1
|
Chen Y, Briant K, Camus MD, Brodsky FM. Clathrin light chains CLCa and CLCb have non-redundant roles in epithelial lumen formation. Life Sci Alliance 2024; 7:e202302175. [PMID: 37923360 PMCID: PMC10624596 DOI: 10.26508/lsa.202302175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
To identify functional differences between vertebrate clathrin light chains (CLCa or CLCb), phenotypes of mice lacking genes encoding either isoform were characterised. Mice without CLCa displayed 50% neonatal mortality, reduced body weight, reduced fertility, and ∼40% of aged females developed uterine pyometra. Mice lacking CLCb displayed a less severe weight reduction phenotype compared with those lacking CLCa and had no survival or reproductive system defects. Analysis of female mice lacking CLCa that developed pyometra revealed ectopic expression of epithelial differentiation markers (FOXA2 and K14) and a reduced number of endometrial glands, indicating defects in the lumenal epithelium. Defects in lumen formation and polarity of epithelial cysts derived from uterine or gut cell lines were also observed when either CLCa or CLCb were depleted, with more severe effects from CLCa depletion. In cysts, the CLC isoforms had different distributions relative to each other, although they converge in tissue. Together, these findings suggest differential and cooperative roles for CLC isoforms in epithelial lumen formation, with a dominant function for CLCa.
Collapse
Affiliation(s)
- Yu Chen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, UK
| | - Kit Briant
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, UK
| | - Marine D Camus
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, UK
| | - Frances M Brodsky
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, UK
| |
Collapse
|
2
|
Garg M, Roy D, Rajyaguru PI. Low complexity RGG-motif containing proteins Scd6 and Psp2 act as suppressors of clathrin heavy chain deficiency. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119327. [PMID: 35901970 DOI: 10.1016/j.bbamcr.2022.119327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Clathrin, made up of the heavy- and light-chains, constitutes one of the most abundant proteins involved in intracellular protein trafficking and endocytosis. YPR129W, which encodes RGG-motif containing translation repressor was identified as a part of the multi-gene construct (SCD6) that suppressed clathrin deficiency. However, the contribution of YPR129W alone in suppressing clathrin deficiency has not been documented. This study identifies YPR129W as a necessary and sufficient gene in a multi-gene construct SCD6 that suppresses clathrin deficiency. Importantly, we also identify cytoplasmic RGG-motif protein encoding gene PSP2 as another novel suppressor of clathrin deficiency. Detailed domain analysis of the two suppressors reveals that the RGG-motif of both Scd6 and Psp2 is important for suppressing clathrin deficiency. Interestingly, the endocytosis function of clathrin heavy chain assayed by internalization of GFP-Snc1 and α-factor secretion activity are not complemented by either Scd6 or Psp2. We further observe that inhibition of TORC1 compromises the suppression activity of both SCD6 and PSP2 to different extent, suggesting that two suppressors are differentially regulated. Scd6 granules increased based on its RGG-motif upon Chc1 depletion. Strikingly, Psp2 overexpression increased the abundance of ubiquitin-conjugated proteins in Chc1 depleted cells in its RGG-motif dependent manner and also decreased the accumulation of GFP-Atg8 foci. Overall based on our results using SCD6 and PSP2, we identify a novel role of RGG-motif containing proteins in suppressing clathrin deficiency. Since both the suppressors are RNA-binding proteins, this study opens an exciting avenue for exploring the connection between clathrin function and post-transcriptional gene control processes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Debadrita Roy
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India.
| |
Collapse
|
3
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Identification of Suppressor of Clathrin Deficiency-1 ( SCD1) and Its Connection to Clathrin-Mediated Endocytosis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:867-877. [PMID: 30679249 PMCID: PMC6404604 DOI: 10.1534/g3.118.200782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clathrin is a major coat protein involved in vesicle formation during endocytosis and transport in the endosomal/trans Golgi system. Clathrin is required for normal growth of yeast (Saccharomyces cerevisiae) and in some genetic backgrounds deletion of the clathrin heavy chain gene (CHC1) is lethal. Our lab defined a locus referred to as “suppressor of clathrin deficiency” (SCD1). In the presence of the scd1-v allele (“v” – viable), yeast cells lacking clathrin heavy chain survive but grow slowly, are morphologically abnormal and have many membrane trafficking defects. In the presence of scd1-i (“i”- inviable), chc1∆ causes lethality. As a strategy to identify SCD1, we used pooled linkage analysis and whole genome sequencing. Here, we report that PAL2 (YHR097C) is the SCD1 locus. pal2∆ is synthetic lethal with chc1∆; whereas a deletion of its paralog, PAL1, is not synthetic lethal with clathrin deficiency. Like Pal1, Pal2 has two NPF motifs that are potential binding sites for EH domain proteins such as the early endocytic factor Ede1, and Pal2 associates with Ede1. Also, GFP-tagged Pal2p localizes to cortical patches containing other immobile phase endocytic coat factors. Overall, our data show that PAL2 is the SCD1 locus and the Pal2 protein has characteristics of an early factor involved in clathrin-mediated endocytosis.
Collapse
|
5
|
Roy D, Rajyaguru PI. Suppressor of clathrin deficiency (Scd6)-An emerging RGG-motif translation repressor. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1479. [DOI: 10.1002/wrna.1479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Debadrita Roy
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | | |
Collapse
|
6
|
Wu S, Majeed SR, Evans TM, Camus MD, Wong NML, Schollmeier Y, Park M, Muppidi JR, Reboldi A, Parham P, Cyster JG, Brodsky FM. Clathrin light chains' role in selective endocytosis influences antibody isotype switching. Proc Natl Acad Sci U S A 2016; 113:9816-21. [PMID: 27540116 PMCID: PMC5024586 DOI: 10.1073/pnas.1611189113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin's role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cerebral Cortex/cytology
- Cerebral Cortex/immunology
- Clathrin Light Chains/genetics
- Clathrin Light Chains/immunology
- Endocytosis/immunology
- Gene Deletion
- Gene Expression Regulation
- Humans
- Immunoglobulin A/biosynthesis
- Immunoglobulin A/genetics
- Immunoglobulin Class Switching
- Liver/cytology
- Liver/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/cytology
- Myocardium/immunology
- Organ Specificity
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/immunology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/immunology
- Receptors, Transforming Growth Factor beta/agonists
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Shuang Wu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Sophia R Majeed
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Timothy M Evans
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Marine D Camus
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143; Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Nicole M L Wong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Yvette Schollmeier
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Minjong Park
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143
| | - Jagan R Muppidi
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Andrea Reboldi
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143;
| | - Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; The G. W. Hooper Foundation, University of California, San Francisco, CA 94143; Division of Biosciences, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
7
|
Boscheron C, Caudron F, Loeillet S, Peloso C, Mugnier M, Kurzawa L, Nicolas A, Denarier E, Aubry L, Andrieux A. A role for the yeast CLIP170 ortholog, the plus-end-tracking protein Bik1, and the Rho1 GTPase in Snc1 trafficking. J Cell Sci 2016; 129:3332-41. [PMID: 27466378 PMCID: PMC5047699 DOI: 10.1242/jcs.190330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 02/04/2023] Open
Abstract
The diversity of microtubule functions is dependent on the status of tubulin C-termini. To address the physiological role of the C-terminal aromatic residue of α-tubulin, a tub1-Glu yeast strain expressing an α-tubulin devoid of its C-terminal amino acid was used to perform a genome-wide-lethality screen. The identified synthetic lethal genes suggested links with endocytosis and related processes. In the tub1-Glu strain, the routing of the v-SNARE Snc1 was strongly impaired, with a loss of its polarized distribution in the bud, and Abp1, an actin patch or endocytic marker, developed comet-tail structures. Snc1 trafficking required dynamic microtubules but not dynein and kinesin motors. Interestingly, deletion of the microtubule plus-end-tracking protein Bik1 (a CLIP170 ortholog), which is preferentially recruited to the C-terminal residue of α-tubulin, similarly resulted in Snc1 trafficking defects. Finally, constitutively active Rho1 rescued both Bik1 localization at the microtubule plus-ends in tub1-Glu strain and a correct Snc1 trafficking in a Bik1-dependent manner. Our results provide the first evidence for a role of microtubule plus-ends in membrane cargo trafficking in yeast, through Rho1- and Bik1-dependent mechanisms, and highlight the importance of the C-terminal α-tubulin amino acid in this process.
Collapse
Affiliation(s)
- Cécile Boscheron
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | - Fabrice Caudron
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Sophie Loeillet
- Institut Curie, Recombinaison et Instabilité Génétique, CNRS UMR3244, Université Pierre et Marie Curie, Paris Cedex 75048, France
| | - Charlotte Peloso
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | - Marine Mugnier
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | | | - Alain Nicolas
- Institut Curie, Recombinaison et Instabilité Génétique, CNRS UMR3244, Université Pierre et Marie Curie, Paris Cedex 75048, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| | - Laurence Aubry
- Univ. Grenoble Alpes, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France Inserm, U1038, Grenoble F-38000, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Grenoble F-38000, France Inserm, U1216, Grenoble F-38000, France CEA, BIG, Grenoble F-38000, France
| |
Collapse
|
8
|
Kukulski W, Picco A, Specht T, Briggs JA, Kaksonen M. Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. eLife 2016; 5. [PMID: 27341079 PMCID: PMC4945154 DOI: 10.7554/elife.16036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/23/2016] [Indexed: 01/18/2023] Open
Abstract
In a previous paper (Picco et al., 2015), the dynamic architecture of the protein machinery during clathrin-mediated endocytosis was visualized using a new live imaging and particle tracking method. Here, by combining this approach with correlative light and electron microscopy, we address the role of clathrin in this process. During endocytosis, clathrin forms a cage-like coat around the membrane and associated protein components. There is growing evidence that clathrin does not determine the membrane morphology of the invagination but rather modulates the progression of endocytosis. We investigate how the deletion of clathrin heavy chain impairs the dynamics and the morphology of the endocytic membrane in budding yeast. Our results show that clathrin is not required for elongating or shaping the endocytic membrane invagination. Instead, we find that clathrin contributes to the regularity of vesicle scission and thereby to controlling vesicle size. DOI:http://dx.doi.org/10.7554/eLife.16036.001
Collapse
Affiliation(s)
- Wanda Kukulski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrea Picco
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Tanja Specht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - John Ag Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marko Kaksonen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Boettner DR, Segarra VA, Moorthy BT, de León N, Creagh J, Collette JR, Malhotra A, Lemmon SK. Creating a chimeric clathrin heavy chain that functions independently of yeast clathrin light chain. Traffic 2016; 17:754-68. [PMID: 27062026 DOI: 10.1111/tra.12401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/20/2023]
Abstract
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans-Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc-YR) , which fused the N-terminus of yeast CHC (1-1312) to the rat CHC residues 1318-1675, including the CHC trimerization region. The novel CHC-YR allele encoded a stable protein that fractionated as a trimer. CHC-YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC-YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc-YR-GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1-GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC-YR, indicating that Chc-YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc-YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non-trimerization roles for the clathrin LC.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current address: Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Verónica A Segarra
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current Address: Department of Biology, High Point University, High Point, NC, USA
| | - Balaji T Moorthy
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Nagore de León
- Departamento de Microbiologıa y Genetica/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - John Creagh
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - John R Collette
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current address: Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Sandra K Lemmon
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Increased expression of endocytosis-Related proteins in rat hippocampus following 10-day electroconvulsive seizure treatment. Neurosci Lett 2016; 624:85-91. [PMID: 27177725 DOI: 10.1016/j.neulet.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022]
Abstract
Although electroconvulsive therapy (ECT) is clinically used for severe depression and drug-resistant Parkinson's disease, its exact biological background and mechanism have not yet been fully elucidated. Two potential explanations have been presented so far to explain the increased neuroplastic and resilient profiles of multiple ECT administrations. One is the alteration of central neurotransmitter receptor densities and the other is the expressional upregulation of brain derived neurotrophic factor in various brain regions with enhanced hippocampal neurogenesis and mossy fiber sprouting. In the present report, western blot analyses revealed significantly upregulated expression of various endocytosis-related proteins following 10-day electroconvulsive seizure (ECS) treatment in rat hippocampal homogenates and hippocampal lipid raft fractions extracted using an ultracentrifugation procedure. Upregulated proteins included endocytosis-related scaffolding proteins (caveolin-1, flotillin-1, and heavy and light chains of clathrin) and small GTPases (Rab5, Rab7, Rab11, and Rab4) specifically expressed on various types of endosomes. Two scaffolding proteins, caveolin-1 and flotillin-1, were also increased in the lipid raft fraction. Together with our previous finding of increased autophagy-related proteins in the hippocampal region, the present results suggest membrane trafficking machinery is enhanced following 10-day ECS treatment. We consider that the membrane trafficking machinery that transports functional proteins in the neuronal cells and from or into the synaptic membranes is one of the new candidates supporting the cellular and behavioral neuroplastic profiles of ECS treatments in animal experiments and ECT administrations in clinical settings.
Collapse
|
11
|
Ybe JA. Novel clathrin activity: developments in health and disease. Biomol Concepts 2015; 5:175-82. [PMID: 25372751 DOI: 10.1515/bmc-2013-0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
Clathrin self-assembles into a coat around vesicles filled with cargo such as nutrients, hormones, and proteins destined for degradation. Recent developments indicate clathrin is not a specialist, but is involved in different processes relevant to health and disease. Clathrin is used to strengthen centrosomes and mitotic spindles essential for chromosome segregation in cell division. In Wnt signaling, clathrin is a component of signalosomes on the plasma membrane needed to produce functional Wnt receptors. In glucose metabolism, a muscle-specific isoform, CHC22 clathrin, is key to the formation of storage compartments for GLUT4 receptor, and CHC22 dysfunction has been tied to type 2 diabetes. The activity of clathrin to self-assemble and to work with huntingtin-interacting proteins to organize actin is exploited by Listeria and enteropathic Escherichia coli in their infection pathways. Finally, there is an important connection between clathrin and human malignancies. Clathrin is argued to help transactivate tumor suppressor p53 that controls specific genes in DNA repair and apoptosis. However, this is debatable because trimeric clathrin must be made monomeric. To get insight on how the clathrin structure could be converted, the crystal structure of the trimerization domain is used in the development of the detrimerization switch hypothesis. This novel hypothesis will be relevant if connections continue to be found between CHC17 and p53 anti-cancer activity in the nucleus.
Collapse
|
12
|
Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 2014; 6:a016725. [PMID: 24789820 DOI: 10.1101/cshperspect.a016725] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation.
Collapse
Affiliation(s)
- Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School/PCMM, Boston, Massachusetts 02115
| | | | | |
Collapse
|
13
|
de León N, Sharifmoghadam MR, Hoya M, Curto MÁ, Doncel C, Valdivieso MH. Regulation of cell wall synthesis by the clathrin light chain is essential for viability in Schizosaccharomyces pombe. PLoS One 2013; 8:e71510. [PMID: 23977061 PMCID: PMC3747244 DOI: 10.1371/journal.pone.0071510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The regulation of cell wall synthesis by the clathrin light chain has been addressed. Schizosaccharomyces pombe clc1Δ mutant was inviable in the absence of osmotic stabilization; when grown in sorbitol-supplemented medium clc1Δ cells grew slowly, formed aggregates, and had strong defects in morphology. Additionally, clc1Δ cells exhibited an altered cell wall composition. A mutant that allowed modulating the amount of Clc1p was created to analyze in more detail the dependence of cell wall synthesis on clathrin. A 40% reduction in the amount of Clc1p did not affect acid phosphatase secretion and bulk lipid internalization. Under these conditions, β(1,3)glucan synthase activity and cell wall synthesis were reduced. Also, the delivery of glucan synthases to the cell surface, and the secretion of the Eng1p glucanase were defective. These results suggest that the defects in the cell wall observed in the conditional mutant were due to a defective secretion of enzymes involved in the synthesis/remodelling of this structure, rather than to their endocytosis. Our results show that a reduction in the amount of clathrin that has minor effects on general vesicle trafficking has a strong impact on cell wall synthesis, and suggest that this is the reason for the lethality of clc1Δ cells in the absence of osmotic stabilization.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | | | - Marta Hoya
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - M.-Ángeles Curto
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
- * E-mail:
| |
Collapse
|
14
|
Structural disorder provides increased adaptability for vesicle trafficking pathways. PLoS Comput Biol 2013; 9:e1003144. [PMID: 23874186 PMCID: PMC3715437 DOI: 10.1371/journal.pcbi.1003144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes. Vesicle trafficking systems are fundamental among cellular transport mechanisms; various cargo molecules are transported via different coated vesicles to their specific destinations in every eukaryotic cell. Clathrin-coated vesicles mediate endocytosis and the late secretory route, while the COat Protein I and II (COPI and COPII) vesicle trafficking routes are responsible for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar basic principles, regulatory mechanisms and structural features of the three systems, their molecular machinery, functions, and evolutionary characteristics vastly differ. We investigated and compared these three routes and their basic functional protein groups from the structural disorder point of view, since disordered protein regions could provide a broad variety of functional and evolutionary advantages for them. We found that structurally disordered protein segments are most abundant in the clathrin system, which might explain the observed inherent plasticity, increased adaptability and exceptional robustness of this route. We support our hypothesis by two analyses on protein multi-functionality and tissue specificity, both being indicative of evolutionary adaptability. Clathrin pathway proteins stand out in both measures, with their disordered regions being largely responsible for their outstanding capabilities.
Collapse
|
15
|
Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek SY, Pan J. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. THE PLANT CELL 2013; 25:499-516. [PMID: 23424247 PMCID: PMC3608774 DOI: 10.1105/tpc.112.108373] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/31/2013] [Indexed: 05/18/2023]
Abstract
Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Xu Yan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Qian Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Wei Fu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Jianzhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
- Address correspondence to
| |
Collapse
|
16
|
Ybe JA, Fontaine SN, Stone T, Nix J, Lin X, Mishra S. Nuclear localization of clathrin involves a labile helix outside the trimerization domain. FEBS Lett 2012. [PMID: 23178717 DOI: 10.1016/j.febslet.2012.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clathrin is a trimeric protein involved in receptor-mediated-endocytosis, but can function as a non-trimer outside of endocytosis. We have discovered that the subcellular distribution of a clathrin cysteine mutant we previously studied is altered and a proportion is also localized to nuclear spaces. MALS shows C1573A hub is a mixture of trimer-like and detrimerized molecules. The X-ray structure of the trimerization domain reveals that without light chains, a helix harboring cysteine-1573 is reoriented. We propose clathrin has a detrimerization switch, which suggests clathrin topology can be altered naturally for new functions.
Collapse
Affiliation(s)
- Joel A Ybe
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, 212 S. Hawthorne Drive, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Bonazzi M, Kühbacher A, Toledo-Arana A, Mallet A, Vasudevan L, Pizarro-Cerdá J, Brodsky FM, Cossart P. A common clathrin-mediated machinery co-ordinates cell-cell adhesion and bacterial internalization. Traffic 2012; 13:1653-66. [PMID: 22984946 DOI: 10.1111/tra.12009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E-cadherin, hijack the host adherens junction (AJ) machinery and invade non-phagocytic cells by a clathrin-dependent mechanism. Here, we investigate a potential role for clathrin in cell-cell adhesion. We observed that the initial steps of AJ formation trigger the phosphorylation of clathrin, and its transient localization at forming cell-cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of AJs. Using an InlA/E-cadherin chimera, we show that adherent cells expressing the chimera form AJs with cells expressing E-cadherin. We demonstrate that non-adherent cells expressing the InlA chimera, as bacteria, can be internalized by E-cadherin-expressing adherent cells. Together these results reveal that a common clathrin-mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Idrissi FZ, Blasco A, Espinal A, Geli MI. Ultrastructural dynamics of proteins involved in endocytic budding. Proc Natl Acad Sci U S A 2012; 109:E2587-94. [PMID: 22949647 PMCID: PMC3465411 DOI: 10.1073/pnas.1202789109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence live-cell imaging has temporally resolved the conserved choreography of more than 30 proteins involved in clathrin and actin-mediated endocytic budding from the plasma membrane. However, the resolution of these studies is insufficient to unveil how the endocytic machinery actually drives membrane deformation in vivo. In this study, we use quantitative immuno-EM to introduce the temporal dimension to the ultrastructural analysis of membrane budding and define changes in the topography of the lipid bilayer coupled to the dynamics of endocytic proteins with unprecedented spatiotemporal resolution. Using this approach, we frame the emergence of membrane curvature with respect to the recruitment of endocytic factors and show that constriction of the invaginations correlates with translocation of membrane-sculpting proteins. Furthermore, we show that initial bending of the plasma membrane is independent of actin and clathrin polymerization and precedes building of an actin cap branched by the Arp2/3 complex. Finally, our data indicate that constriction and additional elongation of the endocytic profiles require the mechanochemical activity of the myosins-I. Altogether, this work provides major insights into the molecular mechanisms driving membrane deformation in a cellular context.
Collapse
Affiliation(s)
- Fatima-Zahra Idrissi
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (CSIC), 08028 Barcelona, Spain; and
| | - Anabel Blasco
- Servei d´Estadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Espinal
- Servei d´Estadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María Isabel Geli
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (CSIC), 08028 Barcelona, Spain; and
| |
Collapse
|
19
|
Abstract
Clathrin-mediated endocytosis (CME) is the major pathway for internalization of membrane proteins from the cell surface. Half a century of studies have uncovered tremendous insights into how a clathrin-coated vesicle is formed. More recently, the advent of live-cell imaging has provided a dynamic view of this process. As CME is highly conserved from yeast to humans, budding yeast provides an evolutionary template for this process and has been a valuable system for dissecting the underlying molecular mechanisms. In this review we trace the formation of a clathrin-coated vesicle from initiation to uncoating, focusing on key findings from the yeast system.
Collapse
|
20
|
Carroll SY, Stimpson HEM, Weinberg J, Toret CP, Sun Y, Drubin DG. Analysis of yeast endocytic site formation and maturation through a regulatory transition point. Mol Biol Cell 2011; 23:657-68. [PMID: 22190733 PMCID: PMC3279393 DOI: 10.1091/mbc.e11-02-0108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ETOC: During yeast endocytic site formation, Ede1p (yeast Eps15), but not clathrin light chain, is important for the recruitment of most other early-arriving proteins to endocytic sites. Cargo and clathrin light chain may play roles in regulating the transition of endocytic sites out of the “intermediate coat” stage of endocytosis. The earliest stages of endocytic site formation and the regulation of endocytic site maturation are not well understood. Here we analyzed the order in which the earliest proteins are detectable at endocytic sites in budding yeast and found that an uncharacterized protein, Pal1p/Ydr348cp, is also present at the initial stages of endocytosis. Because Ede1p (homologue of Eps15) and clathrin are the early-arriving proteins most important for cargo uptake, their roles during the early stages of endocytosis were examined more comprehensively. Ede1p is necessary for efficient recruitment of most early-arriving proteins, but not for the recruitment of the adaptor protein Yap1802p, to endocytic sites. The early-arriving proteins, as well as the later-arriving proteins Sla2p and Ent1/2p (homologues of Hip1R and epsins), were found to have longer lifetimes in CLC1-knockout yeast, which indicates that clathrin light chain facilitates the transition from the intermediate to late coat stages. Cargo also arrives during the early stages of endocytosis, and therefore its effect on endocytic machinery dynamics was investigated. Our results are consistent with a role for cargo in regulating the transition of endocytic sites from the early stages of formation to the late stages during which vesicle formation occurs.
Collapse
Affiliation(s)
- Susheela Y Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
21
|
Weinberg J, Drubin DG. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 2011; 22:1-13. [PMID: 22018597 DOI: 10.1016/j.tcb.2011.09.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 02/04/2023]
Abstract
Clathrin-mediated endocytosis in the budding yeast Saccharomyces cerevisiae involves the ordered recruitment, activity and disassembly of nearly 60 proteins at distinct sites on the plasma membrane. Two-color live-cell fluorescence microscopy has proven to be invaluable for in vivo analysis of endocytic proteins: identifying new components, determining the order of protein arrival and dissociation, and revealing even very subtle mutant phenotypes. Yeast genetics and functional genomics facilitate identification of complex interaction networks between endocytic proteins and their regulators. Quantitative datasets produced by these various analyses have made theoretical modeling possible. Here, we discuss recent findings on budding yeast endocytosis that have advanced our knowledge of how -60 endocytic proteins are recruited, perform their functions, are regulated by lipid and protein modifications, and are disassembled, all with remarkable regularity.
Collapse
Affiliation(s)
- Jasper Weinberg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
22
|
Boettner DR, Friesen H, Andrews B, Lemmon SK. Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol Biol Cell 2011; 22:3699-714. [PMID: 21849475 PMCID: PMC3183023 DOI: 10.1091/mbc.e11-07-0628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clathrin light-chain (LC) N-terminal region interacts with the Sla2/Hip1/Hip1R family of ANTH/talin–like proteins. In vivo evidence shows that LC–Sla2 binding is important for releasing Sla2 attachments to actin in the endocytic coat. Loss of this regulation can suppress major actin defects during endocytosis. The role of clathrin light chain (CLC) in clathrin-mediated endocytosis is not completely understood. Previous studies showed that the CLC N-terminus (CLC-NT) binds the Hip1/Hip1R/Sla2 family of membrane/actin–binding factors and that overexpression of the CLC-NT in yeast suppresses endocytic defects of clathrin heavy-chain mutants. To elucidate the mechanistic basis for this suppression, we performed synthetic genetic array analysis with a clathrin CLC-NT deletion mutation (clc1-Δ19-76). clc1-Δ19-76 suppressed the internalization defects of null mutations in three late endocytic factors: amphiphysins (rvs161 and rvs167) and verprolin (vrp1). In actin sedimentation assays, CLC binding to Sla2 inhibited Sla2 interaction with F-actin. Furthermore, clc1-Δ19-76 suppression of the rvs and vrp phenotypes required the Sla2 actin-binding talin-Hip1/R/Sla2 actin-tethering C-terminal homology domain, suggesting that clc1-Δ19-76 promotes internalization by prolonging actin engagement by Sla2. We propose that CLC directs endocytic progression by pruning the Sla2-actin attachments in the clathrin lattice, providing direction for membrane internalization.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
23
|
Goulart L, Rosa e Silva LK, Chiapello L, Silveira C, Crestani J, Masih D, Vainstein MH. Cryptococcus neoformans and Cryptococcus gattii genes preferentially expressed during rat macrophage infection. Med Mycol 2011; 48:932-41. [PMID: 20302549 DOI: 10.3109/13693781003677494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are encapsulated yeast agents of cryptococcosis and facultative intracellular pathogens. The interaction of these yeasts with macrophages is essential for containing the infection. However, Cryptococcus spp. overcome this initial host defense barrier using a unique pathogenic strategy involving intracellular replication and cytoplasmic accumulation of polysaccharide-containing vesicles. Here, we employed representational difference analysis (RDA) to identify C. neoformans and C. gattii genes differentially expressed during intracellular growth in rat peritoneal macrophages. The upregulated transcripts of C. neoformans during macrophage interaction were related to ATP-binding cassette (ABC) transporters, intra-golgi transport, chaperone activity, ribosomal maintenance, NAD metabolism, histone methylation, stress response, and monosaccharide metabolism. In contrast, with C. gattii, upregulated genes were associated with cell growth, aerobic respiration, protein binding, microtubule nucleation, monosaccharides and nitrogen metabolism, inositol or phosphatidylinositol phosphatase activity, cellular signaling, and stress response. Our findings reveal new genes that may be necessary for the intracellular parasitism of C. neoformans and C. gattii.
Collapse
Affiliation(s)
- Letícia Goulart
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Shaw BD, Chung DW, Wang CL, Quintanilla LA, Upadhyay S. A role for endocytic recycling in hyphal growth. Fungal Biol 2011; 115:541-6. [PMID: 21640317 DOI: 10.1016/j.funbio.2011.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/24/2022]
Abstract
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.
Collapse
Affiliation(s)
- Brian D Shaw
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 2132, USA.
| | | | | | | | | |
Collapse
|
25
|
Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol Biol Cell 2010; 21:2894-904. [PMID: 20587778 PMCID: PMC2921122 DOI: 10.1091/mbc.e10-02-0157] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report time courses of the accumulation and loss of 16 fluorescent fusion proteins at sites of clathrin-mediated endocytosis in fission yeast. Mathematical modeling shows that dendritic nucleation hypothesis can account for the kinetics of actin assembly in vivo and disassembly requires actin filament severing along with depolymerization. We used quantitative confocal microscopy to measure the numbers of 16 proteins tagged with fluorescent proteins during assembly and disassembly of endocytic actin patches in fission yeast. The peak numbers of each molecule that accumulate in patches varied <30–50% between individual patches. The pathway begins with accumulation of 30–40 clathrin molecules, sufficient to build a hemisphere at the tip of a plasma membrane invagination. Thereafter precisely timed waves of proteins reach characteristic peak numbers: endocytic adaptor proteins (∼120 End4p and ∼230 Pan1p), activators of Arp2/3 complex (∼200 Wsp1p and ∼340 Myo1p) and ∼300 Arp2/3 complexes just ahead of a burst of actin assembly into short, capped and highly cross-linked filaments (∼7000 actins, ∼200 capping proteins, and ∼900 fimbrins). Coronin arrives last as all other components disperse upon patch internalization and movement over ∼10 s. Patch internalization occurs without recruitment of dynamins. Mathematical modeling, described in the accompanying paper (Berro et al., 2010, MBoC 21: 2803–2813), shows that the dendritic nucleation hypothesis can account for the time course of actin assembly into a branched network of several hundred filaments 100–200 nm long and that patch disassembly requires actin filament fragmentation in addition to depolymerization from the ends.
Collapse
Affiliation(s)
- Vladimir Sirotkin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
26
|
The Sla2p/HIP1/HIP1R family: similar structure, similar function in endocytosis? Biochem Soc Trans 2010; 38:187-91. [DOI: 10.1042/bst0380187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIP1 (huntingtin interacting protein 1) has two close relatives: HIP1R (HIP1-related) and yeast Sla2p. All three members of the family have a conserved domain structure, suggesting a common function. Over the past decade, a number of studies have characterized these proteins using a combination of biochemical, imaging, structural and genetic techniques. These studies provide valuable information on binding partners, structure and dynamics of HIP1/HIP1R/Sla2p. In general, all suggest a role in CME (clathrin-mediated endocytosis) for the three proteins, though some differences have emerged. In this mini-review we summarize the current views on the roles of these proteins, while emphasizing the unique attributes of each family member.
Collapse
|
27
|
Gottfried I, Ehrlich M, Ashery U. HIP1 exhibits an early recruitment and a late stage function in the maturation of coated pits. Cell Mol Life Sci 2009; 66:2897-911. [PMID: 19626275 PMCID: PMC11115706 DOI: 10.1007/s00018-009-0077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/12/2009] [Indexed: 11/26/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is an accessory protein of the clathrin-mediated endocytosis (CME) pathway, yet its precise role and the step at which it becomes involved are unclear. We employed live-cell imaging techniques to focus on the early steps of CME and characterize HIP1 dynamics. We show that HIP1 is highly colocalized with clathrin at the plasma membrane and shares similar dynamics with a subpopulation of clathrin assemblies. Employing transferrin receptor fused to pHluorin, we distinguished between open pits to which HIP1 localizes and newly internalized vesicles that are devoid of HIP1. Moreover, shRNA knockdown of clathrin compromised HIP1 membranal localization, unlike the reported behavior of Sla2p. HIP1 fragment, lacking its ANTH and Talin-like domains, inhibits internalization of transferrin, but retains colocalization with membranal clathrin assemblies. These data demonstrate HIP1's role in pits maturation and formation of the coated vesicle, and its strong dependence on clathrin for membranal localization.
Collapse
Affiliation(s)
- Irit Gottfried
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Uri Ashery
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
28
|
Two Distantly Spaced Basic Patches in the Flexible Domain of Huntingtin-Interacting Protein 1 (HIP1) Are Essential for the Binding of Clathrin Light Chain. Res Lett Biochem 2009; 2009:256124. [PMID: 22820750 PMCID: PMC3005887 DOI: 10.1155/2009/256124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 02/24/2009] [Indexed: 11/17/2022] Open
Abstract
The interaction between HIP family proteins (HIP1 and HIP12/1R) and clathrin is fundamental to endocytosis. We used circular dichroism (CD) to study the stability of an HIP1 subfragment (aa468-530) that is splayed open. CD thermal melts show HIP1 468-530 is only stable at low temperatures, but this HIP1 fragment contains a structural unit that does not melt out even at 83°C. We then created HIP1 mutants to probe our hypothesis that a short hydrophobic path in the opened region is the binding site for clathrin light chain. We found that the binding of hub/LCb was sensitive to mutating two distantly separated basic residues (K474 and K494). The basic patches marked by K474 and K494 are conserved in HIP12/1R. The lack of conservation in sla2p (S. cerevisiae), HIP1 from D. melanogaster, and HIP1 homolog ZK370.3 from C. elegans implies the binding of HIP1 and HIP1 homologs to clathrin light chain may be different in these organisms.
Collapse
|
29
|
Wilbur JD, Chen CY, Manalo V, Hwang PK, Fletterick RJ, Brodsky FM. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain. J Biol Chem 2008; 283:32870-9. [PMID: 18790740 DOI: 10.1074/jbc.m802863200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.
Collapse
Affiliation(s)
- Jeremy D Wilbur
- Graduate Program in Biophysics, University of California, San Francisco, California 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kasprowicz J, Kuenen S, Miskiewicz K, Habets RLP, Smitz L, Verstreken P. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. ACTA ACUST UNITED AC 2008; 182:1007-16. [PMID: 18762582 PMCID: PMC2528586 DOI: 10.1083/jcb.200804162] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle reformation depends on clathrin, an abundant protein that polymerizes around newly forming vesicles. However, how clathrin is involved in synaptic recycling in vivo remains unresolved. We test clathrin function during synaptic endocytosis using clathrin heavy chain (chc) mutants combined with chc photoinactivation to circumvent early embryonic lethality associated with chc mutations in multicellular organisms. Acute inactivation of chc at stimulated synapses leads to substantial membrane internalization visualized by live dye uptake and electron microscopy. However, chc-inactivated membrane cannot recycle and participate in vesicle release, resulting in a dramatic defect in neurotransmission maintenance during intense synaptic activity. Furthermore, inactivation of chc in the context of other endocytic mutations results in membrane uptake. Our data not only indicate that chc is critical for synaptic vesicle recycling but they also show that in the absence of the protein, bulk retrieval mediates massive synaptic membrane internalization.
Collapse
Affiliation(s)
- Jaroslaw Kasprowicz
- Department of Molecular and Developmental Genetics, VIB Flemish Institute for Biotechnology, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
A recent EMBO-FEBS workshop entitled Endocytic Systems: Mechanism and Function, organized by Howard Riezman in Villars-sur-Ollon (Switzerland), showcased the multifaceted approaches and model systems used to study endocytosis. The meeting revealed how endocytosis controls multiple aspects of biology, ranging from development to immunity and neurotransmission.
Collapse
Affiliation(s)
- Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
| | | |
Collapse
|
32
|
Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly. Proc Natl Acad Sci U S A 2007; 105:168-73. [PMID: 18165318 DOI: 10.1073/pnas.0707269105] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clathrin-coated vesicles (CCVs) are major carriers for endocytic cargo and mediate important intracellular trafficking events at the trans-Golgi network (TGN) and endosomes. Whereas clathrin heavy chain provides the structural backbone of the clathrin coat, the role of clathrin light chains (CLCs) is poorly understood. We now demonstrate that CLCs are not required for clathrin-mediated endocytosis but are critical for clathrin-mediated trafficking between the TGN and the endosomal system. Specifically, CLC knockdown (KD) causes the cation-independent mannose-6 phosphate receptor (CI-MPR) to cluster near the TGN leading to a delay in processing of the lysosomal hydrolase cathepsin D. A recently identified binding partner for CLCs is huntingtin-interacting protein 1-related (HIP1R), which is required for productive interactions of CCVs with the actin cytoskeleton. CLC KD causes mislocalization of HIP1R and overassembly of actin, which accumulates in patches around the clustered CI-MPR. A dominant-negative CLC construct that disrupts HIP1R/CLC interactions causes similar alterations in CI-MPR trafficking and actin assembly. Thus, in mammalian cells CLCs function in intracellular membrane trafficking by acting as recruitment proteins for HIP1R, enabling HIP1R to regulate actin assembly on clathrin-coated structures.
Collapse
|
33
|
Abstract
Internalization of cargo by clathrin-mediated endocytosis has been studied extensively. In this issue of Cell Host & Microbe, Cossart and colleagues report that a variety of pathogens induce the recruitment of clathrin and other endocytic proteins to sites of pathogen interaction with the cell surface. This recruitment is followed by actin rearrangements in the host cell necessary for the uptake or stable attachment of the pathogen at the cell surface.
Collapse
|
34
|
Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 2007; 27:11056-64. [PMID: 17928447 DOI: 10.1523/jneurosci.1941-07.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Collapse
|
35
|
Abstract
Recent live-cell imaging studies, coupled with powerful genetic, biochemical and pharmacological tests of function, have expanded our understanding of the molecular events that underlie clathrin/actin mediated-endocytosis in budding yeast. Many features of this pathway are evolutionarily conserved (Engqvist-Goldstein and Drubin, 2003; Kaksonen et al, 2006). Therefore, insights into the intricate molecular choreography of endocytic events in budding yeast will provide a basis for elucidating such mechanisms in more complex organisms. This poster depicts our current understanding of the dynamics of endocytosis in budding yeast.
Collapse
Affiliation(s)
- Christopher P Toret
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
36
|
Hehnly H, Stamnes M. Regulating cytoskeleton-based vesicle motility. FEBS Lett 2007; 581:2112-8. [PMID: 17335816 PMCID: PMC1974873 DOI: 10.1016/j.febslet.2007.01.094] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/18/2007] [Indexed: 11/17/2022]
Abstract
During vesicular transport, the assembly of the coat complexes and the selection of cargo proteins must be coordinated with the subsequent translocation of vesicles from the donor to an acceptor compartment. Here, we review recent progress toward uncovering the molecular mechanisms that connect transport vesicles to the protein machinery responsible for cytoskeleton-mediated motility. An emerging theme is that vesicle cargo proteins, either directly or through binding interactions with coat proteins, are able to influence cytoskeletal dynamics and motor protein function. Hence, a vesicle's cargo composition may help direct its intracellular motility and targeting.
Collapse
Affiliation(s)
- Heidi Hehnly
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
37
|
Ybe JA, Mishra S, Helms S, Nix J. Crystal structure at 2.8 A of the DLLRKN-containing coiled-coil domain of huntingtin-interacting protein 1 (HIP1) reveals a surface suitable for clathrin light chain binding. J Mol Biol 2006; 367:8-15. [PMID: 17257618 PMCID: PMC1851924 DOI: 10.1016/j.jmb.2006.12.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/15/2006] [Accepted: 12/19/2006] [Indexed: 11/29/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.
Collapse
Affiliation(s)
- Joel A Ybe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|