgi matrix protein 130 (GM130) expression with clinicopathological features and survival in patients with lung adenocarcinoma. Methods The expressions of IFT20 and GM130 protein in cancerous and matched adjacent lung tissues of 235 patients with lung adenocarcinoma were assessed by tissue microarray and immunohistochemistry, which were indicated by the mean optical density (IOD/area), the rate of positive staining cells and staining intensity score. The correlation between IFT20 and GM130 protein was assessed by Spearman’s rank correlation. Associations of IFT20 and GM130 protein expression with clinicopathological features of patients were analyzed by multivariate logistic regression models. The survival analysis of patients was performed by Cox proportional hazard regression models. Results With adjustment for multiple potential confounders, each one-point increase in IFT20 protein staining intensity score was significantly associated with 32% and 29% reduced risk for TNM stage in II ~ IV and lymphatic metastasis of patients, respectively (P < 0.05). And each one-point increase in GM130 protein staining intensity score was associated with a significant reduction in the risk of poor differentiation and tumors size > 7 cm by 29% and 38% for lung adenocarcinoma patients, respectively (P < 0.05). In stratified Cox model analysis, enhanced IFT20 staining intensity score was significantly decreased the risk of death by 16% for patients without distant metastasis. And elevated the IOD/area of GM130 expression significantly decreased the death risk of lung adenocarcinoma patients with tumor size > 7 cm or distant metastasis by 54% and 65%, respectively (P < 0.05). Conclusion IFT20 and GM130 protein expressions were negatively associated with tumor differentiated types, size, TNM stage and lymphatic metastasis of lung adenocarcinoma. Both IFT20 and GM130 proteins have some protective effects on the survival of lung adenocarcinoma patients with specific clinicopathological features. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09905-6.
Collapse
|
31
|
Finetti F, Onnis A, Baldari CT. IFT20: An Eclectic Regulator of Cellular Processes beyond Intraflagellar Transport. Int J Mol Sci 2022; 23:ijms232012147. [PMID: 36292997 PMCID: PMC9603483 DOI: 10.3390/ijms232012147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Initially discovered as the smallest component of the intraflagellar transport (IFT) system, the IFT20 protein has been found to be implicated in several unconventional mechanisms beyond its essential role in the assembly and maintenance of the primary cilium. IFT20 is now considered a key player not only in ciliogenesis but also in vesicular trafficking of membrane receptors and signaling proteins. Moreover, its ability to associate with a wide array of interacting partners in a cell-type specific manner has expanded the function of IFT20 to the regulation of intracellular degradative and secretory pathways. In this review, we will present an overview of the multifaceted role of IFT20 in both ciliated and non-ciliated cells.
Collapse
|
32
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
33
|
Golgi Dysfunctions in Ciliopathies. Cells 2022; 11:cells11182773. [PMID: 36139347 PMCID: PMC9496873 DOI: 10.3390/cells11182773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The Golgi apparatus (GA) is essential for intracellular sorting, trafficking and the targeting of proteins to specific cellular compartments. Anatomically, the GA spreads all over the cell but is also particularly enriched close to the base of the primary cilium. This peculiar organelle protrudes at the surface of almost all cells and fulfills many cellular functions, in particular during development, when a dysfunction of the primary cilium can lead to disorders called ciliopathies. While ciliopathies caused by loss of ciliated proteins have been extensively documented, several studies suggest that alterations of GA and GA-associated proteins can also affect ciliogenesis. Here, we aim to discuss how the loss-of-function of genes coding these proteins induces ciliary defects and results in ciliopathies.
Collapse
|
34
|
Luxmi R, King SM. Cilia-derived vesicles: An ancient route for intercellular communication. Semin Cell Dev Biol 2022; 129:82-92. [PMID: 35346578 PMCID: PMC9378432 DOI: 10.1016/j.semcdb.2022.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) provide a mechanism for intercellular communication that transports complex signals in membrane delimited structures between cells, tissues and organisms. Cells secrete EVs of various subtypes defined by the pathway leading to release and by the pathological condition of the cell. Cilia are evolutionarily conserved organelles that can act as sensory structures surveilling the extracellular environment. Here we discuss the secretory functions of cilia and their biological implications. Studies in multiple species - from the nematode Caenorhabditis elegans and the chlorophyte alga Chlamydomonas reinhardtii to mammals - have revealed that cilia shed bioactive EVs (ciliary EVs or ectosomes) by outward budding of the ciliary membrane. The content of ciliary EVs is distinct from that of other vesicles released by cells. Peptides regulate numerous aspects of metazoan physiology and development through evolutionarily conserved mechanisms. Intriguingly, cilia-derived vesicles have recently been found to mediate peptidergic signaling. C. reinhardtii releases the peptide α-amidating enzyme (PAM), bioactive amidated products and components of the peptidergic signaling machinery in ciliary EVs in a developmentally regulated manner. Considering the origin of cilia in early eukaryotes, it is likely that release of peptidergic signals in ciliary EVs represents an alternative and ancient mode of regulated secretion that cells can utilize in the absence of dedicated secretory granules.
Collapse
Affiliation(s)
- Raj Luxmi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| |
Collapse
|
35
|
Lv B, Zhang XO, Pazour GJ. Arih2 regulates Hedgehog signaling through smoothened ubiquitylation and ER-associated degradation. J Cell Sci 2022; 135:jcs260299. [PMID: 35899529 PMCID: PMC9481925 DOI: 10.1242/jcs.260299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
During Hedgehog signaling, the ciliary levels of Ptch1 and Smo are regulated by the pathway. At the basal state, Ptch1 localizes to cilia and prevents the ciliary accumulation and activation of Smo. Upon binding a Hedgehog ligand, Ptch1 exits cilia, relieving inhibition of Smo. Smo then concentrates in cilia, becomes activated and activates downstream signaling. Loss of the ubiquitin E3 ligase Arih2 elevates basal Hedgehog signaling, elevates the cellular level of Smo and increases basal levels of ciliary Smo. Mice express two isoforms of Arih2 with Arih2α found primarily in the nucleus and Arih2β found on the cytoplasmic face of the endoplasmic reticulum (ER). Re-expression of ER-localized Arih2β but not nuclear-localized Arih2α rescues the Arih2 mutant phenotypes. When Arih2 is defective, protein aggregates accumulate in the ER and the unfolded protein response is activated. Arih2β appears to regulate the ER-associated degradation (ERAD) of Smo preventing excess and potentially misfolded Smo from reaching the cilium and interfering with pathway regulation.
Collapse
Affiliation(s)
- Bo Lv
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| | - Xiao-Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China200092
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
36
|
Sperm of Fruit Fly Drosophila melanogaster under Space Flight. Int J Mol Sci 2022; 23:ijms23147498. [PMID: 35886847 PMCID: PMC9319090 DOI: 10.3390/ijms23147498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Studies of reproductive function under long-term space flight conditions are of interest in planning the exploration of deep space. Motility, including the use of various inhibitors, cellular respiration, and the content of cytoskeletal proteins were studied, assessing the level of expression of the corresponding genes in spermatozoa of Drosophila melanogaster, which were in space flight conditions for 12 days. The experiment was carried out twice on board the Russian Segment of the International Space Station. Sperm motility speed after space flight, and subsequently 16 h after landing, is reduced relative to the control by 20% (p < 0.05). In comparison with the simulation experiment, we showed that this occurs as a result of the action of overloads and readaptation to the Earth’s gravity. At the same time, cellular respiration, the content of proteins of the respiratory chain, and the expression of their genes do not change. We used kinase inhibitor 6-(dimethylamino)purine (6-DMAP) and phosphatase inhibitors; 6-DMAP restored the reduced the speed of spermatozoa in the flight group to that of the control. These results can be useful in developing a strategy for protecting reproductive health during the development of other bodies in the solar system.
Collapse
|
37
|
McCurdy BL, Jewett CE, Stemm-Wolf AJ, Duc HN, Joshi M, Espinosa JM, Prekeris R, Pearson CG. Trisomy 21 increases microtubules and disrupts centriolar satellite localization. Mol Biol Cell 2022; 33:br11. [PMID: 35476505 PMCID: PMC9635274 DOI: 10.1091/mbc.e21-10-0517-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022] Open
Abstract
Trisomy 21, the source of Down syndrome, causes a 0.5-fold protein increase of the chromosome 21-resident gene Pericentrin (PCNT) and reduces primary cilia formation and signaling. We investigate how PCNT imbalances disrupt cilia. Using isogenic RPE-1 cells with increased chromosome 21 dosage, we find PCNT accumulates around the centrosome as a cluster of enlarged cytoplasmic puncta that localize along microtubules (MTs) and at MT ends. Cytoplasmic PCNT puncta impact the density, stability, and localization of the MT trafficking network required for primary cilia. The PCNT puncta appear to sequester cargo peripheral to centrosomes in what we call pericentrosomal crowding. The centriolar satellite proteins PCM1, CEP131, and CEP290, important for ciliogenesis, accumulate at enlarged PCNT puncta in trisomy 21 cells. Reducing PCNT when chromosome 21 ploidy is elevated is sufficient to decrease PCNT puncta and pericentrosomal crowding, reestablish a normal density of MTs around the centrosome, and restore ciliogenesis to wild-type levels. A transient reduction in MTs also decreases pericentrosomal crowding and partially rescues ciliogenesis in trisomy 21 cells, indicating that increased PCNT leads to defects in the MT network deleterious to normal centriolar satellite distribution. We propose that chromosome 21 aneuploidy disrupts MT-dependent intracellular trafficking required for primary cilia.
Collapse
Affiliation(s)
- Bailey L. McCurdy
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Cayla E. Jewett
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Huy Nguyen Duc
- Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Molishree Joshi
- Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Department of Pharmacology, University of Colorado School of Medicine, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045-2537
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045-2537
| |
Collapse
|
38
|
Martín-Salazar JE, Valverde D. CPLANE Complex and Ciliopathies. Biomolecules 2022; 12:biom12060847. [PMID: 35740972 PMCID: PMC9221175 DOI: 10.3390/biom12060847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Primary cilia are non-motile organelles associated with the cell cycle, which can be found in most vertebrate cell types. Cilia formation occurs through a process called ciliogenesis, which involves several mechanisms including planar cell polarity (PCP) and the Hedgehog (Hh) signaling pathway. Some gene complexes, such as BBSome or CPLANE (ciliogenesis and planar polarity effector), have been linked to ciliogenesis. CPLANE complex is composed of INTU, FUZ and WDPCP, which bind to JBTS17 and RSG1 for cilia formation. Defects in these genes have been linked to a malfunction of intraflagellar transport and defects in the planar cell polarity, as well as defective activation of the Hedgehog signalling pathway. These faults lead to defective cilium formation, resulting in ciliopathies, including orofacial-digital syndrome (OFDS) and Bardet-Biedl syndrome (BBS). Considering the close relationship, between the CPLANE complex and cilium formation, it can be expected that defects in the genes that encode subunits of the CPLANE complex may be related to other ciliopathies.
Collapse
Affiliation(s)
| | - Diana Valverde
- CINBIO, Biomedical Research Centre, University of Vigo, 36310 Vigo, Spain;
- Galicia Sur Health Research Institute (IIS-GS), 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
39
|
Depletion of Ift88 in thymic epithelial cells affects thymic synapse and T-cell differentiation in aged mice. Anat Sci Int 2022; 97:409-422. [PMID: 35435578 DOI: 10.1007/s12565-022-00663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/27/2022] [Indexed: 11/01/2022]
Abstract
Primary cilia are ubiquitous hair-like organelles, usually projecting from the cell surface. They are essential for the organogenesis and homeostasis of various physiological functions, and their dysfunction leads to a plethora of human diseases. However, there are few reports on the role of primary cilia in the immune system; therefore, we focused on their role in the thymus that nurtures immature lymphocytes to full-fledged T cells. We detected primary cilia on the thymic epithelial cell (TEC) expressing transforming growth factor β (TGF-β) receptor in the basal body, and established a line of an intraflagellar transport protein 88 (Ift88) knockout mice lacking primary cilia in TECs (Ift88-TEC null mutant) to clarify their precise role in thymic organogenesis and T-cell differentiation. The Ift88-TEC null mutant mice showed stunted cilia or lack of cilia in TECs. The intercellular contact between T cells and the "thymic synapse" of medullary TECs was slightly disorganized in Ift88-TEC null mutants. Notably, the CD4- and CD8-single positive thymocyte subsets increased significantly. The absence or disorganization of thymic cilia downregulated the TGF-β signaling cascade, increasing the number of single positive thymocytes. To our knowledge, this is the first study reporting the physiological role of primary cilia and Ift88 in regulating the differentiation of the thymus and T cells.
Collapse
|
40
|
Ishikawa H, Tian JL, Yu JE, Marshall WF, Qin H. Biosynthesis of Linear Protein Nanoarrays Using the Flagellar Axoneme. ACS Synth Biol 2022; 11:1454-1465. [PMID: 35271249 DOI: 10.1021/acssynbio.1c00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Applications in biotechnology and synthetic biology often make use of soluble proteins, but there are many potential advantages of anchoring enzymes to a stable substrate, including stability and the possibility for substrate channeling. To avoid the necessity of protein purification and chemical immobilization, there has been growing interest in bio-assembly of protein-containing nanoparticles, exploiting the self-assembly of viral capsid proteins or other proteins that form polyhedral structures. However, these nanoparticles are limited in size, which constrains the packaging and the accessibility of the proteins. An axoneme, the insoluble protein core of the eukaryotic flagellum or cilium, is a highly ordered protein structure that can be several microns in length, orders of magnitude larger than other types of nanoparticles. We show that when proteins of interest are fused to specific axonemal proteins and expressed in living Chlamydomonas reinhardtii cells, they become incorporated into linear arrays, which have the advantages of high protein loading capacity and single-step purification with retention of biomass. The arrays can be isolated as membrane-enclosed vesicles or as exposed protein arrays. The approach is demonstrated for both a fluorescent protein and an enzyme (beta-lactamase), showing that incorporation into axonemes retains protein function in a stable, easily isolated array form.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143, United States
- NSF Center for Cellular Construction, San Francisco, California 94143, United States
| | - Jie L. Tian
- Molecular & Environmental Plant Sciences, Texas A&M University, College Station, Texas 77845, United States
| | - Jefer E. Yu
- Department of Biology, Texas A&M University, College Station, Texas 77845, United States
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143, United States
- NSF Center for Cellular Construction, San Francisco, California 94143, United States
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
41
|
Dewees SI, Vargová R, Hardin KR, Turn RE, Devi S, Linnert J, Wolfrum U, Caspary T, Eliáš M, Kahn RA. Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E. Mol Biol Cell 2022; 33:ar33. [PMID: 35196065 PMCID: PMC9250359 DOI: 10.1091/mbc.e21-10-0509-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
The ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogues in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in mouse embryonic fibroblasts (MEFs) results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 knockout (KO) in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accumulate at the Golgi in Arl16 KO lines, while other intraflagellar transport (IFT) proteins do not, suggesting a specific defect in traffic from Golgi to cilia. We propose that ARL16 regulates a Golgi-cilia traffic pathway and is required specifically in the export of IFT140 and INPP5E from the Golgi.
Collapse
Affiliation(s)
- Skylar I. Dewees
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, CZ-710 00, Ostrava, Czech Republic
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94305-5124
| | - Saroja Devi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joshua Linnert
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, CZ-710 00, Ostrava, Czech Republic
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
42
|
Huang M, Kong X, Tang Z, Lin Z, He R, Cao M, Zhang X. Cell cycle arrest induced by trichoplein depletion is independent of cilia assembly. J Cell Physiol 2022; 237:2703-2712. [PMID: 35147977 DOI: 10.1002/jcp.30693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Cilia assembly and centriole duplication are closely coordinated with cell cycle progression, and inhibition of cilia disassembly impedes cell cycle progression. The centrosomal protein trichoplein (TCHP) has been shown to promote cell cycle progression in the G1 -S phase by disassembling cilia. In this study, we showed that deletion of TCHP not only prevented the progression to the S phase but also resulted in cell cycle exit and entrance into G0 phase. Surprisingly, we found that loss of TCHP-induced G0 arrest could not be reversed by blocking the assembly of cilia. In cells without IFT20 or CEP164, two genes encoding key factors for ciliogenesis, depletion of TCHP still led to G0 arrest. Mechanistically, we also found that TCHP depletion-induced cell cycle arrest was not mediated through a centrosome surveillance mechanism, but inhibition of Rb or concomitant inhibition of both Rb and p53 signaling pathways was required to reverse the cell cycle phenotype. In conclusion, our study provides new insights into the function of TCHP in cell cycle progression.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Turn RE, Hu Y, Dewees SI, Devi N, East MP, Hardin KR, Khatib T, Linnert J, Wolfrum U, Lim MJ, Casanova JE, Caspary T, Kahn RA. The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic. Mol Biol Cell 2022; 33:ar13. [PMID: 34818063 PMCID: PMC9236152 DOI: 10.1091/mbc.e21-09-0443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/11/2022] Open
Abstract
ELMODs are a family of three mammalian paralogues that display GTPase-activating protein (GAP) activity toward a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogues ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing the determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.
Collapse
Affiliation(s)
- Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94305
| | - Yihan Hu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Skylar I. Dewees
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Narra Devi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Michael P. East
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Tala Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Joshua Linnert
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Michael J. Lim
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
44
|
Arjona M, Goshayeshi A, Rodriguez-Mateo C, Brett JO, Both P, Ishak H, Rando TA. Tubastatin A maintains adult skeletal muscle stem cells in a quiescent state ex vivo and improves their engraftment ability in vivo. Stem Cell Reports 2022; 17:82-95. [PMID: 35021050 PMCID: PMC8758944 DOI: 10.1016/j.stemcr.2021.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.
Collapse
Affiliation(s)
- Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Rodriguez-Mateo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather Ishak
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
45
|
Quidwai T, Wang J, Hall EA, Petriman NA, Leng W, Kiesel P, Wells JN, Murphy LC, Keighren MA, Marsh JA, Lorentzen E, Pigino G, Mill P. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 2021; 10:e69786. [PMID: 34734804 PMCID: PMC8754431 DOI: 10.7554/elife.69786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Collapse
Affiliation(s)
- Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Human TechnopoleMilanItaly
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
46
|
Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells. Proc Natl Acad Sci U S A 2021; 118:2021942118. [PMID: 33753495 DOI: 10.1073/pnas.2021942118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.
Collapse
|
47
|
Cassioli C, Onnis A, Finetti F, Capitani N, Brunetti J, Compeer EB, Niederlova V, Stepanek O, Dustin ML, Baldari CT. The Bardet-Biedl syndrome complex component BBS1 controls T cell polarity during immune synapse assembly. J Cell Sci 2021; 134:jcs258462. [PMID: 34423835 PMCID: PMC7613584 DOI: 10.1242/jcs.258462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet-Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Veronika Niederlova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
48
|
Coutinho JVP, Rosa-Fernandes L, Mule SN, de Oliveira GS, Manchola NC, Santiago VF, Colli W, Wrenger C, Alves MJM, Palmisano G. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages. J Proteomics 2021; 248:104339. [PMID: 34352427 DOI: 10.1016/j.jprot.2021.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a flagellate protozoa being the etiological agent of Chagas disease, a neglected tropical disease, which still poses a public health problem worldwide. The intricate molecular changes during T. cruzi-host interaction have been explored using different largescale omics techniques. However, protein stability is largely unknown. Thermal proteome profiling (TPP) methodology has the potential to characterize proteome-wide stability highlighting key proteins during T. cruzi infection and life stage transition from the invertebrate to the mammalian host. In the present work, T. cruzi epimastigotes and trypomastigotes cell lysates were subjected to TPP workflow and analyzed by quantitative large-scale mass spectrometry-based proteomics to fit a melting profile for each protein. A total of 2884 proteins were identified and associated to 1741 melting curves being 1370 in trypomastigotes (TmAVG 53.53 °C) and 1279 in epimastigotes (TmAVG 50.89 °C). A total of 453 proteins were identified with statistically different melting profiles between the two life stages. Proteins associated to pathogenesis and intracellular transport had regulated melting temperatures. Membrane and glycosylated proteins had a higher average Tm in trypomastigotes compared to epimastigotes. This study represents the first large-scale comparison of parasite protein stability between life stages. SIGNIFICANCE: Trypanosoma cruzi, a unicellular flagellate parasite, is the etiological agent of Chagas disease, endemic in South America and affecting more that 7 million people worldwide. There is an intense research to identify novel chemotherapeutic and diagnostic targets of Chagas disease. Proteomic approaches have helped in elucidating the quantitative proteome and PTMs changes of T. cruzi during life cycle transition and upon different biotic and abiotic stimuli. However, a comprehensive knowledge of the protein-protein interaction and protein conformation is still missing. In order to fill this gap, this manuscript elucidates the T. cruzi Y strain proteome-wide thermal stability map in the epimastigote and trypomastigote life stages. Comparison between life stages showed a higher average melting temperature stability for trypomastigotes than epimastigotes indicating a host temperature adaptation. Both presented a selective thermal stability shift for cellular compartments, molecular functions and biological processes based on the T. cruzi life stage. Membrane and glycosylated proteins presented a higher thermal stability in trypomastigotes when compared to the epimastigotes.
Collapse
Affiliation(s)
- Joao V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
49
|
Abstract
Autophagy is a major intracellular degradation system and plays important roles in various physiological processes such as metabolic adaptation and intracellular homeostasis. It degrades intracellular components both randomly and selectively. Autophagic activity is tightly regulated primarily by nutrient availability, but also by other extracellular and intracellular signals. Growing evidence suggests that there are multiple links between autophagy and the primary cilium. The primary cilium is an organelle present on the cell surface and is important for keeping cellular integrity by transducing extracellular stimuli inside the cell. Recent studies have revealed that autophagy selectively degrades the ciliogenesis inhibitory proteins OFD1 and MYH9, promoting ciliogenesis. Conversely, autophagy also inhibits ciliogenesis under growth conditions. The primary cilium can also regulate autophagic activity. These findings suggest that the relationship between autophagy and the primary cilia is bidirectional, and that both are important for maintaining the normal function of various organs.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Alhassen W, Chen S, Vawter M, Robbins BK, Nguyen H, Myint TN, Saito Y, Schulmann A, Nauli SM, Civelli O, Baldi P, Alachkar A. Patterns of cilia gene dysregulations in major psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110255. [PMID: 33508383 PMCID: PMC9121176 DOI: 10.1016/j.pnpbp.2021.110255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Primary cilia function as cells' antennas to detect and transduce external stimuli and play crucial roles in cell signaling and communication. The vast majority of cilia genes that are causally linked with ciliopathies are also associated with neurological deficits, such as cognitive impairments. Yet, the roles of cilia dysfunctions in the pathogenesis of psychiatric disorders have not been studied. Our aim is to identify patterns of cilia gene dysregulation in the four major psychiatric disorders: schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BP), and major depressive disorder (MDD). For this purpose, we acquired differentially expressed genes (DEGs) from the largest and most recent publicly available databases. We found that 42%, 24%, 17%, and 15% of brain-expressed cilia genes were significantly differentially expressed in SCZ, ASD, BP, and MDD, respectively. Several genes exhibited cross-disorder overlap, suggesting that typical cilia signaling pathways' dysfunctions determine susceptibility to more than one psychiatric disorder or may partially underlie their pathophysiology. Our study revealed that genes encoding proteins of almost all sub-cilia structural and functional compartments were dysregulated in the four psychiatric disorders. Strikingly, the genes of 75% of cilia GPCRs and 50% of the transition zone proteins were differentially expressed in SCZ. The present study is the first to draw associations between cilia and major psychiatric disorders, and is the first step toward understanding the role that cilia components play in their pathophysiological processes, which may lead to novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Wedad Alhassen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA 92697, USA
| | - Marquis Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, USA
| | - Brianna Kay Robbins
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Henry Nguyen
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Thant Nyi Myint
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences for Life, Hiroshima University, Japan
| | - Anton Schulmann
- Human Genetics Branch, National Institute of Mental Health, BETHESDA MD 20814, USA
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Health Science Campus, Chapman University, Irvine, California 92618, USA
| | - Olivier Civelli
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, CA 92697, USA,Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA 92697, USA
| | - Amal Alachkar
- Departments of Pharmaceutical Sciences, School of Pharmacy, University of California-, Irvine, CA 92697, USA; Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|